1 /* $NetBSD: if_wpi.c,v 1.92 2021/12/05 07:08:08 msaitoh Exp $ */
2
3 /*-
4 * Copyright (c) 2006, 2007
5 * Damien Bergamini <damien.bergamini@free.fr>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20 #include <sys/cdefs.h>
21 __KERNEL_RCSID(0, "$NetBSD: if_wpi.c,v 1.92 2021/12/05 07:08:08 msaitoh Exp $");
22
23 /*
24 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
25 */
26
27
28 #include <sys/param.h>
29 #include <sys/sockio.h>
30 #include <sys/sysctl.h>
31 #include <sys/mbuf.h>
32 #include <sys/kernel.h>
33 #include <sys/socket.h>
34 #include <sys/systm.h>
35 #include <sys/malloc.h>
36 #include <sys/mutex.h>
37 #include <sys/once.h>
38 #include <sys/conf.h>
39 #include <sys/kauth.h>
40 #include <sys/callout.h>
41 #include <sys/proc.h>
42 #include <sys/kthread.h>
43
44 #include <sys/bus.h>
45 #include <machine/endian.h>
46 #include <sys/intr.h>
47
48 #include <dev/pci/pcireg.h>
49 #include <dev/pci/pcivar.h>
50 #include <dev/pci/pcidevs.h>
51
52 #include <dev/sysmon/sysmonvar.h>
53
54 #include <net/bpf.h>
55 #include <net/if.h>
56 #include <net/if_arp.h>
57 #include <net/if_dl.h>
58 #include <net/if_ether.h>
59 #include <net/if_media.h>
60 #include <net/if_types.h>
61
62 #include <netinet/in.h>
63 #include <netinet/in_systm.h>
64 #include <netinet/in_var.h>
65 #include <netinet/ip.h>
66
67 #include <net80211/ieee80211_var.h>
68 #include <net80211/ieee80211_amrr.h>
69 #include <net80211/ieee80211_radiotap.h>
70
71 #include <dev/firmload.h>
72
73 #include <dev/pci/if_wpireg.h>
74 #include <dev/pci/if_wpivar.h>
75
76 static const char wpi_firmware_name[] = "iwlwifi-3945.ucode";
77 static once_t wpi_firmware_init;
78 static kmutex_t wpi_firmware_mutex;
79 static size_t wpi_firmware_users;
80 static uint8_t *wpi_firmware_image;
81 static size_t wpi_firmware_size;
82
83 static int wpi_match(device_t, cfdata_t, void *);
84 static void wpi_attach(device_t, device_t, void *);
85 static int wpi_detach(device_t , int);
86 static int wpi_dma_contig_alloc(bus_dma_tag_t, struct wpi_dma_info *,
87 void **, bus_size_t, bus_size_t, int);
88 static void wpi_dma_contig_free(struct wpi_dma_info *);
89 static int wpi_alloc_shared(struct wpi_softc *);
90 static void wpi_free_shared(struct wpi_softc *);
91 static int wpi_alloc_fwmem(struct wpi_softc *);
92 static void wpi_free_fwmem(struct wpi_softc *);
93 static struct wpi_rbuf *wpi_alloc_rbuf(struct wpi_softc *);
94 static void wpi_free_rbuf(struct mbuf *, void *, size_t, void *);
95 static int wpi_alloc_rpool(struct wpi_softc *);
96 static void wpi_free_rpool(struct wpi_softc *);
97 static int wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
98 static void wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
99 static void wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
100 static int wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
101 int, int);
102 static void wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
103 static void wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
104 static struct ieee80211_node * wpi_node_alloc(struct ieee80211_node_table *);
105 static void wpi_newassoc(struct ieee80211_node *, int);
106 static int wpi_media_change(struct ifnet *);
107 static int wpi_newstate(struct ieee80211com *, enum ieee80211_state, int);
108 static void wpi_mem_lock(struct wpi_softc *);
109 static void wpi_mem_unlock(struct wpi_softc *);
110 static uint32_t wpi_mem_read(struct wpi_softc *, uint16_t);
111 static void wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
112 static void wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
113 const uint32_t *, int);
114 static int wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
115 static int wpi_load_microcode(struct wpi_softc *, const uint8_t *, int);
116 static int wpi_cache_firmware(struct wpi_softc *);
117 static void wpi_release_firmware(void);
118 static int wpi_load_firmware(struct wpi_softc *);
119 static void wpi_calib_timeout(void *);
120 static void wpi_iter_func(void *, struct ieee80211_node *);
121 static void wpi_power_calibration(struct wpi_softc *, int);
122 static void wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
123 struct wpi_rx_data *);
124 static void wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
125 static void wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
126 static void wpi_notif_intr(struct wpi_softc *);
127 static int wpi_intr(void *);
128 static void wpi_softintr(void *);
129 static void wpi_read_eeprom(struct wpi_softc *);
130 static void wpi_read_eeprom_channels(struct wpi_softc *, int);
131 static void wpi_read_eeprom_group(struct wpi_softc *, int);
132 static uint8_t wpi_plcp_signal(int);
133 static int wpi_tx_data(struct wpi_softc *, struct mbuf *,
134 struct ieee80211_node *, int);
135 static void wpi_start(struct ifnet *);
136 static void wpi_watchdog(struct ifnet *);
137 static int wpi_ioctl(struct ifnet *, u_long, void *);
138 static int wpi_cmd(struct wpi_softc *, int, const void *, int, int);
139 static int wpi_wme_update(struct ieee80211com *);
140 static int wpi_mrr_setup(struct wpi_softc *);
141 static void wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
142 static void wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
143 static int wpi_set_txpower(struct wpi_softc *,
144 struct ieee80211_channel *, int);
145 static int wpi_get_power_index(struct wpi_softc *,
146 struct wpi_power_group *, struct ieee80211_channel *, int);
147 static int wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
148 static int wpi_auth(struct wpi_softc *);
149 static int wpi_scan(struct wpi_softc *);
150 static int wpi_config(struct wpi_softc *);
151 static void wpi_stop_master(struct wpi_softc *);
152 static int wpi_power_up(struct wpi_softc *);
153 static int wpi_reset(struct wpi_softc *);
154 static void wpi_hw_config(struct wpi_softc *);
155 static int wpi_init(struct ifnet *);
156 static void wpi_stop(struct ifnet *, int);
157 static bool wpi_resume(device_t, const pmf_qual_t *);
158 static int wpi_getrfkill(struct wpi_softc *);
159 static void wpi_sysctlattach(struct wpi_softc *);
160 static void wpi_rsw_thread(void *);
161 static void wpi_rsw_suspend(struct wpi_softc *);
162 static void wpi_stop_intr(struct ifnet *, int);
163
164 #ifdef WPI_DEBUG
165 #define DPRINTF(x) do { if (wpi_debug > 0) printf x; } while (0)
166 #define DPRINTFN(n, x) do { if (wpi_debug >= (n)) printf x; } while (0)
167 int wpi_debug = 1;
168 #else
169 #define DPRINTF(x)
170 #define DPRINTFN(n, x)
171 #endif
172
173 CFATTACH_DECL_NEW(wpi, sizeof (struct wpi_softc), wpi_match, wpi_attach,
174 wpi_detach, NULL);
175
176 static int
wpi_match(device_t parent,cfdata_t match __unused,void * aux)177 wpi_match(device_t parent, cfdata_t match __unused, void *aux)
178 {
179 struct pci_attach_args *pa = aux;
180
181 if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
182 return 0;
183
184 if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_1 ||
185 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_2)
186 return 1;
187
188 return 0;
189 }
190
191 /* Base Address Register */
192 #define WPI_PCI_BAR0 0x10
193
194 static int
wpi_attach_once(void)195 wpi_attach_once(void)
196 {
197
198 mutex_init(&wpi_firmware_mutex, MUTEX_DEFAULT, IPL_NONE);
199 return 0;
200 }
201
202 static void
wpi_attach(device_t parent __unused,device_t self,void * aux)203 wpi_attach(device_t parent __unused, device_t self, void *aux)
204 {
205 struct wpi_softc *sc = device_private(self);
206 struct ieee80211com *ic = &sc->sc_ic;
207 struct ifnet *ifp = &sc->sc_ec.ec_if;
208 struct pci_attach_args *pa = aux;
209 const char *intrstr;
210 bus_space_tag_t memt;
211 bus_space_handle_t memh;
212 pcireg_t data;
213 int ac, error;
214 char intrbuf[PCI_INTRSTR_LEN];
215
216 RUN_ONCE(&wpi_firmware_init, wpi_attach_once);
217 sc->fw_used = false;
218
219 sc->sc_dev = self;
220 sc->sc_pct = pa->pa_pc;
221 sc->sc_pcitag = pa->pa_tag;
222
223 sc->sc_rsw_status = WPI_RSW_UNKNOWN;
224 sc->sc_rsw.smpsw_name = device_xname(self);
225 sc->sc_rsw.smpsw_type = PSWITCH_TYPE_RADIO;
226 error = sysmon_pswitch_register(&sc->sc_rsw);
227 if (error) {
228 aprint_error_dev(self,
229 "unable to register radio switch with sysmon\n");
230 return;
231 }
232 mutex_init(&sc->sc_rsw_mtx, MUTEX_DEFAULT, IPL_NONE);
233 cv_init(&sc->sc_rsw_cv, "wpirsw");
234 sc->sc_rsw_suspend = false;
235 sc->sc_rsw_suspended = false;
236 if (kthread_create(PRI_NONE, 0, NULL,
237 wpi_rsw_thread, sc, &sc->sc_rsw_lwp, "%s", device_xname(self))) {
238 aprint_error_dev(self, "couldn't create switch thread\n");
239 }
240
241 callout_init(&sc->calib_to, 0);
242 callout_setfunc(&sc->calib_to, wpi_calib_timeout, sc);
243
244 pci_aprint_devinfo(pa, NULL);
245
246 /* enable bus-mastering */
247 data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
248 data |= PCI_COMMAND_MASTER_ENABLE;
249 pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, data);
250
251 /* map the register window */
252 error = pci_mapreg_map(pa, WPI_PCI_BAR0, PCI_MAPREG_TYPE_MEM |
253 PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, NULL, &sc->sc_sz);
254 if (error != 0) {
255 aprint_error_dev(self, "could not map memory space\n");
256 return;
257 }
258
259 sc->sc_st = memt;
260 sc->sc_sh = memh;
261 sc->sc_dmat = pa->pa_dmat;
262
263 sc->sc_soft_ih = softint_establish(SOFTINT_NET, wpi_softintr, sc);
264 if (sc->sc_soft_ih == NULL) {
265 aprint_error_dev(self, "could not establish softint\n");
266 goto unmap;
267 }
268
269 if (pci_intr_alloc(pa, &sc->sc_pihp, NULL, 0)) {
270 aprint_error_dev(self, "could not map interrupt\n");
271 goto failsi;
272 }
273
274 intrstr = pci_intr_string(sc->sc_pct, sc->sc_pihp[0], intrbuf,
275 sizeof(intrbuf));
276 sc->sc_ih = pci_intr_establish_xname(sc->sc_pct, sc->sc_pihp[0],
277 IPL_NET, wpi_intr, sc, device_xname(self));
278 if (sc->sc_ih == NULL) {
279 aprint_error_dev(self, "could not establish interrupt");
280 if (intrstr != NULL)
281 aprint_error(" at %s", intrstr);
282 aprint_error("\n");
283 goto failia;
284 }
285 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
286
287 /*
288 * Put adapter into a known state.
289 */
290 if ((error = wpi_reset(sc)) != 0) {
291 aprint_error_dev(self, "could not reset adapter\n");
292 goto failih;
293 }
294
295 /*
296 * Allocate DMA memory for firmware transfers.
297 */
298 if ((error = wpi_alloc_fwmem(sc)) != 0) {
299 aprint_error_dev(self, "could not allocate firmware memory\n");
300 goto failih;
301 }
302
303 /*
304 * Allocate shared page and Tx/Rx rings.
305 */
306 if ((error = wpi_alloc_shared(sc)) != 0) {
307 aprint_error_dev(self, "could not allocate shared area\n");
308 goto fail1;
309 }
310
311 if ((error = wpi_alloc_rpool(sc)) != 0) {
312 aprint_error_dev(self, "could not allocate Rx buffers\n");
313 goto fail2;
314 }
315
316 for (ac = 0; ac < 4; ac++) {
317 error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT,
318 ac);
319 if (error != 0) {
320 aprint_error_dev(self,
321 "could not allocate Tx ring %d\n", ac);
322 goto fail3;
323 }
324 }
325
326 error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
327 if (error != 0) {
328 aprint_error_dev(self, "could not allocate command ring\n");
329 goto fail3;
330 }
331
332 error = wpi_alloc_rx_ring(sc, &sc->rxq);
333 if (error != 0) {
334 aprint_error_dev(self, "could not allocate Rx ring\n");
335 goto fail4;
336 }
337
338 ic->ic_ifp = ifp;
339 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
340 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
341 ic->ic_state = IEEE80211_S_INIT;
342
343 /* set device capabilities */
344 ic->ic_caps =
345 IEEE80211_C_WPA | /* 802.11i */
346 IEEE80211_C_MONITOR | /* monitor mode supported */
347 IEEE80211_C_TXPMGT | /* tx power management */
348 IEEE80211_C_SHSLOT | /* short slot time supported */
349 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
350 IEEE80211_C_WME; /* 802.11e */
351
352 /* read supported channels and MAC address from EEPROM */
353 wpi_read_eeprom(sc);
354
355 /* set supported .11a, .11b and .11g rates */
356 ic->ic_sup_rates[IEEE80211_MODE_11A] = ieee80211_std_rateset_11a;
357 ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
358 ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
359
360 /* IBSS channel undefined for now */
361 ic->ic_ibss_chan = &ic->ic_channels[0];
362
363 ifp->if_softc = sc;
364 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
365 ifp->if_init = wpi_init;
366 ifp->if_stop = wpi_stop;
367 ifp->if_ioctl = wpi_ioctl;
368 ifp->if_start = wpi_start;
369 ifp->if_watchdog = wpi_watchdog;
370 IFQ_SET_READY(&ifp->if_snd);
371 memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
372
373 if_initialize(ifp);
374 ieee80211_ifattach(ic);
375 /* Use common softint-based if_input */
376 ifp->if_percpuq = if_percpuq_create(ifp);
377 if_register(ifp);
378
379 /* override default methods */
380 ic->ic_node_alloc = wpi_node_alloc;
381 ic->ic_newassoc = wpi_newassoc;
382 ic->ic_wme.wme_update = wpi_wme_update;
383
384 /* override state transition machine */
385 sc->sc_newstate = ic->ic_newstate;
386 ic->ic_newstate = wpi_newstate;
387
388 /* XXX media locking needs revisiting */
389 mutex_init(&sc->sc_media_mtx, MUTEX_DEFAULT, IPL_SOFTNET);
390 ieee80211_media_init_with_lock(ic,
391 wpi_media_change, ieee80211_media_status, &sc->sc_media_mtx);
392
393 sc->amrr.amrr_min_success_threshold = 1;
394 sc->amrr.amrr_max_success_threshold = 15;
395
396 wpi_sysctlattach(sc);
397
398 if (pmf_device_register(self, NULL, wpi_resume))
399 pmf_class_network_register(self, ifp);
400 else
401 aprint_error_dev(self, "couldn't establish power handler\n");
402
403 bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
404 sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
405 &sc->sc_drvbpf);
406
407 sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
408 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
409 sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT);
410
411 sc->sc_txtap_len = sizeof sc->sc_txtapu;
412 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
413 sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT);
414
415 ieee80211_announce(ic);
416
417 return;
418
419 /* free allocated memory if something failed during attachment */
420 fail4: wpi_free_tx_ring(sc, &sc->cmdq);
421 fail3: while (--ac >= 0)
422 wpi_free_tx_ring(sc, &sc->txq[ac]);
423 wpi_free_rpool(sc);
424 fail2: wpi_free_shared(sc);
425 fail1: wpi_free_fwmem(sc);
426 failih: pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
427 sc->sc_ih = NULL;
428 failia: pci_intr_release(sc->sc_pct, sc->sc_pihp, 1);
429 sc->sc_pihp = NULL;
430 failsi: softint_disestablish(sc->sc_soft_ih);
431 sc->sc_soft_ih = NULL;
432 unmap: bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
433 }
434
435 static int
wpi_detach(device_t self,int flags __unused)436 wpi_detach(device_t self, int flags __unused)
437 {
438 struct wpi_softc *sc = device_private(self);
439 struct ifnet *ifp = sc->sc_ic.ic_ifp;
440 int ac;
441
442 wpi_stop(ifp, 1);
443
444 if (ifp != NULL)
445 bpf_detach(ifp);
446 ieee80211_ifdetach(&sc->sc_ic);
447 if (ifp != NULL)
448 if_detach(ifp);
449
450 for (ac = 0; ac < 4; ac++)
451 wpi_free_tx_ring(sc, &sc->txq[ac]);
452 wpi_free_tx_ring(sc, &sc->cmdq);
453 wpi_free_rx_ring(sc, &sc->rxq);
454 wpi_free_rpool(sc);
455 wpi_free_shared(sc);
456
457 if (sc->sc_ih != NULL) {
458 pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
459 sc->sc_ih = NULL;
460 }
461 if (sc->sc_pihp != NULL) {
462 pci_intr_release(sc->sc_pct, sc->sc_pihp, 1);
463 sc->sc_pihp = NULL;
464 }
465 if (sc->sc_soft_ih != NULL) {
466 softint_disestablish(sc->sc_soft_ih);
467 sc->sc_soft_ih = NULL;
468 }
469
470 mutex_enter(&sc->sc_rsw_mtx);
471 sc->sc_dying = 1;
472 cv_signal(&sc->sc_rsw_cv);
473 while (sc->sc_rsw_lwp != NULL)
474 cv_wait(&sc->sc_rsw_cv, &sc->sc_rsw_mtx);
475 mutex_exit(&sc->sc_rsw_mtx);
476 sysmon_pswitch_unregister(&sc->sc_rsw);
477
478 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
479
480 if (sc->fw_used) {
481 sc->fw_used = false;
482 wpi_release_firmware();
483 }
484 cv_destroy(&sc->sc_rsw_cv);
485 mutex_destroy(&sc->sc_rsw_mtx);
486 return 0;
487 }
488
489 static int
wpi_dma_contig_alloc(bus_dma_tag_t tag,struct wpi_dma_info * dma,void ** kvap,bus_size_t size,bus_size_t alignment,int flags)490 wpi_dma_contig_alloc(bus_dma_tag_t tag, struct wpi_dma_info *dma, void **kvap,
491 bus_size_t size, bus_size_t alignment, int flags)
492 {
493 int nsegs, error;
494
495 dma->tag = tag;
496 dma->size = size;
497
498 error = bus_dmamap_create(tag, size, 1, size, 0, flags, &dma->map);
499 if (error != 0)
500 goto fail;
501
502 error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
503 flags);
504 if (error != 0)
505 goto fail;
506
507 error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr, flags);
508 if (error != 0)
509 goto fail;
510
511 error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL, flags);
512 if (error != 0)
513 goto fail;
514
515 memset(dma->vaddr, 0, size);
516 bus_dmamap_sync(dma->tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
517
518 dma->paddr = dma->map->dm_segs[0].ds_addr;
519 if (kvap != NULL)
520 *kvap = dma->vaddr;
521
522 return 0;
523
524 fail: wpi_dma_contig_free(dma);
525 return error;
526 }
527
528 static void
wpi_dma_contig_free(struct wpi_dma_info * dma)529 wpi_dma_contig_free(struct wpi_dma_info *dma)
530 {
531 if (dma->map != NULL) {
532 if (dma->vaddr != NULL) {
533 bus_dmamap_unload(dma->tag, dma->map);
534 bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
535 bus_dmamem_free(dma->tag, &dma->seg, 1);
536 dma->vaddr = NULL;
537 }
538 bus_dmamap_destroy(dma->tag, dma->map);
539 dma->map = NULL;
540 }
541 }
542
543 /*
544 * Allocate a shared page between host and NIC.
545 */
546 static int
wpi_alloc_shared(struct wpi_softc * sc)547 wpi_alloc_shared(struct wpi_softc *sc)
548 {
549 int error;
550
551 /* must be aligned on a 4K-page boundary */
552 error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->shared_dma,
553 (void **)&sc->shared, sizeof (struct wpi_shared), WPI_BUF_ALIGN,
554 BUS_DMA_NOWAIT);
555 if (error != 0)
556 aprint_error_dev(sc->sc_dev,
557 "could not allocate shared area DMA memory\n");
558
559 return error;
560 }
561
562 static void
wpi_free_shared(struct wpi_softc * sc)563 wpi_free_shared(struct wpi_softc *sc)
564 {
565 wpi_dma_contig_free(&sc->shared_dma);
566 }
567
568 /*
569 * Allocate DMA-safe memory for firmware transfer.
570 */
571 static int
wpi_alloc_fwmem(struct wpi_softc * sc)572 wpi_alloc_fwmem(struct wpi_softc *sc)
573 {
574 int error;
575
576 /* allocate enough contiguous space to store text and data */
577 error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
578 WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 0,
579 BUS_DMA_NOWAIT);
580
581 if (error != 0)
582 aprint_error_dev(sc->sc_dev,
583 "could not allocate firmware transfer area DMA memory\n");
584 return error;
585 }
586
587 static void
wpi_free_fwmem(struct wpi_softc * sc)588 wpi_free_fwmem(struct wpi_softc *sc)
589 {
590 wpi_dma_contig_free(&sc->fw_dma);
591 }
592
593 static struct wpi_rbuf *
wpi_alloc_rbuf(struct wpi_softc * sc)594 wpi_alloc_rbuf(struct wpi_softc *sc)
595 {
596 struct wpi_rbuf *rbuf;
597
598 mutex_enter(&sc->rxq.freelist_mtx);
599 rbuf = SLIST_FIRST(&sc->rxq.freelist);
600 if (rbuf != NULL) {
601 SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
602 }
603 mutex_exit(&sc->rxq.freelist_mtx);
604
605 return rbuf;
606 }
607
608 /*
609 * This is called automatically by the network stack when the mbuf to which our
610 * Rx buffer is attached is freed.
611 */
612 static void
wpi_free_rbuf(struct mbuf * m,void * buf,size_t size,void * arg)613 wpi_free_rbuf(struct mbuf* m, void *buf, size_t size, void *arg)
614 {
615 struct wpi_rbuf *rbuf = arg;
616 struct wpi_softc *sc = rbuf->sc;
617
618 /* put the buffer back in the free list */
619
620 mutex_enter(&sc->rxq.freelist_mtx);
621 SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
622 mutex_exit(&sc->rxq.freelist_mtx);
623
624 if (__predict_true(m != NULL))
625 pool_cache_put(mb_cache, m);
626 }
627
628 static int
wpi_alloc_rpool(struct wpi_softc * sc)629 wpi_alloc_rpool(struct wpi_softc *sc)
630 {
631 struct wpi_rx_ring *ring = &sc->rxq;
632 int i, error;
633
634 /* allocate a big chunk of DMA'able memory.. */
635 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
636 WPI_RBUF_COUNT * WPI_RBUF_SIZE, WPI_BUF_ALIGN, BUS_DMA_NOWAIT);
637 if (error != 0) {
638 aprint_normal_dev(sc->sc_dev,
639 "could not allocate Rx buffers DMA memory\n");
640 return error;
641 }
642
643 /* ..and split it into 3KB chunks */
644 mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET);
645 SLIST_INIT(&ring->freelist);
646 for (i = 0; i < WPI_RBUF_COUNT; i++) {
647 struct wpi_rbuf *rbuf = &ring->rbuf[i];
648
649 rbuf->sc = sc; /* backpointer for callbacks */
650 rbuf->vaddr = (char *)ring->buf_dma.vaddr + i * WPI_RBUF_SIZE;
651 rbuf->paddr = ring->buf_dma.paddr + i * WPI_RBUF_SIZE;
652
653 SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
654 }
655
656 return 0;
657 }
658
659 static void
wpi_free_rpool(struct wpi_softc * sc)660 wpi_free_rpool(struct wpi_softc *sc)
661 {
662 mutex_destroy(&sc->rxq.freelist_mtx);
663 wpi_dma_contig_free(&sc->rxq.buf_dma);
664 }
665
666 static int
wpi_alloc_rx_ring(struct wpi_softc * sc,struct wpi_rx_ring * ring)667 wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
668 {
669 bus_size_t size;
670 int i, error;
671
672 ring->cur = 0;
673
674 size = WPI_RX_RING_COUNT * sizeof (struct wpi_rx_desc);
675 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
676 (void **)&ring->desc, size,
677 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
678 if (error != 0) {
679 aprint_error_dev(sc->sc_dev,
680 "could not allocate rx ring DMA memory\n");
681 goto fail;
682 }
683
684 /*
685 * Setup Rx buffers.
686 */
687 for (i = 0; i < WPI_RX_RING_COUNT; i++) {
688 struct wpi_rx_data *data = &ring->data[i];
689 struct wpi_rbuf *rbuf;
690
691 error = bus_dmamap_create(sc->sc_dmat, WPI_RBUF_SIZE, 1,
692 WPI_RBUF_SIZE, 0, BUS_DMA_NOWAIT, &data->map);
693 if (error) {
694 aprint_error_dev(sc->sc_dev,
695 "could not allocate rx dma map\n");
696 goto fail;
697 }
698
699 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
700 if (data->m == NULL) {
701 aprint_error_dev(sc->sc_dev,
702 "could not allocate rx mbuf\n");
703 error = ENOMEM;
704 goto fail;
705 }
706 if ((rbuf = wpi_alloc_rbuf(sc)) == NULL) {
707 m_freem(data->m);
708 data->m = NULL;
709 aprint_error_dev(sc->sc_dev,
710 "could not allocate rx cluster\n");
711 error = ENOMEM;
712 goto fail;
713 }
714 /* attach Rx buffer to mbuf */
715 MEXTADD(data->m, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
716 rbuf);
717 data->m->m_flags |= M_EXT_RW;
718
719 error = bus_dmamap_load(sc->sc_dmat, data->map,
720 mtod(data->m, void *), WPI_RBUF_SIZE, NULL,
721 BUS_DMA_NOWAIT | BUS_DMA_READ);
722 if (error) {
723 aprint_error_dev(sc->sc_dev,
724 "could not load mbuf: %d\n", error);
725 goto fail;
726 }
727
728 ring->desc[i] = htole32(rbuf->paddr);
729 }
730
731 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, size,
732 BUS_DMASYNC_PREWRITE);
733
734 return 0;
735
736 fail: wpi_free_rx_ring(sc, ring);
737 return error;
738 }
739
740 static void
wpi_reset_rx_ring(struct wpi_softc * sc,struct wpi_rx_ring * ring)741 wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
742 {
743 int ntries;
744
745 wpi_mem_lock(sc);
746
747 WPI_WRITE(sc, WPI_RX_CONFIG, 0);
748 for (ntries = 0; ntries < 100; ntries++) {
749 if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
750 break;
751 DELAY(10);
752 }
753 #ifdef WPI_DEBUG
754 if (ntries == 100 && wpi_debug > 0)
755 aprint_error_dev(sc->sc_dev, "timeout resetting Rx ring\n");
756 #endif
757 wpi_mem_unlock(sc);
758
759 ring->cur = 0;
760 }
761
762 static void
wpi_free_rx_ring(struct wpi_softc * sc,struct wpi_rx_ring * ring)763 wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
764 {
765 int i;
766
767 wpi_dma_contig_free(&ring->desc_dma);
768
769 for (i = 0; i < WPI_RX_RING_COUNT; i++) {
770 if (ring->data[i].m != NULL) {
771 bus_dmamap_unload(sc->sc_dmat, ring->data[i].map);
772 m_freem(ring->data[i].m);
773 }
774 if (ring->data[i].map != NULL) {
775 bus_dmamap_destroy(sc->sc_dmat, ring->data[i].map);
776 }
777 }
778 }
779
780 static int
wpi_alloc_tx_ring(struct wpi_softc * sc,struct wpi_tx_ring * ring,int count,int qid)781 wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
782 int qid)
783 {
784 int i, error;
785
786 ring->qid = qid;
787 ring->count = count;
788 ring->queued = 0;
789 ring->cur = 0;
790
791 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
792 (void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
793 WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
794 if (error != 0) {
795 aprint_error_dev(sc->sc_dev,
796 "could not allocate tx ring DMA memory\n");
797 goto fail;
798 }
799
800 /* update shared page with ring's base address */
801 sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
802 bus_dmamap_sync(sc->sc_dmat, sc->shared_dma.map, 0,
803 sizeof(struct wpi_shared), BUS_DMASYNC_PREWRITE);
804
805 error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
806 (void **)&ring->cmd, count * sizeof (struct wpi_tx_cmd), 4,
807 BUS_DMA_NOWAIT);
808 if (error != 0) {
809 aprint_error_dev(sc->sc_dev,
810 "could not allocate tx cmd DMA memory\n");
811 goto fail;
812 }
813
814 ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
815 M_WAITOK | M_ZERO);
816
817 for (i = 0; i < count; i++) {
818 struct wpi_tx_data *data = &ring->data[i];
819
820 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
821 WPI_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
822 &data->map);
823 if (error != 0) {
824 aprint_error_dev(sc->sc_dev,
825 "could not create tx buf DMA map\n");
826 goto fail;
827 }
828 }
829
830 return 0;
831
832 fail: wpi_free_tx_ring(sc, ring);
833 return error;
834 }
835
836 static void
wpi_reset_tx_ring(struct wpi_softc * sc,struct wpi_tx_ring * ring)837 wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
838 {
839 int i, ntries;
840
841 wpi_mem_lock(sc);
842
843 WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
844 for (ntries = 0; ntries < 100; ntries++) {
845 if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
846 break;
847 DELAY(10);
848 }
849 #ifdef WPI_DEBUG
850 if (ntries == 100 && wpi_debug > 0) {
851 aprint_error_dev(sc->sc_dev, "timeout resetting Tx ring %d\n",
852 ring->qid);
853 }
854 #endif
855 wpi_mem_unlock(sc);
856
857 for (i = 0; i < ring->count; i++) {
858 struct wpi_tx_data *data = &ring->data[i];
859
860 if (data->m != NULL) {
861 bus_dmamap_unload(sc->sc_dmat, data->map);
862 m_freem(data->m);
863 data->m = NULL;
864 }
865 }
866
867 ring->queued = 0;
868 ring->cur = 0;
869 }
870
871 static void
wpi_free_tx_ring(struct wpi_softc * sc,struct wpi_tx_ring * ring)872 wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
873 {
874 int i;
875
876 wpi_dma_contig_free(&ring->desc_dma);
877 wpi_dma_contig_free(&ring->cmd_dma);
878
879 if (ring->data != NULL) {
880 for (i = 0; i < ring->count; i++) {
881 struct wpi_tx_data *data = &ring->data[i];
882
883 if (data->m != NULL) {
884 bus_dmamap_unload(sc->sc_dmat, data->map);
885 m_freem(data->m);
886 }
887 }
888 free(ring->data, M_DEVBUF);
889 }
890 }
891
892 /*ARGUSED*/
893 static struct ieee80211_node *
wpi_node_alloc(struct ieee80211_node_table * nt __unused)894 wpi_node_alloc(struct ieee80211_node_table *nt __unused)
895 {
896 struct wpi_node *wn;
897
898 wn = malloc(sizeof (struct wpi_node), M_80211_NODE, M_NOWAIT | M_ZERO);
899
900 return (struct ieee80211_node *)wn;
901 }
902
903 static void
wpi_newassoc(struct ieee80211_node * ni,int isnew)904 wpi_newassoc(struct ieee80211_node *ni, int isnew)
905 {
906 struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
907 int i;
908
909 ieee80211_amrr_node_init(&sc->amrr, &((struct wpi_node *)ni)->amn);
910
911 /* set rate to some reasonable initial value */
912 for (i = ni->ni_rates.rs_nrates - 1;
913 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
914 i--);
915 ni->ni_txrate = i;
916 }
917
918 static int
wpi_media_change(struct ifnet * ifp)919 wpi_media_change(struct ifnet *ifp)
920 {
921 int error;
922
923 error = ieee80211_media_change(ifp);
924 if (error != ENETRESET)
925 return error;
926
927 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
928 wpi_init(ifp);
929
930 return 0;
931 }
932
933 static int
wpi_newstate(struct ieee80211com * ic,enum ieee80211_state nstate,int arg)934 wpi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
935 {
936 struct ifnet *ifp = ic->ic_ifp;
937 struct wpi_softc *sc = ifp->if_softc;
938 struct ieee80211_node *ni;
939 enum ieee80211_state ostate = ic->ic_state;
940 int error;
941
942 callout_stop(&sc->calib_to);
943
944 switch (nstate) {
945 case IEEE80211_S_SCAN:
946
947 if (sc->is_scanning)
948 break;
949
950 sc->is_scanning = true;
951
952 if (ostate != IEEE80211_S_SCAN) {
953 /* make the link LED blink while we're scanning */
954 wpi_set_led(sc, WPI_LED_LINK, 20, 2);
955 }
956
957 if ((error = wpi_scan(sc)) != 0) {
958 aprint_error_dev(sc->sc_dev,
959 "could not initiate scan\n");
960 return error;
961 }
962 break;
963
964 case IEEE80211_S_ASSOC:
965 if (ic->ic_state != IEEE80211_S_RUN)
966 break;
967 /* FALLTHROUGH */
968 case IEEE80211_S_AUTH:
969 /* reset state to handle reassociations correctly */
970 sc->config.associd = 0;
971 sc->config.filter &= ~htole32(WPI_FILTER_BSS);
972
973 if ((error = wpi_auth(sc)) != 0) {
974 aprint_error_dev(sc->sc_dev,
975 "could not send authentication request\n");
976 return error;
977 }
978 break;
979
980 case IEEE80211_S_RUN:
981 if (ic->ic_opmode == IEEE80211_M_MONITOR) {
982 /* link LED blinks while monitoring */
983 wpi_set_led(sc, WPI_LED_LINK, 5, 5);
984 break;
985 }
986 ni = ic->ic_bss;
987
988 if (ic->ic_opmode != IEEE80211_M_STA) {
989 (void) wpi_auth(sc); /* XXX */
990 wpi_setup_beacon(sc, ni);
991 }
992
993 wpi_enable_tsf(sc, ni);
994
995 /* update adapter's configuration */
996 sc->config.associd = htole16(ni->ni_associd & ~0xc000);
997 /* short preamble/slot time are negotiated when associating */
998 sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
999 WPI_CONFIG_SHSLOT);
1000 if (ic->ic_flags & IEEE80211_F_SHSLOT)
1001 sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
1002 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
1003 sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
1004 sc->config.filter |= htole32(WPI_FILTER_BSS);
1005 if (ic->ic_opmode != IEEE80211_M_STA)
1006 sc->config.filter |= htole32(WPI_FILTER_BEACON);
1007
1008 /* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
1009
1010 DPRINTF(("config chan %d flags %x\n", sc->config.chan,
1011 sc->config.flags));
1012 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
1013 sizeof (struct wpi_config), 1);
1014 if (error != 0) {
1015 aprint_error_dev(sc->sc_dev,
1016 "could not update configuration\n");
1017 return error;
1018 }
1019
1020 /* configuration has changed, set Tx power accordingly */
1021 if ((error = wpi_set_txpower(sc, ic->ic_curchan, 1)) != 0) {
1022 aprint_error_dev(sc->sc_dev,
1023 "could not set Tx power\n");
1024 return error;
1025 }
1026
1027 if (ic->ic_opmode == IEEE80211_M_STA) {
1028 /* fake a join to init the tx rate */
1029 wpi_newassoc(ni, 1);
1030 }
1031
1032 /* start periodic calibration timer */
1033 sc->calib_cnt = 0;
1034 callout_schedule(&sc->calib_to, hz/2);
1035
1036 /* link LED always on while associated */
1037 wpi_set_led(sc, WPI_LED_LINK, 0, 1);
1038 break;
1039
1040 case IEEE80211_S_INIT:
1041 sc->is_scanning = false;
1042 break;
1043 }
1044
1045 return sc->sc_newstate(ic, nstate, arg);
1046 }
1047
1048 /*
1049 * Grab exclusive access to NIC memory.
1050 */
1051 static void
wpi_mem_lock(struct wpi_softc * sc)1052 wpi_mem_lock(struct wpi_softc *sc)
1053 {
1054 uint32_t tmp;
1055 int ntries;
1056
1057 tmp = WPI_READ(sc, WPI_GPIO_CTL);
1058 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1059
1060 /* spin until we actually get the lock */
1061 for (ntries = 0; ntries < 1000; ntries++) {
1062 if ((WPI_READ(sc, WPI_GPIO_CTL) &
1063 (WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1064 break;
1065 DELAY(10);
1066 }
1067 if (ntries == 1000)
1068 aprint_error_dev(sc->sc_dev, "could not lock memory\n");
1069 }
1070
1071 /*
1072 * Release lock on NIC memory.
1073 */
1074 static void
wpi_mem_unlock(struct wpi_softc * sc)1075 wpi_mem_unlock(struct wpi_softc *sc)
1076 {
1077 uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1078 WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1079 }
1080
1081 static uint32_t
wpi_mem_read(struct wpi_softc * sc,uint16_t addr)1082 wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1083 {
1084 WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1085 return WPI_READ(sc, WPI_READ_MEM_DATA);
1086 }
1087
1088 static void
wpi_mem_write(struct wpi_softc * sc,uint16_t addr,uint32_t data)1089 wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1090 {
1091 WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1092 WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1093 }
1094
1095 static void
wpi_mem_write_region_4(struct wpi_softc * sc,uint16_t addr,const uint32_t * data,int wlen)1096 wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1097 const uint32_t *data, int wlen)
1098 {
1099 for (; wlen > 0; wlen--, data++, addr += 4)
1100 wpi_mem_write(sc, addr, *data);
1101 }
1102
1103 /*
1104 * Read `len' bytes from the EEPROM. We access the EEPROM through the MAC
1105 * instead of using the traditional bit-bang method.
1106 */
1107 static int
wpi_read_prom_data(struct wpi_softc * sc,uint32_t addr,void * data,int len)1108 wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1109 {
1110 uint8_t *out = data;
1111 uint32_t val;
1112 int ntries;
1113
1114 wpi_mem_lock(sc);
1115 for (; len > 0; len -= 2, addr++) {
1116 WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1117
1118 for (ntries = 0; ntries < 10; ntries++) {
1119 if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) &
1120 WPI_EEPROM_READY)
1121 break;
1122 DELAY(5);
1123 }
1124 if (ntries == 10) {
1125 aprint_error_dev(sc->sc_dev, "could not read EEPROM\n");
1126 return ETIMEDOUT;
1127 }
1128 *out++ = val >> 16;
1129 if (len > 1)
1130 *out++ = val >> 24;
1131 }
1132 wpi_mem_unlock(sc);
1133
1134 return 0;
1135 }
1136
1137 /*
1138 * The firmware boot code is small and is intended to be copied directly into
1139 * the NIC internal memory.
1140 */
1141 int
wpi_load_microcode(struct wpi_softc * sc,const uint8_t * ucode,int size)1142 wpi_load_microcode(struct wpi_softc *sc, const uint8_t *ucode, int size)
1143 {
1144 int ntries;
1145
1146 size /= sizeof (uint32_t);
1147
1148 wpi_mem_lock(sc);
1149
1150 /* copy microcode image into NIC memory */
1151 wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1152 (const uint32_t *)ucode, size);
1153
1154 wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1155 wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1156 wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1157
1158 /* run microcode */
1159 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1160
1161 /* wait for transfer to complete */
1162 for (ntries = 0; ntries < 1000; ntries++) {
1163 if (!(wpi_mem_read(sc, WPI_MEM_UCODE_CTL) & WPI_UC_RUN))
1164 break;
1165 DELAY(10);
1166 }
1167 if (ntries == 1000) {
1168 wpi_mem_unlock(sc);
1169 aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
1170 return ETIMEDOUT;
1171 }
1172 wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1173
1174 wpi_mem_unlock(sc);
1175
1176 return 0;
1177 }
1178
1179 static int
wpi_cache_firmware(struct wpi_softc * sc)1180 wpi_cache_firmware(struct wpi_softc *sc)
1181 {
1182 const char *const fwname = wpi_firmware_name;
1183 firmware_handle_t fw;
1184 int error;
1185
1186 /* sc is used here only to report error messages. */
1187
1188 mutex_enter(&wpi_firmware_mutex);
1189
1190 if (wpi_firmware_users == SIZE_MAX) {
1191 mutex_exit(&wpi_firmware_mutex);
1192 return ENFILE; /* Too many of something in the system... */
1193 }
1194 if (wpi_firmware_users++) {
1195 KASSERT(wpi_firmware_image != NULL);
1196 KASSERT(wpi_firmware_size > 0);
1197 mutex_exit(&wpi_firmware_mutex);
1198 return 0; /* Already good to go. */
1199 }
1200
1201 KASSERT(wpi_firmware_image == NULL);
1202 KASSERT(wpi_firmware_size == 0);
1203
1204 /* load firmware image from disk */
1205 if ((error = firmware_open("if_wpi", fwname, &fw)) != 0) {
1206 aprint_error_dev(sc->sc_dev,
1207 "could not open firmware file %s: %d\n", fwname, error);
1208 goto fail0;
1209 }
1210
1211 wpi_firmware_size = firmware_get_size(fw);
1212
1213 if (wpi_firmware_size > sizeof (struct wpi_firmware_hdr) +
1214 WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ +
1215 WPI_FW_INIT_TEXT_MAXSZ + WPI_FW_INIT_DATA_MAXSZ +
1216 WPI_FW_BOOT_TEXT_MAXSZ) {
1217 aprint_error_dev(sc->sc_dev,
1218 "firmware file %s too large: %zu bytes\n",
1219 fwname, wpi_firmware_size);
1220 error = EFBIG;
1221 goto fail1;
1222 }
1223
1224 if (wpi_firmware_size < sizeof (struct wpi_firmware_hdr)) {
1225 aprint_error_dev(sc->sc_dev,
1226 "firmware file %s too small: %zu bytes\n",
1227 fwname, wpi_firmware_size);
1228 error = EINVAL;
1229 goto fail1;
1230 }
1231
1232 wpi_firmware_image = firmware_malloc(wpi_firmware_size);
1233 if (wpi_firmware_image == NULL) {
1234 aprint_error_dev(sc->sc_dev,
1235 "not enough memory for firmware file %s\n", fwname);
1236 error = ENOMEM;
1237 goto fail1;
1238 }
1239
1240 error = firmware_read(fw, 0, wpi_firmware_image, wpi_firmware_size);
1241 if (error != 0) {
1242 aprint_error_dev(sc->sc_dev,
1243 "error reading firmware file %s: %d\n", fwname, error);
1244 goto fail2;
1245 }
1246
1247 /* Success! */
1248 firmware_close(fw);
1249 mutex_exit(&wpi_firmware_mutex);
1250 return 0;
1251
1252 fail2:
1253 firmware_free(wpi_firmware_image, wpi_firmware_size);
1254 wpi_firmware_image = NULL;
1255 fail1:
1256 wpi_firmware_size = 0;
1257 firmware_close(fw);
1258 fail0:
1259 KASSERT(wpi_firmware_users == 1);
1260 wpi_firmware_users = 0;
1261 KASSERT(wpi_firmware_image == NULL);
1262 KASSERT(wpi_firmware_size == 0);
1263
1264 mutex_exit(&wpi_firmware_mutex);
1265 return error;
1266 }
1267
1268 static void
wpi_release_firmware(void)1269 wpi_release_firmware(void)
1270 {
1271
1272 mutex_enter(&wpi_firmware_mutex);
1273
1274 KASSERT(wpi_firmware_users > 0);
1275 KASSERT(wpi_firmware_image != NULL);
1276 KASSERT(wpi_firmware_size != 0);
1277
1278 if (--wpi_firmware_users == 0) {
1279 firmware_free(wpi_firmware_image, wpi_firmware_size);
1280 wpi_firmware_image = NULL;
1281 wpi_firmware_size = 0;
1282 }
1283
1284 mutex_exit(&wpi_firmware_mutex);
1285 }
1286
1287 static int
wpi_load_firmware(struct wpi_softc * sc)1288 wpi_load_firmware(struct wpi_softc *sc)
1289 {
1290 struct wpi_dma_info *dma = &sc->fw_dma;
1291 struct wpi_firmware_hdr hdr;
1292 const uint8_t *init_text, *init_data, *main_text, *main_data;
1293 const uint8_t *boot_text;
1294 uint32_t init_textsz, init_datasz, main_textsz, main_datasz;
1295 uint32_t boot_textsz;
1296 size_t size;
1297 int error;
1298
1299 if (!sc->fw_used) {
1300 if ((error = wpi_cache_firmware(sc)) != 0)
1301 return error;
1302 sc->fw_used = true;
1303 }
1304
1305 KASSERT(sc->fw_used);
1306 KASSERT(wpi_firmware_image != NULL);
1307 KASSERT(wpi_firmware_size > sizeof(hdr));
1308
1309 memcpy(&hdr, wpi_firmware_image, sizeof(hdr));
1310
1311 main_textsz = le32toh(hdr.main_textsz);
1312 main_datasz = le32toh(hdr.main_datasz);
1313 init_textsz = le32toh(hdr.init_textsz);
1314 init_datasz = le32toh(hdr.init_datasz);
1315 boot_textsz = le32toh(hdr.boot_textsz);
1316
1317 /* sanity-check firmware segments sizes */
1318 if (main_textsz > WPI_FW_MAIN_TEXT_MAXSZ ||
1319 main_datasz > WPI_FW_MAIN_DATA_MAXSZ ||
1320 init_textsz > WPI_FW_INIT_TEXT_MAXSZ ||
1321 init_datasz > WPI_FW_INIT_DATA_MAXSZ ||
1322 boot_textsz > WPI_FW_BOOT_TEXT_MAXSZ ||
1323 (boot_textsz & 3) != 0) {
1324 aprint_error_dev(sc->sc_dev, "invalid firmware header\n");
1325 error = EINVAL;
1326 goto free_firmware;
1327 }
1328
1329 /* check that all firmware segments are present */
1330 size = sizeof (struct wpi_firmware_hdr) + main_textsz +
1331 main_datasz + init_textsz + init_datasz + boot_textsz;
1332 if (wpi_firmware_size < size) {
1333 aprint_error_dev(sc->sc_dev,
1334 "firmware file truncated: %zu bytes, expected %zu bytes\n",
1335 wpi_firmware_size, size);
1336 error = EINVAL;
1337 goto free_firmware;
1338 }
1339
1340 /* get pointers to firmware segments */
1341 main_text = wpi_firmware_image + sizeof (struct wpi_firmware_hdr);
1342 main_data = main_text + main_textsz;
1343 init_text = main_data + main_datasz;
1344 init_data = init_text + init_textsz;
1345 boot_text = init_data + init_datasz;
1346
1347 /* copy initialization images into pre-allocated DMA-safe memory */
1348 memcpy(dma->vaddr, init_data, init_datasz);
1349 memcpy((char *)dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, init_text,
1350 init_textsz);
1351
1352 bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE);
1353
1354 /* tell adapter where to find initialization images */
1355 wpi_mem_lock(sc);
1356 wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
1357 wpi_mem_write(sc, WPI_MEM_DATA_SIZE, init_datasz);
1358 wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
1359 dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
1360 wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, init_textsz);
1361 wpi_mem_unlock(sc);
1362
1363 /* load firmware boot code */
1364 if ((error = wpi_load_microcode(sc, boot_text, boot_textsz)) != 0) {
1365 aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
1366 return error;
1367 }
1368
1369 /* now press "execute" ;-) */
1370 WPI_WRITE(sc, WPI_RESET, 0);
1371
1372 /* wait at most one second for first alive notification */
1373 if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
1374 /* this isn't what was supposed to happen.. */
1375 aprint_error_dev(sc->sc_dev,
1376 "timeout waiting for adapter to initialize\n");
1377 }
1378
1379 /* copy runtime images into pre-allocated DMA-safe memory */
1380 memcpy(dma->vaddr, main_data, main_datasz);
1381 memcpy((char *)dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, main_text,
1382 main_textsz);
1383
1384 bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE);
1385
1386 /* tell adapter where to find runtime images */
1387 wpi_mem_lock(sc);
1388 wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
1389 wpi_mem_write(sc, WPI_MEM_DATA_SIZE, main_datasz);
1390 wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
1391 dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
1392 wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | main_textsz);
1393 wpi_mem_unlock(sc);
1394
1395 /* wait at most one second for second alive notification */
1396 if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
1397 /* this isn't what was supposed to happen.. */
1398 aprint_error_dev(sc->sc_dev,
1399 "timeout waiting for adapter to initialize\n");
1400 }
1401
1402 return error;
1403
1404 free_firmware:
1405 sc->fw_used = false;
1406 wpi_release_firmware();
1407 return error;
1408 }
1409
1410 static void
wpi_calib_timeout(void * arg)1411 wpi_calib_timeout(void *arg)
1412 {
1413 struct wpi_softc *sc = arg;
1414 struct ieee80211com *ic = &sc->sc_ic;
1415 int temp, s;
1416
1417 /* automatic rate control triggered every 500ms */
1418 if (ic->ic_fixed_rate == -1) {
1419 s = splnet();
1420 if (ic->ic_opmode == IEEE80211_M_STA)
1421 wpi_iter_func(sc, ic->ic_bss);
1422 else
1423 ieee80211_iterate_nodes(&ic->ic_sta, wpi_iter_func, sc);
1424 splx(s);
1425 }
1426
1427 /* update sensor data */
1428 temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
1429
1430 /* automatic power calibration every 60s */
1431 if (++sc->calib_cnt >= 120) {
1432 wpi_power_calibration(sc, temp);
1433 sc->calib_cnt = 0;
1434 }
1435
1436 callout_schedule(&sc->calib_to, hz/2);
1437 }
1438
1439 static void
wpi_iter_func(void * arg,struct ieee80211_node * ni)1440 wpi_iter_func(void *arg, struct ieee80211_node *ni)
1441 {
1442 struct wpi_softc *sc = arg;
1443 struct wpi_node *wn = (struct wpi_node *)ni;
1444
1445 ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
1446 }
1447
1448 /*
1449 * This function is called periodically (every 60 seconds) to adjust output
1450 * power to temperature changes.
1451 */
1452 void
wpi_power_calibration(struct wpi_softc * sc,int temp)1453 wpi_power_calibration(struct wpi_softc *sc, int temp)
1454 {
1455 /* sanity-check read value */
1456 if (temp < -260 || temp > 25) {
1457 /* this can't be correct, ignore */
1458 DPRINTF(("out-of-range temperature reported: %d\n", temp));
1459 return;
1460 }
1461
1462 DPRINTF(("temperature %d->%d\n", sc->temp, temp));
1463
1464 /* adjust Tx power if need be */
1465 if (abs(temp - sc->temp) <= 6)
1466 return;
1467
1468 sc->temp = temp;
1469
1470 if (wpi_set_txpower(sc, sc->sc_ic.ic_curchan, 1) != 0) {
1471 /* just warn, too bad for the automatic calibration... */
1472 aprint_error_dev(sc->sc_dev, "could not adjust Tx power\n");
1473 }
1474 }
1475
1476 static void
wpi_rx_intr(struct wpi_softc * sc,struct wpi_rx_desc * desc,struct wpi_rx_data * data)1477 wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1478 struct wpi_rx_data *data)
1479 {
1480 struct ieee80211com *ic = &sc->sc_ic;
1481 struct ifnet *ifp = ic->ic_ifp;
1482 struct wpi_rx_ring *ring = &sc->rxq;
1483 struct wpi_rx_stat *stat;
1484 struct wpi_rx_head *head;
1485 struct wpi_rx_tail *tail;
1486 struct wpi_rbuf *rbuf;
1487 struct ieee80211_frame *wh;
1488 struct ieee80211_node *ni;
1489 struct mbuf *m, *mnew;
1490 int data_off, error, s;
1491
1492 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1493 BUS_DMASYNC_POSTREAD);
1494 stat = (struct wpi_rx_stat *)(desc + 1);
1495
1496 if (stat->len > WPI_STAT_MAXLEN) {
1497 aprint_error_dev(sc->sc_dev, "invalid rx statistic header\n");
1498 if_statinc(ifp, if_ierrors);
1499 return;
1500 }
1501
1502 head = (struct wpi_rx_head *)((char *)(stat + 1) + stat->len);
1503 tail = (struct wpi_rx_tail *)((char *)(head + 1) + le16toh(head->len));
1504
1505 DPRINTFN(4, ("rx intr: idx=%d len=%d stat len=%d rssi=%d rate=%x "
1506 "chan=%d tstamp=%" PRIu64 "\n", ring->cur, le32toh(desc->len),
1507 le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1508 le64toh(tail->tstamp)));
1509
1510 /*
1511 * Discard Rx frames with bad CRC early (XXX we may want to pass them
1512 * to radiotap in monitor mode).
1513 */
1514 if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1515 DPRINTF(("rx tail flags error %x\n",
1516 le32toh(tail->flags)));
1517 if_statinc(ifp, if_ierrors);
1518 return;
1519 }
1520
1521 /* Compute where are the useful datas */
1522 data_off = (char*)(head + 1) - mtod(data->m, char*);
1523
1524 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1525 if (mnew == NULL) {
1526 if_statinc(ifp, if_ierrors);
1527 return;
1528 }
1529
1530 rbuf = wpi_alloc_rbuf(sc);
1531 if (rbuf == NULL) {
1532 m_freem(mnew);
1533 if_statinc(ifp, if_ierrors);
1534 return;
1535 }
1536
1537 /* attach Rx buffer to mbuf */
1538 MEXTADD(mnew, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
1539 rbuf);
1540 mnew->m_flags |= M_EXT_RW;
1541
1542 bus_dmamap_unload(sc->sc_dmat, data->map);
1543
1544 error = bus_dmamap_load(sc->sc_dmat, data->map,
1545 mtod(mnew, void *), WPI_RBUF_SIZE, NULL,
1546 BUS_DMA_NOWAIT | BUS_DMA_READ);
1547 if (error) {
1548 device_printf(sc->sc_dev,
1549 "couldn't load rx mbuf: %d\n", error);
1550 m_freem(mnew);
1551 if_statinc(ifp, if_ierrors);
1552
1553 error = bus_dmamap_load(sc->sc_dmat, data->map,
1554 mtod(data->m, void *), WPI_RBUF_SIZE, NULL,
1555 BUS_DMA_NOWAIT | BUS_DMA_READ);
1556 if (error)
1557 panic("%s: bus_dmamap_load failed: %d\n",
1558 device_xname(sc->sc_dev), error);
1559 return;
1560 }
1561
1562 /* new mbuf loaded successfully */
1563 m = data->m;
1564 data->m = mnew;
1565
1566 /* update Rx descriptor */
1567 ring->desc[ring->cur] = htole32(rbuf->paddr);
1568 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
1569 ring->desc_dma.size,
1570 BUS_DMASYNC_PREWRITE);
1571
1572 m->m_data = (char*)m->m_data + data_off;
1573 m->m_pkthdr.len = m->m_len = le16toh(head->len);
1574
1575 /* finalize mbuf */
1576 m_set_rcvif(m, ifp);
1577
1578 s = splnet();
1579
1580 if (sc->sc_drvbpf != NULL) {
1581 struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1582
1583 tap->wr_flags = 0;
1584 tap->wr_chan_freq =
1585 htole16(ic->ic_channels[head->chan].ic_freq);
1586 tap->wr_chan_flags =
1587 htole16(ic->ic_channels[head->chan].ic_flags);
1588 tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1589 tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1590 tap->wr_tsft = tail->tstamp;
1591 tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1592 switch (head->rate) {
1593 /* CCK rates */
1594 case 10: tap->wr_rate = 2; break;
1595 case 20: tap->wr_rate = 4; break;
1596 case 55: tap->wr_rate = 11; break;
1597 case 110: tap->wr_rate = 22; break;
1598 /* OFDM rates */
1599 case 0xd: tap->wr_rate = 12; break;
1600 case 0xf: tap->wr_rate = 18; break;
1601 case 0x5: tap->wr_rate = 24; break;
1602 case 0x7: tap->wr_rate = 36; break;
1603 case 0x9: tap->wr_rate = 48; break;
1604 case 0xb: tap->wr_rate = 72; break;
1605 case 0x1: tap->wr_rate = 96; break;
1606 case 0x3: tap->wr_rate = 108; break;
1607 /* unknown rate: should not happen */
1608 default: tap->wr_rate = 0;
1609 }
1610 if (le16toh(head->flags) & 0x4)
1611 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1612
1613 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m, BPF_D_IN);
1614 }
1615
1616 /* grab a reference to the source node */
1617 wh = mtod(m, struct ieee80211_frame *);
1618 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1619
1620 /* send the frame to the 802.11 layer */
1621 ieee80211_input(ic, m, ni, stat->rssi, 0);
1622
1623 /* release node reference */
1624 ieee80211_free_node(ni);
1625
1626 splx(s);
1627 }
1628
1629 static void
wpi_tx_intr(struct wpi_softc * sc,struct wpi_rx_desc * desc)1630 wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1631 {
1632 struct ifnet *ifp = sc->sc_ic.ic_ifp;
1633 struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1634 struct wpi_tx_data *data = &ring->data[desc->idx];
1635 struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1636 struct wpi_node *wn = (struct wpi_node *)data->ni;
1637 int s;
1638
1639 DPRINTFN(4, ("tx done: qid=%d idx=%d retries=%d nkill=%d rate=%x "
1640 "duration=%d status=%x\n", desc->qid, desc->idx, stat->ntries,
1641 stat->nkill, stat->rate, le32toh(stat->duration),
1642 le32toh(stat->status)));
1643
1644 s = splnet();
1645
1646 /*
1647 * Update rate control statistics for the node.
1648 * XXX we should not count mgmt frames since they're always sent at
1649 * the lowest available bit-rate.
1650 */
1651 wn->amn.amn_txcnt++;
1652 if (stat->ntries > 0) {
1653 DPRINTFN(3, ("tx intr ntries %d\n", stat->ntries));
1654 wn->amn.amn_retrycnt++;
1655 }
1656
1657 if ((le32toh(stat->status) & 0xff) != 1)
1658 if_statinc(ifp, if_oerrors);
1659 else
1660 if_statinc(ifp, if_opackets);
1661
1662 bus_dmamap_unload(sc->sc_dmat, data->map);
1663 m_freem(data->m);
1664 data->m = NULL;
1665 ieee80211_free_node(data->ni);
1666 data->ni = NULL;
1667
1668 ring->queued--;
1669
1670 sc->sc_tx_timer = 0;
1671 ifp->if_flags &= ~IFF_OACTIVE;
1672 wpi_start(ifp); /* in softint */
1673
1674 splx(s);
1675 }
1676
1677 static void
wpi_cmd_intr(struct wpi_softc * sc,struct wpi_rx_desc * desc)1678 wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1679 {
1680 struct wpi_tx_ring *ring = &sc->cmdq;
1681 struct wpi_tx_data *data;
1682
1683 if ((desc->qid & 7) != 4)
1684 return; /* not a command ack */
1685
1686 data = &ring->data[desc->idx];
1687
1688 /* if the command was mapped in a mbuf, free it */
1689 if (data->m != NULL) {
1690 bus_dmamap_unload(sc->sc_dmat, data->map);
1691 m_freem(data->m);
1692 data->m = NULL;
1693 }
1694
1695 wakeup(&ring->cmd[desc->idx]);
1696 }
1697
1698 static void
wpi_notif_intr(struct wpi_softc * sc)1699 wpi_notif_intr(struct wpi_softc *sc)
1700 {
1701 struct ieee80211com *ic = &sc->sc_ic;
1702 struct ifnet *ifp = ic->ic_ifp;
1703 uint32_t hw;
1704 int s;
1705
1706 bus_dmamap_sync(sc->sc_dmat, sc->shared_dma.map, 0,
1707 sizeof(struct wpi_shared), BUS_DMASYNC_POSTREAD);
1708
1709 hw = le32toh(sc->shared->next);
1710 while (sc->rxq.cur != hw) {
1711 struct wpi_rx_data *data = &sc->rxq.data[sc->rxq.cur];
1712 struct wpi_rx_desc *desc;
1713
1714 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1715 BUS_DMASYNC_POSTREAD);
1716 desc = mtod(data->m, struct wpi_rx_desc *);
1717
1718 DPRINTFN(4, ("rx notification qid=%x idx=%d flags=%x type=%d "
1719 "len=%d\n", desc->qid, desc->idx, desc->flags,
1720 desc->type, le32toh(desc->len)));
1721
1722 if (!(desc->qid & 0x80)) /* reply to a command */
1723 wpi_cmd_intr(sc, desc);
1724
1725 switch (desc->type) {
1726 case WPI_RX_DONE:
1727 /* a 802.11 frame was received */
1728 wpi_rx_intr(sc, desc, data);
1729 break;
1730
1731 case WPI_TX_DONE:
1732 /* a 802.11 frame has been transmitted */
1733 wpi_tx_intr(sc, desc);
1734 break;
1735
1736 case WPI_UC_READY:
1737 {
1738 struct wpi_ucode_info *uc =
1739 (struct wpi_ucode_info *)(desc + 1);
1740
1741 /* the microcontroller is ready */
1742 DPRINTF(("microcode alive notification version %x "
1743 "alive %x\n", le32toh(uc->version),
1744 le32toh(uc->valid)));
1745
1746 if (le32toh(uc->valid) != 1) {
1747 aprint_error_dev(sc->sc_dev,
1748 "microcontroller initialization failed\n");
1749 }
1750 break;
1751 }
1752 case WPI_STATE_CHANGED:
1753 {
1754 uint32_t *status = (uint32_t *)(desc + 1);
1755
1756 /* enabled/disabled notification */
1757 DPRINTF(("state changed to %x\n", le32toh(*status)));
1758
1759 if (le32toh(*status) & 1) {
1760 s = splnet();
1761 /* the radio button has to be pushed */
1762 /* wake up thread to signal powerd */
1763 cv_signal(&sc->sc_rsw_cv);
1764 aprint_error_dev(sc->sc_dev,
1765 "Radio transmitter is off\n");
1766 /* turn the interface down */
1767 ifp->if_flags &= ~IFF_UP;
1768 wpi_stop_intr(ifp, 1);
1769 splx(s);
1770 return; /* no further processing */
1771 }
1772 break;
1773 }
1774 case WPI_START_SCAN:
1775 {
1776 #if 0
1777 struct wpi_start_scan *scan =
1778 (struct wpi_start_scan *)(desc + 1);
1779
1780 DPRINTFN(2, ("scanning channel %d status %x\n",
1781 scan->chan, le32toh(scan->status)));
1782
1783 /* fix current channel */
1784 ic->ic_curchan = &ic->ic_channels[scan->chan];
1785 #endif
1786 break;
1787 }
1788 case WPI_STOP_SCAN:
1789 {
1790 #ifdef WPI_DEBUG
1791 struct wpi_stop_scan *scan =
1792 (struct wpi_stop_scan *)(desc + 1);
1793 #endif
1794
1795 DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
1796 scan->nchan, scan->status, scan->chan));
1797
1798 s = splnet();
1799 sc->is_scanning = false;
1800 if (ic->ic_state == IEEE80211_S_SCAN)
1801 ieee80211_next_scan(ic);
1802 splx(s);
1803 break;
1804 }
1805 }
1806
1807 sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1808 }
1809
1810 /* tell the firmware what we have processed */
1811 hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1812 WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1813 }
1814
1815 static int
wpi_intr(void * arg)1816 wpi_intr(void *arg)
1817 {
1818 struct wpi_softc *sc = arg;
1819 uint32_t r;
1820
1821 r = WPI_READ(sc, WPI_INTR);
1822 if (r == 0 || r == 0xffffffff)
1823 return 0; /* not for us */
1824
1825 DPRINTFN(6, ("interrupt reg %x\n", r));
1826
1827 /* disable interrupts */
1828 WPI_WRITE(sc, WPI_MASK, 0);
1829
1830 softint_schedule(sc->sc_soft_ih);
1831 return 1;
1832 }
1833
1834 static void
wpi_softintr(void * arg)1835 wpi_softintr(void *arg)
1836 {
1837 struct wpi_softc *sc = arg;
1838 struct ifnet *ifp = sc->sc_ic.ic_ifp;
1839 uint32_t r;
1840
1841 r = WPI_READ(sc, WPI_INTR);
1842 if (r == 0 || r == 0xffffffff)
1843 goto out;
1844
1845 /* ack interrupts */
1846 WPI_WRITE(sc, WPI_INTR, r);
1847
1848 if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1849 /* SYSTEM FAILURE, SYSTEM FAILURE */
1850 aprint_error_dev(sc->sc_dev, "fatal firmware error\n");
1851 ifp->if_flags &= ~IFF_UP;
1852 wpi_stop_intr(ifp, 1);
1853 return;
1854 }
1855
1856 if (r & WPI_RX_INTR)
1857 wpi_notif_intr(sc);
1858
1859 if (r & WPI_ALIVE_INTR) /* firmware initialized */
1860 wakeup(sc);
1861
1862 out:
1863 /* re-enable interrupts */
1864 if (ifp->if_flags & IFF_UP)
1865 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1866 }
1867
1868 static uint8_t
wpi_plcp_signal(int rate)1869 wpi_plcp_signal(int rate)
1870 {
1871 switch (rate) {
1872 /* CCK rates (returned values are device-dependent) */
1873 case 2: return 10;
1874 case 4: return 20;
1875 case 11: return 55;
1876 case 22: return 110;
1877
1878 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1879 /* R1-R4, (u)ral is R4-R1 */
1880 case 12: return 0xd;
1881 case 18: return 0xf;
1882 case 24: return 0x5;
1883 case 36: return 0x7;
1884 case 48: return 0x9;
1885 case 72: return 0xb;
1886 case 96: return 0x1;
1887 case 108: return 0x3;
1888
1889 /* unsupported rates (should not get there) */
1890 default: return 0;
1891 }
1892 }
1893
1894 /* quickly determine if a given rate is CCK or OFDM */
1895 #define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1896
1897 static int
wpi_tx_data(struct wpi_softc * sc,struct mbuf * m0,struct ieee80211_node * ni,int ac)1898 wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1899 int ac)
1900 {
1901 struct ieee80211com *ic = &sc->sc_ic;
1902 struct wpi_tx_ring *ring = &sc->txq[ac];
1903 struct wpi_tx_desc *desc;
1904 struct wpi_tx_data *data;
1905 struct wpi_tx_cmd *cmd;
1906 struct wpi_cmd_data *tx;
1907 struct ieee80211_frame *wh;
1908 struct ieee80211_key *k;
1909 const struct chanAccParams *cap;
1910 struct mbuf *mnew;
1911 int i, rate, error, hdrlen, noack = 0;
1912
1913 desc = &ring->desc[ring->cur];
1914 data = &ring->data[ring->cur];
1915
1916 wh = mtod(m0, struct ieee80211_frame *);
1917
1918 if (ieee80211_has_qos(wh)) {
1919 cap = &ic->ic_wme.wme_chanParams;
1920 noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
1921 }
1922
1923 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1924 k = ieee80211_crypto_encap(ic, ni, m0);
1925 if (k == NULL) {
1926 m_freem(m0);
1927 return ENOBUFS;
1928 }
1929
1930 /* packet header may have moved, reset our local pointer */
1931 wh = mtod(m0, struct ieee80211_frame *);
1932 }
1933
1934 hdrlen = ieee80211_anyhdrsize(wh);
1935
1936 /* pickup a rate */
1937 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1938 IEEE80211_FC0_TYPE_MGT) {
1939 /* mgmt frames are sent at the lowest available bit-rate */
1940 rate = ni->ni_rates.rs_rates[0];
1941 } else {
1942 if (ic->ic_fixed_rate != -1) {
1943 rate = ic->ic_sup_rates[ic->ic_curmode].
1944 rs_rates[ic->ic_fixed_rate];
1945 } else
1946 rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1947 }
1948 rate &= IEEE80211_RATE_VAL;
1949
1950 if (sc->sc_drvbpf != NULL) {
1951 struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1952
1953 tap->wt_flags = 0;
1954 tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
1955 tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
1956 tap->wt_rate = rate;
1957 tap->wt_hwqueue = ac;
1958 if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1959 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1960
1961 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0, BPF_D_OUT);
1962 }
1963
1964 cmd = &ring->cmd[ring->cur];
1965 cmd->code = WPI_CMD_TX_DATA;
1966 cmd->flags = 0;
1967 cmd->qid = ring->qid;
1968 cmd->idx = ring->cur;
1969
1970 tx = (struct wpi_cmd_data *)cmd->data;
1971 /* no need to zero tx, all fields are reinitialized here */
1972 tx->flags = 0;
1973
1974 if (!noack && !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1975 tx->flags |= htole32(WPI_TX_NEED_ACK);
1976 } else if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold)
1977 tx->flags |= htole32(WPI_TX_NEED_RTS | WPI_TX_FULL_TXOP);
1978
1979 tx->flags |= htole32(WPI_TX_AUTO_SEQ);
1980
1981 /* retrieve destination node's id */
1982 tx->id = IEEE80211_IS_MULTICAST(wh->i_addr1) ? WPI_ID_BROADCAST :
1983 WPI_ID_BSS;
1984
1985 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1986 IEEE80211_FC0_TYPE_MGT) {
1987 /* tell h/w to set timestamp in probe responses */
1988 if ((wh->i_fc[0] &
1989 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1990 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1991 tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1992
1993 if (((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1994 IEEE80211_FC0_SUBTYPE_ASSOC_REQ) ||
1995 ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1996 IEEE80211_FC0_SUBTYPE_REASSOC_REQ))
1997 tx->timeout = htole16(3);
1998 else
1999 tx->timeout = htole16(2);
2000 } else
2001 tx->timeout = htole16(0);
2002
2003 tx->rate = wpi_plcp_signal(rate);
2004
2005 /* be very persistent at sending frames out */
2006 tx->rts_ntries = 7;
2007 tx->data_ntries = 15;
2008
2009 tx->ofdm_mask = 0xff;
2010 tx->cck_mask = 0x0f;
2011 tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
2012
2013 tx->len = htole16(m0->m_pkthdr.len);
2014
2015 /* save and trim IEEE802.11 header */
2016 memcpy((uint8_t *)(tx + 1), wh, hdrlen);
2017 m_adj(m0, hdrlen);
2018
2019 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
2020 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
2021 if (error != 0 && error != EFBIG) {
2022 aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
2023 error);
2024 m_freem(m0);
2025 return error;
2026 }
2027 if (error != 0) {
2028 /* too many fragments, linearize */
2029
2030 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
2031 if (mnew == NULL) {
2032 m_freem(m0);
2033 return ENOMEM;
2034 }
2035 m_copy_pkthdr(mnew, m0);
2036 if (m0->m_pkthdr.len > MHLEN) {
2037 MCLGET(mnew, M_DONTWAIT);
2038 if (!(mnew->m_flags & M_EXT)) {
2039 m_freem(m0);
2040 m_freem(mnew);
2041 return ENOMEM;
2042 }
2043 }
2044
2045 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
2046 m_freem(m0);
2047 mnew->m_len = mnew->m_pkthdr.len;
2048 m0 = mnew;
2049
2050 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
2051 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
2052 if (error != 0) {
2053 aprint_error_dev(sc->sc_dev,
2054 "could not map mbuf (error %d)\n", error);
2055 m_freem(m0);
2056 return error;
2057 }
2058 }
2059
2060 data->m = m0;
2061 data->ni = ni;
2062
2063 DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
2064 ring->qid, ring->cur, m0->m_pkthdr.len, data->map->dm_nsegs));
2065
2066 /* first scatter/gather segment is used by the tx data command */
2067 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
2068 (1 + data->map->dm_nsegs) << 24);
2069 desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2070 ring->cur * sizeof (struct wpi_tx_cmd));
2071 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_data) +
2072 ((hdrlen + 3) & ~3));
2073 for (i = 1; i <= data->map->dm_nsegs; i++) {
2074 desc->segs[i].addr =
2075 htole32(data->map->dm_segs[i - 1].ds_addr);
2076 desc->segs[i].len =
2077 htole32(data->map->dm_segs[i - 1].ds_len);
2078 }
2079
2080 ring->queued++;
2081
2082 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
2083 data->map->dm_mapsize,
2084 BUS_DMASYNC_PREWRITE);
2085 bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map, 0,
2086 ring->cmd_dma.size,
2087 BUS_DMASYNC_PREWRITE);
2088 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
2089 ring->desc_dma.size,
2090 BUS_DMASYNC_PREWRITE);
2091
2092 /* kick ring */
2093 ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2094 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2095
2096 return 0;
2097 }
2098
2099 static void
wpi_start(struct ifnet * ifp)2100 wpi_start(struct ifnet *ifp)
2101 {
2102 struct wpi_softc *sc = ifp->if_softc;
2103 struct ieee80211com *ic = &sc->sc_ic;
2104 struct ieee80211_node *ni;
2105 struct ether_header *eh;
2106 struct mbuf *m0;
2107 int ac;
2108
2109 /*
2110 * net80211 may still try to send management frames even if the
2111 * IFF_RUNNING flag is not set...
2112 */
2113 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
2114 return;
2115
2116 for (;;) {
2117 IF_DEQUEUE(&ic->ic_mgtq, m0);
2118 if (m0 != NULL) {
2119
2120 ni = M_GETCTX(m0, struct ieee80211_node *);
2121 M_CLEARCTX(m0);
2122
2123 /* management frames go into ring 0 */
2124 if (sc->txq[0].queued > sc->txq[0].count - 8) {
2125 if_statinc(ifp, if_oerrors);
2126 continue;
2127 }
2128 bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT);
2129 if (wpi_tx_data(sc, m0, ni, 0) != 0) {
2130 if_statinc(ifp, if_oerrors);
2131 break;
2132 }
2133 } else {
2134 if (ic->ic_state != IEEE80211_S_RUN)
2135 break;
2136 IFQ_POLL(&ifp->if_snd, m0);
2137 if (m0 == NULL)
2138 break;
2139
2140 if (m0->m_len < sizeof (*eh) &&
2141 (m0 = m_pullup(m0, sizeof (*eh))) == NULL) {
2142 if_statinc(ifp, if_oerrors);
2143 continue;
2144 }
2145 eh = mtod(m0, struct ether_header *);
2146 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
2147 if (ni == NULL) {
2148 m_freem(m0);
2149 if_statinc(ifp, if_oerrors);
2150 continue;
2151 }
2152
2153 /* classify mbuf so we can find which tx ring to use */
2154 if (ieee80211_classify(ic, m0, ni) != 0) {
2155 m_freem(m0);
2156 ieee80211_free_node(ni);
2157 if_statinc(ifp, if_oerrors);
2158 continue;
2159 }
2160
2161 /* no QoS encapsulation for EAPOL frames */
2162 ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
2163 M_WME_GETAC(m0) : WME_AC_BE;
2164
2165 if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
2166 /* there is no place left in this ring */
2167 ifp->if_flags |= IFF_OACTIVE;
2168 break;
2169 }
2170 IFQ_DEQUEUE(&ifp->if_snd, m0);
2171 bpf_mtap(ifp, m0, BPF_D_OUT);
2172 m0 = ieee80211_encap(ic, m0, ni);
2173 if (m0 == NULL) {
2174 ieee80211_free_node(ni);
2175 if_statinc(ifp, if_oerrors);
2176 continue;
2177 }
2178 bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT);
2179 if (wpi_tx_data(sc, m0, ni, ac) != 0) {
2180 ieee80211_free_node(ni);
2181 if_statinc(ifp, if_oerrors);
2182 break;
2183 }
2184 }
2185
2186 sc->sc_tx_timer = 5;
2187 ifp->if_timer = 1;
2188 }
2189 }
2190
2191 static void
wpi_watchdog(struct ifnet * ifp)2192 wpi_watchdog(struct ifnet *ifp)
2193 {
2194 struct wpi_softc *sc = ifp->if_softc;
2195
2196 ifp->if_timer = 0;
2197
2198 if (sc->sc_tx_timer > 0) {
2199 if (--sc->sc_tx_timer == 0) {
2200 aprint_error_dev(sc->sc_dev, "device timeout\n");
2201 ifp->if_flags &= ~IFF_UP;
2202 wpi_stop_intr(ifp, 1);
2203 if_statinc(ifp, if_oerrors);
2204 return;
2205 }
2206 ifp->if_timer = 1;
2207 }
2208
2209 ieee80211_watchdog(&sc->sc_ic);
2210 }
2211
2212 static int
wpi_ioctl(struct ifnet * ifp,u_long cmd,void * data)2213 wpi_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2214 {
2215 #define IS_RUNNING(ifp) \
2216 ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
2217
2218 struct wpi_softc *sc = ifp->if_softc;
2219 struct ieee80211com *ic = &sc->sc_ic;
2220 int s, error = 0;
2221
2222 s = splnet();
2223
2224 switch (cmd) {
2225 case SIOCSIFFLAGS:
2226 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
2227 break;
2228 if (ifp->if_flags & IFF_UP) {
2229 if (!(ifp->if_flags & IFF_RUNNING))
2230 wpi_init(ifp);
2231 } else {
2232 if (ifp->if_flags & IFF_RUNNING)
2233 wpi_stop(ifp, 1);
2234 }
2235 break;
2236
2237 case SIOCADDMULTI:
2238 case SIOCDELMULTI:
2239 /* XXX no h/w multicast filter? --dyoung */
2240 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
2241 /* setup multicast filter, etc */
2242 error = 0;
2243 }
2244 break;
2245
2246 default:
2247 error = ieee80211_ioctl(ic, cmd, data);
2248 }
2249
2250 if (error == ENETRESET) {
2251 if (IS_RUNNING(ifp) &&
2252 (ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
2253 wpi_init(ifp);
2254 error = 0;
2255 }
2256
2257 splx(s);
2258 return error;
2259
2260 #undef IS_RUNNING
2261 }
2262
2263 /*
2264 * Extract various information from EEPROM.
2265 */
2266 static void
wpi_read_eeprom(struct wpi_softc * sc)2267 wpi_read_eeprom(struct wpi_softc *sc)
2268 {
2269 struct ieee80211com *ic = &sc->sc_ic;
2270 char domain[4];
2271 int i;
2272
2273 wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap, 1);
2274 wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev, 2);
2275 wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2276
2277 DPRINTF(("cap=%x rev=%x type=%x\n", sc->cap, le16toh(sc->rev),
2278 sc->type));
2279
2280 /* read and print regulatory domain */
2281 wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, domain, 4);
2282 aprint_normal_dev(sc->sc_dev, "%.4s", domain);
2283
2284 /* read and print MAC address */
2285 wpi_read_prom_data(sc, WPI_EEPROM_MAC, ic->ic_myaddr, 6);
2286 aprint_normal(", address %s\n", ether_sprintf(ic->ic_myaddr));
2287
2288 /* read the list of authorized channels */
2289 for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2290 wpi_read_eeprom_channels(sc, i);
2291
2292 /* read the list of power groups */
2293 for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2294 wpi_read_eeprom_group(sc, i);
2295 }
2296
2297 static void
wpi_read_eeprom_channels(struct wpi_softc * sc,int n)2298 wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
2299 {
2300 struct ieee80211com *ic = &sc->sc_ic;
2301 const struct wpi_chan_band *band = &wpi_bands[n];
2302 struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
2303 int chan, i;
2304
2305 wpi_read_prom_data(sc, band->addr, channels,
2306 band->nchan * sizeof (struct wpi_eeprom_chan));
2307
2308 for (i = 0; i < band->nchan; i++) {
2309 if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID))
2310 continue;
2311
2312 chan = band->chan[i];
2313
2314 if (n == 0) { /* 2GHz band */
2315 ic->ic_channels[chan].ic_freq =
2316 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
2317 ic->ic_channels[chan].ic_flags =
2318 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
2319 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
2320
2321 } else { /* 5GHz band */
2322 /*
2323 * Some 3945ABG adapters support channels 7, 8, 11
2324 * and 12 in the 2GHz *and* 5GHz bands.
2325 * Because of limitations in our net80211(9) stack,
2326 * we can't support these channels in 5GHz band.
2327 */
2328 if (chan <= 14)
2329 continue;
2330
2331 ic->ic_channels[chan].ic_freq =
2332 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
2333 ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
2334 }
2335
2336 /* is active scan allowed on this channel? */
2337 if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
2338 ic->ic_channels[chan].ic_flags |=
2339 IEEE80211_CHAN_PASSIVE;
2340 }
2341
2342 /* save maximum allowed power for this channel */
2343 sc->maxpwr[chan] = channels[i].maxpwr;
2344
2345 DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
2346 chan, channels[i].flags, sc->maxpwr[chan]));
2347 }
2348 }
2349
2350 static void
wpi_read_eeprom_group(struct wpi_softc * sc,int n)2351 wpi_read_eeprom_group(struct wpi_softc *sc, int n)
2352 {
2353 struct wpi_power_group *group = &sc->groups[n];
2354 struct wpi_eeprom_group rgroup;
2355 int i;
2356
2357 wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
2358 sizeof rgroup);
2359
2360 /* save power group information */
2361 group->chan = rgroup.chan;
2362 group->maxpwr = rgroup.maxpwr;
2363 /* temperature at which the samples were taken */
2364 group->temp = (int16_t)le16toh(rgroup.temp);
2365
2366 DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
2367 group->chan, group->maxpwr, group->temp));
2368
2369 for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
2370 group->samples[i].index = rgroup.samples[i].index;
2371 group->samples[i].power = rgroup.samples[i].power;
2372
2373 DPRINTF(("\tsample %d: index=%d power=%d\n", i,
2374 group->samples[i].index, group->samples[i].power));
2375 }
2376 }
2377
2378 /*
2379 * Send a command to the firmware.
2380 */
2381 static int
wpi_cmd(struct wpi_softc * sc,int code,const void * buf,int size,int async)2382 wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2383 {
2384 struct wpi_tx_ring *ring = &sc->cmdq;
2385 struct wpi_tx_desc *desc;
2386 struct wpi_tx_cmd *cmd;
2387 struct wpi_dma_info *dma;
2388
2389 KASSERT(size <= sizeof cmd->data);
2390
2391 desc = &ring->desc[ring->cur];
2392 cmd = &ring->cmd[ring->cur];
2393
2394 cmd->code = code;
2395 cmd->flags = 0;
2396 cmd->qid = ring->qid;
2397 cmd->idx = ring->cur;
2398 memcpy(cmd->data, buf, size);
2399
2400 dma = &ring->cmd_dma;
2401 bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE);
2402
2403 desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2404 desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2405 ring->cur * sizeof (struct wpi_tx_cmd));
2406 desc->segs[0].len = htole32(4 + size);
2407
2408 dma = &ring->desc_dma;
2409 bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_PREWRITE);
2410
2411 /* kick cmd ring */
2412 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2413 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2414
2415 return async ? 0 : tsleep(cmd, PCATCH, "wpicmd", hz);
2416 }
2417
2418 static int
wpi_wme_update(struct ieee80211com * ic)2419 wpi_wme_update(struct ieee80211com *ic)
2420 {
2421 #define WPI_EXP2(v) htole16((1 << (v)) - 1)
2422 #define WPI_USEC(v) htole16(IEEE80211_TXOP_TO_US(v))
2423 struct wpi_softc *sc = ic->ic_ifp->if_softc;
2424 const struct wmeParams *wmep;
2425 struct wpi_wme_setup wme;
2426 int ac;
2427
2428 /* don't override default WME values if WME is not actually enabled */
2429 if (!(ic->ic_flags & IEEE80211_F_WME))
2430 return 0;
2431
2432 wme.flags = 0;
2433 for (ac = 0; ac < WME_NUM_AC; ac++) {
2434 wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2435 wme.ac[ac].aifsn = wmep->wmep_aifsn;
2436 wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2437 wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2438 wme.ac[ac].txop = WPI_USEC(wmep->wmep_txopLimit);
2439
2440 DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2441 "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2442 wme.ac[ac].cwmax, wme.ac[ac].txop));
2443 }
2444
2445 return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2446 #undef WPI_USEC
2447 #undef WPI_EXP2
2448 }
2449
2450 /*
2451 * Configure h/w multi-rate retries.
2452 */
2453 static int
wpi_mrr_setup(struct wpi_softc * sc)2454 wpi_mrr_setup(struct wpi_softc *sc)
2455 {
2456 struct ieee80211com *ic = &sc->sc_ic;
2457 struct wpi_mrr_setup mrr;
2458 int i, error;
2459
2460 /* CCK rates (not used with 802.11a) */
2461 for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2462 mrr.rates[i].flags = 0;
2463 mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2464 /* fallback to the immediate lower CCK rate (if any) */
2465 mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2466 /* try one time at this rate before falling back to "next" */
2467 mrr.rates[i].ntries = 1;
2468 }
2469
2470 /* OFDM rates (not used with 802.11b) */
2471 for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2472 mrr.rates[i].flags = 0;
2473 mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
2474 /* fallback to the immediate lower rate (if any) */
2475 /* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2476 mrr.rates[i].next = (i == WPI_OFDM6) ?
2477 ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2478 WPI_OFDM6 : WPI_CCK2) :
2479 i - 1;
2480 /* try one time at this rate before falling back to "next" */
2481 mrr.rates[i].ntries = 1;
2482 }
2483
2484 /* setup MRR for control frames */
2485 mrr.which = htole32(WPI_MRR_CTL);
2486 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2487 if (error != 0) {
2488 aprint_error_dev(sc->sc_dev,
2489 "could not setup MRR for control frames\n");
2490 return error;
2491 }
2492
2493 /* setup MRR for data frames */
2494 mrr.which = htole32(WPI_MRR_DATA);
2495 error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2496 if (error != 0) {
2497 aprint_error_dev(sc->sc_dev,
2498 "could not setup MRR for data frames\n");
2499 return error;
2500 }
2501
2502 return 0;
2503 }
2504
2505 static void
wpi_set_led(struct wpi_softc * sc,uint8_t which,uint8_t off,uint8_t on)2506 wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2507 {
2508 struct wpi_cmd_led led;
2509
2510 led.which = which;
2511 led.unit = htole32(100000); /* on/off in unit of 100ms */
2512 led.off = off;
2513 led.on = on;
2514
2515 (void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2516 }
2517
2518 static void
wpi_enable_tsf(struct wpi_softc * sc,struct ieee80211_node * ni)2519 wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2520 {
2521 struct wpi_cmd_tsf tsf;
2522 uint64_t val, mod;
2523
2524 memset(&tsf, 0, sizeof tsf);
2525 memcpy(&tsf.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
2526 tsf.bintval = htole16(ni->ni_intval);
2527 tsf.lintval = htole16(10);
2528
2529 /* compute remaining time until next beacon */
2530 val = (uint64_t)ni->ni_intval * 1024; /* msecs -> usecs */
2531 mod = le64toh(tsf.tstamp) % val;
2532 tsf.binitval = htole32((uint32_t)(val - mod));
2533
2534 DPRINTF(("TSF bintval=%u tstamp=%" PRIu64 ", init=%u\n",
2535 ni->ni_intval, le64toh(tsf.tstamp), (uint32_t)(val - mod)));
2536
2537 if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2538 aprint_error_dev(sc->sc_dev, "could not enable TSF\n");
2539 }
2540
2541 /*
2542 * Update Tx power to match what is defined for channel `c'.
2543 */
2544 static int
wpi_set_txpower(struct wpi_softc * sc,struct ieee80211_channel * c,int async)2545 wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
2546 {
2547 struct ieee80211com *ic = &sc->sc_ic;
2548 struct wpi_power_group *group;
2549 struct wpi_cmd_txpower txpower;
2550 u_int chan;
2551 int i;
2552
2553 /* get channel number */
2554 chan = ieee80211_chan2ieee(ic, c);
2555
2556 /* find the power group to which this channel belongs */
2557 if (IEEE80211_IS_CHAN_5GHZ(c)) {
2558 for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
2559 if (chan <= group->chan)
2560 break;
2561 } else
2562 group = &sc->groups[0];
2563
2564 memset(&txpower, 0, sizeof txpower);
2565 txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
2566 txpower.chan = htole16(chan);
2567
2568 /* set Tx power for all OFDM and CCK rates */
2569 for (i = 0; i <= 11 ; i++) {
2570 /* retrieve Tx power for this channel/rate combination */
2571 int idx = wpi_get_power_index(sc, group, c,
2572 wpi_ridx_to_rate[i]);
2573
2574 txpower.rates[i].plcp = wpi_ridx_to_plcp[i];
2575
2576 if (IEEE80211_IS_CHAN_5GHZ(c)) {
2577 txpower.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
2578 txpower.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
2579 } else {
2580 txpower.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
2581 txpower.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
2582 }
2583 DPRINTF(("chan %d/rate %d: power index %d\n", chan,
2584 wpi_ridx_to_rate[i], idx));
2585 }
2586
2587 return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
2588 }
2589
2590 /*
2591 * Determine Tx power index for a given channel/rate combination.
2592 * This takes into account the regulatory information from EEPROM and the
2593 * current temperature.
2594 */
2595 static int
wpi_get_power_index(struct wpi_softc * sc,struct wpi_power_group * group,struct ieee80211_channel * c,int rate)2596 wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
2597 struct ieee80211_channel *c, int rate)
2598 {
2599 /* fixed-point arithmetic division using a n-bit fractional part */
2600 #define fdivround(a, b, n) \
2601 ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
2602
2603 /* linear interpolation */
2604 #define interpolate(x, x1, y1, x2, y2, n) \
2605 ((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
2606
2607 struct ieee80211com *ic = &sc->sc_ic;
2608 struct wpi_power_sample *sample;
2609 int pwr, idx;
2610 u_int chan;
2611
2612 /* get channel number */
2613 chan = ieee80211_chan2ieee(ic, c);
2614
2615 /* default power is group's maximum power - 3dB */
2616 pwr = group->maxpwr / 2;
2617
2618 /* decrease power for highest OFDM rates to reduce distortion */
2619 switch (rate) {
2620 case 72: /* 36Mb/s */
2621 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 : 5;
2622 break;
2623 case 96: /* 48Mb/s */
2624 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
2625 break;
2626 case 108: /* 54Mb/s */
2627 pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
2628 break;
2629 }
2630
2631 /* never exceed channel's maximum allowed Tx power */
2632 pwr = uimin(pwr, sc->maxpwr[chan]);
2633
2634 /* retrieve power index into gain tables from samples */
2635 for (sample = group->samples; sample < &group->samples[3]; sample++)
2636 if (pwr > sample[1].power)
2637 break;
2638 /* fixed-point linear interpolation using a 19-bit fractional part */
2639 idx = interpolate(pwr, sample[0].power, sample[0].index,
2640 sample[1].power, sample[1].index, 19);
2641
2642 /*-
2643 * Adjust power index based on current temperature:
2644 * - if cooler than factory-calibrated: decrease output power
2645 * - if warmer than factory-calibrated: increase output power
2646 */
2647 idx -= (sc->temp - group->temp) * 11 / 100;
2648
2649 /* decrease power for CCK rates (-5dB) */
2650 if (!WPI_RATE_IS_OFDM(rate))
2651 idx += 10;
2652
2653 /* keep power index in a valid range */
2654 if (idx < 0)
2655 return 0;
2656 if (idx > WPI_MAX_PWR_INDEX)
2657 return WPI_MAX_PWR_INDEX;
2658 return idx;
2659
2660 #undef interpolate
2661 #undef fdivround
2662 }
2663
2664 /*
2665 * Build a beacon frame that the firmware will broadcast periodically in
2666 * IBSS or HostAP modes.
2667 */
2668 static int
wpi_setup_beacon(struct wpi_softc * sc,struct ieee80211_node * ni)2669 wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2670 {
2671 struct ieee80211com *ic = &sc->sc_ic;
2672 struct wpi_tx_ring *ring = &sc->cmdq;
2673 struct wpi_tx_desc *desc;
2674 struct wpi_tx_data *data;
2675 struct wpi_tx_cmd *cmd;
2676 struct wpi_cmd_beacon *bcn;
2677 struct ieee80211_beacon_offsets bo;
2678 struct mbuf *m0;
2679 int error;
2680
2681 desc = &ring->desc[ring->cur];
2682 data = &ring->data[ring->cur];
2683
2684 m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2685 if (m0 == NULL) {
2686 aprint_error_dev(sc->sc_dev,
2687 "could not allocate beacon frame\n");
2688 return ENOMEM;
2689 }
2690
2691 cmd = &ring->cmd[ring->cur];
2692 cmd->code = WPI_CMD_SET_BEACON;
2693 cmd->flags = 0;
2694 cmd->qid = ring->qid;
2695 cmd->idx = ring->cur;
2696
2697 bcn = (struct wpi_cmd_beacon *)cmd->data;
2698 memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2699 bcn->id = WPI_ID_BROADCAST;
2700 bcn->ofdm_mask = 0xff;
2701 bcn->cck_mask = 0x0f;
2702 bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2703 bcn->len = htole16(m0->m_pkthdr.len);
2704 bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2705 wpi_plcp_signal(12) : wpi_plcp_signal(2);
2706 bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2707
2708 /* save and trim IEEE802.11 header */
2709 m_copydata(m0, 0, sizeof (struct ieee80211_frame), (void *)&bcn->wh);
2710 m_adj(m0, sizeof (struct ieee80211_frame));
2711
2712 /* assume beacon frame is contiguous */
2713 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
2714 BUS_DMA_READ | BUS_DMA_NOWAIT);
2715 if (error != 0) {
2716 aprint_error_dev(sc->sc_dev, "could not map beacon\n");
2717 m_freem(m0);
2718 return error;
2719 }
2720
2721 data->m = m0;
2722
2723 /* first scatter/gather segment is used by the beacon command */
2724 desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2725 desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2726 ring->cur * sizeof (struct wpi_tx_cmd));
2727 desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_beacon));
2728 desc->segs[1].addr = htole32(data->map->dm_segs[0].ds_addr);
2729 desc->segs[1].len = htole32(data->map->dm_segs[0].ds_len);
2730
2731 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
2732 ring->desc_dma.map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2733 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
2734 BUS_DMASYNC_PREWRITE);
2735
2736 /* kick cmd ring */
2737 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2738 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2739
2740 return 0;
2741 }
2742
2743 static int
wpi_auth(struct wpi_softc * sc)2744 wpi_auth(struct wpi_softc *sc)
2745 {
2746 struct ieee80211com *ic = &sc->sc_ic;
2747 struct ieee80211_node *ni = ic->ic_bss;
2748 struct wpi_node_info node;
2749 int error;
2750
2751 /* update adapter's configuration */
2752 IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2753 sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2754 sc->config.flags = htole32(WPI_CONFIG_TSF);
2755 if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2756 sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2757 WPI_CONFIG_24GHZ);
2758 }
2759 switch (ic->ic_curmode) {
2760 case IEEE80211_MODE_11A:
2761 sc->config.cck_mask = 0;
2762 sc->config.ofdm_mask = 0x15;
2763 break;
2764 case IEEE80211_MODE_11B:
2765 sc->config.cck_mask = 0x03;
2766 sc->config.ofdm_mask = 0;
2767 break;
2768 default: /* assume 802.11b/g */
2769 sc->config.cck_mask = 0x0f;
2770 sc->config.ofdm_mask = 0x15;
2771 }
2772 DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2773 sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2774 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2775 sizeof (struct wpi_config), 1);
2776 if (error != 0) {
2777 aprint_error_dev(sc->sc_dev, "could not configure\n");
2778 return error;
2779 }
2780
2781 /* configuration has changed, set Tx power accordingly */
2782 if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2783 aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
2784 return error;
2785 }
2786
2787 /* add default node */
2788 memset(&node, 0, sizeof node);
2789 IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2790 node.id = WPI_ID_BSS;
2791 node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2792 wpi_plcp_signal(12) : wpi_plcp_signal(2);
2793 node.action = htole32(WPI_ACTION_SET_RATE);
2794 node.antenna = WPI_ANTENNA_BOTH;
2795 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2796 if (error != 0) {
2797 aprint_error_dev(sc->sc_dev, "could not add BSS node\n");
2798 return error;
2799 }
2800
2801 return 0;
2802 }
2803
2804 /*
2805 * Send a scan request to the firmware. Since this command is huge, we map it
2806 * into a mbuf instead of using the pre-allocated set of commands.
2807 */
2808 static int
wpi_scan(struct wpi_softc * sc)2809 wpi_scan(struct wpi_softc *sc)
2810 {
2811 struct ieee80211com *ic = &sc->sc_ic;
2812 struct wpi_tx_ring *ring = &sc->cmdq;
2813 struct wpi_tx_desc *desc;
2814 struct wpi_tx_data *data;
2815 struct wpi_tx_cmd *cmd;
2816 struct wpi_scan_hdr *hdr;
2817 struct wpi_scan_chan *chan;
2818 struct ieee80211_frame *wh;
2819 struct ieee80211_rateset *rs;
2820 struct ieee80211_channel *c;
2821 uint8_t *frm;
2822 int pktlen, error, nrates;
2823
2824 if (ic->ic_curchan == NULL)
2825 return EIO;
2826
2827 desc = &ring->desc[ring->cur];
2828 data = &ring->data[ring->cur];
2829
2830 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
2831 if (data->m == NULL) {
2832 aprint_error_dev(sc->sc_dev,
2833 "could not allocate mbuf for scan command\n");
2834 return ENOMEM;
2835 }
2836 MCLGET(data->m, M_DONTWAIT);
2837 if (!(data->m->m_flags & M_EXT)) {
2838 m_freem(data->m);
2839 data->m = NULL;
2840 aprint_error_dev(sc->sc_dev,
2841 "could not allocate mbuf for scan command\n");
2842 return ENOMEM;
2843 }
2844
2845 cmd = mtod(data->m, struct wpi_tx_cmd *);
2846 cmd->code = WPI_CMD_SCAN;
2847 cmd->flags = 0;
2848 cmd->qid = ring->qid;
2849 cmd->idx = ring->cur;
2850
2851 hdr = (struct wpi_scan_hdr *)cmd->data;
2852 memset(hdr, 0, sizeof (struct wpi_scan_hdr));
2853 hdr->cmd.flags = htole32(WPI_TX_AUTO_SEQ);
2854 hdr->cmd.id = WPI_ID_BROADCAST;
2855 hdr->cmd.lifetime = htole32(WPI_LIFETIME_INFINITE);
2856 /*
2857 * Move to the next channel if no packets are received within 5 msecs
2858 * after sending the probe request (this helps to reduce the duration
2859 * of active scans).
2860 */
2861 hdr->quiet = htole16(5); /* timeout in milliseconds */
2862 hdr->plcp_threshold = htole16(1); /* min # of packets */
2863
2864 if (ic->ic_curchan->ic_flags & IEEE80211_CHAN_5GHZ) {
2865 hdr->crc_threshold = htole16(1);
2866 /* send probe requests at 6Mbps */
2867 hdr->cmd.rate = wpi_plcp_signal(12);
2868 rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
2869 } else {
2870 hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2871 /* send probe requests at 1Mbps */
2872 hdr->cmd.rate = wpi_plcp_signal(2);
2873 rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
2874 }
2875
2876 /* for directed scans, firmware inserts the essid IE itself */
2877 if (ic->ic_des_esslen != 0) {
2878 hdr->essid[0].id = IEEE80211_ELEMID_SSID;
2879 hdr->essid[0].len = ic->ic_des_esslen;
2880 memcpy(hdr->essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
2881 }
2882
2883 /*
2884 * Build a probe request frame. Most of the following code is a
2885 * copy & paste of what is done in net80211.
2886 */
2887 wh = (struct ieee80211_frame *)(hdr + 1);
2888 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2889 IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2890 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2891 IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
2892 IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
2893 IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
2894 *(u_int16_t *)&wh->i_dur[0] = 0; /* filled by h/w */
2895 *(u_int16_t *)&wh->i_seq[0] = 0; /* filled by h/w */
2896
2897 frm = (uint8_t *)(wh + 1);
2898
2899 /* add empty essid IE (firmware generates it for directed scans) */
2900 *frm++ = IEEE80211_ELEMID_SSID;
2901 *frm++ = 0;
2902
2903 /* add supported rates IE */
2904 *frm++ = IEEE80211_ELEMID_RATES;
2905 nrates = rs->rs_nrates;
2906 if (nrates > IEEE80211_RATE_SIZE)
2907 nrates = IEEE80211_RATE_SIZE;
2908 *frm++ = nrates;
2909 memcpy(frm, rs->rs_rates, nrates);
2910 frm += nrates;
2911
2912 /* add supported xrates IE */
2913 if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2914 nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2915 *frm++ = IEEE80211_ELEMID_XRATES;
2916 *frm++ = nrates;
2917 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2918 frm += nrates;
2919 }
2920
2921 /* setup length of probe request */
2922 hdr->cmd.len = htole16(frm - (uint8_t *)wh);
2923
2924 chan = (struct wpi_scan_chan *)frm;
2925 c = ic->ic_curchan;
2926
2927 chan->chan = ieee80211_chan2ieee(ic, c);
2928 chan->flags = 0;
2929 if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2930 chan->flags |= WPI_CHAN_ACTIVE;
2931 if (ic->ic_des_esslen != 0)
2932 chan->flags |= WPI_CHAN_DIRECT;
2933 }
2934 chan->dsp_gain = 0x6e;
2935 if (IEEE80211_IS_CHAN_5GHZ(c)) {
2936 chan->rf_gain = 0x3b;
2937 chan->active = htole16(10);
2938 chan->passive = htole16(110);
2939 } else {
2940 chan->rf_gain = 0x28;
2941 chan->active = htole16(20);
2942 chan->passive = htole16(120);
2943 }
2944 hdr->nchan++;
2945 chan++;
2946
2947 frm += sizeof (struct wpi_scan_chan);
2948
2949 hdr->len = htole16(frm - (uint8_t *)hdr);
2950 pktlen = frm - (uint8_t *)cmd;
2951
2952 error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, pktlen, NULL,
2953 BUS_DMA_NOWAIT);
2954 if (error != 0) {
2955 aprint_error_dev(sc->sc_dev, "could not map scan command\n");
2956 m_freem(data->m);
2957 data->m = NULL;
2958 return error;
2959 }
2960
2961 desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2962 desc->segs[0].addr = htole32(data->map->dm_segs[0].ds_addr);
2963 desc->segs[0].len = htole32(data->map->dm_segs[0].ds_len);
2964
2965 bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
2966 ring->desc_dma.map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2967 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
2968 BUS_DMASYNC_PREWRITE);
2969
2970 /* kick cmd ring */
2971 ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2972 WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2973
2974 return 0; /* will be notified async. of failure/success */
2975 }
2976
2977 static int
wpi_config(struct wpi_softc * sc)2978 wpi_config(struct wpi_softc *sc)
2979 {
2980 struct ieee80211com *ic = &sc->sc_ic;
2981 struct ifnet *ifp = ic->ic_ifp;
2982 struct wpi_power power;
2983 struct wpi_bluetooth bluetooth;
2984 struct wpi_node_info node;
2985 int error;
2986
2987 memset(&power, 0, sizeof power);
2988 power.flags = htole32(WPI_POWER_CAM | 0x8);
2989 error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2990 if (error != 0) {
2991 aprint_error_dev(sc->sc_dev, "could not set power mode\n");
2992 return error;
2993 }
2994
2995 /* configure bluetooth coexistence */
2996 memset(&bluetooth, 0, sizeof bluetooth);
2997 bluetooth.flags = 3;
2998 bluetooth.lead = 0xaa;
2999 bluetooth.kill = 1;
3000 error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
3001 0);
3002 if (error != 0) {
3003 aprint_error_dev(sc->sc_dev,
3004 "could not configure bluetooth coexistence\n");
3005 return error;
3006 }
3007
3008 /* configure adapter */
3009 memset(&sc->config, 0, sizeof (struct wpi_config));
3010 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
3011 IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr);
3012 /* set default channel */
3013 sc->config.chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
3014 sc->config.flags = htole32(WPI_CONFIG_TSF);
3015 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
3016 sc->config.flags |= htole32(WPI_CONFIG_AUTO |
3017 WPI_CONFIG_24GHZ);
3018 }
3019 sc->config.filter = 0;
3020 switch (ic->ic_opmode) {
3021 case IEEE80211_M_STA:
3022 sc->config.mode = WPI_MODE_STA;
3023 sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
3024 break;
3025 case IEEE80211_M_IBSS:
3026 case IEEE80211_M_AHDEMO:
3027 sc->config.mode = WPI_MODE_IBSS;
3028 break;
3029 case IEEE80211_M_HOSTAP:
3030 sc->config.mode = WPI_MODE_HOSTAP;
3031 break;
3032 case IEEE80211_M_MONITOR:
3033 sc->config.mode = WPI_MODE_MONITOR;
3034 sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
3035 WPI_FILTER_CTL | WPI_FILTER_PROMISC);
3036 break;
3037 }
3038 sc->config.cck_mask = 0x0f; /* not yet negotiated */
3039 sc->config.ofdm_mask = 0xff; /* not yet negotiated */
3040 error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
3041 sizeof (struct wpi_config), 0);
3042 if (error != 0) {
3043 aprint_error_dev(sc->sc_dev, "configure command failed\n");
3044 return error;
3045 }
3046
3047 /* configuration has changed, set Tx power accordingly */
3048 if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) {
3049 aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
3050 return error;
3051 }
3052
3053 /* add broadcast node */
3054 memset(&node, 0, sizeof node);
3055 IEEE80211_ADDR_COPY(node.bssid, etherbroadcastaddr);
3056 node.id = WPI_ID_BROADCAST;
3057 node.rate = wpi_plcp_signal(2);
3058 node.action = htole32(WPI_ACTION_SET_RATE);
3059 node.antenna = WPI_ANTENNA_BOTH;
3060 error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
3061 if (error != 0) {
3062 aprint_error_dev(sc->sc_dev, "could not add broadcast node\n");
3063 return error;
3064 }
3065
3066 if ((error = wpi_mrr_setup(sc)) != 0) {
3067 aprint_error_dev(sc->sc_dev, "could not setup MRR\n");
3068 return error;
3069 }
3070
3071 return 0;
3072 }
3073
3074 static void
wpi_stop_master(struct wpi_softc * sc)3075 wpi_stop_master(struct wpi_softc *sc)
3076 {
3077 uint32_t tmp;
3078 int ntries;
3079
3080 tmp = WPI_READ(sc, WPI_RESET);
3081 WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER);
3082
3083 tmp = WPI_READ(sc, WPI_GPIO_CTL);
3084 if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
3085 return; /* already asleep */
3086
3087 for (ntries = 0; ntries < 100; ntries++) {
3088 if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
3089 break;
3090 DELAY(10);
3091 }
3092 if (ntries == 100) {
3093 aprint_error_dev(sc->sc_dev, "timeout waiting for master\n");
3094 }
3095 }
3096
3097 static int
wpi_power_up(struct wpi_softc * sc)3098 wpi_power_up(struct wpi_softc *sc)
3099 {
3100 uint32_t tmp;
3101 int ntries;
3102
3103 wpi_mem_lock(sc);
3104 tmp = wpi_mem_read(sc, WPI_MEM_POWER);
3105 wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
3106 wpi_mem_unlock(sc);
3107
3108 for (ntries = 0; ntries < 5000; ntries++) {
3109 if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
3110 break;
3111 DELAY(10);
3112 }
3113 if (ntries == 5000) {
3114 aprint_error_dev(sc->sc_dev,
3115 "timeout waiting for NIC to power up\n");
3116 return ETIMEDOUT;
3117 }
3118 return 0;
3119 }
3120
3121 static int
wpi_reset(struct wpi_softc * sc)3122 wpi_reset(struct wpi_softc *sc)
3123 {
3124 uint32_t tmp;
3125 int ntries;
3126
3127 /* clear any pending interrupts */
3128 WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3129
3130 tmp = WPI_READ(sc, WPI_PLL_CTL);
3131 WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
3132
3133 tmp = WPI_READ(sc, WPI_CHICKEN);
3134 WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
3135
3136 tmp = WPI_READ(sc, WPI_GPIO_CTL);
3137 WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
3138
3139 /* wait for clock stabilization */
3140 for (ntries = 0; ntries < 1000; ntries++) {
3141 if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
3142 break;
3143 DELAY(10);
3144 }
3145 if (ntries == 1000) {
3146 aprint_error_dev(sc->sc_dev,
3147 "timeout waiting for clock stabilization\n");
3148 return ETIMEDOUT;
3149 }
3150
3151 /* initialize EEPROM */
3152 tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
3153 if ((tmp & WPI_EEPROM_VERSION) == 0) {
3154 aprint_error_dev(sc->sc_dev, "EEPROM not found\n");
3155 return EIO;
3156 }
3157 WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
3158
3159 return 0;
3160 }
3161
3162 static void
wpi_hw_config(struct wpi_softc * sc)3163 wpi_hw_config(struct wpi_softc *sc)
3164 {
3165 uint32_t rev, hw;
3166
3167 /* voodoo from the reference driver */
3168 hw = WPI_READ(sc, WPI_HWCONFIG);
3169
3170 rev = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_CLASS_REG);
3171 rev = PCI_REVISION(rev);
3172 if ((rev & 0xc0) == 0x40)
3173 hw |= WPI_HW_ALM_MB;
3174 else if (!(rev & 0x80))
3175 hw |= WPI_HW_ALM_MM;
3176
3177 if (sc->cap == 0x80)
3178 hw |= WPI_HW_SKU_MRC;
3179
3180 hw &= ~WPI_HW_REV_D;
3181 if ((le16toh(sc->rev) & 0xf0) == 0xd0)
3182 hw |= WPI_HW_REV_D;
3183
3184 if (sc->type > 1)
3185 hw |= WPI_HW_TYPE_B;
3186
3187 DPRINTF(("setting h/w config %x\n", hw));
3188 WPI_WRITE(sc, WPI_HWCONFIG, hw);
3189 }
3190
3191 static int
wpi_init(struct ifnet * ifp)3192 wpi_init(struct ifnet *ifp)
3193 {
3194 struct wpi_softc *sc = ifp->if_softc;
3195 struct ieee80211com *ic = &sc->sc_ic;
3196 uint32_t tmp;
3197 int qid, ntries, error;
3198
3199 wpi_stop(ifp, 1);
3200 (void)wpi_reset(sc);
3201
3202 wpi_mem_lock(sc);
3203 wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3204 DELAY(20);
3205 tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3206 wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3207 wpi_mem_unlock(sc);
3208
3209 (void)wpi_power_up(sc);
3210 wpi_hw_config(sc);
3211
3212 /* init Rx ring */
3213 wpi_mem_lock(sc);
3214 WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
3215 WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
3216 offsetof(struct wpi_shared, next));
3217 WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3218 WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3219 wpi_mem_unlock(sc);
3220
3221 /* init Tx rings */
3222 wpi_mem_lock(sc);
3223 wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
3224 wpi_mem_write(sc, WPI_MEM_RA, 1); /* enable RA0 */
3225 wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
3226 wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3227 wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3228 wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3229 wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3230
3231 WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3232 WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3233
3234 for (qid = 0; qid < 6; qid++) {
3235 WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3236 WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3237 WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3238 }
3239 wpi_mem_unlock(sc);
3240
3241 /* clear "radio off" and "disable command" bits (reversed logic) */
3242 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3243 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3244
3245 /* clear any pending interrupts */
3246 WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3247 /* enable interrupts */
3248 WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3249
3250 /* not sure why/if this is necessary... */
3251 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3252 WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3253
3254 if ((error = wpi_load_firmware(sc)) != 0)
3255 /* wpi_load_firmware prints error messages for us. */
3256 goto fail1;
3257
3258 /* Check the status of the radio switch */
3259 mutex_enter(&sc->sc_rsw_mtx);
3260 if (wpi_getrfkill(sc)) {
3261 mutex_exit(&sc->sc_rsw_mtx);
3262 aprint_error_dev(sc->sc_dev,
3263 "radio is disabled by hardware switch\n");
3264 ifp->if_flags &= ~IFF_UP;
3265 error = EBUSY;
3266 goto fail1;
3267 }
3268 sc->sc_rsw_suspend = false;
3269 cv_broadcast(&sc->sc_rsw_cv);
3270 while (sc->sc_rsw_suspend)
3271 cv_wait(&sc->sc_rsw_cv, &sc->sc_rsw_mtx);
3272 mutex_exit(&sc->sc_rsw_mtx);
3273
3274 /* wait for thermal sensors to calibrate */
3275 for (ntries = 0; ntries < 1000; ntries++) {
3276 if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3277 break;
3278 DELAY(10);
3279 }
3280 if (ntries == 1000) {
3281 aprint_error_dev(sc->sc_dev,
3282 "timeout waiting for thermal sensors calibration\n");
3283 error = ETIMEDOUT;
3284 goto fail1;
3285 }
3286 DPRINTF(("temperature %d\n", sc->temp));
3287
3288 if ((error = wpi_config(sc)) != 0) {
3289 aprint_error_dev(sc->sc_dev, "could not configure device\n");
3290 goto fail1;
3291 }
3292
3293 ifp->if_flags &= ~IFF_OACTIVE;
3294 ifp->if_flags |= IFF_RUNNING;
3295
3296 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
3297 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
3298 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3299 }
3300 else
3301 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
3302
3303 return 0;
3304
3305 fail1: wpi_stop(ifp, 1);
3306 return error;
3307 }
3308
3309 static void
wpi_stop1(struct ifnet * ifp,int disable,bool fromintr)3310 wpi_stop1(struct ifnet *ifp, int disable, bool fromintr)
3311 {
3312 struct wpi_softc *sc = ifp->if_softc;
3313 struct ieee80211com *ic = &sc->sc_ic;
3314 uint32_t tmp;
3315 int ac;
3316
3317 ifp->if_timer = sc->sc_tx_timer = 0;
3318 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3319
3320 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
3321
3322 if (fromintr) {
3323 sc->sc_rsw_suspend = true; // XXX: without mutex or wait
3324 } else {
3325 wpi_rsw_suspend(sc);
3326 }
3327
3328 /* disable interrupts */
3329 WPI_WRITE(sc, WPI_MASK, 0);
3330 WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3331 WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3332 WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3333
3334 wpi_mem_lock(sc);
3335 wpi_mem_write(sc, WPI_MEM_MODE, 0);
3336 wpi_mem_unlock(sc);
3337
3338 /* reset all Tx rings */
3339 for (ac = 0; ac < 4; ac++)
3340 wpi_reset_tx_ring(sc, &sc->txq[ac]);
3341 wpi_reset_tx_ring(sc, &sc->cmdq);
3342
3343 /* reset Rx ring */
3344 wpi_reset_rx_ring(sc, &sc->rxq);
3345
3346 wpi_mem_lock(sc);
3347 wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3348 wpi_mem_unlock(sc);
3349
3350 DELAY(5);
3351
3352 wpi_stop_master(sc);
3353
3354 tmp = WPI_READ(sc, WPI_RESET);
3355 WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3356 }
3357
3358 static void
wpi_stop(struct ifnet * ifp,int disable)3359 wpi_stop(struct ifnet *ifp, int disable)
3360 {
3361 wpi_stop1(ifp, disable, false);
3362 }
3363
3364 static void
wpi_stop_intr(struct ifnet * ifp,int disable)3365 wpi_stop_intr(struct ifnet *ifp, int disable)
3366 {
3367 wpi_stop1(ifp, disable, true);
3368 }
3369
3370 static bool
wpi_resume(device_t dv,const pmf_qual_t * qual)3371 wpi_resume(device_t dv, const pmf_qual_t *qual)
3372 {
3373 struct wpi_softc *sc = device_private(dv);
3374
3375 (void)wpi_reset(sc);
3376
3377 return true;
3378 }
3379
3380 /*
3381 * Return whether or not the radio is enabled in hardware
3382 * (i.e. the rfkill switch is "off").
3383 */
3384 static int
wpi_getrfkill(struct wpi_softc * sc)3385 wpi_getrfkill(struct wpi_softc *sc)
3386 {
3387 uint32_t tmp;
3388
3389 wpi_mem_lock(sc);
3390 tmp = wpi_mem_read(sc, WPI_MEM_RFKILL);
3391 wpi_mem_unlock(sc);
3392
3393 KASSERT(mutex_owned(&sc->sc_rsw_mtx));
3394 if (tmp & 0x01) {
3395 /* switch is on */
3396 if (sc->sc_rsw_status != WPI_RSW_ON) {
3397 sc->sc_rsw_status = WPI_RSW_ON;
3398 sysmon_pswitch_event(&sc->sc_rsw,
3399 PSWITCH_EVENT_PRESSED);
3400 }
3401 } else {
3402 /* switch is off */
3403 if (sc->sc_rsw_status != WPI_RSW_OFF) {
3404 sc->sc_rsw_status = WPI_RSW_OFF;
3405 sysmon_pswitch_event(&sc->sc_rsw,
3406 PSWITCH_EVENT_RELEASED);
3407 }
3408 }
3409
3410 return !(tmp & 0x01);
3411 }
3412
3413 static int
wpi_sysctl_radio(SYSCTLFN_ARGS)3414 wpi_sysctl_radio(SYSCTLFN_ARGS)
3415 {
3416 struct sysctlnode node;
3417 struct wpi_softc *sc;
3418 int val, error;
3419
3420 node = *rnode;
3421 sc = (struct wpi_softc *)node.sysctl_data;
3422
3423 mutex_enter(&sc->sc_rsw_mtx);
3424 val = !wpi_getrfkill(sc);
3425 mutex_exit(&sc->sc_rsw_mtx);
3426
3427 node.sysctl_data = &val;
3428 error = sysctl_lookup(SYSCTLFN_CALL(&node));
3429
3430 if (error || newp == NULL)
3431 return error;
3432
3433 return 0;
3434 }
3435
3436 static void
wpi_sysctlattach(struct wpi_softc * sc)3437 wpi_sysctlattach(struct wpi_softc *sc)
3438 {
3439 int rc;
3440 const struct sysctlnode *rnode;
3441 const struct sysctlnode *cnode;
3442
3443 struct sysctllog **clog = &sc->sc_sysctllog;
3444
3445 if ((rc = sysctl_createv(clog, 0, NULL, &rnode,
3446 CTLFLAG_PERMANENT, CTLTYPE_NODE, device_xname(sc->sc_dev),
3447 SYSCTL_DESCR("wpi controls and statistics"),
3448 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0)
3449 goto err;
3450
3451 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
3452 CTLFLAG_PERMANENT, CTLTYPE_INT, "radio",
3453 SYSCTL_DESCR("radio transmitter switch state (0=off, 1=on)"),
3454 wpi_sysctl_radio, 0, (void *)sc, 0, CTL_CREATE, CTL_EOL)) != 0)
3455 goto err;
3456
3457 #ifdef WPI_DEBUG
3458 /* control debugging printfs */
3459 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
3460 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
3461 "debug", SYSCTL_DESCR("Enable debugging output"),
3462 NULL, 0, &wpi_debug, 0, CTL_CREATE, CTL_EOL)) != 0)
3463 goto err;
3464 #endif
3465
3466 return;
3467 err:
3468 aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
3469 }
3470
3471 static void
wpi_rsw_suspend(struct wpi_softc * sc)3472 wpi_rsw_suspend(struct wpi_softc *sc)
3473 {
3474 /* suspend rfkill test thread */
3475 mutex_enter(&sc->sc_rsw_mtx);
3476 sc->sc_rsw_suspend = true;
3477 cv_broadcast(&sc->sc_rsw_cv);
3478 while (!sc->sc_rsw_suspended)
3479 cv_wait(&sc->sc_rsw_cv, &sc->sc_rsw_mtx);
3480 mutex_exit(&sc->sc_rsw_mtx);
3481 }
3482
3483 static void
wpi_rsw_thread(void * arg)3484 wpi_rsw_thread(void *arg)
3485 {
3486 struct wpi_softc *sc = (struct wpi_softc *)arg;
3487
3488 mutex_enter(&sc->sc_rsw_mtx);
3489 for (;;) {
3490 cv_timedwait(&sc->sc_rsw_cv, &sc->sc_rsw_mtx, hz);
3491 if (sc->sc_dying) {
3492 sc->sc_rsw_lwp = NULL;
3493 cv_broadcast(&sc->sc_rsw_cv);
3494 mutex_exit(&sc->sc_rsw_mtx);
3495 kthread_exit(0);
3496 }
3497 if (sc->sc_rsw_suspend) {
3498 sc->sc_rsw_suspended = true;
3499 cv_broadcast(&sc->sc_rsw_cv);
3500 while (sc->sc_rsw_suspend || sc->sc_dying)
3501 cv_wait(&sc->sc_rsw_cv, &sc->sc_rsw_mtx);
3502 sc->sc_rsw_suspended = false;
3503 cv_broadcast(&sc->sc_rsw_cv);
3504 }
3505 wpi_getrfkill(sc);
3506 }
3507 }
3508