1 /* SPDX-License-Identifier: GPL-2.0+ */
2 #ifndef _LINUX_XARRAY_H
3 #define _LINUX_XARRAY_H
4 /*
5 * eXtensible Arrays
6 * Copyright (c) 2017 Microsoft Corporation
7 * Author: Matthew Wilcox <willy@infradead.org>
8 *
9 * See Documentation/core-api/xarray.rst for how to use the XArray.
10 */
11
12 #include <linux/bitmap.h>
13 #include <linux/bug.h>
14 #include <linux/compiler.h>
15 #include <linux/err.h>
16 #include <linux/gfp.h>
17 #include <linux/kconfig.h>
18 #include <linux/limits.h>
19 #include <linux/lockdep.h>
20 #include <linux/rcupdate.h>
21 #include <linux/sched/mm.h>
22 #include <linux/spinlock.h>
23 #include <linux/types.h>
24
25 struct list_lru;
26
27 /*
28 * The bottom two bits of the entry determine how the XArray interprets
29 * the contents:
30 *
31 * 00: Pointer entry
32 * 10: Internal entry
33 * x1: Value entry or tagged pointer
34 *
35 * Attempting to store internal entries in the XArray is a bug.
36 *
37 * Most internal entries are pointers to the next node in the tree.
38 * The following internal entries have a special meaning:
39 *
40 * 0-62: Sibling entries
41 * 256: Retry entry
42 * 257: Zero entry
43 *
44 * Errors are also represented as internal entries, but use the negative
45 * space (-4094 to -2). They're never stored in the slots array; only
46 * returned by the normal API.
47 */
48
49 #define BITS_PER_XA_VALUE (BITS_PER_LONG - 1)
50
51 /**
52 * xa_mk_value() - Create an XArray entry from an integer.
53 * @v: Value to store in XArray.
54 *
55 * Context: Any context.
56 * Return: An entry suitable for storing in the XArray.
57 */
xa_mk_value(unsigned long v)58 static inline void *xa_mk_value(unsigned long v)
59 {
60 WARN_ON((long)v < 0);
61 return (void *)((v << 1) | 1);
62 }
63
64 /**
65 * xa_to_value() - Get value stored in an XArray entry.
66 * @entry: XArray entry.
67 *
68 * Context: Any context.
69 * Return: The value stored in the XArray entry.
70 */
xa_to_value(const void * entry)71 static inline unsigned long xa_to_value(const void *entry)
72 {
73 return (unsigned long)entry >> 1;
74 }
75
76 /**
77 * xa_is_value() - Determine if an entry is a value.
78 * @entry: XArray entry.
79 *
80 * Context: Any context.
81 * Return: True if the entry is a value, false if it is a pointer.
82 */
xa_is_value(const void * entry)83 static inline bool xa_is_value(const void *entry)
84 {
85 return (unsigned long)entry & 1;
86 }
87
88 /**
89 * xa_tag_pointer() - Create an XArray entry for a tagged pointer.
90 * @p: Plain pointer.
91 * @tag: Tag value (0, 1 or 3).
92 *
93 * If the user of the XArray prefers, they can tag their pointers instead
94 * of storing value entries. Three tags are available (0, 1 and 3).
95 * These are distinct from the xa_mark_t as they are not replicated up
96 * through the array and cannot be searched for.
97 *
98 * Context: Any context.
99 * Return: An XArray entry.
100 */
xa_tag_pointer(void * p,unsigned long tag)101 static inline void *xa_tag_pointer(void *p, unsigned long tag)
102 {
103 return (void *)((unsigned long)p | tag);
104 }
105
106 /**
107 * xa_untag_pointer() - Turn an XArray entry into a plain pointer.
108 * @entry: XArray entry.
109 *
110 * If you have stored a tagged pointer in the XArray, call this function
111 * to get the untagged version of the pointer.
112 *
113 * Context: Any context.
114 * Return: A pointer.
115 */
xa_untag_pointer(void * entry)116 static inline void *xa_untag_pointer(void *entry)
117 {
118 return (void *)((unsigned long)entry & ~3UL);
119 }
120
121 /**
122 * xa_pointer_tag() - Get the tag stored in an XArray entry.
123 * @entry: XArray entry.
124 *
125 * If you have stored a tagged pointer in the XArray, call this function
126 * to get the tag of that pointer.
127 *
128 * Context: Any context.
129 * Return: A tag.
130 */
xa_pointer_tag(void * entry)131 static inline unsigned int xa_pointer_tag(void *entry)
132 {
133 return (unsigned long)entry & 3UL;
134 }
135
136 /*
137 * xa_mk_internal() - Create an internal entry.
138 * @v: Value to turn into an internal entry.
139 *
140 * Internal entries are used for a number of purposes. Entries 0-255 are
141 * used for sibling entries (only 0-62 are used by the current code). 256
142 * is used for the retry entry. 257 is used for the reserved / zero entry.
143 * Negative internal entries are used to represent errnos. Node pointers
144 * are also tagged as internal entries in some situations.
145 *
146 * Context: Any context.
147 * Return: An XArray internal entry corresponding to this value.
148 */
xa_mk_internal(unsigned long v)149 static inline void *xa_mk_internal(unsigned long v)
150 {
151 return (void *)((v << 2) | 2);
152 }
153
154 /*
155 * xa_to_internal() - Extract the value from an internal entry.
156 * @entry: XArray entry.
157 *
158 * Context: Any context.
159 * Return: The value which was stored in the internal entry.
160 */
xa_to_internal(const void * entry)161 static inline unsigned long xa_to_internal(const void *entry)
162 {
163 return (unsigned long)entry >> 2;
164 }
165
166 /*
167 * xa_is_internal() - Is the entry an internal entry?
168 * @entry: XArray entry.
169 *
170 * Context: Any context.
171 * Return: %true if the entry is an internal entry.
172 */
xa_is_internal(const void * entry)173 static inline bool xa_is_internal(const void *entry)
174 {
175 return ((unsigned long)entry & 3) == 2;
176 }
177
178 #define XA_ZERO_ENTRY xa_mk_internal(257)
179
180 /**
181 * xa_is_zero() - Is the entry a zero entry?
182 * @entry: Entry retrieved from the XArray
183 *
184 * The normal API will return NULL as the contents of a slot containing
185 * a zero entry. You can only see zero entries by using the advanced API.
186 *
187 * Return: %true if the entry is a zero entry.
188 */
xa_is_zero(const void * entry)189 static inline bool xa_is_zero(const void *entry)
190 {
191 return unlikely(entry == XA_ZERO_ENTRY);
192 }
193
194 /**
195 * xa_is_err() - Report whether an XArray operation returned an error
196 * @entry: Result from calling an XArray function
197 *
198 * If an XArray operation cannot complete an operation, it will return
199 * a special value indicating an error. This function tells you
200 * whether an error occurred; xa_err() tells you which error occurred.
201 *
202 * Context: Any context.
203 * Return: %true if the entry indicates an error.
204 */
xa_is_err(const void * entry)205 static inline bool xa_is_err(const void *entry)
206 {
207 return unlikely(xa_is_internal(entry) &&
208 entry >= xa_mk_internal(-MAX_ERRNO));
209 }
210
211 /**
212 * xa_err() - Turn an XArray result into an errno.
213 * @entry: Result from calling an XArray function.
214 *
215 * If an XArray operation cannot complete an operation, it will return
216 * a special pointer value which encodes an errno. This function extracts
217 * the errno from the pointer value, or returns 0 if the pointer does not
218 * represent an errno.
219 *
220 * Context: Any context.
221 * Return: A negative errno or 0.
222 */
xa_err(void * entry)223 static inline int xa_err(void *entry)
224 {
225 /* xa_to_internal() would not do sign extension. */
226 if (xa_is_err(entry))
227 return (long)entry >> 2;
228 return 0;
229 }
230
231 /**
232 * struct xa_limit - Represents a range of IDs.
233 * @min: The lowest ID to allocate (inclusive).
234 * @max: The maximum ID to allocate (inclusive).
235 *
236 * This structure is used either directly or via the XA_LIMIT() macro
237 * to communicate the range of IDs that are valid for allocation.
238 * Three common ranges are predefined for you:
239 * * xa_limit_32b - [0 - UINT_MAX]
240 * * xa_limit_31b - [0 - INT_MAX]
241 * * xa_limit_16b - [0 - USHRT_MAX]
242 */
243 struct xa_limit {
244 u32 max;
245 u32 min;
246 };
247
248 #define XA_LIMIT(_min, _max) (struct xa_limit) { .min = _min, .max = _max }
249
250 #define xa_limit_32b XA_LIMIT(0, UINT_MAX)
251 #define xa_limit_31b XA_LIMIT(0, INT_MAX)
252 #define xa_limit_16b XA_LIMIT(0, USHRT_MAX)
253
254 typedef unsigned __bitwise xa_mark_t;
255 #define XA_MARK_0 ((__force xa_mark_t)0U)
256 #define XA_MARK_1 ((__force xa_mark_t)1U)
257 #define XA_MARK_2 ((__force xa_mark_t)2U)
258 #define XA_PRESENT ((__force xa_mark_t)8U)
259 #define XA_MARK_MAX XA_MARK_2
260 #define XA_FREE_MARK XA_MARK_0
261
262 enum xa_lock_type {
263 XA_LOCK_IRQ = 1,
264 XA_LOCK_BH = 2,
265 };
266
267 /*
268 * Values for xa_flags. The radix tree stores its GFP flags in the xa_flags,
269 * and we remain compatible with that.
270 */
271 #define XA_FLAGS_LOCK_IRQ ((__force gfp_t)XA_LOCK_IRQ)
272 #define XA_FLAGS_LOCK_BH ((__force gfp_t)XA_LOCK_BH)
273 #define XA_FLAGS_TRACK_FREE ((__force gfp_t)4U)
274 #define XA_FLAGS_ZERO_BUSY ((__force gfp_t)8U)
275 #define XA_FLAGS_ALLOC_WRAPPED ((__force gfp_t)16U)
276 #define XA_FLAGS_ACCOUNT ((__force gfp_t)32U)
277 #define XA_FLAGS_MARK(mark) ((__force gfp_t)((1U << __GFP_BITS_SHIFT) << \
278 (__force unsigned)(mark)))
279
280 /* ALLOC is for a normal 0-based alloc. ALLOC1 is for an 1-based alloc */
281 #define XA_FLAGS_ALLOC (XA_FLAGS_TRACK_FREE | XA_FLAGS_MARK(XA_FREE_MARK))
282 #define XA_FLAGS_ALLOC1 (XA_FLAGS_TRACK_FREE | XA_FLAGS_ZERO_BUSY)
283
284 /**
285 * struct xarray - The anchor of the XArray.
286 * @xa_lock: Lock that protects the contents of the XArray.
287 *
288 * To use the xarray, define it statically or embed it in your data structure.
289 * It is a very small data structure, so it does not usually make sense to
290 * allocate it separately and keep a pointer to it in your data structure.
291 *
292 * You may use the xa_lock to protect your own data structures as well.
293 */
294 /*
295 * If all of the entries in the array are NULL, @xa_head is a NULL pointer.
296 * If the only non-NULL entry in the array is at index 0, @xa_head is that
297 * entry. If any other entry in the array is non-NULL, @xa_head points
298 * to an @xa_node.
299 */
300 struct xarray {
301 spinlock_t xa_lock;
302 /* private: The rest of the data structure is not to be used directly. */
303 gfp_t xa_flags;
304 void __rcu * xa_head;
305 };
306
307 #define XARRAY_INIT(name, flags) { \
308 .xa_lock = __SPIN_LOCK_UNLOCKED(name.xa_lock), \
309 .xa_flags = flags, \
310 .xa_head = NULL, \
311 }
312
313 /**
314 * DEFINE_XARRAY_FLAGS() - Define an XArray with custom flags.
315 * @name: A string that names your XArray.
316 * @flags: XA_FLAG values.
317 *
318 * This is intended for file scope definitions of XArrays. It declares
319 * and initialises an empty XArray with the chosen name and flags. It is
320 * equivalent to calling xa_init_flags() on the array, but it does the
321 * initialisation at compiletime instead of runtime.
322 */
323 #define DEFINE_XARRAY_FLAGS(name, flags) \
324 struct xarray name = XARRAY_INIT(name, flags)
325
326 /**
327 * DEFINE_XARRAY() - Define an XArray.
328 * @name: A string that names your XArray.
329 *
330 * This is intended for file scope definitions of XArrays. It declares
331 * and initialises an empty XArray with the chosen name. It is equivalent
332 * to calling xa_init() on the array, but it does the initialisation at
333 * compiletime instead of runtime.
334 */
335 #define DEFINE_XARRAY(name) DEFINE_XARRAY_FLAGS(name, 0)
336
337 /**
338 * DEFINE_XARRAY_ALLOC() - Define an XArray which allocates IDs starting at 0.
339 * @name: A string that names your XArray.
340 *
341 * This is intended for file scope definitions of allocating XArrays.
342 * See also DEFINE_XARRAY().
343 */
344 #define DEFINE_XARRAY_ALLOC(name) DEFINE_XARRAY_FLAGS(name, XA_FLAGS_ALLOC)
345
346 /**
347 * DEFINE_XARRAY_ALLOC1() - Define an XArray which allocates IDs starting at 1.
348 * @name: A string that names your XArray.
349 *
350 * This is intended for file scope definitions of allocating XArrays.
351 * See also DEFINE_XARRAY().
352 */
353 #define DEFINE_XARRAY_ALLOC1(name) DEFINE_XARRAY_FLAGS(name, XA_FLAGS_ALLOC1)
354
355 void *xa_load(struct xarray *, unsigned long index);
356 void *xa_store(struct xarray *, unsigned long index, void *entry, gfp_t);
357 void *xa_erase(struct xarray *, unsigned long index);
358 void *xa_store_range(struct xarray *, unsigned long first, unsigned long last,
359 void *entry, gfp_t);
360 bool xa_get_mark(struct xarray *, unsigned long index, xa_mark_t);
361 void xa_set_mark(struct xarray *, unsigned long index, xa_mark_t);
362 void xa_clear_mark(struct xarray *, unsigned long index, xa_mark_t);
363 void *xa_find(struct xarray *xa, unsigned long *index,
364 unsigned long max, xa_mark_t) __attribute__((nonnull(2)));
365 void *xa_find_after(struct xarray *xa, unsigned long *index,
366 unsigned long max, xa_mark_t) __attribute__((nonnull(2)));
367 unsigned int xa_extract(struct xarray *, void **dst, unsigned long start,
368 unsigned long max, unsigned int n, xa_mark_t);
369 void xa_destroy(struct xarray *);
370
371 /**
372 * xa_init_flags() - Initialise an empty XArray with flags.
373 * @xa: XArray.
374 * @flags: XA_FLAG values.
375 *
376 * If you need to initialise an XArray with special flags (eg you need
377 * to take the lock from interrupt context), use this function instead
378 * of xa_init().
379 *
380 * Context: Any context.
381 */
xa_init_flags(struct xarray * xa,gfp_t flags)382 static inline void xa_init_flags(struct xarray *xa, gfp_t flags)
383 {
384 spin_lock_init(&xa->xa_lock);
385 xa->xa_flags = flags;
386 xa->xa_head = NULL;
387 }
388
389 /**
390 * xa_init() - Initialise an empty XArray.
391 * @xa: XArray.
392 *
393 * An empty XArray is full of NULL entries.
394 *
395 * Context: Any context.
396 */
xa_init(struct xarray * xa)397 static inline void xa_init(struct xarray *xa)
398 {
399 xa_init_flags(xa, 0);
400 }
401
402 /**
403 * xa_empty() - Determine if an array has any present entries.
404 * @xa: XArray.
405 *
406 * Context: Any context.
407 * Return: %true if the array contains only NULL pointers.
408 */
xa_empty(const struct xarray * xa)409 static inline bool xa_empty(const struct xarray *xa)
410 {
411 return xa->xa_head == NULL;
412 }
413
414 /**
415 * xa_marked() - Inquire whether any entry in this array has a mark set
416 * @xa: Array
417 * @mark: Mark value
418 *
419 * Context: Any context.
420 * Return: %true if any entry has this mark set.
421 */
xa_marked(const struct xarray * xa,xa_mark_t mark)422 static inline bool xa_marked(const struct xarray *xa, xa_mark_t mark)
423 {
424 return xa->xa_flags & XA_FLAGS_MARK(mark);
425 }
426
427 /**
428 * xa_for_each_range() - Iterate over a portion of an XArray.
429 * @xa: XArray.
430 * @index: Index of @entry.
431 * @entry: Entry retrieved from array.
432 * @start: First index to retrieve from array.
433 * @last: Last index to retrieve from array.
434 *
435 * During the iteration, @entry will have the value of the entry stored
436 * in @xa at @index. You may modify @index during the iteration if you
437 * want to skip or reprocess indices. It is safe to modify the array
438 * during the iteration. At the end of the iteration, @entry will be set
439 * to NULL and @index will have a value less than or equal to max.
440 *
441 * xa_for_each_range() is O(n.log(n)) while xas_for_each() is O(n). You have
442 * to handle your own locking with xas_for_each(), and if you have to unlock
443 * after each iteration, it will also end up being O(n.log(n)).
444 * xa_for_each_range() will spin if it hits a retry entry; if you intend to
445 * see retry entries, you should use the xas_for_each() iterator instead.
446 * The xas_for_each() iterator will expand into more inline code than
447 * xa_for_each_range().
448 *
449 * Context: Any context. Takes and releases the RCU lock.
450 */
451 #define xa_for_each_range(xa, index, entry, start, last) \
452 for (index = start, \
453 entry = xa_find(xa, &index, last, XA_PRESENT); \
454 entry; \
455 entry = xa_find_after(xa, &index, last, XA_PRESENT))
456
457 /**
458 * xa_for_each_start() - Iterate over a portion of an XArray.
459 * @xa: XArray.
460 * @index: Index of @entry.
461 * @entry: Entry retrieved from array.
462 * @start: First index to retrieve from array.
463 *
464 * During the iteration, @entry will have the value of the entry stored
465 * in @xa at @index. You may modify @index during the iteration if you
466 * want to skip or reprocess indices. It is safe to modify the array
467 * during the iteration. At the end of the iteration, @entry will be set
468 * to NULL and @index will have a value less than or equal to max.
469 *
470 * xa_for_each_start() is O(n.log(n)) while xas_for_each() is O(n). You have
471 * to handle your own locking with xas_for_each(), and if you have to unlock
472 * after each iteration, it will also end up being O(n.log(n)).
473 * xa_for_each_start() will spin if it hits a retry entry; if you intend to
474 * see retry entries, you should use the xas_for_each() iterator instead.
475 * The xas_for_each() iterator will expand into more inline code than
476 * xa_for_each_start().
477 *
478 * Context: Any context. Takes and releases the RCU lock.
479 */
480 #define xa_for_each_start(xa, index, entry, start) \
481 xa_for_each_range(xa, index, entry, start, ULONG_MAX)
482
483 /**
484 * xa_for_each() - Iterate over present entries in an XArray.
485 * @xa: XArray.
486 * @index: Index of @entry.
487 * @entry: Entry retrieved from array.
488 *
489 * During the iteration, @entry will have the value of the entry stored
490 * in @xa at @index. You may modify @index during the iteration if you want
491 * to skip or reprocess indices. It is safe to modify the array during the
492 * iteration. At the end of the iteration, @entry will be set to NULL and
493 * @index will have a value less than or equal to max.
494 *
495 * xa_for_each() is O(n.log(n)) while xas_for_each() is O(n). You have
496 * to handle your own locking with xas_for_each(), and if you have to unlock
497 * after each iteration, it will also end up being O(n.log(n)). xa_for_each()
498 * will spin if it hits a retry entry; if you intend to see retry entries,
499 * you should use the xas_for_each() iterator instead. The xas_for_each()
500 * iterator will expand into more inline code than xa_for_each().
501 *
502 * Context: Any context. Takes and releases the RCU lock.
503 */
504 #define xa_for_each(xa, index, entry) \
505 xa_for_each_start(xa, index, entry, 0)
506
507 /**
508 * xa_for_each_marked() - Iterate over marked entries in an XArray.
509 * @xa: XArray.
510 * @index: Index of @entry.
511 * @entry: Entry retrieved from array.
512 * @filter: Selection criterion.
513 *
514 * During the iteration, @entry will have the value of the entry stored
515 * in @xa at @index. The iteration will skip all entries in the array
516 * which do not match @filter. You may modify @index during the iteration
517 * if you want to skip or reprocess indices. It is safe to modify the array
518 * during the iteration. At the end of the iteration, @entry will be set to
519 * NULL and @index will have a value less than or equal to max.
520 *
521 * xa_for_each_marked() is O(n.log(n)) while xas_for_each_marked() is O(n).
522 * You have to handle your own locking with xas_for_each(), and if you have
523 * to unlock after each iteration, it will also end up being O(n.log(n)).
524 * xa_for_each_marked() will spin if it hits a retry entry; if you intend to
525 * see retry entries, you should use the xas_for_each_marked() iterator
526 * instead. The xas_for_each_marked() iterator will expand into more inline
527 * code than xa_for_each_marked().
528 *
529 * Context: Any context. Takes and releases the RCU lock.
530 */
531 #define xa_for_each_marked(xa, index, entry, filter) \
532 for (index = 0, entry = xa_find(xa, &index, ULONG_MAX, filter); \
533 entry; entry = xa_find_after(xa, &index, ULONG_MAX, filter))
534
535 #define xa_trylock(xa) spin_trylock(&(xa)->xa_lock)
536 #define xa_lock(xa) spin_lock(&(xa)->xa_lock)
537 #define xa_unlock(xa) spin_unlock(&(xa)->xa_lock)
538 #define xa_lock_bh(xa) spin_lock_bh(&(xa)->xa_lock)
539 #define xa_unlock_bh(xa) spin_unlock_bh(&(xa)->xa_lock)
540 #define xa_lock_irq(xa) spin_lock_irq(&(xa)->xa_lock)
541 #define xa_unlock_irq(xa) spin_unlock_irq(&(xa)->xa_lock)
542 #define xa_lock_irqsave(xa, flags) \
543 spin_lock_irqsave(&(xa)->xa_lock, flags)
544 #define xa_unlock_irqrestore(xa, flags) \
545 spin_unlock_irqrestore(&(xa)->xa_lock, flags)
546 #define xa_lock_nested(xa, subclass) \
547 spin_lock_nested(&(xa)->xa_lock, subclass)
548 #define xa_lock_bh_nested(xa, subclass) \
549 spin_lock_bh_nested(&(xa)->xa_lock, subclass)
550 #define xa_lock_irq_nested(xa, subclass) \
551 spin_lock_irq_nested(&(xa)->xa_lock, subclass)
552 #define xa_lock_irqsave_nested(xa, flags, subclass) \
553 spin_lock_irqsave_nested(&(xa)->xa_lock, flags, subclass)
554
555 /*
556 * Versions of the normal API which require the caller to hold the
557 * xa_lock. If the GFP flags allow it, they will drop the lock to
558 * allocate memory, then reacquire it afterwards. These functions
559 * may also re-enable interrupts if the XArray flags indicate the
560 * locking should be interrupt safe.
561 */
562 void *__xa_erase(struct xarray *, unsigned long index);
563 void *__xa_store(struct xarray *, unsigned long index, void *entry, gfp_t);
564 void *__xa_cmpxchg(struct xarray *, unsigned long index, void *old,
565 void *entry, gfp_t);
566 int __must_check __xa_insert(struct xarray *, unsigned long index,
567 void *entry, gfp_t);
568 int __must_check __xa_alloc(struct xarray *, u32 *id, void *entry,
569 struct xa_limit, gfp_t);
570 int __must_check __xa_alloc_cyclic(struct xarray *, u32 *id, void *entry,
571 struct xa_limit, u32 *next, gfp_t);
572 void __xa_set_mark(struct xarray *, unsigned long index, xa_mark_t);
573 void __xa_clear_mark(struct xarray *, unsigned long index, xa_mark_t);
574
575 /**
576 * xa_store_bh() - Store this entry in the XArray.
577 * @xa: XArray.
578 * @index: Index into array.
579 * @entry: New entry.
580 * @gfp: Memory allocation flags.
581 *
582 * This function is like calling xa_store() except it disables softirqs
583 * while holding the array lock.
584 *
585 * Context: Any context. Takes and releases the xa_lock while
586 * disabling softirqs.
587 * Return: The old entry at this index or xa_err() if an error happened.
588 */
xa_store_bh(struct xarray * xa,unsigned long index,void * entry,gfp_t gfp)589 static inline void *xa_store_bh(struct xarray *xa, unsigned long index,
590 void *entry, gfp_t gfp)
591 {
592 void *curr;
593
594 might_alloc(gfp);
595 xa_lock_bh(xa);
596 curr = __xa_store(xa, index, entry, gfp);
597 xa_unlock_bh(xa);
598
599 return curr;
600 }
601
602 /**
603 * xa_store_irq() - Store this entry in the XArray.
604 * @xa: XArray.
605 * @index: Index into array.
606 * @entry: New entry.
607 * @gfp: Memory allocation flags.
608 *
609 * This function is like calling xa_store() except it disables interrupts
610 * while holding the array lock.
611 *
612 * Context: Process context. Takes and releases the xa_lock while
613 * disabling interrupts.
614 * Return: The old entry at this index or xa_err() if an error happened.
615 */
xa_store_irq(struct xarray * xa,unsigned long index,void * entry,gfp_t gfp)616 static inline void *xa_store_irq(struct xarray *xa, unsigned long index,
617 void *entry, gfp_t gfp)
618 {
619 void *curr;
620
621 might_alloc(gfp);
622 xa_lock_irq(xa);
623 curr = __xa_store(xa, index, entry, gfp);
624 xa_unlock_irq(xa);
625
626 return curr;
627 }
628
629 /**
630 * xa_erase_bh() - Erase this entry from the XArray.
631 * @xa: XArray.
632 * @index: Index of entry.
633 *
634 * After this function returns, loading from @index will return %NULL.
635 * If the index is part of a multi-index entry, all indices will be erased
636 * and none of the entries will be part of a multi-index entry.
637 *
638 * Context: Any context. Takes and releases the xa_lock while
639 * disabling softirqs.
640 * Return: The entry which used to be at this index.
641 */
xa_erase_bh(struct xarray * xa,unsigned long index)642 static inline void *xa_erase_bh(struct xarray *xa, unsigned long index)
643 {
644 void *entry;
645
646 xa_lock_bh(xa);
647 entry = __xa_erase(xa, index);
648 xa_unlock_bh(xa);
649
650 return entry;
651 }
652
653 /**
654 * xa_erase_irq() - Erase this entry from the XArray.
655 * @xa: XArray.
656 * @index: Index of entry.
657 *
658 * After this function returns, loading from @index will return %NULL.
659 * If the index is part of a multi-index entry, all indices will be erased
660 * and none of the entries will be part of a multi-index entry.
661 *
662 * Context: Process context. Takes and releases the xa_lock while
663 * disabling interrupts.
664 * Return: The entry which used to be at this index.
665 */
xa_erase_irq(struct xarray * xa,unsigned long index)666 static inline void *xa_erase_irq(struct xarray *xa, unsigned long index)
667 {
668 void *entry;
669
670 xa_lock_irq(xa);
671 entry = __xa_erase(xa, index);
672 xa_unlock_irq(xa);
673
674 return entry;
675 }
676
677 /**
678 * xa_cmpxchg() - Conditionally replace an entry in the XArray.
679 * @xa: XArray.
680 * @index: Index into array.
681 * @old: Old value to test against.
682 * @entry: New value to place in array.
683 * @gfp: Memory allocation flags.
684 *
685 * If the entry at @index is the same as @old, replace it with @entry.
686 * If the return value is equal to @old, then the exchange was successful.
687 *
688 * Context: Any context. Takes and releases the xa_lock. May sleep
689 * if the @gfp flags permit.
690 * Return: The old value at this index or xa_err() if an error happened.
691 */
xa_cmpxchg(struct xarray * xa,unsigned long index,void * old,void * entry,gfp_t gfp)692 static inline void *xa_cmpxchg(struct xarray *xa, unsigned long index,
693 void *old, void *entry, gfp_t gfp)
694 {
695 void *curr;
696
697 might_alloc(gfp);
698 xa_lock(xa);
699 curr = __xa_cmpxchg(xa, index, old, entry, gfp);
700 xa_unlock(xa);
701
702 return curr;
703 }
704
705 /**
706 * xa_cmpxchg_bh() - Conditionally replace an entry in the XArray.
707 * @xa: XArray.
708 * @index: Index into array.
709 * @old: Old value to test against.
710 * @entry: New value to place in array.
711 * @gfp: Memory allocation flags.
712 *
713 * This function is like calling xa_cmpxchg() except it disables softirqs
714 * while holding the array lock.
715 *
716 * Context: Any context. Takes and releases the xa_lock while
717 * disabling softirqs. May sleep if the @gfp flags permit.
718 * Return: The old value at this index or xa_err() if an error happened.
719 */
xa_cmpxchg_bh(struct xarray * xa,unsigned long index,void * old,void * entry,gfp_t gfp)720 static inline void *xa_cmpxchg_bh(struct xarray *xa, unsigned long index,
721 void *old, void *entry, gfp_t gfp)
722 {
723 void *curr;
724
725 might_alloc(gfp);
726 xa_lock_bh(xa);
727 curr = __xa_cmpxchg(xa, index, old, entry, gfp);
728 xa_unlock_bh(xa);
729
730 return curr;
731 }
732
733 /**
734 * xa_cmpxchg_irq() - Conditionally replace an entry in the XArray.
735 * @xa: XArray.
736 * @index: Index into array.
737 * @old: Old value to test against.
738 * @entry: New value to place in array.
739 * @gfp: Memory allocation flags.
740 *
741 * This function is like calling xa_cmpxchg() except it disables interrupts
742 * while holding the array lock.
743 *
744 * Context: Process context. Takes and releases the xa_lock while
745 * disabling interrupts. May sleep if the @gfp flags permit.
746 * Return: The old value at this index or xa_err() if an error happened.
747 */
xa_cmpxchg_irq(struct xarray * xa,unsigned long index,void * old,void * entry,gfp_t gfp)748 static inline void *xa_cmpxchg_irq(struct xarray *xa, unsigned long index,
749 void *old, void *entry, gfp_t gfp)
750 {
751 void *curr;
752
753 might_alloc(gfp);
754 xa_lock_irq(xa);
755 curr = __xa_cmpxchg(xa, index, old, entry, gfp);
756 xa_unlock_irq(xa);
757
758 return curr;
759 }
760
761 /**
762 * xa_insert() - Store this entry in the XArray unless another entry is
763 * already present.
764 * @xa: XArray.
765 * @index: Index into array.
766 * @entry: New entry.
767 * @gfp: Memory allocation flags.
768 *
769 * Inserting a NULL entry will store a reserved entry (like xa_reserve())
770 * if no entry is present. Inserting will fail if a reserved entry is
771 * present, even though loading from this index will return NULL.
772 *
773 * Context: Any context. Takes and releases the xa_lock. May sleep if
774 * the @gfp flags permit.
775 * Return: 0 if the store succeeded. -EBUSY if another entry was present.
776 * -ENOMEM if memory could not be allocated.
777 */
xa_insert(struct xarray * xa,unsigned long index,void * entry,gfp_t gfp)778 static inline int __must_check xa_insert(struct xarray *xa,
779 unsigned long index, void *entry, gfp_t gfp)
780 {
781 int err;
782
783 might_alloc(gfp);
784 xa_lock(xa);
785 err = __xa_insert(xa, index, entry, gfp);
786 xa_unlock(xa);
787
788 return err;
789 }
790
791 /**
792 * xa_insert_bh() - Store this entry in the XArray unless another entry is
793 * already present.
794 * @xa: XArray.
795 * @index: Index into array.
796 * @entry: New entry.
797 * @gfp: Memory allocation flags.
798 *
799 * Inserting a NULL entry will store a reserved entry (like xa_reserve())
800 * if no entry is present. Inserting will fail if a reserved entry is
801 * present, even though loading from this index will return NULL.
802 *
803 * Context: Any context. Takes and releases the xa_lock while
804 * disabling softirqs. May sleep if the @gfp flags permit.
805 * Return: 0 if the store succeeded. -EBUSY if another entry was present.
806 * -ENOMEM if memory could not be allocated.
807 */
xa_insert_bh(struct xarray * xa,unsigned long index,void * entry,gfp_t gfp)808 static inline int __must_check xa_insert_bh(struct xarray *xa,
809 unsigned long index, void *entry, gfp_t gfp)
810 {
811 int err;
812
813 might_alloc(gfp);
814 xa_lock_bh(xa);
815 err = __xa_insert(xa, index, entry, gfp);
816 xa_unlock_bh(xa);
817
818 return err;
819 }
820
821 /**
822 * xa_insert_irq() - Store this entry in the XArray unless another entry is
823 * already present.
824 * @xa: XArray.
825 * @index: Index into array.
826 * @entry: New entry.
827 * @gfp: Memory allocation flags.
828 *
829 * Inserting a NULL entry will store a reserved entry (like xa_reserve())
830 * if no entry is present. Inserting will fail if a reserved entry is
831 * present, even though loading from this index will return NULL.
832 *
833 * Context: Process context. Takes and releases the xa_lock while
834 * disabling interrupts. May sleep if the @gfp flags permit.
835 * Return: 0 if the store succeeded. -EBUSY if another entry was present.
836 * -ENOMEM if memory could not be allocated.
837 */
xa_insert_irq(struct xarray * xa,unsigned long index,void * entry,gfp_t gfp)838 static inline int __must_check xa_insert_irq(struct xarray *xa,
839 unsigned long index, void *entry, gfp_t gfp)
840 {
841 int err;
842
843 might_alloc(gfp);
844 xa_lock_irq(xa);
845 err = __xa_insert(xa, index, entry, gfp);
846 xa_unlock_irq(xa);
847
848 return err;
849 }
850
851 /**
852 * xa_alloc() - Find somewhere to store this entry in the XArray.
853 * @xa: XArray.
854 * @id: Pointer to ID.
855 * @entry: New entry.
856 * @limit: Range of ID to allocate.
857 * @gfp: Memory allocation flags.
858 *
859 * Finds an empty entry in @xa between @limit.min and @limit.max,
860 * stores the index into the @id pointer, then stores the entry at
861 * that index. A concurrent lookup will not see an uninitialised @id.
862 *
863 * Must only be operated on an xarray initialized with flag XA_FLAGS_ALLOC set
864 * in xa_init_flags().
865 *
866 * Context: Any context. Takes and releases the xa_lock. May sleep if
867 * the @gfp flags permit.
868 * Return: 0 on success, -ENOMEM if memory could not be allocated or
869 * -EBUSY if there are no free entries in @limit.
870 */
xa_alloc(struct xarray * xa,u32 * id,void * entry,struct xa_limit limit,gfp_t gfp)871 static inline __must_check int xa_alloc(struct xarray *xa, u32 *id,
872 void *entry, struct xa_limit limit, gfp_t gfp)
873 {
874 int err;
875
876 might_alloc(gfp);
877 xa_lock(xa);
878 err = __xa_alloc(xa, id, entry, limit, gfp);
879 xa_unlock(xa);
880
881 return err;
882 }
883
884 /**
885 * xa_alloc_bh() - Find somewhere to store this entry in the XArray.
886 * @xa: XArray.
887 * @id: Pointer to ID.
888 * @entry: New entry.
889 * @limit: Range of ID to allocate.
890 * @gfp: Memory allocation flags.
891 *
892 * Finds an empty entry in @xa between @limit.min and @limit.max,
893 * stores the index into the @id pointer, then stores the entry at
894 * that index. A concurrent lookup will not see an uninitialised @id.
895 *
896 * Must only be operated on an xarray initialized with flag XA_FLAGS_ALLOC set
897 * in xa_init_flags().
898 *
899 * Context: Any context. Takes and releases the xa_lock while
900 * disabling softirqs. May sleep if the @gfp flags permit.
901 * Return: 0 on success, -ENOMEM if memory could not be allocated or
902 * -EBUSY if there are no free entries in @limit.
903 */
xa_alloc_bh(struct xarray * xa,u32 * id,void * entry,struct xa_limit limit,gfp_t gfp)904 static inline int __must_check xa_alloc_bh(struct xarray *xa, u32 *id,
905 void *entry, struct xa_limit limit, gfp_t gfp)
906 {
907 int err;
908
909 might_alloc(gfp);
910 xa_lock_bh(xa);
911 err = __xa_alloc(xa, id, entry, limit, gfp);
912 xa_unlock_bh(xa);
913
914 return err;
915 }
916
917 /**
918 * xa_alloc_irq() - Find somewhere to store this entry in the XArray.
919 * @xa: XArray.
920 * @id: Pointer to ID.
921 * @entry: New entry.
922 * @limit: Range of ID to allocate.
923 * @gfp: Memory allocation flags.
924 *
925 * Finds an empty entry in @xa between @limit.min and @limit.max,
926 * stores the index into the @id pointer, then stores the entry at
927 * that index. A concurrent lookup will not see an uninitialised @id.
928 *
929 * Must only be operated on an xarray initialized with flag XA_FLAGS_ALLOC set
930 * in xa_init_flags().
931 *
932 * Context: Process context. Takes and releases the xa_lock while
933 * disabling interrupts. May sleep if the @gfp flags permit.
934 * Return: 0 on success, -ENOMEM if memory could not be allocated or
935 * -EBUSY if there are no free entries in @limit.
936 */
xa_alloc_irq(struct xarray * xa,u32 * id,void * entry,struct xa_limit limit,gfp_t gfp)937 static inline int __must_check xa_alloc_irq(struct xarray *xa, u32 *id,
938 void *entry, struct xa_limit limit, gfp_t gfp)
939 {
940 int err;
941
942 might_alloc(gfp);
943 xa_lock_irq(xa);
944 err = __xa_alloc(xa, id, entry, limit, gfp);
945 xa_unlock_irq(xa);
946
947 return err;
948 }
949
950 /**
951 * xa_alloc_cyclic() - Find somewhere to store this entry in the XArray.
952 * @xa: XArray.
953 * @id: Pointer to ID.
954 * @entry: New entry.
955 * @limit: Range of allocated ID.
956 * @next: Pointer to next ID to allocate.
957 * @gfp: Memory allocation flags.
958 *
959 * Finds an empty entry in @xa between @limit.min and @limit.max,
960 * stores the index into the @id pointer, then stores the entry at
961 * that index. A concurrent lookup will not see an uninitialised @id.
962 * The search for an empty entry will start at @next and will wrap
963 * around if necessary.
964 *
965 * Must only be operated on an xarray initialized with flag XA_FLAGS_ALLOC set
966 * in xa_init_flags().
967 *
968 * Context: Any context. Takes and releases the xa_lock. May sleep if
969 * the @gfp flags permit.
970 * Return: 0 if the allocation succeeded without wrapping. 1 if the
971 * allocation succeeded after wrapping, -ENOMEM if memory could not be
972 * allocated or -EBUSY if there are no free entries in @limit.
973 */
xa_alloc_cyclic(struct xarray * xa,u32 * id,void * entry,struct xa_limit limit,u32 * next,gfp_t gfp)974 static inline int xa_alloc_cyclic(struct xarray *xa, u32 *id, void *entry,
975 struct xa_limit limit, u32 *next, gfp_t gfp)
976 {
977 int err;
978
979 might_alloc(gfp);
980 xa_lock(xa);
981 err = __xa_alloc_cyclic(xa, id, entry, limit, next, gfp);
982 xa_unlock(xa);
983
984 return err;
985 }
986
987 /**
988 * xa_alloc_cyclic_bh() - Find somewhere to store this entry in the XArray.
989 * @xa: XArray.
990 * @id: Pointer to ID.
991 * @entry: New entry.
992 * @limit: Range of allocated ID.
993 * @next: Pointer to next ID to allocate.
994 * @gfp: Memory allocation flags.
995 *
996 * Finds an empty entry in @xa between @limit.min and @limit.max,
997 * stores the index into the @id pointer, then stores the entry at
998 * that index. A concurrent lookup will not see an uninitialised @id.
999 * The search for an empty entry will start at @next and will wrap
1000 * around if necessary.
1001 *
1002 * Must only be operated on an xarray initialized with flag XA_FLAGS_ALLOC set
1003 * in xa_init_flags().
1004 *
1005 * Context: Any context. Takes and releases the xa_lock while
1006 * disabling softirqs. May sleep if the @gfp flags permit.
1007 * Return: 0 if the allocation succeeded without wrapping. 1 if the
1008 * allocation succeeded after wrapping, -ENOMEM if memory could not be
1009 * allocated or -EBUSY if there are no free entries in @limit.
1010 */
xa_alloc_cyclic_bh(struct xarray * xa,u32 * id,void * entry,struct xa_limit limit,u32 * next,gfp_t gfp)1011 static inline int xa_alloc_cyclic_bh(struct xarray *xa, u32 *id, void *entry,
1012 struct xa_limit limit, u32 *next, gfp_t gfp)
1013 {
1014 int err;
1015
1016 might_alloc(gfp);
1017 xa_lock_bh(xa);
1018 err = __xa_alloc_cyclic(xa, id, entry, limit, next, gfp);
1019 xa_unlock_bh(xa);
1020
1021 return err;
1022 }
1023
1024 /**
1025 * xa_alloc_cyclic_irq() - Find somewhere to store this entry in the XArray.
1026 * @xa: XArray.
1027 * @id: Pointer to ID.
1028 * @entry: New entry.
1029 * @limit: Range of allocated ID.
1030 * @next: Pointer to next ID to allocate.
1031 * @gfp: Memory allocation flags.
1032 *
1033 * Finds an empty entry in @xa between @limit.min and @limit.max,
1034 * stores the index into the @id pointer, then stores the entry at
1035 * that index. A concurrent lookup will not see an uninitialised @id.
1036 * The search for an empty entry will start at @next and will wrap
1037 * around if necessary.
1038 *
1039 * Must only be operated on an xarray initialized with flag XA_FLAGS_ALLOC set
1040 * in xa_init_flags().
1041 *
1042 * Context: Process context. Takes and releases the xa_lock while
1043 * disabling interrupts. May sleep if the @gfp flags permit.
1044 * Return: 0 if the allocation succeeded without wrapping. 1 if the
1045 * allocation succeeded after wrapping, -ENOMEM if memory could not be
1046 * allocated or -EBUSY if there are no free entries in @limit.
1047 */
xa_alloc_cyclic_irq(struct xarray * xa,u32 * id,void * entry,struct xa_limit limit,u32 * next,gfp_t gfp)1048 static inline int xa_alloc_cyclic_irq(struct xarray *xa, u32 *id, void *entry,
1049 struct xa_limit limit, u32 *next, gfp_t gfp)
1050 {
1051 int err;
1052
1053 might_alloc(gfp);
1054 xa_lock_irq(xa);
1055 err = __xa_alloc_cyclic(xa, id, entry, limit, next, gfp);
1056 xa_unlock_irq(xa);
1057
1058 return err;
1059 }
1060
1061 /**
1062 * xa_reserve() - Reserve this index in the XArray.
1063 * @xa: XArray.
1064 * @index: Index into array.
1065 * @gfp: Memory allocation flags.
1066 *
1067 * Ensures there is somewhere to store an entry at @index in the array.
1068 * If there is already something stored at @index, this function does
1069 * nothing. If there was nothing there, the entry is marked as reserved.
1070 * Loading from a reserved entry returns a %NULL pointer.
1071 *
1072 * If you do not use the entry that you have reserved, call xa_release()
1073 * or xa_erase() to free any unnecessary memory.
1074 *
1075 * Context: Any context. Takes and releases the xa_lock.
1076 * May sleep if the @gfp flags permit.
1077 * Return: 0 if the reservation succeeded or -ENOMEM if it failed.
1078 */
1079 static inline __must_check
xa_reserve(struct xarray * xa,unsigned long index,gfp_t gfp)1080 int xa_reserve(struct xarray *xa, unsigned long index, gfp_t gfp)
1081 {
1082 return xa_err(xa_cmpxchg(xa, index, NULL, XA_ZERO_ENTRY, gfp));
1083 }
1084
1085 /**
1086 * xa_reserve_bh() - Reserve this index in the XArray.
1087 * @xa: XArray.
1088 * @index: Index into array.
1089 * @gfp: Memory allocation flags.
1090 *
1091 * A softirq-disabling version of xa_reserve().
1092 *
1093 * Context: Any context. Takes and releases the xa_lock while
1094 * disabling softirqs.
1095 * Return: 0 if the reservation succeeded or -ENOMEM if it failed.
1096 */
1097 static inline __must_check
xa_reserve_bh(struct xarray * xa,unsigned long index,gfp_t gfp)1098 int xa_reserve_bh(struct xarray *xa, unsigned long index, gfp_t gfp)
1099 {
1100 return xa_err(xa_cmpxchg_bh(xa, index, NULL, XA_ZERO_ENTRY, gfp));
1101 }
1102
1103 /**
1104 * xa_reserve_irq() - Reserve this index in the XArray.
1105 * @xa: XArray.
1106 * @index: Index into array.
1107 * @gfp: Memory allocation flags.
1108 *
1109 * An interrupt-disabling version of xa_reserve().
1110 *
1111 * Context: Process context. Takes and releases the xa_lock while
1112 * disabling interrupts.
1113 * Return: 0 if the reservation succeeded or -ENOMEM if it failed.
1114 */
1115 static inline __must_check
xa_reserve_irq(struct xarray * xa,unsigned long index,gfp_t gfp)1116 int xa_reserve_irq(struct xarray *xa, unsigned long index, gfp_t gfp)
1117 {
1118 return xa_err(xa_cmpxchg_irq(xa, index, NULL, XA_ZERO_ENTRY, gfp));
1119 }
1120
1121 /**
1122 * xa_release() - Release a reserved entry.
1123 * @xa: XArray.
1124 * @index: Index of entry.
1125 *
1126 * After calling xa_reserve(), you can call this function to release the
1127 * reservation. If the entry at @index has been stored to, this function
1128 * will do nothing.
1129 */
xa_release(struct xarray * xa,unsigned long index)1130 static inline void xa_release(struct xarray *xa, unsigned long index)
1131 {
1132 xa_cmpxchg(xa, index, XA_ZERO_ENTRY, NULL, 0);
1133 }
1134
1135 /* Everything below here is the Advanced API. Proceed with caution. */
1136
1137 /*
1138 * The xarray is constructed out of a set of 'chunks' of pointers. Choosing
1139 * the best chunk size requires some tradeoffs. A power of two recommends
1140 * itself so that we can walk the tree based purely on shifts and masks.
1141 * Generally, the larger the better; as the number of slots per level of the
1142 * tree increases, the less tall the tree needs to be. But that needs to be
1143 * balanced against the memory consumption of each node. On a 64-bit system,
1144 * xa_node is currently 576 bytes, and we get 7 of them per 4kB page. If we
1145 * doubled the number of slots per node, we'd get only 3 nodes per 4kB page.
1146 */
1147 #ifndef XA_CHUNK_SHIFT
1148 #define XA_CHUNK_SHIFT (IS_ENABLED(CONFIG_BASE_SMALL) ? 4 : 6)
1149 #endif
1150 #define XA_CHUNK_SIZE (1UL << XA_CHUNK_SHIFT)
1151 #define XA_CHUNK_MASK (XA_CHUNK_SIZE - 1)
1152 #define XA_MAX_MARKS 3
1153 #define XA_MARK_LONGS BITS_TO_LONGS(XA_CHUNK_SIZE)
1154
1155 /*
1156 * @count is the count of every non-NULL element in the ->slots array
1157 * whether that is a value entry, a retry entry, a user pointer,
1158 * a sibling entry or a pointer to the next level of the tree.
1159 * @nr_values is the count of every element in ->slots which is
1160 * either a value entry or a sibling of a value entry.
1161 */
1162 struct xa_node {
1163 unsigned char shift; /* Bits remaining in each slot */
1164 unsigned char offset; /* Slot offset in parent */
1165 unsigned char count; /* Total entry count */
1166 unsigned char nr_values; /* Value entry count */
1167 struct xa_node __rcu *parent; /* NULL at top of tree */
1168 struct xarray *array; /* The array we belong to */
1169 union {
1170 struct list_head private_list; /* For tree user */
1171 struct rcu_head rcu_head; /* Used when freeing node */
1172 };
1173 void __rcu *slots[XA_CHUNK_SIZE];
1174 union {
1175 unsigned long tags[XA_MAX_MARKS][XA_MARK_LONGS];
1176 unsigned long marks[XA_MAX_MARKS][XA_MARK_LONGS];
1177 };
1178 };
1179
1180 void xa_dump(const struct xarray *);
1181 void xa_dump_node(const struct xa_node *);
1182
1183 #ifdef XA_DEBUG
1184 #define XA_BUG_ON(xa, x) do { \
1185 if (x) { \
1186 xa_dump(xa); \
1187 BUG(); \
1188 } \
1189 } while (0)
1190 #define XA_NODE_BUG_ON(node, x) do { \
1191 if (x) { \
1192 if (node) xa_dump_node(node); \
1193 BUG(); \
1194 } \
1195 } while (0)
1196 #else
1197 #define XA_BUG_ON(xa, x) do { } while (0)
1198 #define XA_NODE_BUG_ON(node, x) do { } while (0)
1199 #endif
1200
1201 /* Private */
xa_head(const struct xarray * xa)1202 static inline void *xa_head(const struct xarray *xa)
1203 {
1204 return rcu_dereference_check(xa->xa_head,
1205 lockdep_is_held(&xa->xa_lock));
1206 }
1207
1208 /* Private */
xa_head_locked(const struct xarray * xa)1209 static inline void *xa_head_locked(const struct xarray *xa)
1210 {
1211 return rcu_dereference_protected(xa->xa_head,
1212 lockdep_is_held(&xa->xa_lock));
1213 }
1214
1215 /* Private */
xa_entry(const struct xarray * xa,const struct xa_node * node,unsigned int offset)1216 static inline void *xa_entry(const struct xarray *xa,
1217 const struct xa_node *node, unsigned int offset)
1218 {
1219 XA_NODE_BUG_ON(node, offset >= XA_CHUNK_SIZE);
1220 return rcu_dereference_check(node->slots[offset],
1221 lockdep_is_held(&xa->xa_lock));
1222 }
1223
1224 /* Private */
xa_entry_locked(const struct xarray * xa,const struct xa_node * node,unsigned int offset)1225 static inline void *xa_entry_locked(const struct xarray *xa,
1226 const struct xa_node *node, unsigned int offset)
1227 {
1228 XA_NODE_BUG_ON(node, offset >= XA_CHUNK_SIZE);
1229 return rcu_dereference_protected(node->slots[offset],
1230 lockdep_is_held(&xa->xa_lock));
1231 }
1232
1233 /* Private */
xa_parent(const struct xarray * xa,const struct xa_node * node)1234 static inline struct xa_node *xa_parent(const struct xarray *xa,
1235 const struct xa_node *node)
1236 {
1237 return rcu_dereference_check(node->parent,
1238 lockdep_is_held(&xa->xa_lock));
1239 }
1240
1241 /* Private */
xa_parent_locked(const struct xarray * xa,const struct xa_node * node)1242 static inline struct xa_node *xa_parent_locked(const struct xarray *xa,
1243 const struct xa_node *node)
1244 {
1245 return rcu_dereference_protected(node->parent,
1246 lockdep_is_held(&xa->xa_lock));
1247 }
1248
1249 /* Private */
xa_mk_node(const struct xa_node * node)1250 static inline void *xa_mk_node(const struct xa_node *node)
1251 {
1252 return (void *)((unsigned long)node | 2);
1253 }
1254
1255 /* Private */
xa_to_node(const void * entry)1256 static inline struct xa_node *xa_to_node(const void *entry)
1257 {
1258 return (struct xa_node *)((unsigned long)entry - 2);
1259 }
1260
1261 /* Private */
xa_is_node(const void * entry)1262 static inline bool xa_is_node(const void *entry)
1263 {
1264 return xa_is_internal(entry) && (unsigned long)entry > 4096;
1265 }
1266
1267 /* Private */
xa_mk_sibling(unsigned int offset)1268 static inline void *xa_mk_sibling(unsigned int offset)
1269 {
1270 return xa_mk_internal(offset);
1271 }
1272
1273 /* Private */
xa_to_sibling(const void * entry)1274 static inline unsigned long xa_to_sibling(const void *entry)
1275 {
1276 return xa_to_internal(entry);
1277 }
1278
1279 /**
1280 * xa_is_sibling() - Is the entry a sibling entry?
1281 * @entry: Entry retrieved from the XArray
1282 *
1283 * Return: %true if the entry is a sibling entry.
1284 */
xa_is_sibling(const void * entry)1285 static inline bool xa_is_sibling(const void *entry)
1286 {
1287 return IS_ENABLED(CONFIG_XARRAY_MULTI) && xa_is_internal(entry) &&
1288 (entry < xa_mk_sibling(XA_CHUNK_SIZE - 1));
1289 }
1290
1291 #define XA_RETRY_ENTRY xa_mk_internal(256)
1292
1293 /**
1294 * xa_is_retry() - Is the entry a retry entry?
1295 * @entry: Entry retrieved from the XArray
1296 *
1297 * Return: %true if the entry is a retry entry.
1298 */
xa_is_retry(const void * entry)1299 static inline bool xa_is_retry(const void *entry)
1300 {
1301 return unlikely(entry == XA_RETRY_ENTRY);
1302 }
1303
1304 /**
1305 * xa_is_advanced() - Is the entry only permitted for the advanced API?
1306 * @entry: Entry to be stored in the XArray.
1307 *
1308 * Return: %true if the entry cannot be stored by the normal API.
1309 */
xa_is_advanced(const void * entry)1310 static inline bool xa_is_advanced(const void *entry)
1311 {
1312 return xa_is_internal(entry) && (entry <= XA_RETRY_ENTRY);
1313 }
1314
1315 /**
1316 * typedef xa_update_node_t - A callback function from the XArray.
1317 * @node: The node which is being processed
1318 *
1319 * This function is called every time the XArray updates the count of
1320 * present and value entries in a node. It allows advanced users to
1321 * maintain the private_list in the node.
1322 *
1323 * Context: The xa_lock is held and interrupts may be disabled.
1324 * Implementations should not drop the xa_lock, nor re-enable
1325 * interrupts.
1326 */
1327 typedef void (*xa_update_node_t)(struct xa_node *node);
1328
1329 void xa_delete_node(struct xa_node *, xa_update_node_t);
1330
1331 /*
1332 * The xa_state is opaque to its users. It contains various different pieces
1333 * of state involved in the current operation on the XArray. It should be
1334 * declared on the stack and passed between the various internal routines.
1335 * The various elements in it should not be accessed directly, but only
1336 * through the provided accessor functions. The below documentation is for
1337 * the benefit of those working on the code, not for users of the XArray.
1338 *
1339 * @xa_node usually points to the xa_node containing the slot we're operating
1340 * on (and @xa_offset is the offset in the slots array). If there is a
1341 * single entry in the array at index 0, there are no allocated xa_nodes to
1342 * point to, and so we store %NULL in @xa_node. @xa_node is set to
1343 * the value %XAS_RESTART if the xa_state is not walked to the correct
1344 * position in the tree of nodes for this operation. If an error occurs
1345 * during an operation, it is set to an %XAS_ERROR value. If we run off the
1346 * end of the allocated nodes, it is set to %XAS_BOUNDS.
1347 */
1348 struct xa_state {
1349 struct xarray *xa;
1350 unsigned long xa_index;
1351 unsigned char xa_shift;
1352 unsigned char xa_sibs;
1353 unsigned char xa_offset;
1354 unsigned char xa_pad; /* Helps gcc generate better code */
1355 struct xa_node *xa_node;
1356 struct xa_node *xa_alloc;
1357 xa_update_node_t xa_update;
1358 struct list_lru *xa_lru;
1359 };
1360
1361 /*
1362 * We encode errnos in the xas->xa_node. If an error has happened, we need to
1363 * drop the lock to fix it, and once we've done so the xa_state is invalid.
1364 */
1365 #define XA_ERROR(errno) ((struct xa_node *)(((unsigned long)errno << 2) | 2UL))
1366 #define XAS_BOUNDS ((struct xa_node *)1UL)
1367 #define XAS_RESTART ((struct xa_node *)3UL)
1368
1369 #define __XA_STATE(array, index, shift, sibs) { \
1370 .xa = array, \
1371 .xa_index = index, \
1372 .xa_shift = shift, \
1373 .xa_sibs = sibs, \
1374 .xa_offset = 0, \
1375 .xa_pad = 0, \
1376 .xa_node = XAS_RESTART, \
1377 .xa_alloc = NULL, \
1378 .xa_update = NULL, \
1379 .xa_lru = NULL, \
1380 }
1381
1382 /**
1383 * XA_STATE() - Declare an XArray operation state.
1384 * @name: Name of this operation state (usually xas).
1385 * @array: Array to operate on.
1386 * @index: Initial index of interest.
1387 *
1388 * Declare and initialise an xa_state on the stack.
1389 */
1390 #define XA_STATE(name, array, index) \
1391 struct xa_state name = __XA_STATE(array, index, 0, 0)
1392
1393 /**
1394 * XA_STATE_ORDER() - Declare an XArray operation state.
1395 * @name: Name of this operation state (usually xas).
1396 * @array: Array to operate on.
1397 * @index: Initial index of interest.
1398 * @order: Order of entry.
1399 *
1400 * Declare and initialise an xa_state on the stack. This variant of
1401 * XA_STATE() allows you to specify the 'order' of the element you
1402 * want to operate on.`
1403 */
1404 #define XA_STATE_ORDER(name, array, index, order) \
1405 struct xa_state name = __XA_STATE(array, \
1406 (index >> order) << order, \
1407 order - (order % XA_CHUNK_SHIFT), \
1408 (1U << (order % XA_CHUNK_SHIFT)) - 1)
1409
1410 #define xas_marked(xas, mark) xa_marked((xas)->xa, (mark))
1411 #define xas_trylock(xas) xa_trylock((xas)->xa)
1412 #define xas_lock(xas) xa_lock((xas)->xa)
1413 #define xas_unlock(xas) xa_unlock((xas)->xa)
1414 #define xas_lock_bh(xas) xa_lock_bh((xas)->xa)
1415 #define xas_unlock_bh(xas) xa_unlock_bh((xas)->xa)
1416 #define xas_lock_irq(xas) xa_lock_irq((xas)->xa)
1417 #define xas_unlock_irq(xas) xa_unlock_irq((xas)->xa)
1418 #define xas_lock_irqsave(xas, flags) \
1419 xa_lock_irqsave((xas)->xa, flags)
1420 #define xas_unlock_irqrestore(xas, flags) \
1421 xa_unlock_irqrestore((xas)->xa, flags)
1422
1423 /**
1424 * xas_error() - Return an errno stored in the xa_state.
1425 * @xas: XArray operation state.
1426 *
1427 * Return: 0 if no error has been noted. A negative errno if one has.
1428 */
xas_error(const struct xa_state * xas)1429 static inline int xas_error(const struct xa_state *xas)
1430 {
1431 return xa_err(xas->xa_node);
1432 }
1433
1434 /**
1435 * xas_set_err() - Note an error in the xa_state.
1436 * @xas: XArray operation state.
1437 * @err: Negative error number.
1438 *
1439 * Only call this function with a negative @err; zero or positive errors
1440 * will probably not behave the way you think they should. If you want
1441 * to clear the error from an xa_state, use xas_reset().
1442 */
xas_set_err(struct xa_state * xas,long err)1443 static inline void xas_set_err(struct xa_state *xas, long err)
1444 {
1445 xas->xa_node = XA_ERROR(err);
1446 }
1447
1448 /**
1449 * xas_invalid() - Is the xas in a retry or error state?
1450 * @xas: XArray operation state.
1451 *
1452 * Return: %true if the xas cannot be used for operations.
1453 */
xas_invalid(const struct xa_state * xas)1454 static inline bool xas_invalid(const struct xa_state *xas)
1455 {
1456 return (unsigned long)xas->xa_node & 3;
1457 }
1458
1459 /**
1460 * xas_valid() - Is the xas a valid cursor into the array?
1461 * @xas: XArray operation state.
1462 *
1463 * Return: %true if the xas can be used for operations.
1464 */
xas_valid(const struct xa_state * xas)1465 static inline bool xas_valid(const struct xa_state *xas)
1466 {
1467 return !xas_invalid(xas);
1468 }
1469
1470 /**
1471 * xas_is_node() - Does the xas point to a node?
1472 * @xas: XArray operation state.
1473 *
1474 * Return: %true if the xas currently references a node.
1475 */
xas_is_node(const struct xa_state * xas)1476 static inline bool xas_is_node(const struct xa_state *xas)
1477 {
1478 return xas_valid(xas) && xas->xa_node;
1479 }
1480
1481 /* True if the pointer is something other than a node */
xas_not_node(struct xa_node * node)1482 static inline bool xas_not_node(struct xa_node *node)
1483 {
1484 return ((unsigned long)node & 3) || !node;
1485 }
1486
1487 /* True if the node represents RESTART or an error */
xas_frozen(struct xa_node * node)1488 static inline bool xas_frozen(struct xa_node *node)
1489 {
1490 return (unsigned long)node & 2;
1491 }
1492
1493 /* True if the node represents head-of-tree, RESTART or BOUNDS */
xas_top(struct xa_node * node)1494 static inline bool xas_top(struct xa_node *node)
1495 {
1496 return node <= XAS_RESTART;
1497 }
1498
1499 /**
1500 * xas_reset() - Reset an XArray operation state.
1501 * @xas: XArray operation state.
1502 *
1503 * Resets the error or walk state of the @xas so future walks of the
1504 * array will start from the root. Use this if you have dropped the
1505 * xarray lock and want to reuse the xa_state.
1506 *
1507 * Context: Any context.
1508 */
xas_reset(struct xa_state * xas)1509 static inline void xas_reset(struct xa_state *xas)
1510 {
1511 xas->xa_node = XAS_RESTART;
1512 }
1513
1514 /**
1515 * xas_retry() - Retry the operation if appropriate.
1516 * @xas: XArray operation state.
1517 * @entry: Entry from xarray.
1518 *
1519 * The advanced functions may sometimes return an internal entry, such as
1520 * a retry entry or a zero entry. This function sets up the @xas to restart
1521 * the walk from the head of the array if needed.
1522 *
1523 * Context: Any context.
1524 * Return: true if the operation needs to be retried.
1525 */
xas_retry(struct xa_state * xas,const void * entry)1526 static inline bool xas_retry(struct xa_state *xas, const void *entry)
1527 {
1528 if (xa_is_zero(entry))
1529 return true;
1530 if (!xa_is_retry(entry))
1531 return false;
1532 xas_reset(xas);
1533 return true;
1534 }
1535
1536 void *xas_load(struct xa_state *);
1537 void *xas_store(struct xa_state *, void *entry);
1538 void *xas_find(struct xa_state *, unsigned long max);
1539 void *xas_find_conflict(struct xa_state *);
1540
1541 bool xas_get_mark(const struct xa_state *, xa_mark_t);
1542 void xas_set_mark(const struct xa_state *, xa_mark_t);
1543 void xas_clear_mark(const struct xa_state *, xa_mark_t);
1544 void *xas_find_marked(struct xa_state *, unsigned long max, xa_mark_t);
1545 void xas_init_marks(const struct xa_state *);
1546
1547 bool xas_nomem(struct xa_state *, gfp_t);
1548 void xas_destroy(struct xa_state *);
1549 void xas_pause(struct xa_state *);
1550
1551 void xas_create_range(struct xa_state *);
1552
1553 #ifdef CONFIG_XARRAY_MULTI
1554 int xa_get_order(struct xarray *, unsigned long index);
1555 int xas_get_order(struct xa_state *xas);
1556 void xas_split(struct xa_state *, void *entry, unsigned int order);
1557 void xas_split_alloc(struct xa_state *, void *entry, unsigned int order, gfp_t);
1558 #else
xa_get_order(struct xarray * xa,unsigned long index)1559 static inline int xa_get_order(struct xarray *xa, unsigned long index)
1560 {
1561 return 0;
1562 }
1563
xas_get_order(struct xa_state * xas)1564 static inline int xas_get_order(struct xa_state *xas)
1565 {
1566 return 0;
1567 }
1568
xas_split(struct xa_state * xas,void * entry,unsigned int order)1569 static inline void xas_split(struct xa_state *xas, void *entry,
1570 unsigned int order)
1571 {
1572 xas_store(xas, entry);
1573 }
1574
xas_split_alloc(struct xa_state * xas,void * entry,unsigned int order,gfp_t gfp)1575 static inline void xas_split_alloc(struct xa_state *xas, void *entry,
1576 unsigned int order, gfp_t gfp)
1577 {
1578 }
1579 #endif
1580
1581 /**
1582 * xas_reload() - Refetch an entry from the xarray.
1583 * @xas: XArray operation state.
1584 *
1585 * Use this function to check that a previously loaded entry still has
1586 * the same value. This is useful for the lockless pagecache lookup where
1587 * we walk the array with only the RCU lock to protect us, lock the page,
1588 * then check that the page hasn't moved since we looked it up.
1589 *
1590 * The caller guarantees that @xas is still valid. If it may be in an
1591 * error or restart state, call xas_load() instead.
1592 *
1593 * Return: The entry at this location in the xarray.
1594 */
xas_reload(struct xa_state * xas)1595 static inline void *xas_reload(struct xa_state *xas)
1596 {
1597 struct xa_node *node = xas->xa_node;
1598 void *entry;
1599 char offset;
1600
1601 if (!node)
1602 return xa_head(xas->xa);
1603 if (IS_ENABLED(CONFIG_XARRAY_MULTI)) {
1604 offset = (xas->xa_index >> node->shift) & XA_CHUNK_MASK;
1605 entry = xa_entry(xas->xa, node, offset);
1606 if (!xa_is_sibling(entry))
1607 return entry;
1608 offset = xa_to_sibling(entry);
1609 } else {
1610 offset = xas->xa_offset;
1611 }
1612 return xa_entry(xas->xa, node, offset);
1613 }
1614
1615 /**
1616 * xas_set() - Set up XArray operation state for a different index.
1617 * @xas: XArray operation state.
1618 * @index: New index into the XArray.
1619 *
1620 * Move the operation state to refer to a different index. This will
1621 * have the effect of starting a walk from the top; see xas_next()
1622 * to move to an adjacent index.
1623 */
xas_set(struct xa_state * xas,unsigned long index)1624 static inline void xas_set(struct xa_state *xas, unsigned long index)
1625 {
1626 xas->xa_index = index;
1627 xas->xa_node = XAS_RESTART;
1628 }
1629
1630 /**
1631 * xas_advance() - Skip over sibling entries.
1632 * @xas: XArray operation state.
1633 * @index: Index of last sibling entry.
1634 *
1635 * Move the operation state to refer to the last sibling entry.
1636 * This is useful for loops that normally want to see sibling
1637 * entries but sometimes want to skip them. Use xas_set() if you
1638 * want to move to an index which is not part of this entry.
1639 */
xas_advance(struct xa_state * xas,unsigned long index)1640 static inline void xas_advance(struct xa_state *xas, unsigned long index)
1641 {
1642 unsigned char shift = xas_is_node(xas) ? xas->xa_node->shift : 0;
1643
1644 xas->xa_index = index;
1645 xas->xa_offset = (index >> shift) & XA_CHUNK_MASK;
1646 }
1647
1648 /**
1649 * xas_set_order() - Set up XArray operation state for a multislot entry.
1650 * @xas: XArray operation state.
1651 * @index: Target of the operation.
1652 * @order: Entry occupies 2^@order indices.
1653 */
xas_set_order(struct xa_state * xas,unsigned long index,unsigned int order)1654 static inline void xas_set_order(struct xa_state *xas, unsigned long index,
1655 unsigned int order)
1656 {
1657 #ifdef CONFIG_XARRAY_MULTI
1658 xas->xa_index = order < BITS_PER_LONG ? (index >> order) << order : 0;
1659 xas->xa_shift = order - (order % XA_CHUNK_SHIFT);
1660 xas->xa_sibs = (1 << (order % XA_CHUNK_SHIFT)) - 1;
1661 xas->xa_node = XAS_RESTART;
1662 #else
1663 BUG_ON(order > 0);
1664 xas_set(xas, index);
1665 #endif
1666 }
1667
1668 /**
1669 * xas_set_update() - Set up XArray operation state for a callback.
1670 * @xas: XArray operation state.
1671 * @update: Function to call when updating a node.
1672 *
1673 * The XArray can notify a caller after it has updated an xa_node.
1674 * This is advanced functionality and is only needed by the page
1675 * cache and swap cache.
1676 */
xas_set_update(struct xa_state * xas,xa_update_node_t update)1677 static inline void xas_set_update(struct xa_state *xas, xa_update_node_t update)
1678 {
1679 xas->xa_update = update;
1680 }
1681
xas_set_lru(struct xa_state * xas,struct list_lru * lru)1682 static inline void xas_set_lru(struct xa_state *xas, struct list_lru *lru)
1683 {
1684 xas->xa_lru = lru;
1685 }
1686
1687 /**
1688 * xas_next_entry() - Advance iterator to next present entry.
1689 * @xas: XArray operation state.
1690 * @max: Highest index to return.
1691 *
1692 * xas_next_entry() is an inline function to optimise xarray traversal for
1693 * speed. It is equivalent to calling xas_find(), and will call xas_find()
1694 * for all the hard cases.
1695 *
1696 * Return: The next present entry after the one currently referred to by @xas.
1697 */
xas_next_entry(struct xa_state * xas,unsigned long max)1698 static inline void *xas_next_entry(struct xa_state *xas, unsigned long max)
1699 {
1700 struct xa_node *node = xas->xa_node;
1701 void *entry;
1702
1703 if (unlikely(xas_not_node(node) || node->shift ||
1704 xas->xa_offset != (xas->xa_index & XA_CHUNK_MASK)))
1705 return xas_find(xas, max);
1706
1707 do {
1708 if (unlikely(xas->xa_index >= max))
1709 return xas_find(xas, max);
1710 if (unlikely(xas->xa_offset == XA_CHUNK_MASK))
1711 return xas_find(xas, max);
1712 entry = xa_entry(xas->xa, node, xas->xa_offset + 1);
1713 if (unlikely(xa_is_internal(entry)))
1714 return xas_find(xas, max);
1715 xas->xa_offset++;
1716 xas->xa_index++;
1717 } while (!entry);
1718
1719 return entry;
1720 }
1721
1722 /* Private */
xas_find_chunk(struct xa_state * xas,bool advance,xa_mark_t mark)1723 static inline unsigned int xas_find_chunk(struct xa_state *xas, bool advance,
1724 xa_mark_t mark)
1725 {
1726 unsigned long *addr = xas->xa_node->marks[(__force unsigned)mark];
1727 unsigned int offset = xas->xa_offset;
1728
1729 if (advance)
1730 offset++;
1731 if (XA_CHUNK_SIZE == BITS_PER_LONG) {
1732 if (offset < XA_CHUNK_SIZE) {
1733 unsigned long data = *addr & (~0UL << offset);
1734 if (data)
1735 return __ffs(data);
1736 }
1737 return XA_CHUNK_SIZE;
1738 }
1739
1740 return find_next_bit(addr, XA_CHUNK_SIZE, offset);
1741 }
1742
1743 /**
1744 * xas_next_marked() - Advance iterator to next marked entry.
1745 * @xas: XArray operation state.
1746 * @max: Highest index to return.
1747 * @mark: Mark to search for.
1748 *
1749 * xas_next_marked() is an inline function to optimise xarray traversal for
1750 * speed. It is equivalent to calling xas_find_marked(), and will call
1751 * xas_find_marked() for all the hard cases.
1752 *
1753 * Return: The next marked entry after the one currently referred to by @xas.
1754 */
xas_next_marked(struct xa_state * xas,unsigned long max,xa_mark_t mark)1755 static inline void *xas_next_marked(struct xa_state *xas, unsigned long max,
1756 xa_mark_t mark)
1757 {
1758 struct xa_node *node = xas->xa_node;
1759 void *entry;
1760 unsigned int offset;
1761
1762 if (unlikely(xas_not_node(node) || node->shift))
1763 return xas_find_marked(xas, max, mark);
1764 offset = xas_find_chunk(xas, true, mark);
1765 xas->xa_offset = offset;
1766 xas->xa_index = (xas->xa_index & ~XA_CHUNK_MASK) + offset;
1767 if (xas->xa_index > max)
1768 return NULL;
1769 if (offset == XA_CHUNK_SIZE)
1770 return xas_find_marked(xas, max, mark);
1771 entry = xa_entry(xas->xa, node, offset);
1772 if (!entry)
1773 return xas_find_marked(xas, max, mark);
1774 return entry;
1775 }
1776
1777 /*
1778 * If iterating while holding a lock, drop the lock and reschedule
1779 * every %XA_CHECK_SCHED loops.
1780 */
1781 enum {
1782 XA_CHECK_SCHED = 4096,
1783 };
1784
1785 /**
1786 * xas_for_each() - Iterate over a range of an XArray.
1787 * @xas: XArray operation state.
1788 * @entry: Entry retrieved from the array.
1789 * @max: Maximum index to retrieve from array.
1790 *
1791 * The loop body will be executed for each entry present in the xarray
1792 * between the current xas position and @max. @entry will be set to
1793 * the entry retrieved from the xarray. It is safe to delete entries
1794 * from the array in the loop body. You should hold either the RCU lock
1795 * or the xa_lock while iterating. If you need to drop the lock, call
1796 * xas_pause() first.
1797 */
1798 #define xas_for_each(xas, entry, max) \
1799 for (entry = xas_find(xas, max); entry; \
1800 entry = xas_next_entry(xas, max))
1801
1802 /**
1803 * xas_for_each_marked() - Iterate over a range of an XArray.
1804 * @xas: XArray operation state.
1805 * @entry: Entry retrieved from the array.
1806 * @max: Maximum index to retrieve from array.
1807 * @mark: Mark to search for.
1808 *
1809 * The loop body will be executed for each marked entry in the xarray
1810 * between the current xas position and @max. @entry will be set to
1811 * the entry retrieved from the xarray. It is safe to delete entries
1812 * from the array in the loop body. You should hold either the RCU lock
1813 * or the xa_lock while iterating. If you need to drop the lock, call
1814 * xas_pause() first.
1815 */
1816 #define xas_for_each_marked(xas, entry, max, mark) \
1817 for (entry = xas_find_marked(xas, max, mark); entry; \
1818 entry = xas_next_marked(xas, max, mark))
1819
1820 /**
1821 * xas_for_each_conflict() - Iterate over a range of an XArray.
1822 * @xas: XArray operation state.
1823 * @entry: Entry retrieved from the array.
1824 *
1825 * The loop body will be executed for each entry in the XArray that
1826 * lies within the range specified by @xas. If the loop terminates
1827 * normally, @entry will be %NULL. The user may break out of the loop,
1828 * which will leave @entry set to the conflicting entry. The caller
1829 * may also call xa_set_err() to exit the loop while setting an error
1830 * to record the reason.
1831 */
1832 #define xas_for_each_conflict(xas, entry) \
1833 while ((entry = xas_find_conflict(xas)))
1834
1835 void *__xas_next(struct xa_state *);
1836 void *__xas_prev(struct xa_state *);
1837
1838 /**
1839 * xas_prev() - Move iterator to previous index.
1840 * @xas: XArray operation state.
1841 *
1842 * If the @xas was in an error state, it will remain in an error state
1843 * and this function will return %NULL. If the @xas has never been walked,
1844 * it will have the effect of calling xas_load(). Otherwise one will be
1845 * subtracted from the index and the state will be walked to the correct
1846 * location in the array for the next operation.
1847 *
1848 * If the iterator was referencing index 0, this function wraps
1849 * around to %ULONG_MAX.
1850 *
1851 * Return: The entry at the new index. This may be %NULL or an internal
1852 * entry.
1853 */
xas_prev(struct xa_state * xas)1854 static inline void *xas_prev(struct xa_state *xas)
1855 {
1856 struct xa_node *node = xas->xa_node;
1857
1858 if (unlikely(xas_not_node(node) || node->shift ||
1859 xas->xa_offset == 0))
1860 return __xas_prev(xas);
1861
1862 xas->xa_index--;
1863 xas->xa_offset--;
1864 return xa_entry(xas->xa, node, xas->xa_offset);
1865 }
1866
1867 /**
1868 * xas_next() - Move state to next index.
1869 * @xas: XArray operation state.
1870 *
1871 * If the @xas was in an error state, it will remain in an error state
1872 * and this function will return %NULL. If the @xas has never been walked,
1873 * it will have the effect of calling xas_load(). Otherwise one will be
1874 * added to the index and the state will be walked to the correct
1875 * location in the array for the next operation.
1876 *
1877 * If the iterator was referencing index %ULONG_MAX, this function wraps
1878 * around to 0.
1879 *
1880 * Return: The entry at the new index. This may be %NULL or an internal
1881 * entry.
1882 */
xas_next(struct xa_state * xas)1883 static inline void *xas_next(struct xa_state *xas)
1884 {
1885 struct xa_node *node = xas->xa_node;
1886
1887 if (unlikely(xas_not_node(node) || node->shift ||
1888 xas->xa_offset == XA_CHUNK_MASK))
1889 return __xas_next(xas);
1890
1891 xas->xa_index++;
1892 xas->xa_offset++;
1893 return xa_entry(xas->xa, node, xas->xa_offset);
1894 }
1895
1896 #endif /* _LINUX_XARRAY_H */
1897