1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2021 Intel Corporation
4 */
5
6 #include "xe_bo.h"
7
8 #include <linux/dma-buf.h>
9
10 #include <drm/drm_drv.h>
11 #include <drm/drm_gem_ttm_helper.h>
12 #include <drm/drm_managed.h>
13 #include <drm/ttm/ttm_device.h>
14 #include <drm/ttm/ttm_placement.h>
15 #include <drm/ttm/ttm_tt.h>
16 #include <uapi/drm/xe_drm.h>
17
18 #include "xe_device.h"
19 #include "xe_dma_buf.h"
20 #include "xe_drm_client.h"
21 #include "xe_ggtt.h"
22 #include "xe_gt.h"
23 #include "xe_map.h"
24 #include "xe_migrate.h"
25 #include "xe_pm.h"
26 #include "xe_preempt_fence.h"
27 #include "xe_res_cursor.h"
28 #include "xe_trace_bo.h"
29 #include "xe_ttm_stolen_mgr.h"
30 #include "xe_vm.h"
31
32 const char *const xe_mem_type_to_name[TTM_NUM_MEM_TYPES] = {
33 [XE_PL_SYSTEM] = "system",
34 [XE_PL_TT] = "gtt",
35 [XE_PL_VRAM0] = "vram0",
36 [XE_PL_VRAM1] = "vram1",
37 [XE_PL_STOLEN] = "stolen"
38 };
39
40 static const struct ttm_place sys_placement_flags = {
41 .fpfn = 0,
42 .lpfn = 0,
43 .mem_type = XE_PL_SYSTEM,
44 .flags = 0,
45 };
46
47 static struct ttm_placement sys_placement = {
48 .num_placement = 1,
49 .placement = &sys_placement_flags,
50 };
51
52 static const struct ttm_place tt_placement_flags[] = {
53 {
54 .fpfn = 0,
55 .lpfn = 0,
56 .mem_type = XE_PL_TT,
57 .flags = TTM_PL_FLAG_DESIRED,
58 },
59 {
60 .fpfn = 0,
61 .lpfn = 0,
62 .mem_type = XE_PL_SYSTEM,
63 .flags = TTM_PL_FLAG_FALLBACK,
64 }
65 };
66
67 static struct ttm_placement tt_placement = {
68 .num_placement = 2,
69 .placement = tt_placement_flags,
70 };
71
mem_type_is_vram(u32 mem_type)72 bool mem_type_is_vram(u32 mem_type)
73 {
74 return mem_type >= XE_PL_VRAM0 && mem_type != XE_PL_STOLEN;
75 }
76
resource_is_stolen_vram(struct xe_device * xe,struct ttm_resource * res)77 static bool resource_is_stolen_vram(struct xe_device *xe, struct ttm_resource *res)
78 {
79 return res->mem_type == XE_PL_STOLEN && IS_DGFX(xe);
80 }
81
resource_is_vram(struct ttm_resource * res)82 static bool resource_is_vram(struct ttm_resource *res)
83 {
84 return mem_type_is_vram(res->mem_type);
85 }
86
xe_bo_is_vram(struct xe_bo * bo)87 bool xe_bo_is_vram(struct xe_bo *bo)
88 {
89 return resource_is_vram(bo->ttm.resource) ||
90 resource_is_stolen_vram(xe_bo_device(bo), bo->ttm.resource);
91 }
92
xe_bo_is_stolen(struct xe_bo * bo)93 bool xe_bo_is_stolen(struct xe_bo *bo)
94 {
95 return bo->ttm.resource->mem_type == XE_PL_STOLEN;
96 }
97
98 /**
99 * xe_bo_has_single_placement - check if BO is placed only in one memory location
100 * @bo: The BO
101 *
102 * This function checks whether a given BO is placed in only one memory location.
103 *
104 * Returns: true if the BO is placed in a single memory location, false otherwise.
105 *
106 */
xe_bo_has_single_placement(struct xe_bo * bo)107 bool xe_bo_has_single_placement(struct xe_bo *bo)
108 {
109 return bo->placement.num_placement == 1;
110 }
111
112 /**
113 * xe_bo_is_stolen_devmem - check if BO is of stolen type accessed via PCI BAR
114 * @bo: The BO
115 *
116 * The stolen memory is accessed through the PCI BAR for both DGFX and some
117 * integrated platforms that have a dedicated bit in the PTE for devmem (DM).
118 *
119 * Returns: true if it's stolen memory accessed via PCI BAR, false otherwise.
120 */
xe_bo_is_stolen_devmem(struct xe_bo * bo)121 bool xe_bo_is_stolen_devmem(struct xe_bo *bo)
122 {
123 return xe_bo_is_stolen(bo) &&
124 GRAPHICS_VERx100(xe_bo_device(bo)) >= 1270;
125 }
126
xe_bo_is_user(struct xe_bo * bo)127 static bool xe_bo_is_user(struct xe_bo *bo)
128 {
129 return bo->flags & XE_BO_FLAG_USER;
130 }
131
132 static struct xe_migrate *
mem_type_to_migrate(struct xe_device * xe,u32 mem_type)133 mem_type_to_migrate(struct xe_device *xe, u32 mem_type)
134 {
135 struct xe_tile *tile;
136
137 xe_assert(xe, mem_type == XE_PL_STOLEN || mem_type_is_vram(mem_type));
138 tile = &xe->tiles[mem_type == XE_PL_STOLEN ? 0 : (mem_type - XE_PL_VRAM0)];
139 return tile->migrate;
140 }
141
res_to_mem_region(struct ttm_resource * res)142 static struct xe_mem_region *res_to_mem_region(struct ttm_resource *res)
143 {
144 struct xe_device *xe = ttm_to_xe_device(res->bo->bdev);
145 struct ttm_resource_manager *mgr;
146
147 xe_assert(xe, resource_is_vram(res));
148 mgr = ttm_manager_type(&xe->ttm, res->mem_type);
149 return to_xe_ttm_vram_mgr(mgr)->vram;
150 }
151
try_add_system(struct xe_device * xe,struct xe_bo * bo,u32 bo_flags,u32 * c)152 static void try_add_system(struct xe_device *xe, struct xe_bo *bo,
153 u32 bo_flags, u32 *c)
154 {
155 if (bo_flags & XE_BO_FLAG_SYSTEM) {
156 xe_assert(xe, *c < ARRAY_SIZE(bo->placements));
157
158 bo->placements[*c] = (struct ttm_place) {
159 .mem_type = XE_PL_TT,
160 };
161 *c += 1;
162 }
163 }
164
add_vram(struct xe_device * xe,struct xe_bo * bo,struct ttm_place * places,u32 bo_flags,u32 mem_type,u32 * c)165 static void add_vram(struct xe_device *xe, struct xe_bo *bo,
166 struct ttm_place *places, u32 bo_flags, u32 mem_type, u32 *c)
167 {
168 struct ttm_place place = { .mem_type = mem_type };
169 struct xe_mem_region *vram;
170 u64 io_size;
171
172 xe_assert(xe, *c < ARRAY_SIZE(bo->placements));
173
174 vram = to_xe_ttm_vram_mgr(ttm_manager_type(&xe->ttm, mem_type))->vram;
175 xe_assert(xe, vram && vram->usable_size);
176 io_size = vram->io_size;
177
178 /*
179 * For eviction / restore on suspend / resume objects
180 * pinned in VRAM must be contiguous
181 */
182 if (bo_flags & (XE_BO_FLAG_PINNED |
183 XE_BO_FLAG_GGTT))
184 place.flags |= TTM_PL_FLAG_CONTIGUOUS;
185
186 if (io_size < vram->usable_size) {
187 if (bo_flags & XE_BO_FLAG_NEEDS_CPU_ACCESS) {
188 place.fpfn = 0;
189 place.lpfn = io_size >> PAGE_SHIFT;
190 } else {
191 place.flags |= TTM_PL_FLAG_TOPDOWN;
192 }
193 }
194 places[*c] = place;
195 *c += 1;
196 }
197
try_add_vram(struct xe_device * xe,struct xe_bo * bo,u32 bo_flags,u32 * c)198 static void try_add_vram(struct xe_device *xe, struct xe_bo *bo,
199 u32 bo_flags, u32 *c)
200 {
201 if (bo_flags & XE_BO_FLAG_VRAM0)
202 add_vram(xe, bo, bo->placements, bo_flags, XE_PL_VRAM0, c);
203 if (bo_flags & XE_BO_FLAG_VRAM1)
204 add_vram(xe, bo, bo->placements, bo_flags, XE_PL_VRAM1, c);
205 }
206
try_add_stolen(struct xe_device * xe,struct xe_bo * bo,u32 bo_flags,u32 * c)207 static void try_add_stolen(struct xe_device *xe, struct xe_bo *bo,
208 u32 bo_flags, u32 *c)
209 {
210 if (bo_flags & XE_BO_FLAG_STOLEN) {
211 xe_assert(xe, *c < ARRAY_SIZE(bo->placements));
212
213 bo->placements[*c] = (struct ttm_place) {
214 .mem_type = XE_PL_STOLEN,
215 .flags = bo_flags & (XE_BO_FLAG_PINNED |
216 XE_BO_FLAG_GGTT) ?
217 TTM_PL_FLAG_CONTIGUOUS : 0,
218 };
219 *c += 1;
220 }
221 }
222
__xe_bo_placement_for_flags(struct xe_device * xe,struct xe_bo * bo,u32 bo_flags)223 static int __xe_bo_placement_for_flags(struct xe_device *xe, struct xe_bo *bo,
224 u32 bo_flags)
225 {
226 u32 c = 0;
227
228 try_add_vram(xe, bo, bo_flags, &c);
229 try_add_system(xe, bo, bo_flags, &c);
230 try_add_stolen(xe, bo, bo_flags, &c);
231
232 if (!c)
233 return -EINVAL;
234
235 bo->placement = (struct ttm_placement) {
236 .num_placement = c,
237 .placement = bo->placements,
238 };
239
240 return 0;
241 }
242
xe_bo_placement_for_flags(struct xe_device * xe,struct xe_bo * bo,u32 bo_flags)243 int xe_bo_placement_for_flags(struct xe_device *xe, struct xe_bo *bo,
244 u32 bo_flags)
245 {
246 xe_bo_assert_held(bo);
247 return __xe_bo_placement_for_flags(xe, bo, bo_flags);
248 }
249
xe_evict_flags(struct ttm_buffer_object * tbo,struct ttm_placement * placement)250 static void xe_evict_flags(struct ttm_buffer_object *tbo,
251 struct ttm_placement *placement)
252 {
253 if (!xe_bo_is_xe_bo(tbo)) {
254 /* Don't handle scatter gather BOs */
255 if (tbo->type == ttm_bo_type_sg) {
256 placement->num_placement = 0;
257 return;
258 }
259
260 *placement = sys_placement;
261 return;
262 }
263
264 /*
265 * For xe, sg bos that are evicted to system just triggers a
266 * rebind of the sg list upon subsequent validation to XE_PL_TT.
267 */
268 switch (tbo->resource->mem_type) {
269 case XE_PL_VRAM0:
270 case XE_PL_VRAM1:
271 case XE_PL_STOLEN:
272 *placement = tt_placement;
273 break;
274 case XE_PL_TT:
275 default:
276 *placement = sys_placement;
277 break;
278 }
279 }
280
281 struct xe_ttm_tt {
282 struct ttm_tt ttm;
283 struct device *dev;
284 struct sg_table sgt;
285 struct sg_table *sg;
286 };
287
xe_tt_map_sg(struct ttm_tt * tt)288 static int xe_tt_map_sg(struct ttm_tt *tt)
289 {
290 struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm);
291 unsigned long num_pages = tt->num_pages;
292 int ret;
293
294 XE_WARN_ON(tt->page_flags & TTM_TT_FLAG_EXTERNAL);
295
296 if (xe_tt->sg)
297 return 0;
298
299 ret = sg_alloc_table_from_pages_segment(&xe_tt->sgt, tt->pages,
300 num_pages, 0,
301 (u64)num_pages << PAGE_SHIFT,
302 xe_sg_segment_size(xe_tt->dev),
303 GFP_KERNEL);
304 if (ret)
305 return ret;
306
307 xe_tt->sg = &xe_tt->sgt;
308 ret = dma_map_sgtable(xe_tt->dev, xe_tt->sg, DMA_BIDIRECTIONAL,
309 DMA_ATTR_SKIP_CPU_SYNC);
310 if (ret) {
311 sg_free_table(xe_tt->sg);
312 xe_tt->sg = NULL;
313 return ret;
314 }
315
316 return 0;
317 }
318
xe_tt_unmap_sg(struct ttm_tt * tt)319 static void xe_tt_unmap_sg(struct ttm_tt *tt)
320 {
321 struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm);
322
323 if (xe_tt->sg) {
324 dma_unmap_sgtable(xe_tt->dev, xe_tt->sg,
325 DMA_BIDIRECTIONAL, 0);
326 sg_free_table(xe_tt->sg);
327 xe_tt->sg = NULL;
328 }
329 }
330
xe_bo_sg(struct xe_bo * bo)331 struct sg_table *xe_bo_sg(struct xe_bo *bo)
332 {
333 struct ttm_tt *tt = bo->ttm.ttm;
334 struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm);
335
336 return xe_tt->sg;
337 }
338
xe_ttm_tt_create(struct ttm_buffer_object * ttm_bo,u32 page_flags)339 static struct ttm_tt *xe_ttm_tt_create(struct ttm_buffer_object *ttm_bo,
340 u32 page_flags)
341 {
342 struct xe_bo *bo = ttm_to_xe_bo(ttm_bo);
343 struct xe_device *xe = xe_bo_device(bo);
344 struct xe_ttm_tt *tt;
345 unsigned long extra_pages;
346 enum ttm_caching caching = ttm_cached;
347 int err;
348
349 tt = kzalloc(sizeof(*tt), GFP_KERNEL);
350 if (!tt)
351 return NULL;
352
353 tt->dev = xe->drm.dev;
354
355 extra_pages = 0;
356 if (xe_bo_needs_ccs_pages(bo))
357 extra_pages = DIV_ROUND_UP(xe_device_ccs_bytes(xe, bo->size),
358 PAGE_SIZE);
359
360 /*
361 * DGFX system memory is always WB / ttm_cached, since
362 * other caching modes are only supported on x86. DGFX
363 * GPU system memory accesses are always coherent with the
364 * CPU.
365 */
366 if (!IS_DGFX(xe)) {
367 switch (bo->cpu_caching) {
368 case DRM_XE_GEM_CPU_CACHING_WC:
369 caching = ttm_write_combined;
370 break;
371 default:
372 caching = ttm_cached;
373 break;
374 }
375
376 WARN_ON((bo->flags & XE_BO_FLAG_USER) && !bo->cpu_caching);
377
378 /*
379 * Display scanout is always non-coherent with the CPU cache.
380 *
381 * For Xe_LPG and beyond, PPGTT PTE lookups are also
382 * non-coherent and require a CPU:WC mapping.
383 */
384 if ((!bo->cpu_caching && bo->flags & XE_BO_FLAG_SCANOUT) ||
385 (xe->info.graphics_verx100 >= 1270 &&
386 bo->flags & XE_BO_FLAG_PAGETABLE))
387 caching = ttm_write_combined;
388 }
389
390 if (bo->flags & XE_BO_FLAG_NEEDS_UC) {
391 /*
392 * Valid only for internally-created buffers only, for
393 * which cpu_caching is never initialized.
394 */
395 xe_assert(xe, bo->cpu_caching == 0);
396 caching = ttm_uncached;
397 }
398
399 err = ttm_tt_init(&tt->ttm, &bo->ttm, page_flags, caching, extra_pages);
400 if (err) {
401 kfree(tt);
402 return NULL;
403 }
404
405 return &tt->ttm;
406 }
407
xe_ttm_tt_populate(struct ttm_device * ttm_dev,struct ttm_tt * tt,struct ttm_operation_ctx * ctx)408 static int xe_ttm_tt_populate(struct ttm_device *ttm_dev, struct ttm_tt *tt,
409 struct ttm_operation_ctx *ctx)
410 {
411 int err;
412
413 /*
414 * dma-bufs are not populated with pages, and the dma-
415 * addresses are set up when moved to XE_PL_TT.
416 */
417 if (tt->page_flags & TTM_TT_FLAG_EXTERNAL)
418 return 0;
419
420 err = ttm_pool_alloc(&ttm_dev->pool, tt, ctx);
421 if (err)
422 return err;
423
424 return err;
425 }
426
xe_ttm_tt_unpopulate(struct ttm_device * ttm_dev,struct ttm_tt * tt)427 static void xe_ttm_tt_unpopulate(struct ttm_device *ttm_dev, struct ttm_tt *tt)
428 {
429 if (tt->page_flags & TTM_TT_FLAG_EXTERNAL)
430 return;
431
432 xe_tt_unmap_sg(tt);
433
434 return ttm_pool_free(&ttm_dev->pool, tt);
435 }
436
xe_ttm_tt_destroy(struct ttm_device * ttm_dev,struct ttm_tt * tt)437 static void xe_ttm_tt_destroy(struct ttm_device *ttm_dev, struct ttm_tt *tt)
438 {
439 ttm_tt_fini(tt);
440 kfree(tt);
441 }
442
xe_ttm_io_mem_reserve(struct ttm_device * bdev,struct ttm_resource * mem)443 static int xe_ttm_io_mem_reserve(struct ttm_device *bdev,
444 struct ttm_resource *mem)
445 {
446 struct xe_device *xe = ttm_to_xe_device(bdev);
447
448 switch (mem->mem_type) {
449 case XE_PL_SYSTEM:
450 case XE_PL_TT:
451 return 0;
452 case XE_PL_VRAM0:
453 case XE_PL_VRAM1: {
454 struct xe_ttm_vram_mgr_resource *vres =
455 to_xe_ttm_vram_mgr_resource(mem);
456 struct xe_mem_region *vram = res_to_mem_region(mem);
457
458 if (vres->used_visible_size < mem->size)
459 return -EINVAL;
460
461 mem->bus.offset = mem->start << PAGE_SHIFT;
462
463 if (vram->mapping &&
464 mem->placement & TTM_PL_FLAG_CONTIGUOUS)
465 mem->bus.addr = (u8 __force *)vram->mapping +
466 mem->bus.offset;
467
468 mem->bus.offset += vram->io_start;
469 mem->bus.is_iomem = true;
470
471 #if !defined(CONFIG_X86)
472 mem->bus.caching = ttm_write_combined;
473 #endif
474 return 0;
475 } case XE_PL_STOLEN:
476 return xe_ttm_stolen_io_mem_reserve(xe, mem);
477 default:
478 return -EINVAL;
479 }
480 }
481
xe_bo_trigger_rebind(struct xe_device * xe,struct xe_bo * bo,const struct ttm_operation_ctx * ctx)482 static int xe_bo_trigger_rebind(struct xe_device *xe, struct xe_bo *bo,
483 const struct ttm_operation_ctx *ctx)
484 {
485 struct dma_resv_iter cursor;
486 struct dma_fence *fence;
487 struct drm_gem_object *obj = &bo->ttm.base;
488 struct drm_gpuvm_bo *vm_bo;
489 bool idle = false;
490 int ret = 0;
491
492 dma_resv_assert_held(bo->ttm.base.resv);
493
494 if (!list_empty(&bo->ttm.base.gpuva.list)) {
495 dma_resv_iter_begin(&cursor, bo->ttm.base.resv,
496 DMA_RESV_USAGE_BOOKKEEP);
497 dma_resv_for_each_fence_unlocked(&cursor, fence)
498 dma_fence_enable_sw_signaling(fence);
499 dma_resv_iter_end(&cursor);
500 }
501
502 drm_gem_for_each_gpuvm_bo(vm_bo, obj) {
503 struct xe_vm *vm = gpuvm_to_vm(vm_bo->vm);
504 struct drm_gpuva *gpuva;
505
506 if (!xe_vm_in_fault_mode(vm)) {
507 drm_gpuvm_bo_evict(vm_bo, true);
508 continue;
509 }
510
511 if (!idle) {
512 long timeout;
513
514 if (ctx->no_wait_gpu &&
515 !dma_resv_test_signaled(bo->ttm.base.resv,
516 DMA_RESV_USAGE_BOOKKEEP))
517 return -EBUSY;
518
519 timeout = dma_resv_wait_timeout(bo->ttm.base.resv,
520 DMA_RESV_USAGE_BOOKKEEP,
521 ctx->interruptible,
522 MAX_SCHEDULE_TIMEOUT);
523 if (!timeout)
524 return -ETIME;
525 if (timeout < 0)
526 return timeout;
527
528 idle = true;
529 }
530
531 drm_gpuvm_bo_for_each_va(gpuva, vm_bo) {
532 struct xe_vma *vma = gpuva_to_vma(gpuva);
533
534 trace_xe_vma_evict(vma);
535 ret = xe_vm_invalidate_vma(vma);
536 if (XE_WARN_ON(ret))
537 return ret;
538 }
539 }
540
541 return ret;
542 }
543
544 /*
545 * The dma-buf map_attachment() / unmap_attachment() is hooked up here.
546 * Note that unmapping the attachment is deferred to the next
547 * map_attachment time, or to bo destroy (after idling) whichever comes first.
548 * This is to avoid syncing before unmap_attachment(), assuming that the
549 * caller relies on idling the reservation object before moving the
550 * backing store out. Should that assumption not hold, then we will be able
551 * to unconditionally call unmap_attachment() when moving out to system.
552 */
xe_bo_move_dmabuf(struct ttm_buffer_object * ttm_bo,struct ttm_resource * new_res)553 static int xe_bo_move_dmabuf(struct ttm_buffer_object *ttm_bo,
554 struct ttm_resource *new_res)
555 {
556 struct dma_buf_attachment *attach = ttm_bo->base.import_attach;
557 struct xe_ttm_tt *xe_tt = container_of(ttm_bo->ttm, struct xe_ttm_tt,
558 ttm);
559 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev);
560 struct sg_table *sg;
561
562 xe_assert(xe, attach);
563 xe_assert(xe, ttm_bo->ttm);
564
565 if (new_res->mem_type == XE_PL_SYSTEM)
566 goto out;
567
568 if (ttm_bo->sg) {
569 dma_buf_unmap_attachment(attach, ttm_bo->sg, DMA_BIDIRECTIONAL);
570 ttm_bo->sg = NULL;
571 }
572
573 sg = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
574 if (IS_ERR(sg))
575 return PTR_ERR(sg);
576
577 ttm_bo->sg = sg;
578 xe_tt->sg = sg;
579
580 out:
581 ttm_bo_move_null(ttm_bo, new_res);
582
583 return 0;
584 }
585
586 /**
587 * xe_bo_move_notify - Notify subsystems of a pending move
588 * @bo: The buffer object
589 * @ctx: The struct ttm_operation_ctx controlling locking and waits.
590 *
591 * This function notifies subsystems of an upcoming buffer move.
592 * Upon receiving such a notification, subsystems should schedule
593 * halting access to the underlying pages and optionally add a fence
594 * to the buffer object's dma_resv object, that signals when access is
595 * stopped. The caller will wait on all dma_resv fences before
596 * starting the move.
597 *
598 * A subsystem may commence access to the object after obtaining
599 * bindings to the new backing memory under the object lock.
600 *
601 * Return: 0 on success, -EINTR or -ERESTARTSYS if interrupted in fault mode,
602 * negative error code on error.
603 */
xe_bo_move_notify(struct xe_bo * bo,const struct ttm_operation_ctx * ctx)604 static int xe_bo_move_notify(struct xe_bo *bo,
605 const struct ttm_operation_ctx *ctx)
606 {
607 struct ttm_buffer_object *ttm_bo = &bo->ttm;
608 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev);
609 struct ttm_resource *old_mem = ttm_bo->resource;
610 u32 old_mem_type = old_mem ? old_mem->mem_type : XE_PL_SYSTEM;
611 int ret;
612
613 /*
614 * If this starts to call into many components, consider
615 * using a notification chain here.
616 */
617
618 if (xe_bo_is_pinned(bo))
619 return -EINVAL;
620
621 xe_bo_vunmap(bo);
622 ret = xe_bo_trigger_rebind(xe, bo, ctx);
623 if (ret)
624 return ret;
625
626 /* Don't call move_notify() for imported dma-bufs. */
627 if (ttm_bo->base.dma_buf && !ttm_bo->base.import_attach)
628 dma_buf_move_notify(ttm_bo->base.dma_buf);
629
630 /*
631 * TTM has already nuked the mmap for us (see ttm_bo_unmap_virtual),
632 * so if we moved from VRAM make sure to unlink this from the userfault
633 * tracking.
634 */
635 if (mem_type_is_vram(old_mem_type)) {
636 mutex_lock(&xe->mem_access.vram_userfault.lock);
637 if (!list_empty(&bo->vram_userfault_link))
638 list_del_init(&bo->vram_userfault_link);
639 mutex_unlock(&xe->mem_access.vram_userfault.lock);
640 }
641
642 return 0;
643 }
644
xe_bo_move(struct ttm_buffer_object * ttm_bo,bool evict,struct ttm_operation_ctx * ctx,struct ttm_resource * new_mem,struct ttm_place * hop)645 static int xe_bo_move(struct ttm_buffer_object *ttm_bo, bool evict,
646 struct ttm_operation_ctx *ctx,
647 struct ttm_resource *new_mem,
648 struct ttm_place *hop)
649 {
650 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev);
651 struct xe_bo *bo = ttm_to_xe_bo(ttm_bo);
652 struct ttm_resource *old_mem = ttm_bo->resource;
653 u32 old_mem_type = old_mem ? old_mem->mem_type : XE_PL_SYSTEM;
654 struct ttm_tt *ttm = ttm_bo->ttm;
655 struct xe_migrate *migrate = NULL;
656 struct dma_fence *fence;
657 bool move_lacks_source;
658 bool tt_has_data;
659 bool needs_clear;
660 bool handle_system_ccs = (!IS_DGFX(xe) && xe_bo_needs_ccs_pages(bo) &&
661 ttm && ttm_tt_is_populated(ttm)) ? true : false;
662 int ret = 0;
663
664 /* Bo creation path, moving to system or TT. */
665 if ((!old_mem && ttm) && !handle_system_ccs) {
666 if (new_mem->mem_type == XE_PL_TT)
667 ret = xe_tt_map_sg(ttm);
668 if (!ret)
669 ttm_bo_move_null(ttm_bo, new_mem);
670 goto out;
671 }
672
673 if (ttm_bo->type == ttm_bo_type_sg) {
674 ret = xe_bo_move_notify(bo, ctx);
675 if (!ret)
676 ret = xe_bo_move_dmabuf(ttm_bo, new_mem);
677 return ret;
678 }
679
680 tt_has_data = ttm && (ttm_tt_is_populated(ttm) ||
681 (ttm->page_flags & TTM_TT_FLAG_SWAPPED));
682
683 move_lacks_source = !old_mem || (handle_system_ccs ? (!bo->ccs_cleared) :
684 (!mem_type_is_vram(old_mem_type) && !tt_has_data));
685
686 needs_clear = (ttm && ttm->page_flags & TTM_TT_FLAG_ZERO_ALLOC) ||
687 (!ttm && ttm_bo->type == ttm_bo_type_device);
688
689 if (new_mem->mem_type == XE_PL_TT) {
690 ret = xe_tt_map_sg(ttm);
691 if (ret)
692 goto out;
693 }
694
695 if ((move_lacks_source && !needs_clear)) {
696 ttm_bo_move_null(ttm_bo, new_mem);
697 goto out;
698 }
699
700 if (old_mem_type == XE_PL_SYSTEM && new_mem->mem_type == XE_PL_TT && !handle_system_ccs) {
701 ttm_bo_move_null(ttm_bo, new_mem);
702 goto out;
703 }
704
705 /*
706 * Failed multi-hop where the old_mem is still marked as
707 * TTM_PL_FLAG_TEMPORARY, should just be a dummy move.
708 */
709 if (old_mem_type == XE_PL_TT &&
710 new_mem->mem_type == XE_PL_TT) {
711 ttm_bo_move_null(ttm_bo, new_mem);
712 goto out;
713 }
714
715 if (!move_lacks_source && !xe_bo_is_pinned(bo)) {
716 ret = xe_bo_move_notify(bo, ctx);
717 if (ret)
718 goto out;
719 }
720
721 if (old_mem_type == XE_PL_TT &&
722 new_mem->mem_type == XE_PL_SYSTEM) {
723 long timeout = dma_resv_wait_timeout(ttm_bo->base.resv,
724 DMA_RESV_USAGE_BOOKKEEP,
725 true,
726 MAX_SCHEDULE_TIMEOUT);
727 if (timeout < 0) {
728 ret = timeout;
729 goto out;
730 }
731
732 if (!handle_system_ccs) {
733 ttm_bo_move_null(ttm_bo, new_mem);
734 goto out;
735 }
736 }
737
738 if (!move_lacks_source &&
739 ((old_mem_type == XE_PL_SYSTEM && resource_is_vram(new_mem)) ||
740 (mem_type_is_vram(old_mem_type) &&
741 new_mem->mem_type == XE_PL_SYSTEM))) {
742 hop->fpfn = 0;
743 hop->lpfn = 0;
744 hop->mem_type = XE_PL_TT;
745 hop->flags = TTM_PL_FLAG_TEMPORARY;
746 ret = -EMULTIHOP;
747 goto out;
748 }
749
750 if (bo->tile)
751 migrate = bo->tile->migrate;
752 else if (resource_is_vram(new_mem))
753 migrate = mem_type_to_migrate(xe, new_mem->mem_type);
754 else if (mem_type_is_vram(old_mem_type))
755 migrate = mem_type_to_migrate(xe, old_mem_type);
756 else
757 migrate = xe->tiles[0].migrate;
758
759 xe_assert(xe, migrate);
760 trace_xe_bo_move(bo, new_mem->mem_type, old_mem_type, move_lacks_source);
761 if (xe_rpm_reclaim_safe(xe)) {
762 /*
763 * We might be called through swapout in the validation path of
764 * another TTM device, so unconditionally acquire rpm here.
765 */
766 xe_pm_runtime_get(xe);
767 } else {
768 drm_WARN_ON(&xe->drm, handle_system_ccs);
769 xe_pm_runtime_get_noresume(xe);
770 }
771
772 if (xe_bo_is_pinned(bo) && !xe_bo_is_user(bo)) {
773 /*
774 * Kernel memory that is pinned should only be moved on suspend
775 * / resume, some of the pinned memory is required for the
776 * device to resume / use the GPU to move other evicted memory
777 * (user memory) around. This likely could be optimized a bit
778 * futher where we find the minimum set of pinned memory
779 * required for resume but for simplity doing a memcpy for all
780 * pinned memory.
781 */
782 ret = xe_bo_vmap(bo);
783 if (!ret) {
784 ret = ttm_bo_move_memcpy(ttm_bo, ctx, new_mem);
785
786 /* Create a new VMAP once kernel BO back in VRAM */
787 if (!ret && resource_is_vram(new_mem)) {
788 struct xe_mem_region *vram = res_to_mem_region(new_mem);
789 void __iomem *new_addr = vram->mapping +
790 (new_mem->start << PAGE_SHIFT);
791
792 if (XE_WARN_ON(new_mem->start == XE_BO_INVALID_OFFSET)) {
793 ret = -EINVAL;
794 xe_pm_runtime_put(xe);
795 goto out;
796 }
797
798 xe_assert(xe, new_mem->start ==
799 bo->placements->fpfn);
800
801 iosys_map_set_vaddr_iomem(&bo->vmap, new_addr);
802 }
803 }
804 } else {
805 if (move_lacks_source) {
806 u32 flags = 0;
807
808 if (mem_type_is_vram(new_mem->mem_type))
809 flags |= XE_MIGRATE_CLEAR_FLAG_FULL;
810 else if (handle_system_ccs)
811 flags |= XE_MIGRATE_CLEAR_FLAG_CCS_DATA;
812
813 fence = xe_migrate_clear(migrate, bo, new_mem, flags);
814 }
815 else
816 fence = xe_migrate_copy(migrate, bo, bo, old_mem,
817 new_mem, handle_system_ccs);
818 if (IS_ERR(fence)) {
819 ret = PTR_ERR(fence);
820 xe_pm_runtime_put(xe);
821 goto out;
822 }
823 if (!move_lacks_source) {
824 ret = ttm_bo_move_accel_cleanup(ttm_bo, fence, evict,
825 true, new_mem);
826 if (ret) {
827 dma_fence_wait(fence, false);
828 ttm_bo_move_null(ttm_bo, new_mem);
829 ret = 0;
830 }
831 } else {
832 /*
833 * ttm_bo_move_accel_cleanup() may blow up if
834 * bo->resource == NULL, so just attach the
835 * fence and set the new resource.
836 */
837 dma_resv_add_fence(ttm_bo->base.resv, fence,
838 DMA_RESV_USAGE_KERNEL);
839 ttm_bo_move_null(ttm_bo, new_mem);
840 }
841
842 dma_fence_put(fence);
843 }
844
845 xe_pm_runtime_put(xe);
846
847 out:
848 if ((!ttm_bo->resource || ttm_bo->resource->mem_type == XE_PL_SYSTEM) &&
849 ttm_bo->ttm)
850 xe_tt_unmap_sg(ttm_bo->ttm);
851
852 return ret;
853 }
854
855 /**
856 * xe_bo_evict_pinned() - Evict a pinned VRAM object to system memory
857 * @bo: The buffer object to move.
858 *
859 * On successful completion, the object memory will be moved to sytem memory.
860 *
861 * This is needed to for special handling of pinned VRAM object during
862 * suspend-resume.
863 *
864 * Return: 0 on success. Negative error code on failure.
865 */
xe_bo_evict_pinned(struct xe_bo * bo)866 int xe_bo_evict_pinned(struct xe_bo *bo)
867 {
868 struct ttm_place place = {
869 .mem_type = XE_PL_TT,
870 };
871 struct ttm_placement placement = {
872 .placement = &place,
873 .num_placement = 1,
874 };
875 struct ttm_operation_ctx ctx = {
876 .interruptible = false,
877 };
878 struct ttm_resource *new_mem;
879 int ret;
880
881 xe_bo_assert_held(bo);
882
883 if (WARN_ON(!bo->ttm.resource))
884 return -EINVAL;
885
886 if (WARN_ON(!xe_bo_is_pinned(bo)))
887 return -EINVAL;
888
889 if (WARN_ON(!xe_bo_is_vram(bo)))
890 return -EINVAL;
891
892 ret = ttm_bo_mem_space(&bo->ttm, &placement, &new_mem, &ctx);
893 if (ret)
894 return ret;
895
896 if (!bo->ttm.ttm) {
897 bo->ttm.ttm = xe_ttm_tt_create(&bo->ttm, 0);
898 if (!bo->ttm.ttm) {
899 ret = -ENOMEM;
900 goto err_res_free;
901 }
902 }
903
904 ret = ttm_tt_populate(bo->ttm.bdev, bo->ttm.ttm, &ctx);
905 if (ret)
906 goto err_res_free;
907
908 ret = dma_resv_reserve_fences(bo->ttm.base.resv, 1);
909 if (ret)
910 goto err_res_free;
911
912 ret = xe_bo_move(&bo->ttm, false, &ctx, new_mem, NULL);
913 if (ret)
914 goto err_res_free;
915
916 return 0;
917
918 err_res_free:
919 ttm_resource_free(&bo->ttm, &new_mem);
920 return ret;
921 }
922
923 /**
924 * xe_bo_restore_pinned() - Restore a pinned VRAM object
925 * @bo: The buffer object to move.
926 *
927 * On successful completion, the object memory will be moved back to VRAM.
928 *
929 * This is needed to for special handling of pinned VRAM object during
930 * suspend-resume.
931 *
932 * Return: 0 on success. Negative error code on failure.
933 */
xe_bo_restore_pinned(struct xe_bo * bo)934 int xe_bo_restore_pinned(struct xe_bo *bo)
935 {
936 struct ttm_operation_ctx ctx = {
937 .interruptible = false,
938 };
939 struct ttm_resource *new_mem;
940 int ret;
941
942 xe_bo_assert_held(bo);
943
944 if (WARN_ON(!bo->ttm.resource))
945 return -EINVAL;
946
947 if (WARN_ON(!xe_bo_is_pinned(bo)))
948 return -EINVAL;
949
950 if (WARN_ON(xe_bo_is_vram(bo) || !bo->ttm.ttm))
951 return -EINVAL;
952
953 ret = ttm_bo_mem_space(&bo->ttm, &bo->placement, &new_mem, &ctx);
954 if (ret)
955 return ret;
956
957 ret = ttm_tt_populate(bo->ttm.bdev, bo->ttm.ttm, &ctx);
958 if (ret)
959 goto err_res_free;
960
961 ret = dma_resv_reserve_fences(bo->ttm.base.resv, 1);
962 if (ret)
963 goto err_res_free;
964
965 ret = xe_bo_move(&bo->ttm, false, &ctx, new_mem, NULL);
966 if (ret)
967 goto err_res_free;
968
969 return 0;
970
971 err_res_free:
972 ttm_resource_free(&bo->ttm, &new_mem);
973 return ret;
974 }
975
xe_ttm_io_mem_pfn(struct ttm_buffer_object * ttm_bo,unsigned long page_offset)976 static unsigned long xe_ttm_io_mem_pfn(struct ttm_buffer_object *ttm_bo,
977 unsigned long page_offset)
978 {
979 struct xe_bo *bo = ttm_to_xe_bo(ttm_bo);
980 struct xe_res_cursor cursor;
981 struct xe_mem_region *vram;
982
983 if (ttm_bo->resource->mem_type == XE_PL_STOLEN)
984 return xe_ttm_stolen_io_offset(bo, page_offset << PAGE_SHIFT) >> PAGE_SHIFT;
985
986 vram = res_to_mem_region(ttm_bo->resource);
987 xe_res_first(ttm_bo->resource, (u64)page_offset << PAGE_SHIFT, 0, &cursor);
988 return (vram->io_start + cursor.start) >> PAGE_SHIFT;
989 }
990
991 static void __xe_bo_vunmap(struct xe_bo *bo);
992
993 /*
994 * TODO: Move this function to TTM so we don't rely on how TTM does its
995 * locking, thereby abusing TTM internals.
996 */
xe_ttm_bo_lock_in_destructor(struct ttm_buffer_object * ttm_bo)997 static bool xe_ttm_bo_lock_in_destructor(struct ttm_buffer_object *ttm_bo)
998 {
999 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev);
1000 bool locked;
1001
1002 xe_assert(xe, !kref_read(&ttm_bo->kref));
1003
1004 /*
1005 * We can typically only race with TTM trylocking under the
1006 * lru_lock, which will immediately be unlocked again since
1007 * the ttm_bo refcount is zero at this point. So trylocking *should*
1008 * always succeed here, as long as we hold the lru lock.
1009 */
1010 spin_lock(&ttm_bo->bdev->lru_lock);
1011 locked = dma_resv_trylock(ttm_bo->base.resv);
1012 spin_unlock(&ttm_bo->bdev->lru_lock);
1013 xe_assert(xe, locked);
1014
1015 return locked;
1016 }
1017
xe_ttm_bo_release_notify(struct ttm_buffer_object * ttm_bo)1018 static void xe_ttm_bo_release_notify(struct ttm_buffer_object *ttm_bo)
1019 {
1020 struct dma_resv_iter cursor;
1021 struct dma_fence *fence;
1022 struct dma_fence *replacement = NULL;
1023 struct xe_bo *bo;
1024
1025 if (!xe_bo_is_xe_bo(ttm_bo))
1026 return;
1027
1028 bo = ttm_to_xe_bo(ttm_bo);
1029 xe_assert(xe_bo_device(bo), !(bo->created && kref_read(&ttm_bo->base.refcount)));
1030
1031 /*
1032 * Corner case where TTM fails to allocate memory and this BOs resv
1033 * still points the VMs resv
1034 */
1035 if (ttm_bo->base.resv != &ttm_bo->base._resv)
1036 return;
1037
1038 if (!xe_ttm_bo_lock_in_destructor(ttm_bo))
1039 return;
1040
1041 /*
1042 * Scrub the preempt fences if any. The unbind fence is already
1043 * attached to the resv.
1044 * TODO: Don't do this for external bos once we scrub them after
1045 * unbind.
1046 */
1047 dma_resv_for_each_fence(&cursor, ttm_bo->base.resv,
1048 DMA_RESV_USAGE_BOOKKEEP, fence) {
1049 if (xe_fence_is_xe_preempt(fence) &&
1050 !dma_fence_is_signaled(fence)) {
1051 if (!replacement)
1052 replacement = dma_fence_get_stub();
1053
1054 dma_resv_replace_fences(ttm_bo->base.resv,
1055 fence->context,
1056 replacement,
1057 DMA_RESV_USAGE_BOOKKEEP);
1058 }
1059 }
1060 dma_fence_put(replacement);
1061
1062 dma_resv_unlock(ttm_bo->base.resv);
1063 }
1064
xe_ttm_bo_delete_mem_notify(struct ttm_buffer_object * ttm_bo)1065 static void xe_ttm_bo_delete_mem_notify(struct ttm_buffer_object *ttm_bo)
1066 {
1067 if (!xe_bo_is_xe_bo(ttm_bo))
1068 return;
1069
1070 /*
1071 * Object is idle and about to be destroyed. Release the
1072 * dma-buf attachment.
1073 */
1074 if (ttm_bo->type == ttm_bo_type_sg && ttm_bo->sg) {
1075 struct xe_ttm_tt *xe_tt = container_of(ttm_bo->ttm,
1076 struct xe_ttm_tt, ttm);
1077
1078 dma_buf_unmap_attachment(ttm_bo->base.import_attach, ttm_bo->sg,
1079 DMA_BIDIRECTIONAL);
1080 ttm_bo->sg = NULL;
1081 xe_tt->sg = NULL;
1082 }
1083 }
1084
1085 const struct ttm_device_funcs xe_ttm_funcs = {
1086 .ttm_tt_create = xe_ttm_tt_create,
1087 .ttm_tt_populate = xe_ttm_tt_populate,
1088 .ttm_tt_unpopulate = xe_ttm_tt_unpopulate,
1089 .ttm_tt_destroy = xe_ttm_tt_destroy,
1090 .evict_flags = xe_evict_flags,
1091 .move = xe_bo_move,
1092 .io_mem_reserve = xe_ttm_io_mem_reserve,
1093 .io_mem_pfn = xe_ttm_io_mem_pfn,
1094 .release_notify = xe_ttm_bo_release_notify,
1095 .eviction_valuable = ttm_bo_eviction_valuable,
1096 .delete_mem_notify = xe_ttm_bo_delete_mem_notify,
1097 };
1098
xe_ttm_bo_destroy(struct ttm_buffer_object * ttm_bo)1099 static void xe_ttm_bo_destroy(struct ttm_buffer_object *ttm_bo)
1100 {
1101 struct xe_bo *bo = ttm_to_xe_bo(ttm_bo);
1102 struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev);
1103
1104 if (bo->ttm.base.import_attach)
1105 drm_prime_gem_destroy(&bo->ttm.base, NULL);
1106 drm_gem_object_release(&bo->ttm.base);
1107
1108 xe_assert(xe, list_empty(&ttm_bo->base.gpuva.list));
1109
1110 if (bo->ggtt_node && bo->ggtt_node->base.size)
1111 xe_ggtt_remove_bo(bo->tile->mem.ggtt, bo);
1112
1113 #ifdef CONFIG_PROC_FS
1114 if (bo->client)
1115 xe_drm_client_remove_bo(bo);
1116 #endif
1117
1118 if (bo->vm && xe_bo_is_user(bo))
1119 xe_vm_put(bo->vm);
1120
1121 mutex_lock(&xe->mem_access.vram_userfault.lock);
1122 if (!list_empty(&bo->vram_userfault_link))
1123 list_del(&bo->vram_userfault_link);
1124 mutex_unlock(&xe->mem_access.vram_userfault.lock);
1125
1126 kfree(bo);
1127 }
1128
xe_gem_object_free(struct drm_gem_object * obj)1129 static void xe_gem_object_free(struct drm_gem_object *obj)
1130 {
1131 /* Our BO reference counting scheme works as follows:
1132 *
1133 * The gem object kref is typically used throughout the driver,
1134 * and the gem object holds a ttm_buffer_object refcount, so
1135 * that when the last gem object reference is put, which is when
1136 * we end up in this function, we put also that ttm_buffer_object
1137 * refcount. Anything using gem interfaces is then no longer
1138 * allowed to access the object in a way that requires a gem
1139 * refcount, including locking the object.
1140 *
1141 * driver ttm callbacks is allowed to use the ttm_buffer_object
1142 * refcount directly if needed.
1143 */
1144 __xe_bo_vunmap(gem_to_xe_bo(obj));
1145 ttm_bo_put(container_of(obj, struct ttm_buffer_object, base));
1146 }
1147
xe_gem_object_close(struct drm_gem_object * obj,struct drm_file * file_priv)1148 static void xe_gem_object_close(struct drm_gem_object *obj,
1149 struct drm_file *file_priv)
1150 {
1151 struct xe_bo *bo = gem_to_xe_bo(obj);
1152
1153 if (bo->vm && !xe_vm_in_fault_mode(bo->vm)) {
1154 xe_assert(xe_bo_device(bo), xe_bo_is_user(bo));
1155
1156 xe_bo_lock(bo, false);
1157 ttm_bo_set_bulk_move(&bo->ttm, NULL);
1158 xe_bo_unlock(bo);
1159 }
1160 }
1161
xe_gem_fault(struct vm_fault * vmf)1162 static vm_fault_t xe_gem_fault(struct vm_fault *vmf)
1163 {
1164 struct ttm_buffer_object *tbo = vmf->vma->vm_private_data;
1165 struct drm_device *ddev = tbo->base.dev;
1166 struct xe_device *xe = to_xe_device(ddev);
1167 struct xe_bo *bo = ttm_to_xe_bo(tbo);
1168 bool needs_rpm = bo->flags & XE_BO_FLAG_VRAM_MASK;
1169 vm_fault_t ret;
1170 int idx;
1171
1172 if (needs_rpm)
1173 xe_pm_runtime_get(xe);
1174
1175 ret = ttm_bo_vm_reserve(tbo, vmf);
1176 if (ret)
1177 goto out;
1178
1179 if (drm_dev_enter(ddev, &idx)) {
1180 trace_xe_bo_cpu_fault(bo);
1181
1182 ret = ttm_bo_vm_fault_reserved(vmf, vmf->vma->vm_page_prot,
1183 TTM_BO_VM_NUM_PREFAULT);
1184 drm_dev_exit(idx);
1185 } else {
1186 ret = ttm_bo_vm_dummy_page(vmf, vmf->vma->vm_page_prot);
1187 }
1188
1189 if (ret == VM_FAULT_RETRY && !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT))
1190 goto out;
1191 /*
1192 * ttm_bo_vm_reserve() already has dma_resv_lock.
1193 */
1194 if (ret == VM_FAULT_NOPAGE && mem_type_is_vram(tbo->resource->mem_type)) {
1195 mutex_lock(&xe->mem_access.vram_userfault.lock);
1196 if (list_empty(&bo->vram_userfault_link))
1197 list_add(&bo->vram_userfault_link, &xe->mem_access.vram_userfault.list);
1198 mutex_unlock(&xe->mem_access.vram_userfault.lock);
1199 }
1200
1201 dma_resv_unlock(tbo->base.resv);
1202 out:
1203 if (needs_rpm)
1204 xe_pm_runtime_put(xe);
1205
1206 return ret;
1207 }
1208
1209 static const struct vm_operations_struct xe_gem_vm_ops = {
1210 .fault = xe_gem_fault,
1211 .open = ttm_bo_vm_open,
1212 .close = ttm_bo_vm_close,
1213 .access = ttm_bo_vm_access
1214 };
1215
1216 static const struct drm_gem_object_funcs xe_gem_object_funcs = {
1217 .free = xe_gem_object_free,
1218 .close = xe_gem_object_close,
1219 .mmap = drm_gem_ttm_mmap,
1220 .export = xe_gem_prime_export,
1221 .vm_ops = &xe_gem_vm_ops,
1222 };
1223
1224 /**
1225 * xe_bo_alloc - Allocate storage for a struct xe_bo
1226 *
1227 * This funcition is intended to allocate storage to be used for input
1228 * to __xe_bo_create_locked(), in the case a pointer to the bo to be
1229 * created is needed before the call to __xe_bo_create_locked().
1230 * If __xe_bo_create_locked ends up never to be called, then the
1231 * storage allocated with this function needs to be freed using
1232 * xe_bo_free().
1233 *
1234 * Return: A pointer to an uninitialized struct xe_bo on success,
1235 * ERR_PTR(-ENOMEM) on error.
1236 */
xe_bo_alloc(void)1237 struct xe_bo *xe_bo_alloc(void)
1238 {
1239 struct xe_bo *bo = kzalloc(sizeof(*bo), GFP_KERNEL);
1240
1241 if (!bo)
1242 return ERR_PTR(-ENOMEM);
1243
1244 return bo;
1245 }
1246
1247 /**
1248 * xe_bo_free - Free storage allocated using xe_bo_alloc()
1249 * @bo: The buffer object storage.
1250 *
1251 * Refer to xe_bo_alloc() documentation for valid use-cases.
1252 */
xe_bo_free(struct xe_bo * bo)1253 void xe_bo_free(struct xe_bo *bo)
1254 {
1255 kfree(bo);
1256 }
1257
___xe_bo_create_locked(struct xe_device * xe,struct xe_bo * bo,struct xe_tile * tile,struct dma_resv * resv,struct ttm_lru_bulk_move * bulk,size_t size,u16 cpu_caching,enum ttm_bo_type type,u32 flags)1258 struct xe_bo *___xe_bo_create_locked(struct xe_device *xe, struct xe_bo *bo,
1259 struct xe_tile *tile, struct dma_resv *resv,
1260 struct ttm_lru_bulk_move *bulk, size_t size,
1261 u16 cpu_caching, enum ttm_bo_type type,
1262 u32 flags)
1263 {
1264 struct ttm_operation_ctx ctx = {
1265 .interruptible = true,
1266 .no_wait_gpu = false,
1267 };
1268 struct ttm_placement *placement;
1269 uint32_t alignment;
1270 size_t aligned_size;
1271 int err;
1272
1273 /* Only kernel objects should set GT */
1274 xe_assert(xe, !tile || type == ttm_bo_type_kernel);
1275
1276 if (XE_WARN_ON(!size)) {
1277 xe_bo_free(bo);
1278 return ERR_PTR(-EINVAL);
1279 }
1280
1281 if (flags & (XE_BO_FLAG_VRAM_MASK | XE_BO_FLAG_STOLEN) &&
1282 !(flags & XE_BO_FLAG_IGNORE_MIN_PAGE_SIZE) &&
1283 ((xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K) ||
1284 (flags & (XE_BO_FLAG_NEEDS_64K | XE_BO_FLAG_NEEDS_2M)))) {
1285 size_t align = flags & XE_BO_FLAG_NEEDS_2M ? SZ_2M : SZ_64K;
1286
1287 aligned_size = ALIGN(size, align);
1288 if (type != ttm_bo_type_device)
1289 size = ALIGN(size, align);
1290 flags |= XE_BO_FLAG_INTERNAL_64K;
1291 alignment = align >> PAGE_SHIFT;
1292 } else {
1293 aligned_size = ALIGN(size, SZ_4K);
1294 flags &= ~XE_BO_FLAG_INTERNAL_64K;
1295 alignment = SZ_4K >> PAGE_SHIFT;
1296 }
1297
1298 if (type == ttm_bo_type_device && aligned_size != size)
1299 return ERR_PTR(-EINVAL);
1300
1301 if (!bo) {
1302 bo = xe_bo_alloc();
1303 if (IS_ERR(bo))
1304 return bo;
1305 }
1306
1307 bo->ccs_cleared = false;
1308 bo->tile = tile;
1309 bo->size = size;
1310 bo->flags = flags;
1311 bo->cpu_caching = cpu_caching;
1312 bo->ttm.base.funcs = &xe_gem_object_funcs;
1313 bo->ttm.priority = XE_BO_PRIORITY_NORMAL;
1314 INIT_LIST_HEAD(&bo->pinned_link);
1315 #ifdef CONFIG_PROC_FS
1316 INIT_LIST_HEAD(&bo->client_link);
1317 #endif
1318 INIT_LIST_HEAD(&bo->vram_userfault_link);
1319
1320 drm_gem_private_object_init(&xe->drm, &bo->ttm.base, size);
1321
1322 if (resv) {
1323 ctx.allow_res_evict = !(flags & XE_BO_FLAG_NO_RESV_EVICT);
1324 ctx.resv = resv;
1325 }
1326
1327 if (!(flags & XE_BO_FLAG_FIXED_PLACEMENT)) {
1328 err = __xe_bo_placement_for_flags(xe, bo, bo->flags);
1329 if (WARN_ON(err)) {
1330 xe_ttm_bo_destroy(&bo->ttm);
1331 return ERR_PTR(err);
1332 }
1333 }
1334
1335 /* Defer populating type_sg bos */
1336 placement = (type == ttm_bo_type_sg ||
1337 bo->flags & XE_BO_FLAG_DEFER_BACKING) ? &sys_placement :
1338 &bo->placement;
1339 err = ttm_bo_init_reserved(&xe->ttm, &bo->ttm, type,
1340 placement, alignment,
1341 &ctx, NULL, resv, xe_ttm_bo_destroy);
1342 if (err)
1343 return ERR_PTR(err);
1344
1345 /*
1346 * The VRAM pages underneath are potentially still being accessed by the
1347 * GPU, as per async GPU clearing and async evictions. However TTM makes
1348 * sure to add any corresponding move/clear fences into the objects
1349 * dma-resv using the DMA_RESV_USAGE_KERNEL slot.
1350 *
1351 * For KMD internal buffers we don't care about GPU clearing, however we
1352 * still need to handle async evictions, where the VRAM is still being
1353 * accessed by the GPU. Most internal callers are not expecting this,
1354 * since they are missing the required synchronisation before accessing
1355 * the memory. To keep things simple just sync wait any kernel fences
1356 * here, if the buffer is designated KMD internal.
1357 *
1358 * For normal userspace objects we should already have the required
1359 * pipelining or sync waiting elsewhere, since we already have to deal
1360 * with things like async GPU clearing.
1361 */
1362 if (type == ttm_bo_type_kernel) {
1363 long timeout = dma_resv_wait_timeout(bo->ttm.base.resv,
1364 DMA_RESV_USAGE_KERNEL,
1365 ctx.interruptible,
1366 MAX_SCHEDULE_TIMEOUT);
1367
1368 if (timeout < 0) {
1369 if (!resv)
1370 dma_resv_unlock(bo->ttm.base.resv);
1371 xe_bo_put(bo);
1372 return ERR_PTR(timeout);
1373 }
1374 }
1375
1376 bo->created = true;
1377 if (bulk)
1378 ttm_bo_set_bulk_move(&bo->ttm, bulk);
1379 else
1380 ttm_bo_move_to_lru_tail_unlocked(&bo->ttm);
1381
1382 return bo;
1383 }
1384
__xe_bo_fixed_placement(struct xe_device * xe,struct xe_bo * bo,u32 flags,u64 start,u64 end,u64 size)1385 static int __xe_bo_fixed_placement(struct xe_device *xe,
1386 struct xe_bo *bo,
1387 u32 flags,
1388 u64 start, u64 end, u64 size)
1389 {
1390 struct ttm_place *place = bo->placements;
1391
1392 if (flags & (XE_BO_FLAG_USER | XE_BO_FLAG_SYSTEM))
1393 return -EINVAL;
1394
1395 place->flags = TTM_PL_FLAG_CONTIGUOUS;
1396 place->fpfn = start >> PAGE_SHIFT;
1397 place->lpfn = end >> PAGE_SHIFT;
1398
1399 switch (flags & (XE_BO_FLAG_STOLEN | XE_BO_FLAG_VRAM_MASK)) {
1400 case XE_BO_FLAG_VRAM0:
1401 place->mem_type = XE_PL_VRAM0;
1402 break;
1403 case XE_BO_FLAG_VRAM1:
1404 place->mem_type = XE_PL_VRAM1;
1405 break;
1406 case XE_BO_FLAG_STOLEN:
1407 place->mem_type = XE_PL_STOLEN;
1408 break;
1409
1410 default:
1411 /* 0 or multiple of the above set */
1412 return -EINVAL;
1413 }
1414
1415 bo->placement = (struct ttm_placement) {
1416 .num_placement = 1,
1417 .placement = place,
1418 };
1419
1420 return 0;
1421 }
1422
1423 static struct xe_bo *
__xe_bo_create_locked(struct xe_device * xe,struct xe_tile * tile,struct xe_vm * vm,size_t size,u64 start,u64 end,u16 cpu_caching,enum ttm_bo_type type,u32 flags)1424 __xe_bo_create_locked(struct xe_device *xe,
1425 struct xe_tile *tile, struct xe_vm *vm,
1426 size_t size, u64 start, u64 end,
1427 u16 cpu_caching, enum ttm_bo_type type, u32 flags)
1428 {
1429 struct xe_bo *bo = NULL;
1430 int err;
1431
1432 if (vm)
1433 xe_vm_assert_held(vm);
1434
1435 if (start || end != ~0ULL) {
1436 bo = xe_bo_alloc();
1437 if (IS_ERR(bo))
1438 return bo;
1439
1440 flags |= XE_BO_FLAG_FIXED_PLACEMENT;
1441 err = __xe_bo_fixed_placement(xe, bo, flags, start, end, size);
1442 if (err) {
1443 xe_bo_free(bo);
1444 return ERR_PTR(err);
1445 }
1446 }
1447
1448 bo = ___xe_bo_create_locked(xe, bo, tile, vm ? xe_vm_resv(vm) : NULL,
1449 vm && !xe_vm_in_fault_mode(vm) &&
1450 flags & XE_BO_FLAG_USER ?
1451 &vm->lru_bulk_move : NULL, size,
1452 cpu_caching, type, flags);
1453 if (IS_ERR(bo))
1454 return bo;
1455
1456 /*
1457 * Note that instead of taking a reference no the drm_gpuvm_resv_bo(),
1458 * to ensure the shared resv doesn't disappear under the bo, the bo
1459 * will keep a reference to the vm, and avoid circular references
1460 * by having all the vm's bo refereferences released at vm close
1461 * time.
1462 */
1463 if (vm && xe_bo_is_user(bo))
1464 xe_vm_get(vm);
1465 bo->vm = vm;
1466
1467 if (bo->flags & XE_BO_FLAG_GGTT) {
1468 if (!tile && flags & XE_BO_FLAG_STOLEN)
1469 tile = xe_device_get_root_tile(xe);
1470
1471 xe_assert(xe, tile);
1472
1473 if (flags & XE_BO_FLAG_FIXED_PLACEMENT) {
1474 err = xe_ggtt_insert_bo_at(tile->mem.ggtt, bo,
1475 start + bo->size, U64_MAX);
1476 } else {
1477 err = xe_ggtt_insert_bo(tile->mem.ggtt, bo);
1478 }
1479 if (err)
1480 goto err_unlock_put_bo;
1481 }
1482
1483 return bo;
1484
1485 err_unlock_put_bo:
1486 __xe_bo_unset_bulk_move(bo);
1487 xe_bo_unlock_vm_held(bo);
1488 xe_bo_put(bo);
1489 return ERR_PTR(err);
1490 }
1491
1492 struct xe_bo *
xe_bo_create_locked_range(struct xe_device * xe,struct xe_tile * tile,struct xe_vm * vm,size_t size,u64 start,u64 end,enum ttm_bo_type type,u32 flags)1493 xe_bo_create_locked_range(struct xe_device *xe,
1494 struct xe_tile *tile, struct xe_vm *vm,
1495 size_t size, u64 start, u64 end,
1496 enum ttm_bo_type type, u32 flags)
1497 {
1498 return __xe_bo_create_locked(xe, tile, vm, size, start, end, 0, type, flags);
1499 }
1500
xe_bo_create_locked(struct xe_device * xe,struct xe_tile * tile,struct xe_vm * vm,size_t size,enum ttm_bo_type type,u32 flags)1501 struct xe_bo *xe_bo_create_locked(struct xe_device *xe, struct xe_tile *tile,
1502 struct xe_vm *vm, size_t size,
1503 enum ttm_bo_type type, u32 flags)
1504 {
1505 return __xe_bo_create_locked(xe, tile, vm, size, 0, ~0ULL, 0, type, flags);
1506 }
1507
xe_bo_create_user(struct xe_device * xe,struct xe_tile * tile,struct xe_vm * vm,size_t size,u16 cpu_caching,u32 flags)1508 struct xe_bo *xe_bo_create_user(struct xe_device *xe, struct xe_tile *tile,
1509 struct xe_vm *vm, size_t size,
1510 u16 cpu_caching,
1511 u32 flags)
1512 {
1513 struct xe_bo *bo = __xe_bo_create_locked(xe, tile, vm, size, 0, ~0ULL,
1514 cpu_caching, ttm_bo_type_device,
1515 flags | XE_BO_FLAG_USER);
1516 if (!IS_ERR(bo))
1517 xe_bo_unlock_vm_held(bo);
1518
1519 return bo;
1520 }
1521
xe_bo_create(struct xe_device * xe,struct xe_tile * tile,struct xe_vm * vm,size_t size,enum ttm_bo_type type,u32 flags)1522 struct xe_bo *xe_bo_create(struct xe_device *xe, struct xe_tile *tile,
1523 struct xe_vm *vm, size_t size,
1524 enum ttm_bo_type type, u32 flags)
1525 {
1526 struct xe_bo *bo = xe_bo_create_locked(xe, tile, vm, size, type, flags);
1527
1528 if (!IS_ERR(bo))
1529 xe_bo_unlock_vm_held(bo);
1530
1531 return bo;
1532 }
1533
xe_bo_create_pin_map_at(struct xe_device * xe,struct xe_tile * tile,struct xe_vm * vm,size_t size,u64 offset,enum ttm_bo_type type,u32 flags)1534 struct xe_bo *xe_bo_create_pin_map_at(struct xe_device *xe, struct xe_tile *tile,
1535 struct xe_vm *vm,
1536 size_t size, u64 offset,
1537 enum ttm_bo_type type, u32 flags)
1538 {
1539 struct xe_bo *bo;
1540 int err;
1541 u64 start = offset == ~0ull ? 0 : offset;
1542 u64 end = offset == ~0ull ? offset : start + size;
1543
1544 if (flags & XE_BO_FLAG_STOLEN &&
1545 xe_ttm_stolen_cpu_access_needs_ggtt(xe))
1546 flags |= XE_BO_FLAG_GGTT;
1547
1548 bo = xe_bo_create_locked_range(xe, tile, vm, size, start, end, type,
1549 flags | XE_BO_FLAG_NEEDS_CPU_ACCESS);
1550 if (IS_ERR(bo))
1551 return bo;
1552
1553 err = xe_bo_pin(bo);
1554 if (err)
1555 goto err_put;
1556
1557 err = xe_bo_vmap(bo);
1558 if (err)
1559 goto err_unpin;
1560
1561 xe_bo_unlock_vm_held(bo);
1562
1563 return bo;
1564
1565 err_unpin:
1566 xe_bo_unpin(bo);
1567 err_put:
1568 xe_bo_unlock_vm_held(bo);
1569 xe_bo_put(bo);
1570 return ERR_PTR(err);
1571 }
1572
xe_bo_create_pin_map(struct xe_device * xe,struct xe_tile * tile,struct xe_vm * vm,size_t size,enum ttm_bo_type type,u32 flags)1573 struct xe_bo *xe_bo_create_pin_map(struct xe_device *xe, struct xe_tile *tile,
1574 struct xe_vm *vm, size_t size,
1575 enum ttm_bo_type type, u32 flags)
1576 {
1577 return xe_bo_create_pin_map_at(xe, tile, vm, size, ~0ull, type, flags);
1578 }
1579
xe_bo_create_from_data(struct xe_device * xe,struct xe_tile * tile,const void * data,size_t size,enum ttm_bo_type type,u32 flags)1580 struct xe_bo *xe_bo_create_from_data(struct xe_device *xe, struct xe_tile *tile,
1581 const void *data, size_t size,
1582 enum ttm_bo_type type, u32 flags)
1583 {
1584 struct xe_bo *bo = xe_bo_create_pin_map(xe, tile, NULL,
1585 ALIGN(size, PAGE_SIZE),
1586 type, flags);
1587 if (IS_ERR(bo))
1588 return bo;
1589
1590 xe_map_memcpy_to(xe, &bo->vmap, 0, data, size);
1591
1592 return bo;
1593 }
1594
__xe_bo_unpin_map_no_vm(void * arg)1595 static void __xe_bo_unpin_map_no_vm(void *arg)
1596 {
1597 xe_bo_unpin_map_no_vm(arg);
1598 }
1599
xe_managed_bo_create_pin_map(struct xe_device * xe,struct xe_tile * tile,size_t size,u32 flags)1600 struct xe_bo *xe_managed_bo_create_pin_map(struct xe_device *xe, struct xe_tile *tile,
1601 size_t size, u32 flags)
1602 {
1603 struct xe_bo *bo;
1604 int ret;
1605
1606 bo = xe_bo_create_pin_map(xe, tile, NULL, size, ttm_bo_type_kernel, flags);
1607 if (IS_ERR(bo))
1608 return bo;
1609
1610 ret = devm_add_action_or_reset(xe->drm.dev, __xe_bo_unpin_map_no_vm, bo);
1611 if (ret)
1612 return ERR_PTR(ret);
1613
1614 return bo;
1615 }
1616
xe_managed_bo_create_from_data(struct xe_device * xe,struct xe_tile * tile,const void * data,size_t size,u32 flags)1617 struct xe_bo *xe_managed_bo_create_from_data(struct xe_device *xe, struct xe_tile *tile,
1618 const void *data, size_t size, u32 flags)
1619 {
1620 struct xe_bo *bo = xe_managed_bo_create_pin_map(xe, tile, ALIGN(size, PAGE_SIZE), flags);
1621
1622 if (IS_ERR(bo))
1623 return bo;
1624
1625 xe_map_memcpy_to(xe, &bo->vmap, 0, data, size);
1626
1627 return bo;
1628 }
1629
1630 /**
1631 * xe_managed_bo_reinit_in_vram
1632 * @xe: xe device
1633 * @tile: Tile where the new buffer will be created
1634 * @src: Managed buffer object allocated in system memory
1635 *
1636 * Replace a managed src buffer object allocated in system memory with a new
1637 * one allocated in vram, copying the data between them.
1638 * Buffer object in VRAM is not going to have the same GGTT address, the caller
1639 * is responsible for making sure that any old references to it are updated.
1640 *
1641 * Returns 0 for success, negative error code otherwise.
1642 */
xe_managed_bo_reinit_in_vram(struct xe_device * xe,struct xe_tile * tile,struct xe_bo ** src)1643 int xe_managed_bo_reinit_in_vram(struct xe_device *xe, struct xe_tile *tile, struct xe_bo **src)
1644 {
1645 struct xe_bo *bo;
1646 u32 dst_flags = XE_BO_FLAG_VRAM_IF_DGFX(tile) | XE_BO_FLAG_GGTT;
1647
1648 dst_flags |= (*src)->flags & XE_BO_FLAG_GGTT_INVALIDATE;
1649
1650 xe_assert(xe, IS_DGFX(xe));
1651 xe_assert(xe, !(*src)->vmap.is_iomem);
1652
1653 bo = xe_managed_bo_create_from_data(xe, tile, (*src)->vmap.vaddr,
1654 (*src)->size, dst_flags);
1655 if (IS_ERR(bo))
1656 return PTR_ERR(bo);
1657
1658 devm_release_action(xe->drm.dev, __xe_bo_unpin_map_no_vm, *src);
1659 *src = bo;
1660
1661 return 0;
1662 }
1663
1664 /*
1665 * XXX: This is in the VM bind data path, likely should calculate this once and
1666 * store, with a recalculation if the BO is moved.
1667 */
vram_region_gpu_offset(struct ttm_resource * res)1668 uint64_t vram_region_gpu_offset(struct ttm_resource *res)
1669 {
1670 struct xe_device *xe = ttm_to_xe_device(res->bo->bdev);
1671
1672 if (res->mem_type == XE_PL_STOLEN)
1673 return xe_ttm_stolen_gpu_offset(xe);
1674
1675 return res_to_mem_region(res)->dpa_base;
1676 }
1677
1678 /**
1679 * xe_bo_pin_external - pin an external BO
1680 * @bo: buffer object to be pinned
1681 *
1682 * Pin an external (not tied to a VM, can be exported via dma-buf / prime FD)
1683 * BO. Unique call compared to xe_bo_pin as this function has it own set of
1684 * asserts and code to ensure evict / restore on suspend / resume.
1685 *
1686 * Returns 0 for success, negative error code otherwise.
1687 */
xe_bo_pin_external(struct xe_bo * bo)1688 int xe_bo_pin_external(struct xe_bo *bo)
1689 {
1690 struct xe_device *xe = xe_bo_device(bo);
1691 int err;
1692
1693 xe_assert(xe, !bo->vm);
1694 xe_assert(xe, xe_bo_is_user(bo));
1695
1696 if (!xe_bo_is_pinned(bo)) {
1697 err = xe_bo_validate(bo, NULL, false);
1698 if (err)
1699 return err;
1700
1701 if (xe_bo_is_vram(bo)) {
1702 spin_lock(&xe->pinned.lock);
1703 list_add_tail(&bo->pinned_link,
1704 &xe->pinned.external_vram);
1705 spin_unlock(&xe->pinned.lock);
1706 }
1707 }
1708
1709 ttm_bo_pin(&bo->ttm);
1710
1711 /*
1712 * FIXME: If we always use the reserve / unreserve functions for locking
1713 * we do not need this.
1714 */
1715 ttm_bo_move_to_lru_tail_unlocked(&bo->ttm);
1716
1717 return 0;
1718 }
1719
xe_bo_pin(struct xe_bo * bo)1720 int xe_bo_pin(struct xe_bo *bo)
1721 {
1722 struct xe_device *xe = xe_bo_device(bo);
1723 int err;
1724
1725 /* We currently don't expect user BO to be pinned */
1726 xe_assert(xe, !xe_bo_is_user(bo));
1727
1728 /* Pinned object must be in GGTT or have pinned flag */
1729 xe_assert(xe, bo->flags & (XE_BO_FLAG_PINNED |
1730 XE_BO_FLAG_GGTT));
1731
1732 /*
1733 * No reason we can't support pinning imported dma-bufs we just don't
1734 * expect to pin an imported dma-buf.
1735 */
1736 xe_assert(xe, !bo->ttm.base.import_attach);
1737
1738 /* We only expect at most 1 pin */
1739 xe_assert(xe, !xe_bo_is_pinned(bo));
1740
1741 err = xe_bo_validate(bo, NULL, false);
1742 if (err)
1743 return err;
1744
1745 /*
1746 * For pinned objects in on DGFX, which are also in vram, we expect
1747 * these to be in contiguous VRAM memory. Required eviction / restore
1748 * during suspend / resume (force restore to same physical address).
1749 */
1750 if (IS_DGFX(xe) && !(IS_ENABLED(CONFIG_DRM_XE_DEBUG) &&
1751 bo->flags & XE_BO_FLAG_INTERNAL_TEST)) {
1752 struct ttm_place *place = &(bo->placements[0]);
1753
1754 if (mem_type_is_vram(place->mem_type)) {
1755 xe_assert(xe, place->flags & TTM_PL_FLAG_CONTIGUOUS);
1756
1757 place->fpfn = (xe_bo_addr(bo, 0, PAGE_SIZE) -
1758 vram_region_gpu_offset(bo->ttm.resource)) >> PAGE_SHIFT;
1759 place->lpfn = place->fpfn + (bo->size >> PAGE_SHIFT);
1760
1761 spin_lock(&xe->pinned.lock);
1762 list_add_tail(&bo->pinned_link, &xe->pinned.kernel_bo_present);
1763 spin_unlock(&xe->pinned.lock);
1764 }
1765 }
1766
1767 ttm_bo_pin(&bo->ttm);
1768
1769 /*
1770 * FIXME: If we always use the reserve / unreserve functions for locking
1771 * we do not need this.
1772 */
1773 ttm_bo_move_to_lru_tail_unlocked(&bo->ttm);
1774
1775 return 0;
1776 }
1777
1778 /**
1779 * xe_bo_unpin_external - unpin an external BO
1780 * @bo: buffer object to be unpinned
1781 *
1782 * Unpin an external (not tied to a VM, can be exported via dma-buf / prime FD)
1783 * BO. Unique call compared to xe_bo_unpin as this function has it own set of
1784 * asserts and code to ensure evict / restore on suspend / resume.
1785 *
1786 * Returns 0 for success, negative error code otherwise.
1787 */
xe_bo_unpin_external(struct xe_bo * bo)1788 void xe_bo_unpin_external(struct xe_bo *bo)
1789 {
1790 struct xe_device *xe = xe_bo_device(bo);
1791
1792 xe_assert(xe, !bo->vm);
1793 xe_assert(xe, xe_bo_is_pinned(bo));
1794 xe_assert(xe, xe_bo_is_user(bo));
1795
1796 spin_lock(&xe->pinned.lock);
1797 if (bo->ttm.pin_count == 1 && !list_empty(&bo->pinned_link))
1798 list_del_init(&bo->pinned_link);
1799 spin_unlock(&xe->pinned.lock);
1800
1801 ttm_bo_unpin(&bo->ttm);
1802
1803 /*
1804 * FIXME: If we always use the reserve / unreserve functions for locking
1805 * we do not need this.
1806 */
1807 ttm_bo_move_to_lru_tail_unlocked(&bo->ttm);
1808 }
1809
xe_bo_unpin(struct xe_bo * bo)1810 void xe_bo_unpin(struct xe_bo *bo)
1811 {
1812 struct xe_device *xe = xe_bo_device(bo);
1813
1814 xe_assert(xe, !bo->ttm.base.import_attach);
1815 xe_assert(xe, xe_bo_is_pinned(bo));
1816
1817 if (IS_DGFX(xe) && !(IS_ENABLED(CONFIG_DRM_XE_DEBUG) &&
1818 bo->flags & XE_BO_FLAG_INTERNAL_TEST)) {
1819 struct ttm_place *place = &(bo->placements[0]);
1820
1821 if (mem_type_is_vram(place->mem_type)) {
1822 spin_lock(&xe->pinned.lock);
1823 xe_assert(xe, !list_empty(&bo->pinned_link));
1824 list_del_init(&bo->pinned_link);
1825 spin_unlock(&xe->pinned.lock);
1826 }
1827 }
1828
1829 ttm_bo_unpin(&bo->ttm);
1830 }
1831
1832 /**
1833 * xe_bo_validate() - Make sure the bo is in an allowed placement
1834 * @bo: The bo,
1835 * @vm: Pointer to a the vm the bo shares a locked dma_resv object with, or
1836 * NULL. Used together with @allow_res_evict.
1837 * @allow_res_evict: Whether it's allowed to evict bos sharing @vm's
1838 * reservation object.
1839 *
1840 * Make sure the bo is in allowed placement, migrating it if necessary. If
1841 * needed, other bos will be evicted. If bos selected for eviction shares
1842 * the @vm's reservation object, they can be evicted iff @allow_res_evict is
1843 * set to true, otherwise they will be bypassed.
1844 *
1845 * Return: 0 on success, negative error code on failure. May return
1846 * -EINTR or -ERESTARTSYS if internal waits are interrupted by a signal.
1847 */
xe_bo_validate(struct xe_bo * bo,struct xe_vm * vm,bool allow_res_evict)1848 int xe_bo_validate(struct xe_bo *bo, struct xe_vm *vm, bool allow_res_evict)
1849 {
1850 struct ttm_operation_ctx ctx = {
1851 .interruptible = true,
1852 .no_wait_gpu = false,
1853 };
1854
1855 if (vm) {
1856 lockdep_assert_held(&vm->lock);
1857 xe_vm_assert_held(vm);
1858
1859 ctx.allow_res_evict = allow_res_evict;
1860 ctx.resv = xe_vm_resv(vm);
1861 }
1862
1863 return ttm_bo_validate(&bo->ttm, &bo->placement, &ctx);
1864 }
1865
xe_bo_is_xe_bo(struct ttm_buffer_object * bo)1866 bool xe_bo_is_xe_bo(struct ttm_buffer_object *bo)
1867 {
1868 if (bo->destroy == &xe_ttm_bo_destroy)
1869 return true;
1870
1871 return false;
1872 }
1873
1874 /*
1875 * Resolve a BO address. There is no assert to check if the proper lock is held
1876 * so it should only be used in cases where it is not fatal to get the wrong
1877 * address, such as printing debug information, but not in cases where memory is
1878 * written based on this result.
1879 */
__xe_bo_addr(struct xe_bo * bo,u64 offset,size_t page_size)1880 dma_addr_t __xe_bo_addr(struct xe_bo *bo, u64 offset, size_t page_size)
1881 {
1882 struct xe_device *xe = xe_bo_device(bo);
1883 struct xe_res_cursor cur;
1884 u64 page;
1885
1886 xe_assert(xe, page_size <= PAGE_SIZE);
1887 page = offset >> PAGE_SHIFT;
1888 offset &= (PAGE_SIZE - 1);
1889
1890 if (!xe_bo_is_vram(bo) && !xe_bo_is_stolen(bo)) {
1891 xe_assert(xe, bo->ttm.ttm);
1892
1893 xe_res_first_sg(xe_bo_sg(bo), page << PAGE_SHIFT,
1894 page_size, &cur);
1895 return xe_res_dma(&cur) + offset;
1896 } else {
1897 struct xe_res_cursor cur;
1898
1899 xe_res_first(bo->ttm.resource, page << PAGE_SHIFT,
1900 page_size, &cur);
1901 return cur.start + offset + vram_region_gpu_offset(bo->ttm.resource);
1902 }
1903 }
1904
xe_bo_addr(struct xe_bo * bo,u64 offset,size_t page_size)1905 dma_addr_t xe_bo_addr(struct xe_bo *bo, u64 offset, size_t page_size)
1906 {
1907 if (!READ_ONCE(bo->ttm.pin_count))
1908 xe_bo_assert_held(bo);
1909 return __xe_bo_addr(bo, offset, page_size);
1910 }
1911
xe_bo_vmap(struct xe_bo * bo)1912 int xe_bo_vmap(struct xe_bo *bo)
1913 {
1914 void *virtual;
1915 bool is_iomem;
1916 int ret;
1917
1918 xe_bo_assert_held(bo);
1919
1920 if (!(bo->flags & XE_BO_FLAG_NEEDS_CPU_ACCESS))
1921 return -EINVAL;
1922
1923 if (!iosys_map_is_null(&bo->vmap))
1924 return 0;
1925
1926 /*
1927 * We use this more or less deprecated interface for now since
1928 * ttm_bo_vmap() doesn't offer the optimization of kmapping
1929 * single page bos, which is done here.
1930 * TODO: Fix up ttm_bo_vmap to do that, or fix up ttm_bo_kmap
1931 * to use struct iosys_map.
1932 */
1933 ret = ttm_bo_kmap(&bo->ttm, 0, bo->size >> PAGE_SHIFT, &bo->kmap);
1934 if (ret)
1935 return ret;
1936
1937 virtual = ttm_kmap_obj_virtual(&bo->kmap, &is_iomem);
1938 if (is_iomem)
1939 iosys_map_set_vaddr_iomem(&bo->vmap, (void __iomem *)virtual);
1940 else
1941 iosys_map_set_vaddr(&bo->vmap, virtual);
1942
1943 return 0;
1944 }
1945
__xe_bo_vunmap(struct xe_bo * bo)1946 static void __xe_bo_vunmap(struct xe_bo *bo)
1947 {
1948 if (!iosys_map_is_null(&bo->vmap)) {
1949 iosys_map_clear(&bo->vmap);
1950 ttm_bo_kunmap(&bo->kmap);
1951 }
1952 }
1953
xe_bo_vunmap(struct xe_bo * bo)1954 void xe_bo_vunmap(struct xe_bo *bo)
1955 {
1956 xe_bo_assert_held(bo);
1957 __xe_bo_vunmap(bo);
1958 }
1959
xe_gem_create_ioctl(struct drm_device * dev,void * data,struct drm_file * file)1960 int xe_gem_create_ioctl(struct drm_device *dev, void *data,
1961 struct drm_file *file)
1962 {
1963 struct xe_device *xe = to_xe_device(dev);
1964 struct xe_file *xef = to_xe_file(file);
1965 struct drm_xe_gem_create *args = data;
1966 struct xe_vm *vm = NULL;
1967 struct xe_bo *bo;
1968 unsigned int bo_flags;
1969 u32 handle;
1970 int err;
1971
1972 if (XE_IOCTL_DBG(xe, args->extensions) ||
1973 XE_IOCTL_DBG(xe, args->pad[0] || args->pad[1] || args->pad[2]) ||
1974 XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1]))
1975 return -EINVAL;
1976
1977 /* at least one valid memory placement must be specified */
1978 if (XE_IOCTL_DBG(xe, (args->placement & ~xe->info.mem_region_mask) ||
1979 !args->placement))
1980 return -EINVAL;
1981
1982 if (XE_IOCTL_DBG(xe, args->flags &
1983 ~(DRM_XE_GEM_CREATE_FLAG_DEFER_BACKING |
1984 DRM_XE_GEM_CREATE_FLAG_SCANOUT |
1985 DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM)))
1986 return -EINVAL;
1987
1988 if (XE_IOCTL_DBG(xe, args->handle))
1989 return -EINVAL;
1990
1991 if (XE_IOCTL_DBG(xe, !args->size))
1992 return -EINVAL;
1993
1994 if (XE_IOCTL_DBG(xe, args->size > SIZE_MAX))
1995 return -EINVAL;
1996
1997 if (XE_IOCTL_DBG(xe, args->size & ~PAGE_MASK))
1998 return -EINVAL;
1999
2000 bo_flags = 0;
2001 if (args->flags & DRM_XE_GEM_CREATE_FLAG_DEFER_BACKING)
2002 bo_flags |= XE_BO_FLAG_DEFER_BACKING;
2003
2004 if (args->flags & DRM_XE_GEM_CREATE_FLAG_SCANOUT)
2005 bo_flags |= XE_BO_FLAG_SCANOUT;
2006
2007 bo_flags |= args->placement << (ffs(XE_BO_FLAG_SYSTEM) - 1);
2008
2009 /* CCS formats need physical placement at a 64K alignment in VRAM. */
2010 if ((bo_flags & XE_BO_FLAG_VRAM_MASK) &&
2011 (bo_flags & XE_BO_FLAG_SCANOUT) &&
2012 !(xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K) &&
2013 IS_ALIGNED(args->size, SZ_64K))
2014 bo_flags |= XE_BO_FLAG_NEEDS_64K;
2015
2016 if (args->flags & DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM) {
2017 if (XE_IOCTL_DBG(xe, !(bo_flags & XE_BO_FLAG_VRAM_MASK)))
2018 return -EINVAL;
2019
2020 bo_flags |= XE_BO_FLAG_NEEDS_CPU_ACCESS;
2021 }
2022
2023 if (XE_IOCTL_DBG(xe, !args->cpu_caching ||
2024 args->cpu_caching > DRM_XE_GEM_CPU_CACHING_WC))
2025 return -EINVAL;
2026
2027 if (XE_IOCTL_DBG(xe, bo_flags & XE_BO_FLAG_VRAM_MASK &&
2028 args->cpu_caching != DRM_XE_GEM_CPU_CACHING_WC))
2029 return -EINVAL;
2030
2031 if (XE_IOCTL_DBG(xe, bo_flags & XE_BO_FLAG_SCANOUT &&
2032 args->cpu_caching == DRM_XE_GEM_CPU_CACHING_WB))
2033 return -EINVAL;
2034
2035 if (args->vm_id) {
2036 vm = xe_vm_lookup(xef, args->vm_id);
2037 if (XE_IOCTL_DBG(xe, !vm))
2038 return -ENOENT;
2039 err = xe_vm_lock(vm, true);
2040 if (err)
2041 goto out_vm;
2042 }
2043
2044 bo = xe_bo_create_user(xe, NULL, vm, args->size, args->cpu_caching,
2045 bo_flags);
2046
2047 if (vm)
2048 xe_vm_unlock(vm);
2049
2050 if (IS_ERR(bo)) {
2051 err = PTR_ERR(bo);
2052 goto out_vm;
2053 }
2054
2055 err = drm_gem_handle_create(file, &bo->ttm.base, &handle);
2056 if (err)
2057 goto out_bulk;
2058
2059 args->handle = handle;
2060 goto out_put;
2061
2062 out_bulk:
2063 if (vm && !xe_vm_in_fault_mode(vm)) {
2064 xe_vm_lock(vm, false);
2065 __xe_bo_unset_bulk_move(bo);
2066 xe_vm_unlock(vm);
2067 }
2068 out_put:
2069 xe_bo_put(bo);
2070 out_vm:
2071 if (vm)
2072 xe_vm_put(vm);
2073
2074 return err;
2075 }
2076
xe_gem_mmap_offset_ioctl(struct drm_device * dev,void * data,struct drm_file * file)2077 int xe_gem_mmap_offset_ioctl(struct drm_device *dev, void *data,
2078 struct drm_file *file)
2079 {
2080 struct xe_device *xe = to_xe_device(dev);
2081 struct drm_xe_gem_mmap_offset *args = data;
2082 struct drm_gem_object *gem_obj;
2083
2084 if (XE_IOCTL_DBG(xe, args->extensions) ||
2085 XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1]))
2086 return -EINVAL;
2087
2088 if (XE_IOCTL_DBG(xe, args->flags))
2089 return -EINVAL;
2090
2091 gem_obj = drm_gem_object_lookup(file, args->handle);
2092 if (XE_IOCTL_DBG(xe, !gem_obj))
2093 return -ENOENT;
2094
2095 /* The mmap offset was set up at BO allocation time. */
2096 args->offset = drm_vma_node_offset_addr(&gem_obj->vma_node);
2097
2098 xe_bo_put(gem_to_xe_bo(gem_obj));
2099 return 0;
2100 }
2101
2102 /**
2103 * xe_bo_lock() - Lock the buffer object's dma_resv object
2104 * @bo: The struct xe_bo whose lock is to be taken
2105 * @intr: Whether to perform any wait interruptible
2106 *
2107 * Locks the buffer object's dma_resv object. If the buffer object is
2108 * pointing to a shared dma_resv object, that shared lock is locked.
2109 *
2110 * Return: 0 on success, -EINTR if @intr is true and the wait for a
2111 * contended lock was interrupted. If @intr is set to false, the
2112 * function always returns 0.
2113 */
xe_bo_lock(struct xe_bo * bo,bool intr)2114 int xe_bo_lock(struct xe_bo *bo, bool intr)
2115 {
2116 if (intr)
2117 return dma_resv_lock_interruptible(bo->ttm.base.resv, NULL);
2118
2119 dma_resv_lock(bo->ttm.base.resv, NULL);
2120
2121 return 0;
2122 }
2123
2124 /**
2125 * xe_bo_unlock() - Unlock the buffer object's dma_resv object
2126 * @bo: The struct xe_bo whose lock is to be released.
2127 *
2128 * Unlock a buffer object lock that was locked by xe_bo_lock().
2129 */
xe_bo_unlock(struct xe_bo * bo)2130 void xe_bo_unlock(struct xe_bo *bo)
2131 {
2132 dma_resv_unlock(bo->ttm.base.resv);
2133 }
2134
2135 /**
2136 * xe_bo_can_migrate - Whether a buffer object likely can be migrated
2137 * @bo: The buffer object to migrate
2138 * @mem_type: The TTM memory type intended to migrate to
2139 *
2140 * Check whether the buffer object supports migration to the
2141 * given memory type. Note that pinning may affect the ability to migrate as
2142 * returned by this function.
2143 *
2144 * This function is primarily intended as a helper for checking the
2145 * possibility to migrate buffer objects and can be called without
2146 * the object lock held.
2147 *
2148 * Return: true if migration is possible, false otherwise.
2149 */
xe_bo_can_migrate(struct xe_bo * bo,u32 mem_type)2150 bool xe_bo_can_migrate(struct xe_bo *bo, u32 mem_type)
2151 {
2152 unsigned int cur_place;
2153
2154 if (bo->ttm.type == ttm_bo_type_kernel)
2155 return true;
2156
2157 if (bo->ttm.type == ttm_bo_type_sg)
2158 return false;
2159
2160 for (cur_place = 0; cur_place < bo->placement.num_placement;
2161 cur_place++) {
2162 if (bo->placements[cur_place].mem_type == mem_type)
2163 return true;
2164 }
2165
2166 return false;
2167 }
2168
xe_place_from_ttm_type(u32 mem_type,struct ttm_place * place)2169 static void xe_place_from_ttm_type(u32 mem_type, struct ttm_place *place)
2170 {
2171 memset(place, 0, sizeof(*place));
2172 place->mem_type = mem_type;
2173 }
2174
2175 /**
2176 * xe_bo_migrate - Migrate an object to the desired region id
2177 * @bo: The buffer object to migrate.
2178 * @mem_type: The TTM region type to migrate to.
2179 *
2180 * Attempt to migrate the buffer object to the desired memory region. The
2181 * buffer object may not be pinned, and must be locked.
2182 * On successful completion, the object memory type will be updated,
2183 * but an async migration task may not have completed yet, and to
2184 * accomplish that, the object's kernel fences must be signaled with
2185 * the object lock held.
2186 *
2187 * Return: 0 on success. Negative error code on failure. In particular may
2188 * return -EINTR or -ERESTARTSYS if signal pending.
2189 */
xe_bo_migrate(struct xe_bo * bo,u32 mem_type)2190 int xe_bo_migrate(struct xe_bo *bo, u32 mem_type)
2191 {
2192 struct xe_device *xe = ttm_to_xe_device(bo->ttm.bdev);
2193 struct ttm_operation_ctx ctx = {
2194 .interruptible = true,
2195 .no_wait_gpu = false,
2196 };
2197 struct ttm_placement placement;
2198 struct ttm_place requested;
2199
2200 xe_bo_assert_held(bo);
2201
2202 if (bo->ttm.resource->mem_type == mem_type)
2203 return 0;
2204
2205 if (xe_bo_is_pinned(bo))
2206 return -EBUSY;
2207
2208 if (!xe_bo_can_migrate(bo, mem_type))
2209 return -EINVAL;
2210
2211 xe_place_from_ttm_type(mem_type, &requested);
2212 placement.num_placement = 1;
2213 placement.placement = &requested;
2214
2215 /*
2216 * Stolen needs to be handled like below VRAM handling if we ever need
2217 * to support it.
2218 */
2219 drm_WARN_ON(&xe->drm, mem_type == XE_PL_STOLEN);
2220
2221 if (mem_type_is_vram(mem_type)) {
2222 u32 c = 0;
2223
2224 add_vram(xe, bo, &requested, bo->flags, mem_type, &c);
2225 }
2226
2227 return ttm_bo_validate(&bo->ttm, &placement, &ctx);
2228 }
2229
2230 /**
2231 * xe_bo_evict - Evict an object to evict placement
2232 * @bo: The buffer object to migrate.
2233 * @force_alloc: Set force_alloc in ttm_operation_ctx
2234 *
2235 * On successful completion, the object memory will be moved to evict
2236 * placement. Ths function blocks until the object has been fully moved.
2237 *
2238 * Return: 0 on success. Negative error code on failure.
2239 */
xe_bo_evict(struct xe_bo * bo,bool force_alloc)2240 int xe_bo_evict(struct xe_bo *bo, bool force_alloc)
2241 {
2242 struct ttm_operation_ctx ctx = {
2243 .interruptible = false,
2244 .no_wait_gpu = false,
2245 .force_alloc = force_alloc,
2246 };
2247 struct ttm_placement placement;
2248 int ret;
2249
2250 xe_evict_flags(&bo->ttm, &placement);
2251 ret = ttm_bo_validate(&bo->ttm, &placement, &ctx);
2252 if (ret)
2253 return ret;
2254
2255 dma_resv_wait_timeout(bo->ttm.base.resv, DMA_RESV_USAGE_KERNEL,
2256 false, MAX_SCHEDULE_TIMEOUT);
2257
2258 return 0;
2259 }
2260
2261 /**
2262 * xe_bo_needs_ccs_pages - Whether a bo needs to back up CCS pages when
2263 * placed in system memory.
2264 * @bo: The xe_bo
2265 *
2266 * Return: true if extra pages need to be allocated, false otherwise.
2267 */
xe_bo_needs_ccs_pages(struct xe_bo * bo)2268 bool xe_bo_needs_ccs_pages(struct xe_bo *bo)
2269 {
2270 struct xe_device *xe = xe_bo_device(bo);
2271
2272 if (GRAPHICS_VER(xe) >= 20 && IS_DGFX(xe))
2273 return false;
2274
2275 if (!xe_device_has_flat_ccs(xe) || bo->ttm.type != ttm_bo_type_device)
2276 return false;
2277
2278 /* On discrete GPUs, if the GPU can access this buffer from
2279 * system memory (i.e., it allows XE_PL_TT placement), FlatCCS
2280 * can't be used since there's no CCS storage associated with
2281 * non-VRAM addresses.
2282 */
2283 if (IS_DGFX(xe) && (bo->flags & XE_BO_FLAG_SYSTEM))
2284 return false;
2285
2286 return true;
2287 }
2288
2289 /**
2290 * __xe_bo_release_dummy() - Dummy kref release function
2291 * @kref: The embedded struct kref.
2292 *
2293 * Dummy release function for xe_bo_put_deferred(). Keep off.
2294 */
__xe_bo_release_dummy(struct kref * kref)2295 void __xe_bo_release_dummy(struct kref *kref)
2296 {
2297 }
2298
2299 /**
2300 * xe_bo_put_commit() - Put bos whose put was deferred by xe_bo_put_deferred().
2301 * @deferred: The lockless list used for the call to xe_bo_put_deferred().
2302 *
2303 * Puts all bos whose put was deferred by xe_bo_put_deferred().
2304 * The @deferred list can be either an onstack local list or a global
2305 * shared list used by a workqueue.
2306 */
xe_bo_put_commit(struct llist_head * deferred)2307 void xe_bo_put_commit(struct llist_head *deferred)
2308 {
2309 struct llist_node *freed;
2310 struct xe_bo *bo, *next;
2311
2312 if (!deferred)
2313 return;
2314
2315 freed = llist_del_all(deferred);
2316 if (!freed)
2317 return;
2318
2319 llist_for_each_entry_safe(bo, next, freed, freed)
2320 drm_gem_object_free(&bo->ttm.base.refcount);
2321 }
2322
xe_bo_put(struct xe_bo * bo)2323 void xe_bo_put(struct xe_bo *bo)
2324 {
2325 might_sleep();
2326 if (bo) {
2327 #ifdef CONFIG_PROC_FS
2328 if (bo->client)
2329 might_lock(&bo->client->bos_lock);
2330 #endif
2331 if (bo->ggtt_node && bo->ggtt_node->ggtt)
2332 might_lock(&bo->ggtt_node->ggtt->lock);
2333 drm_gem_object_put(&bo->ttm.base);
2334 }
2335 }
2336
2337 /**
2338 * xe_bo_dumb_create - Create a dumb bo as backing for a fb
2339 * @file_priv: ...
2340 * @dev: ...
2341 * @args: ...
2342 *
2343 * See dumb_create() hook in include/drm/drm_drv.h
2344 *
2345 * Return: ...
2346 */
xe_bo_dumb_create(struct drm_file * file_priv,struct drm_device * dev,struct drm_mode_create_dumb * args)2347 int xe_bo_dumb_create(struct drm_file *file_priv,
2348 struct drm_device *dev,
2349 struct drm_mode_create_dumb *args)
2350 {
2351 struct xe_device *xe = to_xe_device(dev);
2352 struct xe_bo *bo;
2353 uint32_t handle;
2354 int cpp = DIV_ROUND_UP(args->bpp, 8);
2355 int err;
2356 u32 page_size = max_t(u32, PAGE_SIZE,
2357 xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K ? SZ_64K : SZ_4K);
2358
2359 args->pitch = ALIGN(args->width * cpp, 64);
2360 args->size = ALIGN(mul_u32_u32(args->pitch, args->height),
2361 page_size);
2362
2363 bo = xe_bo_create_user(xe, NULL, NULL, args->size,
2364 DRM_XE_GEM_CPU_CACHING_WC,
2365 XE_BO_FLAG_VRAM_IF_DGFX(xe_device_get_root_tile(xe)) |
2366 XE_BO_FLAG_SCANOUT |
2367 XE_BO_FLAG_NEEDS_CPU_ACCESS);
2368 if (IS_ERR(bo))
2369 return PTR_ERR(bo);
2370
2371 err = drm_gem_handle_create(file_priv, &bo->ttm.base, &handle);
2372 /* drop reference from allocate - handle holds it now */
2373 drm_gem_object_put(&bo->ttm.base);
2374 if (!err)
2375 args->handle = handle;
2376 return err;
2377 }
2378
xe_bo_runtime_pm_release_mmap_offset(struct xe_bo * bo)2379 void xe_bo_runtime_pm_release_mmap_offset(struct xe_bo *bo)
2380 {
2381 struct ttm_buffer_object *tbo = &bo->ttm;
2382 struct ttm_device *bdev = tbo->bdev;
2383
2384 drm_vma_node_unmap(&tbo->base.vma_node, bdev->dev_mapping);
2385
2386 list_del_init(&bo->vram_userfault_link);
2387 }
2388
2389 #if IS_ENABLED(CONFIG_DRM_XE_KUNIT_TEST)
2390 #include "tests/xe_bo.c"
2391 #endif
2392