1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_trans.h"
15 #include "xfs_trans_priv.h"
16 #include "xfs_inode_item.h"
17 #include "xfs_quota.h"
18 #include "xfs_trace.h"
19 #include "xfs_icache.h"
20 #include "xfs_bmap_util.h"
21 #include "xfs_dquot_item.h"
22 #include "xfs_dquot.h"
23 #include "xfs_reflink.h"
24 #include "xfs_ialloc.h"
25 #include "xfs_ag.h"
26 #include "xfs_log_priv.h"
27 #include "xfs_health.h"
28
29 #include <linux/iversion.h>
30
31 /* Radix tree tags for incore inode tree. */
32
33 /* inode is to be reclaimed */
34 #define XFS_ICI_RECLAIM_TAG 0
35 /* Inode has speculative preallocations (posteof or cow) to clean. */
36 #define XFS_ICI_BLOCKGC_TAG 1
37
38 /*
39 * The goal for walking incore inodes. These can correspond with incore inode
40 * radix tree tags when convenient. Avoid existing XFS_IWALK namespace.
41 */
42 enum xfs_icwalk_goal {
43 /* Goals directly associated with tagged inodes. */
44 XFS_ICWALK_BLOCKGC = XFS_ICI_BLOCKGC_TAG,
45 XFS_ICWALK_RECLAIM = XFS_ICI_RECLAIM_TAG,
46 };
47
48 static int xfs_icwalk(struct xfs_mount *mp,
49 enum xfs_icwalk_goal goal, struct xfs_icwalk *icw);
50 static int xfs_icwalk_ag(struct xfs_perag *pag,
51 enum xfs_icwalk_goal goal, struct xfs_icwalk *icw);
52
53 /*
54 * Private inode cache walk flags for struct xfs_icwalk. Must not
55 * coincide with XFS_ICWALK_FLAGS_VALID.
56 */
57
58 /* Stop scanning after icw_scan_limit inodes. */
59 #define XFS_ICWALK_FLAG_SCAN_LIMIT (1U << 28)
60
61 #define XFS_ICWALK_FLAG_RECLAIM_SICK (1U << 27)
62 #define XFS_ICWALK_FLAG_UNION (1U << 26) /* union filter algorithm */
63
64 #define XFS_ICWALK_PRIVATE_FLAGS (XFS_ICWALK_FLAG_SCAN_LIMIT | \
65 XFS_ICWALK_FLAG_RECLAIM_SICK | \
66 XFS_ICWALK_FLAG_UNION)
67
68 /* Marks for the perag xarray */
69 #define XFS_PERAG_RECLAIM_MARK XA_MARK_0
70 #define XFS_PERAG_BLOCKGC_MARK XA_MARK_1
71
ici_tag_to_mark(unsigned int tag)72 static inline xa_mark_t ici_tag_to_mark(unsigned int tag)
73 {
74 if (tag == XFS_ICI_RECLAIM_TAG)
75 return XFS_PERAG_RECLAIM_MARK;
76 ASSERT(tag == XFS_ICI_BLOCKGC_TAG);
77 return XFS_PERAG_BLOCKGC_MARK;
78 }
79
80 /*
81 * Allocate and initialise an xfs_inode.
82 */
83 struct xfs_inode *
xfs_inode_alloc(struct xfs_mount * mp,xfs_ino_t ino)84 xfs_inode_alloc(
85 struct xfs_mount *mp,
86 xfs_ino_t ino)
87 {
88 struct xfs_inode *ip;
89
90 /*
91 * XXX: If this didn't occur in transactions, we could drop GFP_NOFAIL
92 * and return NULL here on ENOMEM.
93 */
94 ip = alloc_inode_sb(mp->m_super, xfs_inode_cache, GFP_KERNEL | __GFP_NOFAIL);
95
96 if (inode_init_always(mp->m_super, VFS_I(ip))) {
97 kmem_cache_free(xfs_inode_cache, ip);
98 return NULL;
99 }
100
101 /* VFS doesn't initialise i_mode! */
102 VFS_I(ip)->i_mode = 0;
103 mapping_set_folio_min_order(VFS_I(ip)->i_mapping,
104 M_IGEO(mp)->min_folio_order);
105
106 XFS_STATS_INC(mp, vn_active);
107 ASSERT(atomic_read(&ip->i_pincount) == 0);
108 ASSERT(ip->i_ino == 0);
109
110 /* initialise the xfs inode */
111 ip->i_ino = ino;
112 ip->i_mount = mp;
113 memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
114 ip->i_cowfp = NULL;
115 memset(&ip->i_af, 0, sizeof(ip->i_af));
116 ip->i_af.if_format = XFS_DINODE_FMT_EXTENTS;
117 memset(&ip->i_df, 0, sizeof(ip->i_df));
118 ip->i_flags = 0;
119 ip->i_delayed_blks = 0;
120 ip->i_diflags2 = mp->m_ino_geo.new_diflags2;
121 ip->i_nblocks = 0;
122 ip->i_forkoff = 0;
123 ip->i_sick = 0;
124 ip->i_checked = 0;
125 INIT_WORK(&ip->i_ioend_work, xfs_end_io);
126 INIT_LIST_HEAD(&ip->i_ioend_list);
127 spin_lock_init(&ip->i_ioend_lock);
128 ip->i_next_unlinked = NULLAGINO;
129 ip->i_prev_unlinked = 0;
130
131 return ip;
132 }
133
134 STATIC void
xfs_inode_free_callback(struct rcu_head * head)135 xfs_inode_free_callback(
136 struct rcu_head *head)
137 {
138 struct inode *inode = container_of(head, struct inode, i_rcu);
139 struct xfs_inode *ip = XFS_I(inode);
140
141 switch (VFS_I(ip)->i_mode & S_IFMT) {
142 case S_IFREG:
143 case S_IFDIR:
144 case S_IFLNK:
145 xfs_idestroy_fork(&ip->i_df);
146 break;
147 }
148
149 xfs_ifork_zap_attr(ip);
150
151 if (ip->i_cowfp) {
152 xfs_idestroy_fork(ip->i_cowfp);
153 kmem_cache_free(xfs_ifork_cache, ip->i_cowfp);
154 }
155 if (ip->i_itemp) {
156 ASSERT(!test_bit(XFS_LI_IN_AIL,
157 &ip->i_itemp->ili_item.li_flags));
158 xfs_inode_item_destroy(ip);
159 ip->i_itemp = NULL;
160 }
161
162 kmem_cache_free(xfs_inode_cache, ip);
163 }
164
165 static void
__xfs_inode_free(struct xfs_inode * ip)166 __xfs_inode_free(
167 struct xfs_inode *ip)
168 {
169 /* asserts to verify all state is correct here */
170 ASSERT(atomic_read(&ip->i_pincount) == 0);
171 ASSERT(!ip->i_itemp || list_empty(&ip->i_itemp->ili_item.li_bio_list));
172 XFS_STATS_DEC(ip->i_mount, vn_active);
173
174 call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
175 }
176
177 void
xfs_inode_free(struct xfs_inode * ip)178 xfs_inode_free(
179 struct xfs_inode *ip)
180 {
181 ASSERT(!xfs_iflags_test(ip, XFS_IFLUSHING));
182
183 /*
184 * Because we use RCU freeing we need to ensure the inode always
185 * appears to be reclaimed with an invalid inode number when in the
186 * free state. The ip->i_flags_lock provides the barrier against lookup
187 * races.
188 */
189 spin_lock(&ip->i_flags_lock);
190 ip->i_flags = XFS_IRECLAIM;
191 ip->i_ino = 0;
192 spin_unlock(&ip->i_flags_lock);
193
194 __xfs_inode_free(ip);
195 }
196
197 /*
198 * Queue background inode reclaim work if there are reclaimable inodes and there
199 * isn't reclaim work already scheduled or in progress.
200 */
201 static void
xfs_reclaim_work_queue(struct xfs_mount * mp)202 xfs_reclaim_work_queue(
203 struct xfs_mount *mp)
204 {
205
206 rcu_read_lock();
207 if (xa_marked(&mp->m_perags, XFS_PERAG_RECLAIM_MARK)) {
208 queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
209 msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
210 }
211 rcu_read_unlock();
212 }
213
214 /*
215 * Background scanning to trim preallocated space. This is queued based on the
216 * 'speculative_prealloc_lifetime' tunable (5m by default).
217 */
218 static inline void
xfs_blockgc_queue(struct xfs_perag * pag)219 xfs_blockgc_queue(
220 struct xfs_perag *pag)
221 {
222 struct xfs_mount *mp = pag->pag_mount;
223
224 if (!xfs_is_blockgc_enabled(mp))
225 return;
226
227 rcu_read_lock();
228 if (radix_tree_tagged(&pag->pag_ici_root, XFS_ICI_BLOCKGC_TAG))
229 queue_delayed_work(pag->pag_mount->m_blockgc_wq,
230 &pag->pag_blockgc_work,
231 msecs_to_jiffies(xfs_blockgc_secs * 1000));
232 rcu_read_unlock();
233 }
234
235 /* Set a tag on both the AG incore inode tree and the AG radix tree. */
236 static void
xfs_perag_set_inode_tag(struct xfs_perag * pag,xfs_agino_t agino,unsigned int tag)237 xfs_perag_set_inode_tag(
238 struct xfs_perag *pag,
239 xfs_agino_t agino,
240 unsigned int tag)
241 {
242 struct xfs_mount *mp = pag->pag_mount;
243 bool was_tagged;
244
245 lockdep_assert_held(&pag->pag_ici_lock);
246
247 was_tagged = radix_tree_tagged(&pag->pag_ici_root, tag);
248 radix_tree_tag_set(&pag->pag_ici_root, agino, tag);
249
250 if (tag == XFS_ICI_RECLAIM_TAG)
251 pag->pag_ici_reclaimable++;
252
253 if (was_tagged)
254 return;
255
256 /* propagate the tag up into the perag radix tree */
257 xa_set_mark(&mp->m_perags, pag->pag_agno, ici_tag_to_mark(tag));
258
259 /* start background work */
260 switch (tag) {
261 case XFS_ICI_RECLAIM_TAG:
262 xfs_reclaim_work_queue(mp);
263 break;
264 case XFS_ICI_BLOCKGC_TAG:
265 xfs_blockgc_queue(pag);
266 break;
267 }
268
269 trace_xfs_perag_set_inode_tag(pag, _RET_IP_);
270 }
271
272 /* Clear a tag on both the AG incore inode tree and the AG radix tree. */
273 static void
xfs_perag_clear_inode_tag(struct xfs_perag * pag,xfs_agino_t agino,unsigned int tag)274 xfs_perag_clear_inode_tag(
275 struct xfs_perag *pag,
276 xfs_agino_t agino,
277 unsigned int tag)
278 {
279 struct xfs_mount *mp = pag->pag_mount;
280
281 lockdep_assert_held(&pag->pag_ici_lock);
282
283 /*
284 * Reclaim can signal (with a null agino) that it cleared its own tag
285 * by removing the inode from the radix tree.
286 */
287 if (agino != NULLAGINO)
288 radix_tree_tag_clear(&pag->pag_ici_root, agino, tag);
289 else
290 ASSERT(tag == XFS_ICI_RECLAIM_TAG);
291
292 if (tag == XFS_ICI_RECLAIM_TAG)
293 pag->pag_ici_reclaimable--;
294
295 if (radix_tree_tagged(&pag->pag_ici_root, tag))
296 return;
297
298 /* clear the tag from the perag radix tree */
299 xa_clear_mark(&mp->m_perags, pag->pag_agno, ici_tag_to_mark(tag));
300
301 trace_xfs_perag_clear_inode_tag(pag, _RET_IP_);
302 }
303
304 /*
305 * Find the next AG after @pag, or the first AG if @pag is NULL.
306 */
307 static struct xfs_perag *
xfs_perag_grab_next_tag(struct xfs_mount * mp,struct xfs_perag * pag,int tag)308 xfs_perag_grab_next_tag(
309 struct xfs_mount *mp,
310 struct xfs_perag *pag,
311 int tag)
312 {
313 unsigned long index = 0;
314
315 if (pag) {
316 index = pag->pag_agno + 1;
317 xfs_perag_rele(pag);
318 }
319
320 rcu_read_lock();
321 pag = xa_find(&mp->m_perags, &index, ULONG_MAX, ici_tag_to_mark(tag));
322 if (pag) {
323 trace_xfs_perag_grab_next_tag(pag, _RET_IP_);
324 if (!atomic_inc_not_zero(&pag->pag_active_ref))
325 pag = NULL;
326 }
327 rcu_read_unlock();
328 return pag;
329 }
330
331 /*
332 * When we recycle a reclaimable inode, we need to re-initialise the VFS inode
333 * part of the structure. This is made more complex by the fact we store
334 * information about the on-disk values in the VFS inode and so we can't just
335 * overwrite the values unconditionally. Hence we save the parameters we
336 * need to retain across reinitialisation, and rewrite them into the VFS inode
337 * after reinitialisation even if it fails.
338 */
339 static int
xfs_reinit_inode(struct xfs_mount * mp,struct inode * inode)340 xfs_reinit_inode(
341 struct xfs_mount *mp,
342 struct inode *inode)
343 {
344 int error;
345 uint32_t nlink = inode->i_nlink;
346 uint32_t generation = inode->i_generation;
347 uint64_t version = inode_peek_iversion(inode);
348 umode_t mode = inode->i_mode;
349 dev_t dev = inode->i_rdev;
350 kuid_t uid = inode->i_uid;
351 kgid_t gid = inode->i_gid;
352 unsigned long state = inode->i_state;
353
354 error = inode_init_always(mp->m_super, inode);
355
356 set_nlink(inode, nlink);
357 inode->i_generation = generation;
358 inode_set_iversion_queried(inode, version);
359 inode->i_mode = mode;
360 inode->i_rdev = dev;
361 inode->i_uid = uid;
362 inode->i_gid = gid;
363 inode->i_state = state;
364 mapping_set_folio_min_order(inode->i_mapping,
365 M_IGEO(mp)->min_folio_order);
366 return error;
367 }
368
369 /*
370 * Carefully nudge an inode whose VFS state has been torn down back into a
371 * usable state. Drops the i_flags_lock and the rcu read lock.
372 */
373 static int
xfs_iget_recycle(struct xfs_perag * pag,struct xfs_inode * ip)374 xfs_iget_recycle(
375 struct xfs_perag *pag,
376 struct xfs_inode *ip) __releases(&ip->i_flags_lock)
377 {
378 struct xfs_mount *mp = ip->i_mount;
379 struct inode *inode = VFS_I(ip);
380 int error;
381
382 trace_xfs_iget_recycle(ip);
383
384 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL))
385 return -EAGAIN;
386
387 /*
388 * We need to make it look like the inode is being reclaimed to prevent
389 * the actual reclaim workers from stomping over us while we recycle
390 * the inode. We can't clear the radix tree tag yet as it requires
391 * pag_ici_lock to be held exclusive.
392 */
393 ip->i_flags |= XFS_IRECLAIM;
394
395 spin_unlock(&ip->i_flags_lock);
396 rcu_read_unlock();
397
398 ASSERT(!rwsem_is_locked(&inode->i_rwsem));
399 error = xfs_reinit_inode(mp, inode);
400 xfs_iunlock(ip, XFS_ILOCK_EXCL);
401 if (error) {
402 /*
403 * Re-initializing the inode failed, and we are in deep
404 * trouble. Try to re-add it to the reclaim list.
405 */
406 rcu_read_lock();
407 spin_lock(&ip->i_flags_lock);
408 ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
409 ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
410 spin_unlock(&ip->i_flags_lock);
411 rcu_read_unlock();
412
413 trace_xfs_iget_recycle_fail(ip);
414 return error;
415 }
416
417 spin_lock(&pag->pag_ici_lock);
418 spin_lock(&ip->i_flags_lock);
419
420 /*
421 * Clear the per-lifetime state in the inode as we are now effectively
422 * a new inode and need to return to the initial state before reuse
423 * occurs.
424 */
425 ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
426 ip->i_flags |= XFS_INEW;
427 xfs_perag_clear_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
428 XFS_ICI_RECLAIM_TAG);
429 inode->i_state = I_NEW;
430 spin_unlock(&ip->i_flags_lock);
431 spin_unlock(&pag->pag_ici_lock);
432
433 return 0;
434 }
435
436 /*
437 * If we are allocating a new inode, then check what was returned is
438 * actually a free, empty inode. If we are not allocating an inode,
439 * then check we didn't find a free inode.
440 *
441 * Returns:
442 * 0 if the inode free state matches the lookup context
443 * -ENOENT if the inode is free and we are not allocating
444 * -EFSCORRUPTED if there is any state mismatch at all
445 */
446 static int
xfs_iget_check_free_state(struct xfs_inode * ip,int flags)447 xfs_iget_check_free_state(
448 struct xfs_inode *ip,
449 int flags)
450 {
451 if (flags & XFS_IGET_CREATE) {
452 /* should be a free inode */
453 if (VFS_I(ip)->i_mode != 0) {
454 xfs_warn(ip->i_mount,
455 "Corruption detected! Free inode 0x%llx not marked free! (mode 0x%x)",
456 ip->i_ino, VFS_I(ip)->i_mode);
457 xfs_agno_mark_sick(ip->i_mount,
458 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
459 XFS_SICK_AG_INOBT);
460 return -EFSCORRUPTED;
461 }
462
463 if (ip->i_nblocks != 0) {
464 xfs_warn(ip->i_mount,
465 "Corruption detected! Free inode 0x%llx has blocks allocated!",
466 ip->i_ino);
467 xfs_agno_mark_sick(ip->i_mount,
468 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
469 XFS_SICK_AG_INOBT);
470 return -EFSCORRUPTED;
471 }
472 return 0;
473 }
474
475 /* should be an allocated inode */
476 if (VFS_I(ip)->i_mode == 0)
477 return -ENOENT;
478
479 return 0;
480 }
481
482 /* Make all pending inactivation work start immediately. */
483 static bool
xfs_inodegc_queue_all(struct xfs_mount * mp)484 xfs_inodegc_queue_all(
485 struct xfs_mount *mp)
486 {
487 struct xfs_inodegc *gc;
488 int cpu;
489 bool ret = false;
490
491 for_each_cpu(cpu, &mp->m_inodegc_cpumask) {
492 gc = per_cpu_ptr(mp->m_inodegc, cpu);
493 if (!llist_empty(&gc->list)) {
494 mod_delayed_work_on(cpu, mp->m_inodegc_wq, &gc->work, 0);
495 ret = true;
496 }
497 }
498
499 return ret;
500 }
501
502 /* Wait for all queued work and collect errors */
503 static int
xfs_inodegc_wait_all(struct xfs_mount * mp)504 xfs_inodegc_wait_all(
505 struct xfs_mount *mp)
506 {
507 int cpu;
508 int error = 0;
509
510 flush_workqueue(mp->m_inodegc_wq);
511 for_each_cpu(cpu, &mp->m_inodegc_cpumask) {
512 struct xfs_inodegc *gc;
513
514 gc = per_cpu_ptr(mp->m_inodegc, cpu);
515 if (gc->error && !error)
516 error = gc->error;
517 gc->error = 0;
518 }
519
520 return error;
521 }
522
523 /*
524 * Check the validity of the inode we just found it the cache
525 */
526 static int
xfs_iget_cache_hit(struct xfs_perag * pag,struct xfs_inode * ip,xfs_ino_t ino,int flags,int lock_flags)527 xfs_iget_cache_hit(
528 struct xfs_perag *pag,
529 struct xfs_inode *ip,
530 xfs_ino_t ino,
531 int flags,
532 int lock_flags) __releases(RCU)
533 {
534 struct inode *inode = VFS_I(ip);
535 struct xfs_mount *mp = ip->i_mount;
536 int error;
537
538 /*
539 * check for re-use of an inode within an RCU grace period due to the
540 * radix tree nodes not being updated yet. We monitor for this by
541 * setting the inode number to zero before freeing the inode structure.
542 * If the inode has been reallocated and set up, then the inode number
543 * will not match, so check for that, too.
544 */
545 spin_lock(&ip->i_flags_lock);
546 if (ip->i_ino != ino)
547 goto out_skip;
548
549 /*
550 * If we are racing with another cache hit that is currently
551 * instantiating this inode or currently recycling it out of
552 * reclaimable state, wait for the initialisation to complete
553 * before continuing.
554 *
555 * If we're racing with the inactivation worker we also want to wait.
556 * If we're creating a new file, it's possible that the worker
557 * previously marked the inode as free on disk but hasn't finished
558 * updating the incore state yet. The AGI buffer will be dirty and
559 * locked to the icreate transaction, so a synchronous push of the
560 * inodegc workers would result in deadlock. For a regular iget, the
561 * worker is running already, so we might as well wait.
562 *
563 * XXX(hch): eventually we should do something equivalent to
564 * wait_on_inode to wait for these flags to be cleared
565 * instead of polling for it.
566 */
567 if (ip->i_flags & (XFS_INEW | XFS_IRECLAIM | XFS_INACTIVATING))
568 goto out_skip;
569
570 if (ip->i_flags & XFS_NEED_INACTIVE) {
571 /* Unlinked inodes cannot be re-grabbed. */
572 if (VFS_I(ip)->i_nlink == 0) {
573 error = -ENOENT;
574 goto out_error;
575 }
576 goto out_inodegc_flush;
577 }
578
579 /*
580 * Check the inode free state is valid. This also detects lookup
581 * racing with unlinks.
582 */
583 error = xfs_iget_check_free_state(ip, flags);
584 if (error)
585 goto out_error;
586
587 /* Skip inodes that have no vfs state. */
588 if ((flags & XFS_IGET_INCORE) &&
589 (ip->i_flags & XFS_IRECLAIMABLE))
590 goto out_skip;
591
592 /* The inode fits the selection criteria; process it. */
593 if (ip->i_flags & XFS_IRECLAIMABLE) {
594 /* Drops i_flags_lock and RCU read lock. */
595 error = xfs_iget_recycle(pag, ip);
596 if (error == -EAGAIN)
597 goto out_skip;
598 if (error)
599 return error;
600 } else {
601 /* If the VFS inode is being torn down, pause and try again. */
602 if (!igrab(inode))
603 goto out_skip;
604
605 /* We've got a live one. */
606 spin_unlock(&ip->i_flags_lock);
607 rcu_read_unlock();
608 trace_xfs_iget_hit(ip);
609 }
610
611 if (lock_flags != 0)
612 xfs_ilock(ip, lock_flags);
613
614 if (!(flags & XFS_IGET_INCORE))
615 xfs_iflags_clear(ip, XFS_ISTALE);
616 XFS_STATS_INC(mp, xs_ig_found);
617
618 return 0;
619
620 out_skip:
621 trace_xfs_iget_skip(ip);
622 XFS_STATS_INC(mp, xs_ig_frecycle);
623 error = -EAGAIN;
624 out_error:
625 spin_unlock(&ip->i_flags_lock);
626 rcu_read_unlock();
627 return error;
628
629 out_inodegc_flush:
630 spin_unlock(&ip->i_flags_lock);
631 rcu_read_unlock();
632 /*
633 * Do not wait for the workers, because the caller could hold an AGI
634 * buffer lock. We're just going to sleep in a loop anyway.
635 */
636 if (xfs_is_inodegc_enabled(mp))
637 xfs_inodegc_queue_all(mp);
638 return -EAGAIN;
639 }
640
641 static int
xfs_iget_cache_miss(struct xfs_mount * mp,struct xfs_perag * pag,xfs_trans_t * tp,xfs_ino_t ino,struct xfs_inode ** ipp,int flags,int lock_flags)642 xfs_iget_cache_miss(
643 struct xfs_mount *mp,
644 struct xfs_perag *pag,
645 xfs_trans_t *tp,
646 xfs_ino_t ino,
647 struct xfs_inode **ipp,
648 int flags,
649 int lock_flags)
650 {
651 struct xfs_inode *ip;
652 int error;
653 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ino);
654
655 ip = xfs_inode_alloc(mp, ino);
656 if (!ip)
657 return -ENOMEM;
658
659 error = xfs_imap(pag, tp, ip->i_ino, &ip->i_imap, flags);
660 if (error)
661 goto out_destroy;
662
663 /*
664 * For version 5 superblocks, if we are initialising a new inode and we
665 * are not utilising the XFS_FEAT_IKEEP inode cluster mode, we can
666 * simply build the new inode core with a random generation number.
667 *
668 * For version 4 (and older) superblocks, log recovery is dependent on
669 * the i_flushiter field being initialised from the current on-disk
670 * value and hence we must also read the inode off disk even when
671 * initializing new inodes.
672 */
673 if (xfs_has_v3inodes(mp) &&
674 (flags & XFS_IGET_CREATE) && !xfs_has_ikeep(mp)) {
675 VFS_I(ip)->i_generation = get_random_u32();
676 } else {
677 struct xfs_buf *bp;
678
679 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp);
680 if (error)
681 goto out_destroy;
682
683 error = xfs_inode_from_disk(ip,
684 xfs_buf_offset(bp, ip->i_imap.im_boffset));
685 if (!error)
686 xfs_buf_set_ref(bp, XFS_INO_REF);
687 else
688 xfs_inode_mark_sick(ip, XFS_SICK_INO_CORE);
689 xfs_trans_brelse(tp, bp);
690
691 if (error)
692 goto out_destroy;
693 }
694
695 trace_xfs_iget_miss(ip);
696
697 /*
698 * Check the inode free state is valid. This also detects lookup
699 * racing with unlinks.
700 */
701 error = xfs_iget_check_free_state(ip, flags);
702 if (error)
703 goto out_destroy;
704
705 /*
706 * Preload the radix tree so we can insert safely under the
707 * write spinlock. Note that we cannot sleep inside the preload
708 * region.
709 */
710 if (radix_tree_preload(GFP_KERNEL | __GFP_NOLOCKDEP)) {
711 error = -EAGAIN;
712 goto out_destroy;
713 }
714
715 /*
716 * Because the inode hasn't been added to the radix-tree yet it can't
717 * be found by another thread, so we can do the non-sleeping lock here.
718 */
719 if (lock_flags) {
720 if (!xfs_ilock_nowait(ip, lock_flags))
721 BUG();
722 }
723
724 /*
725 * These values must be set before inserting the inode into the radix
726 * tree as the moment it is inserted a concurrent lookup (allowed by the
727 * RCU locking mechanism) can find it and that lookup must see that this
728 * is an inode currently under construction (i.e. that XFS_INEW is set).
729 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
730 * memory barrier that ensures this detection works correctly at lookup
731 * time.
732 */
733 if (flags & XFS_IGET_DONTCACHE)
734 d_mark_dontcache(VFS_I(ip));
735 ip->i_udquot = NULL;
736 ip->i_gdquot = NULL;
737 ip->i_pdquot = NULL;
738 xfs_iflags_set(ip, XFS_INEW);
739
740 /* insert the new inode */
741 spin_lock(&pag->pag_ici_lock);
742 error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
743 if (unlikely(error)) {
744 WARN_ON(error != -EEXIST);
745 XFS_STATS_INC(mp, xs_ig_dup);
746 error = -EAGAIN;
747 goto out_preload_end;
748 }
749 spin_unlock(&pag->pag_ici_lock);
750 radix_tree_preload_end();
751
752 *ipp = ip;
753 return 0;
754
755 out_preload_end:
756 spin_unlock(&pag->pag_ici_lock);
757 radix_tree_preload_end();
758 if (lock_flags)
759 xfs_iunlock(ip, lock_flags);
760 out_destroy:
761 __destroy_inode(VFS_I(ip));
762 xfs_inode_free(ip);
763 return error;
764 }
765
766 /*
767 * Look up an inode by number in the given file system. The inode is looked up
768 * in the cache held in each AG. If the inode is found in the cache, initialise
769 * the vfs inode if necessary.
770 *
771 * If it is not in core, read it in from the file system's device, add it to the
772 * cache and initialise the vfs inode.
773 *
774 * The inode is locked according to the value of the lock_flags parameter.
775 * Inode lookup is only done during metadata operations and not as part of the
776 * data IO path. Hence we only allow locking of the XFS_ILOCK during lookup.
777 */
778 int
xfs_iget(struct xfs_mount * mp,struct xfs_trans * tp,xfs_ino_t ino,uint flags,uint lock_flags,struct xfs_inode ** ipp)779 xfs_iget(
780 struct xfs_mount *mp,
781 struct xfs_trans *tp,
782 xfs_ino_t ino,
783 uint flags,
784 uint lock_flags,
785 struct xfs_inode **ipp)
786 {
787 struct xfs_inode *ip;
788 struct xfs_perag *pag;
789 xfs_agino_t agino;
790 int error;
791
792 ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);
793
794 /* reject inode numbers outside existing AGs */
795 if (!xfs_verify_ino(mp, ino))
796 return -EINVAL;
797
798 XFS_STATS_INC(mp, xs_ig_attempts);
799
800 /* get the perag structure and ensure that it's inode capable */
801 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
802 agino = XFS_INO_TO_AGINO(mp, ino);
803
804 again:
805 error = 0;
806 rcu_read_lock();
807 ip = radix_tree_lookup(&pag->pag_ici_root, agino);
808
809 if (ip) {
810 error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
811 if (error)
812 goto out_error_or_again;
813 } else {
814 rcu_read_unlock();
815 if (flags & XFS_IGET_INCORE) {
816 error = -ENODATA;
817 goto out_error_or_again;
818 }
819 XFS_STATS_INC(mp, xs_ig_missed);
820
821 error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
822 flags, lock_flags);
823 if (error)
824 goto out_error_or_again;
825 }
826 xfs_perag_put(pag);
827
828 *ipp = ip;
829
830 /*
831 * If we have a real type for an on-disk inode, we can setup the inode
832 * now. If it's a new inode being created, xfs_init_new_inode will
833 * handle it.
834 */
835 if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0)
836 xfs_setup_existing_inode(ip);
837 return 0;
838
839 out_error_or_again:
840 if (!(flags & (XFS_IGET_INCORE | XFS_IGET_NORETRY)) &&
841 error == -EAGAIN) {
842 delay(1);
843 goto again;
844 }
845 xfs_perag_put(pag);
846 return error;
847 }
848
849 /*
850 * Grab the inode for reclaim exclusively.
851 *
852 * We have found this inode via a lookup under RCU, so the inode may have
853 * already been freed, or it may be in the process of being recycled by
854 * xfs_iget(). In both cases, the inode will have XFS_IRECLAIM set. If the inode
855 * has been fully recycled by the time we get the i_flags_lock, XFS_IRECLAIMABLE
856 * will not be set. Hence we need to check for both these flag conditions to
857 * avoid inodes that are no longer reclaim candidates.
858 *
859 * Note: checking for other state flags here, under the i_flags_lock or not, is
860 * racy and should be avoided. Those races should be resolved only after we have
861 * ensured that we are able to reclaim this inode and the world can see that we
862 * are going to reclaim it.
863 *
864 * Return true if we grabbed it, false otherwise.
865 */
866 static bool
xfs_reclaim_igrab(struct xfs_inode * ip,struct xfs_icwalk * icw)867 xfs_reclaim_igrab(
868 struct xfs_inode *ip,
869 struct xfs_icwalk *icw)
870 {
871 ASSERT(rcu_read_lock_held());
872
873 spin_lock(&ip->i_flags_lock);
874 if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
875 __xfs_iflags_test(ip, XFS_IRECLAIM)) {
876 /* not a reclaim candidate. */
877 spin_unlock(&ip->i_flags_lock);
878 return false;
879 }
880
881 /* Don't reclaim a sick inode unless the caller asked for it. */
882 if (ip->i_sick &&
883 (!icw || !(icw->icw_flags & XFS_ICWALK_FLAG_RECLAIM_SICK))) {
884 spin_unlock(&ip->i_flags_lock);
885 return false;
886 }
887
888 __xfs_iflags_set(ip, XFS_IRECLAIM);
889 spin_unlock(&ip->i_flags_lock);
890 return true;
891 }
892
893 /*
894 * Inode reclaim is non-blocking, so the default action if progress cannot be
895 * made is to "requeue" the inode for reclaim by unlocking it and clearing the
896 * XFS_IRECLAIM flag. If we are in a shutdown state, we don't care about
897 * blocking anymore and hence we can wait for the inode to be able to reclaim
898 * it.
899 *
900 * We do no IO here - if callers require inodes to be cleaned they must push the
901 * AIL first to trigger writeback of dirty inodes. This enables writeback to be
902 * done in the background in a non-blocking manner, and enables memory reclaim
903 * to make progress without blocking.
904 */
905 static void
xfs_reclaim_inode(struct xfs_inode * ip,struct xfs_perag * pag)906 xfs_reclaim_inode(
907 struct xfs_inode *ip,
908 struct xfs_perag *pag)
909 {
910 xfs_ino_t ino = ip->i_ino; /* for radix_tree_delete */
911
912 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL))
913 goto out;
914 if (xfs_iflags_test_and_set(ip, XFS_IFLUSHING))
915 goto out_iunlock;
916
917 /*
918 * Check for log shutdown because aborting the inode can move the log
919 * tail and corrupt in memory state. This is fine if the log is shut
920 * down, but if the log is still active and only the mount is shut down
921 * then the in-memory log tail movement caused by the abort can be
922 * incorrectly propagated to disk.
923 */
924 if (xlog_is_shutdown(ip->i_mount->m_log)) {
925 xfs_iunpin_wait(ip);
926 xfs_iflush_shutdown_abort(ip);
927 goto reclaim;
928 }
929 if (xfs_ipincount(ip))
930 goto out_clear_flush;
931 if (!xfs_inode_clean(ip))
932 goto out_clear_flush;
933
934 xfs_iflags_clear(ip, XFS_IFLUSHING);
935 reclaim:
936 trace_xfs_inode_reclaiming(ip);
937
938 /*
939 * Because we use RCU freeing we need to ensure the inode always appears
940 * to be reclaimed with an invalid inode number when in the free state.
941 * We do this as early as possible under the ILOCK so that
942 * xfs_iflush_cluster() and xfs_ifree_cluster() can be guaranteed to
943 * detect races with us here. By doing this, we guarantee that once
944 * xfs_iflush_cluster() or xfs_ifree_cluster() has locked XFS_ILOCK that
945 * it will see either a valid inode that will serialise correctly, or it
946 * will see an invalid inode that it can skip.
947 */
948 spin_lock(&ip->i_flags_lock);
949 ip->i_flags = XFS_IRECLAIM;
950 ip->i_ino = 0;
951 ip->i_sick = 0;
952 ip->i_checked = 0;
953 spin_unlock(&ip->i_flags_lock);
954
955 ASSERT(!ip->i_itemp || ip->i_itemp->ili_item.li_buf == NULL);
956 xfs_iunlock(ip, XFS_ILOCK_EXCL);
957
958 XFS_STATS_INC(ip->i_mount, xs_ig_reclaims);
959 /*
960 * Remove the inode from the per-AG radix tree.
961 *
962 * Because radix_tree_delete won't complain even if the item was never
963 * added to the tree assert that it's been there before to catch
964 * problems with the inode life time early on.
965 */
966 spin_lock(&pag->pag_ici_lock);
967 if (!radix_tree_delete(&pag->pag_ici_root,
968 XFS_INO_TO_AGINO(ip->i_mount, ino)))
969 ASSERT(0);
970 xfs_perag_clear_inode_tag(pag, NULLAGINO, XFS_ICI_RECLAIM_TAG);
971 spin_unlock(&pag->pag_ici_lock);
972
973 /*
974 * Here we do an (almost) spurious inode lock in order to coordinate
975 * with inode cache radix tree lookups. This is because the lookup
976 * can reference the inodes in the cache without taking references.
977 *
978 * We make that OK here by ensuring that we wait until the inode is
979 * unlocked after the lookup before we go ahead and free it.
980 */
981 xfs_ilock(ip, XFS_ILOCK_EXCL);
982 ASSERT(!ip->i_udquot && !ip->i_gdquot && !ip->i_pdquot);
983 xfs_iunlock(ip, XFS_ILOCK_EXCL);
984 ASSERT(xfs_inode_clean(ip));
985
986 __xfs_inode_free(ip);
987 return;
988
989 out_clear_flush:
990 xfs_iflags_clear(ip, XFS_IFLUSHING);
991 out_iunlock:
992 xfs_iunlock(ip, XFS_ILOCK_EXCL);
993 out:
994 xfs_iflags_clear(ip, XFS_IRECLAIM);
995 }
996
997 /* Reclaim sick inodes if we're unmounting or the fs went down. */
998 static inline bool
xfs_want_reclaim_sick(struct xfs_mount * mp)999 xfs_want_reclaim_sick(
1000 struct xfs_mount *mp)
1001 {
1002 return xfs_is_unmounting(mp) || xfs_has_norecovery(mp) ||
1003 xfs_is_shutdown(mp);
1004 }
1005
1006 void
xfs_reclaim_inodes(struct xfs_mount * mp)1007 xfs_reclaim_inodes(
1008 struct xfs_mount *mp)
1009 {
1010 struct xfs_icwalk icw = {
1011 .icw_flags = 0,
1012 };
1013
1014 if (xfs_want_reclaim_sick(mp))
1015 icw.icw_flags |= XFS_ICWALK_FLAG_RECLAIM_SICK;
1016
1017 while (xa_marked(&mp->m_perags, XFS_PERAG_RECLAIM_MARK)) {
1018 xfs_ail_push_all_sync(mp->m_ail);
1019 xfs_icwalk(mp, XFS_ICWALK_RECLAIM, &icw);
1020 }
1021 }
1022
1023 /*
1024 * The shrinker infrastructure determines how many inodes we should scan for
1025 * reclaim. We want as many clean inodes ready to reclaim as possible, so we
1026 * push the AIL here. We also want to proactively free up memory if we can to
1027 * minimise the amount of work memory reclaim has to do so we kick the
1028 * background reclaim if it isn't already scheduled.
1029 */
1030 long
xfs_reclaim_inodes_nr(struct xfs_mount * mp,unsigned long nr_to_scan)1031 xfs_reclaim_inodes_nr(
1032 struct xfs_mount *mp,
1033 unsigned long nr_to_scan)
1034 {
1035 struct xfs_icwalk icw = {
1036 .icw_flags = XFS_ICWALK_FLAG_SCAN_LIMIT,
1037 .icw_scan_limit = min_t(unsigned long, LONG_MAX, nr_to_scan),
1038 };
1039
1040 if (xfs_want_reclaim_sick(mp))
1041 icw.icw_flags |= XFS_ICWALK_FLAG_RECLAIM_SICK;
1042
1043 /* kick background reclaimer and push the AIL */
1044 xfs_reclaim_work_queue(mp);
1045 xfs_ail_push_all(mp->m_ail);
1046
1047 xfs_icwalk(mp, XFS_ICWALK_RECLAIM, &icw);
1048 return 0;
1049 }
1050
1051 /*
1052 * Return the number of reclaimable inodes in the filesystem for
1053 * the shrinker to determine how much to reclaim.
1054 */
1055 long
xfs_reclaim_inodes_count(struct xfs_mount * mp)1056 xfs_reclaim_inodes_count(
1057 struct xfs_mount *mp)
1058 {
1059 XA_STATE (xas, &mp->m_perags, 0);
1060 long reclaimable = 0;
1061 struct xfs_perag *pag;
1062
1063 rcu_read_lock();
1064 xas_for_each_marked(&xas, pag, ULONG_MAX, XFS_PERAG_RECLAIM_MARK) {
1065 trace_xfs_reclaim_inodes_count(pag, _THIS_IP_);
1066 reclaimable += pag->pag_ici_reclaimable;
1067 }
1068 rcu_read_unlock();
1069
1070 return reclaimable;
1071 }
1072
1073 STATIC bool
xfs_icwalk_match_id(struct xfs_inode * ip,struct xfs_icwalk * icw)1074 xfs_icwalk_match_id(
1075 struct xfs_inode *ip,
1076 struct xfs_icwalk *icw)
1077 {
1078 if ((icw->icw_flags & XFS_ICWALK_FLAG_UID) &&
1079 !uid_eq(VFS_I(ip)->i_uid, icw->icw_uid))
1080 return false;
1081
1082 if ((icw->icw_flags & XFS_ICWALK_FLAG_GID) &&
1083 !gid_eq(VFS_I(ip)->i_gid, icw->icw_gid))
1084 return false;
1085
1086 if ((icw->icw_flags & XFS_ICWALK_FLAG_PRID) &&
1087 ip->i_projid != icw->icw_prid)
1088 return false;
1089
1090 return true;
1091 }
1092
1093 /*
1094 * A union-based inode filtering algorithm. Process the inode if any of the
1095 * criteria match. This is for global/internal scans only.
1096 */
1097 STATIC bool
xfs_icwalk_match_id_union(struct xfs_inode * ip,struct xfs_icwalk * icw)1098 xfs_icwalk_match_id_union(
1099 struct xfs_inode *ip,
1100 struct xfs_icwalk *icw)
1101 {
1102 if ((icw->icw_flags & XFS_ICWALK_FLAG_UID) &&
1103 uid_eq(VFS_I(ip)->i_uid, icw->icw_uid))
1104 return true;
1105
1106 if ((icw->icw_flags & XFS_ICWALK_FLAG_GID) &&
1107 gid_eq(VFS_I(ip)->i_gid, icw->icw_gid))
1108 return true;
1109
1110 if ((icw->icw_flags & XFS_ICWALK_FLAG_PRID) &&
1111 ip->i_projid == icw->icw_prid)
1112 return true;
1113
1114 return false;
1115 }
1116
1117 /*
1118 * Is this inode @ip eligible for eof/cow block reclamation, given some
1119 * filtering parameters @icw? The inode is eligible if @icw is null or
1120 * if the predicate functions match.
1121 */
1122 static bool
xfs_icwalk_match(struct xfs_inode * ip,struct xfs_icwalk * icw)1123 xfs_icwalk_match(
1124 struct xfs_inode *ip,
1125 struct xfs_icwalk *icw)
1126 {
1127 bool match;
1128
1129 if (!icw)
1130 return true;
1131
1132 if (icw->icw_flags & XFS_ICWALK_FLAG_UNION)
1133 match = xfs_icwalk_match_id_union(ip, icw);
1134 else
1135 match = xfs_icwalk_match_id(ip, icw);
1136 if (!match)
1137 return false;
1138
1139 /* skip the inode if the file size is too small */
1140 if ((icw->icw_flags & XFS_ICWALK_FLAG_MINFILESIZE) &&
1141 XFS_ISIZE(ip) < icw->icw_min_file_size)
1142 return false;
1143
1144 return true;
1145 }
1146
1147 /*
1148 * This is a fast pass over the inode cache to try to get reclaim moving on as
1149 * many inodes as possible in a short period of time. It kicks itself every few
1150 * seconds, as well as being kicked by the inode cache shrinker when memory
1151 * goes low.
1152 */
1153 void
xfs_reclaim_worker(struct work_struct * work)1154 xfs_reclaim_worker(
1155 struct work_struct *work)
1156 {
1157 struct xfs_mount *mp = container_of(to_delayed_work(work),
1158 struct xfs_mount, m_reclaim_work);
1159
1160 xfs_icwalk(mp, XFS_ICWALK_RECLAIM, NULL);
1161 xfs_reclaim_work_queue(mp);
1162 }
1163
1164 STATIC int
xfs_inode_free_eofblocks(struct xfs_inode * ip,struct xfs_icwalk * icw,unsigned int * lockflags)1165 xfs_inode_free_eofblocks(
1166 struct xfs_inode *ip,
1167 struct xfs_icwalk *icw,
1168 unsigned int *lockflags)
1169 {
1170 bool wait;
1171
1172 wait = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC);
1173
1174 if (!xfs_iflags_test(ip, XFS_IEOFBLOCKS))
1175 return 0;
1176
1177 /*
1178 * If the mapping is dirty the operation can block and wait for some
1179 * time. Unless we are waiting, skip it.
1180 */
1181 if (!wait && mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
1182 return 0;
1183
1184 if (!xfs_icwalk_match(ip, icw))
1185 return 0;
1186
1187 /*
1188 * If the caller is waiting, return -EAGAIN to keep the background
1189 * scanner moving and revisit the inode in a subsequent pass.
1190 */
1191 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1192 if (wait)
1193 return -EAGAIN;
1194 return 0;
1195 }
1196 *lockflags |= XFS_IOLOCK_EXCL;
1197
1198 if (xfs_can_free_eofblocks(ip))
1199 return xfs_free_eofblocks(ip);
1200
1201 /* inode could be preallocated */
1202 trace_xfs_inode_free_eofblocks_invalid(ip);
1203 xfs_inode_clear_eofblocks_tag(ip);
1204 return 0;
1205 }
1206
1207 static void
xfs_blockgc_set_iflag(struct xfs_inode * ip,unsigned long iflag)1208 xfs_blockgc_set_iflag(
1209 struct xfs_inode *ip,
1210 unsigned long iflag)
1211 {
1212 struct xfs_mount *mp = ip->i_mount;
1213 struct xfs_perag *pag;
1214
1215 ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0);
1216
1217 /*
1218 * Don't bother locking the AG and looking up in the radix trees
1219 * if we already know that we have the tag set.
1220 */
1221 if (ip->i_flags & iflag)
1222 return;
1223 spin_lock(&ip->i_flags_lock);
1224 ip->i_flags |= iflag;
1225 spin_unlock(&ip->i_flags_lock);
1226
1227 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1228 spin_lock(&pag->pag_ici_lock);
1229
1230 xfs_perag_set_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
1231 XFS_ICI_BLOCKGC_TAG);
1232
1233 spin_unlock(&pag->pag_ici_lock);
1234 xfs_perag_put(pag);
1235 }
1236
1237 void
xfs_inode_set_eofblocks_tag(xfs_inode_t * ip)1238 xfs_inode_set_eofblocks_tag(
1239 xfs_inode_t *ip)
1240 {
1241 trace_xfs_inode_set_eofblocks_tag(ip);
1242 return xfs_blockgc_set_iflag(ip, XFS_IEOFBLOCKS);
1243 }
1244
1245 static void
xfs_blockgc_clear_iflag(struct xfs_inode * ip,unsigned long iflag)1246 xfs_blockgc_clear_iflag(
1247 struct xfs_inode *ip,
1248 unsigned long iflag)
1249 {
1250 struct xfs_mount *mp = ip->i_mount;
1251 struct xfs_perag *pag;
1252 bool clear_tag;
1253
1254 ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0);
1255
1256 spin_lock(&ip->i_flags_lock);
1257 ip->i_flags &= ~iflag;
1258 clear_tag = (ip->i_flags & (XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0;
1259 spin_unlock(&ip->i_flags_lock);
1260
1261 if (!clear_tag)
1262 return;
1263
1264 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1265 spin_lock(&pag->pag_ici_lock);
1266
1267 xfs_perag_clear_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
1268 XFS_ICI_BLOCKGC_TAG);
1269
1270 spin_unlock(&pag->pag_ici_lock);
1271 xfs_perag_put(pag);
1272 }
1273
1274 void
xfs_inode_clear_eofblocks_tag(xfs_inode_t * ip)1275 xfs_inode_clear_eofblocks_tag(
1276 xfs_inode_t *ip)
1277 {
1278 trace_xfs_inode_clear_eofblocks_tag(ip);
1279 return xfs_blockgc_clear_iflag(ip, XFS_IEOFBLOCKS);
1280 }
1281
1282 /*
1283 * Prepare to free COW fork blocks from an inode.
1284 */
1285 static bool
xfs_prep_free_cowblocks(struct xfs_inode * ip,struct xfs_icwalk * icw)1286 xfs_prep_free_cowblocks(
1287 struct xfs_inode *ip,
1288 struct xfs_icwalk *icw)
1289 {
1290 bool sync;
1291
1292 sync = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC);
1293
1294 /*
1295 * Just clear the tag if we have an empty cow fork or none at all. It's
1296 * possible the inode was fully unshared since it was originally tagged.
1297 */
1298 if (!xfs_inode_has_cow_data(ip)) {
1299 trace_xfs_inode_free_cowblocks_invalid(ip);
1300 xfs_inode_clear_cowblocks_tag(ip);
1301 return false;
1302 }
1303
1304 /*
1305 * A cowblocks trim of an inode can have a significant effect on
1306 * fragmentation even when a reasonable COW extent size hint is set.
1307 * Therefore, we prefer to not process cowblocks unless they are clean
1308 * and idle. We can never process a cowblocks inode that is dirty or has
1309 * in-flight I/O under any circumstances, because outstanding writeback
1310 * or dio expects targeted COW fork blocks exist through write
1311 * completion where they can be remapped into the data fork.
1312 *
1313 * Therefore, the heuristic used here is to never process inodes
1314 * currently opened for write from background (i.e. non-sync) scans. For
1315 * sync scans, use the pagecache/dio state of the inode to ensure we
1316 * never free COW fork blocks out from under pending I/O.
1317 */
1318 if (!sync && inode_is_open_for_write(VFS_I(ip)))
1319 return false;
1320 return xfs_can_free_cowblocks(ip);
1321 }
1322
1323 /*
1324 * Automatic CoW Reservation Freeing
1325 *
1326 * These functions automatically garbage collect leftover CoW reservations
1327 * that were made on behalf of a cowextsize hint when we start to run out
1328 * of quota or when the reservations sit around for too long. If the file
1329 * has dirty pages or is undergoing writeback, its CoW reservations will
1330 * be retained.
1331 *
1332 * The actual garbage collection piggybacks off the same code that runs
1333 * the speculative EOF preallocation garbage collector.
1334 */
1335 STATIC int
xfs_inode_free_cowblocks(struct xfs_inode * ip,struct xfs_icwalk * icw,unsigned int * lockflags)1336 xfs_inode_free_cowblocks(
1337 struct xfs_inode *ip,
1338 struct xfs_icwalk *icw,
1339 unsigned int *lockflags)
1340 {
1341 bool wait;
1342 int ret = 0;
1343
1344 wait = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC);
1345
1346 if (!xfs_iflags_test(ip, XFS_ICOWBLOCKS))
1347 return 0;
1348
1349 if (!xfs_prep_free_cowblocks(ip, icw))
1350 return 0;
1351
1352 if (!xfs_icwalk_match(ip, icw))
1353 return 0;
1354
1355 /*
1356 * If the caller is waiting, return -EAGAIN to keep the background
1357 * scanner moving and revisit the inode in a subsequent pass.
1358 */
1359 if (!(*lockflags & XFS_IOLOCK_EXCL) &&
1360 !xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1361 if (wait)
1362 return -EAGAIN;
1363 return 0;
1364 }
1365 *lockflags |= XFS_IOLOCK_EXCL;
1366
1367 if (!xfs_ilock_nowait(ip, XFS_MMAPLOCK_EXCL)) {
1368 if (wait)
1369 return -EAGAIN;
1370 return 0;
1371 }
1372 *lockflags |= XFS_MMAPLOCK_EXCL;
1373
1374 /*
1375 * Check again, nobody else should be able to dirty blocks or change
1376 * the reflink iflag now that we have the first two locks held.
1377 */
1378 if (xfs_prep_free_cowblocks(ip, icw))
1379 ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, false);
1380 return ret;
1381 }
1382
1383 void
xfs_inode_set_cowblocks_tag(xfs_inode_t * ip)1384 xfs_inode_set_cowblocks_tag(
1385 xfs_inode_t *ip)
1386 {
1387 trace_xfs_inode_set_cowblocks_tag(ip);
1388 return xfs_blockgc_set_iflag(ip, XFS_ICOWBLOCKS);
1389 }
1390
1391 void
xfs_inode_clear_cowblocks_tag(xfs_inode_t * ip)1392 xfs_inode_clear_cowblocks_tag(
1393 xfs_inode_t *ip)
1394 {
1395 trace_xfs_inode_clear_cowblocks_tag(ip);
1396 return xfs_blockgc_clear_iflag(ip, XFS_ICOWBLOCKS);
1397 }
1398
1399 /* Disable post-EOF and CoW block auto-reclamation. */
1400 void
xfs_blockgc_stop(struct xfs_mount * mp)1401 xfs_blockgc_stop(
1402 struct xfs_mount *mp)
1403 {
1404 struct xfs_perag *pag;
1405 xfs_agnumber_t agno;
1406
1407 if (!xfs_clear_blockgc_enabled(mp))
1408 return;
1409
1410 for_each_perag(mp, agno, pag)
1411 cancel_delayed_work_sync(&pag->pag_blockgc_work);
1412 trace_xfs_blockgc_stop(mp, __return_address);
1413 }
1414
1415 /* Enable post-EOF and CoW block auto-reclamation. */
1416 void
xfs_blockgc_start(struct xfs_mount * mp)1417 xfs_blockgc_start(
1418 struct xfs_mount *mp)
1419 {
1420 struct xfs_perag *pag = NULL;
1421
1422 if (xfs_set_blockgc_enabled(mp))
1423 return;
1424
1425 trace_xfs_blockgc_start(mp, __return_address);
1426 while ((pag = xfs_perag_grab_next_tag(mp, pag, XFS_ICI_BLOCKGC_TAG)))
1427 xfs_blockgc_queue(pag);
1428 }
1429
1430 /* Don't try to run block gc on an inode that's in any of these states. */
1431 #define XFS_BLOCKGC_NOGRAB_IFLAGS (XFS_INEW | \
1432 XFS_NEED_INACTIVE | \
1433 XFS_INACTIVATING | \
1434 XFS_IRECLAIMABLE | \
1435 XFS_IRECLAIM)
1436 /*
1437 * Decide if the given @ip is eligible for garbage collection of speculative
1438 * preallocations, and grab it if so. Returns true if it's ready to go or
1439 * false if we should just ignore it.
1440 */
1441 static bool
xfs_blockgc_igrab(struct xfs_inode * ip)1442 xfs_blockgc_igrab(
1443 struct xfs_inode *ip)
1444 {
1445 struct inode *inode = VFS_I(ip);
1446
1447 ASSERT(rcu_read_lock_held());
1448
1449 /* Check for stale RCU freed inode */
1450 spin_lock(&ip->i_flags_lock);
1451 if (!ip->i_ino)
1452 goto out_unlock_noent;
1453
1454 if (ip->i_flags & XFS_BLOCKGC_NOGRAB_IFLAGS)
1455 goto out_unlock_noent;
1456 spin_unlock(&ip->i_flags_lock);
1457
1458 /* nothing to sync during shutdown */
1459 if (xfs_is_shutdown(ip->i_mount))
1460 return false;
1461
1462 /* If we can't grab the inode, it must on it's way to reclaim. */
1463 if (!igrab(inode))
1464 return false;
1465
1466 /* inode is valid */
1467 return true;
1468
1469 out_unlock_noent:
1470 spin_unlock(&ip->i_flags_lock);
1471 return false;
1472 }
1473
1474 /* Scan one incore inode for block preallocations that we can remove. */
1475 static int
xfs_blockgc_scan_inode(struct xfs_inode * ip,struct xfs_icwalk * icw)1476 xfs_blockgc_scan_inode(
1477 struct xfs_inode *ip,
1478 struct xfs_icwalk *icw)
1479 {
1480 unsigned int lockflags = 0;
1481 int error;
1482
1483 error = xfs_inode_free_eofblocks(ip, icw, &lockflags);
1484 if (error)
1485 goto unlock;
1486
1487 error = xfs_inode_free_cowblocks(ip, icw, &lockflags);
1488 unlock:
1489 if (lockflags)
1490 xfs_iunlock(ip, lockflags);
1491 xfs_irele(ip);
1492 return error;
1493 }
1494
1495 /* Background worker that trims preallocated space. */
1496 void
xfs_blockgc_worker(struct work_struct * work)1497 xfs_blockgc_worker(
1498 struct work_struct *work)
1499 {
1500 struct xfs_perag *pag = container_of(to_delayed_work(work),
1501 struct xfs_perag, pag_blockgc_work);
1502 struct xfs_mount *mp = pag->pag_mount;
1503 int error;
1504
1505 trace_xfs_blockgc_worker(mp, __return_address);
1506
1507 error = xfs_icwalk_ag(pag, XFS_ICWALK_BLOCKGC, NULL);
1508 if (error)
1509 xfs_info(mp, "AG %u preallocation gc worker failed, err=%d",
1510 pag->pag_agno, error);
1511 xfs_blockgc_queue(pag);
1512 }
1513
1514 /*
1515 * Try to free space in the filesystem by purging inactive inodes, eofblocks
1516 * and cowblocks.
1517 */
1518 int
xfs_blockgc_free_space(struct xfs_mount * mp,struct xfs_icwalk * icw)1519 xfs_blockgc_free_space(
1520 struct xfs_mount *mp,
1521 struct xfs_icwalk *icw)
1522 {
1523 int error;
1524
1525 trace_xfs_blockgc_free_space(mp, icw, _RET_IP_);
1526
1527 error = xfs_icwalk(mp, XFS_ICWALK_BLOCKGC, icw);
1528 if (error)
1529 return error;
1530
1531 return xfs_inodegc_flush(mp);
1532 }
1533
1534 /*
1535 * Reclaim all the free space that we can by scheduling the background blockgc
1536 * and inodegc workers immediately and waiting for them all to clear.
1537 */
1538 int
xfs_blockgc_flush_all(struct xfs_mount * mp)1539 xfs_blockgc_flush_all(
1540 struct xfs_mount *mp)
1541 {
1542 struct xfs_perag *pag = NULL;
1543
1544 trace_xfs_blockgc_flush_all(mp, __return_address);
1545
1546 /*
1547 * For each blockgc worker, move its queue time up to now. If it wasn't
1548 * queued, it will not be requeued. Then flush whatever is left.
1549 */
1550 while ((pag = xfs_perag_grab_next_tag(mp, pag, XFS_ICI_BLOCKGC_TAG)))
1551 mod_delayed_work(pag->pag_mount->m_blockgc_wq,
1552 &pag->pag_blockgc_work, 0);
1553
1554 while ((pag = xfs_perag_grab_next_tag(mp, pag, XFS_ICI_BLOCKGC_TAG)))
1555 flush_delayed_work(&pag->pag_blockgc_work);
1556
1557 return xfs_inodegc_flush(mp);
1558 }
1559
1560 /*
1561 * Run cow/eofblocks scans on the supplied dquots. We don't know exactly which
1562 * quota caused an allocation failure, so we make a best effort by including
1563 * each quota under low free space conditions (less than 1% free space) in the
1564 * scan.
1565 *
1566 * Callers must not hold any inode's ILOCK. If requesting a synchronous scan
1567 * (XFS_ICWALK_FLAG_SYNC), the caller also must not hold any inode's IOLOCK or
1568 * MMAPLOCK.
1569 */
1570 int
xfs_blockgc_free_dquots(struct xfs_mount * mp,struct xfs_dquot * udqp,struct xfs_dquot * gdqp,struct xfs_dquot * pdqp,unsigned int iwalk_flags)1571 xfs_blockgc_free_dquots(
1572 struct xfs_mount *mp,
1573 struct xfs_dquot *udqp,
1574 struct xfs_dquot *gdqp,
1575 struct xfs_dquot *pdqp,
1576 unsigned int iwalk_flags)
1577 {
1578 struct xfs_icwalk icw = {0};
1579 bool do_work = false;
1580
1581 if (!udqp && !gdqp && !pdqp)
1582 return 0;
1583
1584 /*
1585 * Run a scan to free blocks using the union filter to cover all
1586 * applicable quotas in a single scan.
1587 */
1588 icw.icw_flags = XFS_ICWALK_FLAG_UNION | iwalk_flags;
1589
1590 if (XFS_IS_UQUOTA_ENFORCED(mp) && udqp && xfs_dquot_lowsp(udqp)) {
1591 icw.icw_uid = make_kuid(mp->m_super->s_user_ns, udqp->q_id);
1592 icw.icw_flags |= XFS_ICWALK_FLAG_UID;
1593 do_work = true;
1594 }
1595
1596 if (XFS_IS_UQUOTA_ENFORCED(mp) && gdqp && xfs_dquot_lowsp(gdqp)) {
1597 icw.icw_gid = make_kgid(mp->m_super->s_user_ns, gdqp->q_id);
1598 icw.icw_flags |= XFS_ICWALK_FLAG_GID;
1599 do_work = true;
1600 }
1601
1602 if (XFS_IS_PQUOTA_ENFORCED(mp) && pdqp && xfs_dquot_lowsp(pdqp)) {
1603 icw.icw_prid = pdqp->q_id;
1604 icw.icw_flags |= XFS_ICWALK_FLAG_PRID;
1605 do_work = true;
1606 }
1607
1608 if (!do_work)
1609 return 0;
1610
1611 return xfs_blockgc_free_space(mp, &icw);
1612 }
1613
1614 /* Run cow/eofblocks scans on the quotas attached to the inode. */
1615 int
xfs_blockgc_free_quota(struct xfs_inode * ip,unsigned int iwalk_flags)1616 xfs_blockgc_free_quota(
1617 struct xfs_inode *ip,
1618 unsigned int iwalk_flags)
1619 {
1620 return xfs_blockgc_free_dquots(ip->i_mount,
1621 xfs_inode_dquot(ip, XFS_DQTYPE_USER),
1622 xfs_inode_dquot(ip, XFS_DQTYPE_GROUP),
1623 xfs_inode_dquot(ip, XFS_DQTYPE_PROJ), iwalk_flags);
1624 }
1625
1626 /* XFS Inode Cache Walking Code */
1627
1628 /*
1629 * The inode lookup is done in batches to keep the amount of lock traffic and
1630 * radix tree lookups to a minimum. The batch size is a trade off between
1631 * lookup reduction and stack usage. This is in the reclaim path, so we can't
1632 * be too greedy.
1633 */
1634 #define XFS_LOOKUP_BATCH 32
1635
1636
1637 /*
1638 * Decide if we want to grab this inode in anticipation of doing work towards
1639 * the goal.
1640 */
1641 static inline bool
xfs_icwalk_igrab(enum xfs_icwalk_goal goal,struct xfs_inode * ip,struct xfs_icwalk * icw)1642 xfs_icwalk_igrab(
1643 enum xfs_icwalk_goal goal,
1644 struct xfs_inode *ip,
1645 struct xfs_icwalk *icw)
1646 {
1647 switch (goal) {
1648 case XFS_ICWALK_BLOCKGC:
1649 return xfs_blockgc_igrab(ip);
1650 case XFS_ICWALK_RECLAIM:
1651 return xfs_reclaim_igrab(ip, icw);
1652 default:
1653 return false;
1654 }
1655 }
1656
1657 /*
1658 * Process an inode. Each processing function must handle any state changes
1659 * made by the icwalk igrab function. Return -EAGAIN to skip an inode.
1660 */
1661 static inline int
xfs_icwalk_process_inode(enum xfs_icwalk_goal goal,struct xfs_inode * ip,struct xfs_perag * pag,struct xfs_icwalk * icw)1662 xfs_icwalk_process_inode(
1663 enum xfs_icwalk_goal goal,
1664 struct xfs_inode *ip,
1665 struct xfs_perag *pag,
1666 struct xfs_icwalk *icw)
1667 {
1668 int error = 0;
1669
1670 switch (goal) {
1671 case XFS_ICWALK_BLOCKGC:
1672 error = xfs_blockgc_scan_inode(ip, icw);
1673 break;
1674 case XFS_ICWALK_RECLAIM:
1675 xfs_reclaim_inode(ip, pag);
1676 break;
1677 }
1678 return error;
1679 }
1680
1681 /*
1682 * For a given per-AG structure @pag and a goal, grab qualifying inodes and
1683 * process them in some manner.
1684 */
1685 static int
xfs_icwalk_ag(struct xfs_perag * pag,enum xfs_icwalk_goal goal,struct xfs_icwalk * icw)1686 xfs_icwalk_ag(
1687 struct xfs_perag *pag,
1688 enum xfs_icwalk_goal goal,
1689 struct xfs_icwalk *icw)
1690 {
1691 struct xfs_mount *mp = pag->pag_mount;
1692 uint32_t first_index;
1693 int last_error = 0;
1694 int skipped;
1695 bool done;
1696 int nr_found;
1697
1698 restart:
1699 done = false;
1700 skipped = 0;
1701 if (goal == XFS_ICWALK_RECLAIM)
1702 first_index = READ_ONCE(pag->pag_ici_reclaim_cursor);
1703 else
1704 first_index = 0;
1705 nr_found = 0;
1706 do {
1707 struct xfs_inode *batch[XFS_LOOKUP_BATCH];
1708 int error = 0;
1709 int i;
1710
1711 rcu_read_lock();
1712
1713 nr_found = radix_tree_gang_lookup_tag(&pag->pag_ici_root,
1714 (void **) batch, first_index,
1715 XFS_LOOKUP_BATCH, goal);
1716 if (!nr_found) {
1717 done = true;
1718 rcu_read_unlock();
1719 break;
1720 }
1721
1722 /*
1723 * Grab the inodes before we drop the lock. if we found
1724 * nothing, nr == 0 and the loop will be skipped.
1725 */
1726 for (i = 0; i < nr_found; i++) {
1727 struct xfs_inode *ip = batch[i];
1728
1729 if (done || !xfs_icwalk_igrab(goal, ip, icw))
1730 batch[i] = NULL;
1731
1732 /*
1733 * Update the index for the next lookup. Catch
1734 * overflows into the next AG range which can occur if
1735 * we have inodes in the last block of the AG and we
1736 * are currently pointing to the last inode.
1737 *
1738 * Because we may see inodes that are from the wrong AG
1739 * due to RCU freeing and reallocation, only update the
1740 * index if it lies in this AG. It was a race that lead
1741 * us to see this inode, so another lookup from the
1742 * same index will not find it again.
1743 */
1744 if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
1745 continue;
1746 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
1747 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
1748 done = true;
1749 }
1750
1751 /* unlock now we've grabbed the inodes. */
1752 rcu_read_unlock();
1753
1754 for (i = 0; i < nr_found; i++) {
1755 if (!batch[i])
1756 continue;
1757 error = xfs_icwalk_process_inode(goal, batch[i], pag,
1758 icw);
1759 if (error == -EAGAIN) {
1760 skipped++;
1761 continue;
1762 }
1763 if (error && last_error != -EFSCORRUPTED)
1764 last_error = error;
1765 }
1766
1767 /* bail out if the filesystem is corrupted. */
1768 if (error == -EFSCORRUPTED)
1769 break;
1770
1771 cond_resched();
1772
1773 if (icw && (icw->icw_flags & XFS_ICWALK_FLAG_SCAN_LIMIT)) {
1774 icw->icw_scan_limit -= XFS_LOOKUP_BATCH;
1775 if (icw->icw_scan_limit <= 0)
1776 break;
1777 }
1778 } while (nr_found && !done);
1779
1780 if (goal == XFS_ICWALK_RECLAIM) {
1781 if (done)
1782 first_index = 0;
1783 WRITE_ONCE(pag->pag_ici_reclaim_cursor, first_index);
1784 }
1785
1786 if (skipped) {
1787 delay(1);
1788 goto restart;
1789 }
1790 return last_error;
1791 }
1792
1793 /* Walk all incore inodes to achieve a given goal. */
1794 static int
xfs_icwalk(struct xfs_mount * mp,enum xfs_icwalk_goal goal,struct xfs_icwalk * icw)1795 xfs_icwalk(
1796 struct xfs_mount *mp,
1797 enum xfs_icwalk_goal goal,
1798 struct xfs_icwalk *icw)
1799 {
1800 struct xfs_perag *pag = NULL;
1801 int error = 0;
1802 int last_error = 0;
1803
1804 while ((pag = xfs_perag_grab_next_tag(mp, pag, goal))) {
1805 error = xfs_icwalk_ag(pag, goal, icw);
1806 if (error) {
1807 last_error = error;
1808 if (error == -EFSCORRUPTED) {
1809 xfs_perag_rele(pag);
1810 break;
1811 }
1812 }
1813 }
1814 return last_error;
1815 BUILD_BUG_ON(XFS_ICWALK_PRIVATE_FLAGS & XFS_ICWALK_FLAGS_VALID);
1816 }
1817
1818 #ifdef DEBUG
1819 static void
xfs_check_delalloc(struct xfs_inode * ip,int whichfork)1820 xfs_check_delalloc(
1821 struct xfs_inode *ip,
1822 int whichfork)
1823 {
1824 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, whichfork);
1825 struct xfs_bmbt_irec got;
1826 struct xfs_iext_cursor icur;
1827
1828 if (!ifp || !xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got))
1829 return;
1830 do {
1831 if (isnullstartblock(got.br_startblock)) {
1832 xfs_warn(ip->i_mount,
1833 "ino %llx %s fork has delalloc extent at [0x%llx:0x%llx]",
1834 ip->i_ino,
1835 whichfork == XFS_DATA_FORK ? "data" : "cow",
1836 got.br_startoff, got.br_blockcount);
1837 }
1838 } while (xfs_iext_next_extent(ifp, &icur, &got));
1839 }
1840 #else
1841 #define xfs_check_delalloc(ip, whichfork) do { } while (0)
1842 #endif
1843
1844 /* Schedule the inode for reclaim. */
1845 static void
xfs_inodegc_set_reclaimable(struct xfs_inode * ip)1846 xfs_inodegc_set_reclaimable(
1847 struct xfs_inode *ip)
1848 {
1849 struct xfs_mount *mp = ip->i_mount;
1850 struct xfs_perag *pag;
1851
1852 if (!xfs_is_shutdown(mp) && ip->i_delayed_blks) {
1853 xfs_check_delalloc(ip, XFS_DATA_FORK);
1854 xfs_check_delalloc(ip, XFS_COW_FORK);
1855 ASSERT(0);
1856 }
1857
1858 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1859 spin_lock(&pag->pag_ici_lock);
1860 spin_lock(&ip->i_flags_lock);
1861
1862 trace_xfs_inode_set_reclaimable(ip);
1863 ip->i_flags &= ~(XFS_NEED_INACTIVE | XFS_INACTIVATING);
1864 ip->i_flags |= XFS_IRECLAIMABLE;
1865 xfs_perag_set_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
1866 XFS_ICI_RECLAIM_TAG);
1867
1868 spin_unlock(&ip->i_flags_lock);
1869 spin_unlock(&pag->pag_ici_lock);
1870 xfs_perag_put(pag);
1871 }
1872
1873 /*
1874 * Free all speculative preallocations and possibly even the inode itself.
1875 * This is the last chance to make changes to an otherwise unreferenced file
1876 * before incore reclamation happens.
1877 */
1878 static int
xfs_inodegc_inactivate(struct xfs_inode * ip)1879 xfs_inodegc_inactivate(
1880 struct xfs_inode *ip)
1881 {
1882 int error;
1883
1884 trace_xfs_inode_inactivating(ip);
1885 error = xfs_inactive(ip);
1886 xfs_inodegc_set_reclaimable(ip);
1887 return error;
1888
1889 }
1890
1891 void
xfs_inodegc_worker(struct work_struct * work)1892 xfs_inodegc_worker(
1893 struct work_struct *work)
1894 {
1895 struct xfs_inodegc *gc = container_of(to_delayed_work(work),
1896 struct xfs_inodegc, work);
1897 struct llist_node *node = llist_del_all(&gc->list);
1898 struct xfs_inode *ip, *n;
1899 struct xfs_mount *mp = gc->mp;
1900 unsigned int nofs_flag;
1901
1902 /*
1903 * Clear the cpu mask bit and ensure that we have seen the latest
1904 * update of the gc structure associated with this CPU. This matches
1905 * with the release semantics used when setting the cpumask bit in
1906 * xfs_inodegc_queue.
1907 */
1908 cpumask_clear_cpu(gc->cpu, &mp->m_inodegc_cpumask);
1909 smp_mb__after_atomic();
1910
1911 WRITE_ONCE(gc->items, 0);
1912
1913 if (!node)
1914 return;
1915
1916 /*
1917 * We can allocate memory here while doing writeback on behalf of
1918 * memory reclaim. To avoid memory allocation deadlocks set the
1919 * task-wide nofs context for the following operations.
1920 */
1921 nofs_flag = memalloc_nofs_save();
1922
1923 ip = llist_entry(node, struct xfs_inode, i_gclist);
1924 trace_xfs_inodegc_worker(mp, READ_ONCE(gc->shrinker_hits));
1925
1926 WRITE_ONCE(gc->shrinker_hits, 0);
1927 llist_for_each_entry_safe(ip, n, node, i_gclist) {
1928 int error;
1929
1930 xfs_iflags_set(ip, XFS_INACTIVATING);
1931 error = xfs_inodegc_inactivate(ip);
1932 if (error && !gc->error)
1933 gc->error = error;
1934 }
1935
1936 memalloc_nofs_restore(nofs_flag);
1937 }
1938
1939 /*
1940 * Expedite all pending inodegc work to run immediately. This does not wait for
1941 * completion of the work.
1942 */
1943 void
xfs_inodegc_push(struct xfs_mount * mp)1944 xfs_inodegc_push(
1945 struct xfs_mount *mp)
1946 {
1947 if (!xfs_is_inodegc_enabled(mp))
1948 return;
1949 trace_xfs_inodegc_push(mp, __return_address);
1950 xfs_inodegc_queue_all(mp);
1951 }
1952
1953 /*
1954 * Force all currently queued inode inactivation work to run immediately and
1955 * wait for the work to finish.
1956 */
1957 int
xfs_inodegc_flush(struct xfs_mount * mp)1958 xfs_inodegc_flush(
1959 struct xfs_mount *mp)
1960 {
1961 xfs_inodegc_push(mp);
1962 trace_xfs_inodegc_flush(mp, __return_address);
1963 return xfs_inodegc_wait_all(mp);
1964 }
1965
1966 /*
1967 * Flush all the pending work and then disable the inode inactivation background
1968 * workers and wait for them to stop. Caller must hold sb->s_umount to
1969 * coordinate changes in the inodegc_enabled state.
1970 */
1971 void
xfs_inodegc_stop(struct xfs_mount * mp)1972 xfs_inodegc_stop(
1973 struct xfs_mount *mp)
1974 {
1975 bool rerun;
1976
1977 if (!xfs_clear_inodegc_enabled(mp))
1978 return;
1979
1980 /*
1981 * Drain all pending inodegc work, including inodes that could be
1982 * queued by racing xfs_inodegc_queue or xfs_inodegc_shrinker_scan
1983 * threads that sample the inodegc state just prior to us clearing it.
1984 * The inodegc flag state prevents new threads from queuing more
1985 * inodes, so we queue pending work items and flush the workqueue until
1986 * all inodegc lists are empty. IOWs, we cannot use drain_workqueue
1987 * here because it does not allow other unserialized mechanisms to
1988 * reschedule inodegc work while this draining is in progress.
1989 */
1990 xfs_inodegc_queue_all(mp);
1991 do {
1992 flush_workqueue(mp->m_inodegc_wq);
1993 rerun = xfs_inodegc_queue_all(mp);
1994 } while (rerun);
1995
1996 trace_xfs_inodegc_stop(mp, __return_address);
1997 }
1998
1999 /*
2000 * Enable the inode inactivation background workers and schedule deferred inode
2001 * inactivation work if there is any. Caller must hold sb->s_umount to
2002 * coordinate changes in the inodegc_enabled state.
2003 */
2004 void
xfs_inodegc_start(struct xfs_mount * mp)2005 xfs_inodegc_start(
2006 struct xfs_mount *mp)
2007 {
2008 if (xfs_set_inodegc_enabled(mp))
2009 return;
2010
2011 trace_xfs_inodegc_start(mp, __return_address);
2012 xfs_inodegc_queue_all(mp);
2013 }
2014
2015 #ifdef CONFIG_XFS_RT
2016 static inline bool
xfs_inodegc_want_queue_rt_file(struct xfs_inode * ip)2017 xfs_inodegc_want_queue_rt_file(
2018 struct xfs_inode *ip)
2019 {
2020 struct xfs_mount *mp = ip->i_mount;
2021
2022 if (!XFS_IS_REALTIME_INODE(ip))
2023 return false;
2024
2025 if (__percpu_counter_compare(&mp->m_frextents,
2026 mp->m_low_rtexts[XFS_LOWSP_5_PCNT],
2027 XFS_FDBLOCKS_BATCH) < 0)
2028 return true;
2029
2030 return false;
2031 }
2032 #else
2033 # define xfs_inodegc_want_queue_rt_file(ip) (false)
2034 #endif /* CONFIG_XFS_RT */
2035
2036 /*
2037 * Schedule the inactivation worker when:
2038 *
2039 * - We've accumulated more than one inode cluster buffer's worth of inodes.
2040 * - There is less than 5% free space left.
2041 * - Any of the quotas for this inode are near an enforcement limit.
2042 */
2043 static inline bool
xfs_inodegc_want_queue_work(struct xfs_inode * ip,unsigned int items)2044 xfs_inodegc_want_queue_work(
2045 struct xfs_inode *ip,
2046 unsigned int items)
2047 {
2048 struct xfs_mount *mp = ip->i_mount;
2049
2050 if (items > mp->m_ino_geo.inodes_per_cluster)
2051 return true;
2052
2053 if (__percpu_counter_compare(&mp->m_fdblocks,
2054 mp->m_low_space[XFS_LOWSP_5_PCNT],
2055 XFS_FDBLOCKS_BATCH) < 0)
2056 return true;
2057
2058 if (xfs_inodegc_want_queue_rt_file(ip))
2059 return true;
2060
2061 if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_USER))
2062 return true;
2063
2064 if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_GROUP))
2065 return true;
2066
2067 if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_PROJ))
2068 return true;
2069
2070 return false;
2071 }
2072
2073 /*
2074 * Upper bound on the number of inodes in each AG that can be queued for
2075 * inactivation at any given time, to avoid monopolizing the workqueue.
2076 */
2077 #define XFS_INODEGC_MAX_BACKLOG (4 * XFS_INODES_PER_CHUNK)
2078
2079 /*
2080 * Make the frontend wait for inactivations when:
2081 *
2082 * - Memory shrinkers queued the inactivation worker and it hasn't finished.
2083 * - The queue depth exceeds the maximum allowable percpu backlog.
2084 *
2085 * Note: If we are in a NOFS context here (e.g. current thread is running a
2086 * transaction) the we don't want to block here as inodegc progress may require
2087 * filesystem resources we hold to make progress and that could result in a
2088 * deadlock. Hence we skip out of here if we are in a scoped NOFS context.
2089 */
2090 static inline bool
xfs_inodegc_want_flush_work(struct xfs_inode * ip,unsigned int items,unsigned int shrinker_hits)2091 xfs_inodegc_want_flush_work(
2092 struct xfs_inode *ip,
2093 unsigned int items,
2094 unsigned int shrinker_hits)
2095 {
2096 if (current->flags & PF_MEMALLOC_NOFS)
2097 return false;
2098
2099 if (shrinker_hits > 0)
2100 return true;
2101
2102 if (items > XFS_INODEGC_MAX_BACKLOG)
2103 return true;
2104
2105 return false;
2106 }
2107
2108 /*
2109 * Queue a background inactivation worker if there are inodes that need to be
2110 * inactivated and higher level xfs code hasn't disabled the background
2111 * workers.
2112 */
2113 static void
xfs_inodegc_queue(struct xfs_inode * ip)2114 xfs_inodegc_queue(
2115 struct xfs_inode *ip)
2116 {
2117 struct xfs_mount *mp = ip->i_mount;
2118 struct xfs_inodegc *gc;
2119 int items;
2120 unsigned int shrinker_hits;
2121 unsigned int cpu_nr;
2122 unsigned long queue_delay = 1;
2123
2124 trace_xfs_inode_set_need_inactive(ip);
2125 spin_lock(&ip->i_flags_lock);
2126 ip->i_flags |= XFS_NEED_INACTIVE;
2127 spin_unlock(&ip->i_flags_lock);
2128
2129 cpu_nr = get_cpu();
2130 gc = this_cpu_ptr(mp->m_inodegc);
2131 llist_add(&ip->i_gclist, &gc->list);
2132 items = READ_ONCE(gc->items);
2133 WRITE_ONCE(gc->items, items + 1);
2134 shrinker_hits = READ_ONCE(gc->shrinker_hits);
2135
2136 /*
2137 * Ensure the list add is always seen by anyone who finds the cpumask
2138 * bit set. This effectively gives the cpumask bit set operation
2139 * release ordering semantics.
2140 */
2141 smp_mb__before_atomic();
2142 if (!cpumask_test_cpu(cpu_nr, &mp->m_inodegc_cpumask))
2143 cpumask_test_and_set_cpu(cpu_nr, &mp->m_inodegc_cpumask);
2144
2145 /*
2146 * We queue the work while holding the current CPU so that the work
2147 * is scheduled to run on this CPU.
2148 */
2149 if (!xfs_is_inodegc_enabled(mp)) {
2150 put_cpu();
2151 return;
2152 }
2153
2154 if (xfs_inodegc_want_queue_work(ip, items))
2155 queue_delay = 0;
2156
2157 trace_xfs_inodegc_queue(mp, __return_address);
2158 mod_delayed_work_on(current_cpu(), mp->m_inodegc_wq, &gc->work,
2159 queue_delay);
2160 put_cpu();
2161
2162 if (xfs_inodegc_want_flush_work(ip, items, shrinker_hits)) {
2163 trace_xfs_inodegc_throttle(mp, __return_address);
2164 flush_delayed_work(&gc->work);
2165 }
2166 }
2167
2168 /*
2169 * We set the inode flag atomically with the radix tree tag. Once we get tag
2170 * lookups on the radix tree, this inode flag can go away.
2171 *
2172 * We always use background reclaim here because even if the inode is clean, it
2173 * still may be under IO and hence we have wait for IO completion to occur
2174 * before we can reclaim the inode. The background reclaim path handles this
2175 * more efficiently than we can here, so simply let background reclaim tear down
2176 * all inodes.
2177 */
2178 void
xfs_inode_mark_reclaimable(struct xfs_inode * ip)2179 xfs_inode_mark_reclaimable(
2180 struct xfs_inode *ip)
2181 {
2182 struct xfs_mount *mp = ip->i_mount;
2183 bool need_inactive;
2184
2185 XFS_STATS_INC(mp, vn_reclaim);
2186
2187 /*
2188 * We should never get here with any of the reclaim flags already set.
2189 */
2190 ASSERT_ALWAYS(!xfs_iflags_test(ip, XFS_ALL_IRECLAIM_FLAGS));
2191
2192 need_inactive = xfs_inode_needs_inactive(ip);
2193 if (need_inactive) {
2194 xfs_inodegc_queue(ip);
2195 return;
2196 }
2197
2198 /* Going straight to reclaim, so drop the dquots. */
2199 xfs_qm_dqdetach(ip);
2200 xfs_inodegc_set_reclaimable(ip);
2201 }
2202
2203 /*
2204 * Register a phony shrinker so that we can run background inodegc sooner when
2205 * there's memory pressure. Inactivation does not itself free any memory but
2206 * it does make inodes reclaimable, which eventually frees memory.
2207 *
2208 * The count function, seek value, and batch value are crafted to trigger the
2209 * scan function during the second round of scanning. Hopefully this means
2210 * that we reclaimed enough memory that initiating metadata transactions won't
2211 * make things worse.
2212 */
2213 #define XFS_INODEGC_SHRINKER_COUNT (1UL << DEF_PRIORITY)
2214 #define XFS_INODEGC_SHRINKER_BATCH ((XFS_INODEGC_SHRINKER_COUNT / 2) + 1)
2215
2216 static unsigned long
xfs_inodegc_shrinker_count(struct shrinker * shrink,struct shrink_control * sc)2217 xfs_inodegc_shrinker_count(
2218 struct shrinker *shrink,
2219 struct shrink_control *sc)
2220 {
2221 struct xfs_mount *mp = shrink->private_data;
2222 struct xfs_inodegc *gc;
2223 int cpu;
2224
2225 if (!xfs_is_inodegc_enabled(mp))
2226 return 0;
2227
2228 for_each_cpu(cpu, &mp->m_inodegc_cpumask) {
2229 gc = per_cpu_ptr(mp->m_inodegc, cpu);
2230 if (!llist_empty(&gc->list))
2231 return XFS_INODEGC_SHRINKER_COUNT;
2232 }
2233
2234 return 0;
2235 }
2236
2237 static unsigned long
xfs_inodegc_shrinker_scan(struct shrinker * shrink,struct shrink_control * sc)2238 xfs_inodegc_shrinker_scan(
2239 struct shrinker *shrink,
2240 struct shrink_control *sc)
2241 {
2242 struct xfs_mount *mp = shrink->private_data;
2243 struct xfs_inodegc *gc;
2244 int cpu;
2245 bool no_items = true;
2246
2247 if (!xfs_is_inodegc_enabled(mp))
2248 return SHRINK_STOP;
2249
2250 trace_xfs_inodegc_shrinker_scan(mp, sc, __return_address);
2251
2252 for_each_cpu(cpu, &mp->m_inodegc_cpumask) {
2253 gc = per_cpu_ptr(mp->m_inodegc, cpu);
2254 if (!llist_empty(&gc->list)) {
2255 unsigned int h = READ_ONCE(gc->shrinker_hits);
2256
2257 WRITE_ONCE(gc->shrinker_hits, h + 1);
2258 mod_delayed_work_on(cpu, mp->m_inodegc_wq, &gc->work, 0);
2259 no_items = false;
2260 }
2261 }
2262
2263 /*
2264 * If there are no inodes to inactivate, we don't want the shrinker
2265 * to think there's deferred work to call us back about.
2266 */
2267 if (no_items)
2268 return LONG_MAX;
2269
2270 return SHRINK_STOP;
2271 }
2272
2273 /* Register a shrinker so we can accelerate inodegc and throttle queuing. */
2274 int
xfs_inodegc_register_shrinker(struct xfs_mount * mp)2275 xfs_inodegc_register_shrinker(
2276 struct xfs_mount *mp)
2277 {
2278 mp->m_inodegc_shrinker = shrinker_alloc(SHRINKER_NONSLAB,
2279 "xfs-inodegc:%s",
2280 mp->m_super->s_id);
2281 if (!mp->m_inodegc_shrinker)
2282 return -ENOMEM;
2283
2284 mp->m_inodegc_shrinker->count_objects = xfs_inodegc_shrinker_count;
2285 mp->m_inodegc_shrinker->scan_objects = xfs_inodegc_shrinker_scan;
2286 mp->m_inodegc_shrinker->seeks = 0;
2287 mp->m_inodegc_shrinker->batch = XFS_INODEGC_SHRINKER_BATCH;
2288 mp->m_inodegc_shrinker->private_data = mp;
2289
2290 shrinker_register(mp->m_inodegc_shrinker);
2291
2292 return 0;
2293 }
2294