1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2014 Red Hat, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_trans.h"
14 #include "xfs_alloc.h"
15 #include "xfs_btree.h"
16 #include "xfs_btree_staging.h"
17 #include "xfs_rmap.h"
18 #include "xfs_rmap_btree.h"
19 #include "xfs_health.h"
20 #include "xfs_trace.h"
21 #include "xfs_error.h"
22 #include "xfs_extent_busy.h"
23 #include "xfs_ag.h"
24 #include "xfs_ag_resv.h"
25 #include "xfs_buf_mem.h"
26 #include "xfs_btree_mem.h"
27
28 static struct kmem_cache *xfs_rmapbt_cur_cache;
29
30 /*
31 * Reverse map btree.
32 *
33 * This is a per-ag tree used to track the owner(s) of a given extent. With
34 * reflink it is possible for there to be multiple owners, which is a departure
35 * from classic XFS. Owner records for data extents are inserted when the
36 * extent is mapped and removed when an extent is unmapped. Owner records for
37 * all other block types (i.e. metadata) are inserted when an extent is
38 * allocated and removed when an extent is freed. There can only be one owner
39 * of a metadata extent, usually an inode or some other metadata structure like
40 * an AG btree.
41 *
42 * The rmap btree is part of the free space management, so blocks for the tree
43 * are sourced from the agfl. Hence we need transaction reservation support for
44 * this tree so that the freelist is always large enough. This also impacts on
45 * the minimum space we need to leave free in the AG.
46 *
47 * The tree is ordered by [ag block, owner, offset]. This is a large key size,
48 * but it is the only way to enforce unique keys when a block can be owned by
49 * multiple files at any offset. There's no need to order/search by extent
50 * size for online updating/management of the tree. It is intended that most
51 * reverse lookups will be to find the owner(s) of a particular block, or to
52 * try to recover tree and file data from corrupt primary metadata.
53 */
54
55 static struct xfs_btree_cur *
xfs_rmapbt_dup_cursor(struct xfs_btree_cur * cur)56 xfs_rmapbt_dup_cursor(
57 struct xfs_btree_cur *cur)
58 {
59 return xfs_rmapbt_init_cursor(cur->bc_mp, cur->bc_tp,
60 cur->bc_ag.agbp, cur->bc_ag.pag);
61 }
62
63 STATIC void
xfs_rmapbt_set_root(struct xfs_btree_cur * cur,const union xfs_btree_ptr * ptr,int inc)64 xfs_rmapbt_set_root(
65 struct xfs_btree_cur *cur,
66 const union xfs_btree_ptr *ptr,
67 int inc)
68 {
69 struct xfs_buf *agbp = cur->bc_ag.agbp;
70 struct xfs_agf *agf = agbp->b_addr;
71
72 ASSERT(ptr->s != 0);
73
74 agf->agf_rmap_root = ptr->s;
75 be32_add_cpu(&agf->agf_rmap_level, inc);
76 cur->bc_ag.pag->pagf_rmap_level += inc;
77
78 xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS);
79 }
80
81 STATIC int
xfs_rmapbt_alloc_block(struct xfs_btree_cur * cur,const union xfs_btree_ptr * start,union xfs_btree_ptr * new,int * stat)82 xfs_rmapbt_alloc_block(
83 struct xfs_btree_cur *cur,
84 const union xfs_btree_ptr *start,
85 union xfs_btree_ptr *new,
86 int *stat)
87 {
88 struct xfs_buf *agbp = cur->bc_ag.agbp;
89 struct xfs_agf *agf = agbp->b_addr;
90 struct xfs_perag *pag = cur->bc_ag.pag;
91 struct xfs_alloc_arg args = { .len = 1 };
92 int error;
93 xfs_agblock_t bno;
94
95 /* Allocate the new block from the freelist. If we can't, give up. */
96 error = xfs_alloc_get_freelist(pag, cur->bc_tp, cur->bc_ag.agbp,
97 &bno, 1);
98 if (error)
99 return error;
100 if (bno == NULLAGBLOCK) {
101 *stat = 0;
102 return 0;
103 }
104
105 xfs_extent_busy_reuse(cur->bc_mp, pag, bno, 1, false);
106
107 new->s = cpu_to_be32(bno);
108 be32_add_cpu(&agf->agf_rmap_blocks, 1);
109 xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_RMAP_BLOCKS);
110
111 /*
112 * Since rmapbt blocks are sourced from the AGFL, they are allocated one
113 * at a time and the reservation updates don't require a transaction.
114 */
115 xfs_ag_resv_alloc_extent(pag, XFS_AG_RESV_RMAPBT, &args);
116
117 *stat = 1;
118 return 0;
119 }
120
121 STATIC int
xfs_rmapbt_free_block(struct xfs_btree_cur * cur,struct xfs_buf * bp)122 xfs_rmapbt_free_block(
123 struct xfs_btree_cur *cur,
124 struct xfs_buf *bp)
125 {
126 struct xfs_buf *agbp = cur->bc_ag.agbp;
127 struct xfs_agf *agf = agbp->b_addr;
128 struct xfs_perag *pag = cur->bc_ag.pag;
129 xfs_agblock_t bno;
130 int error;
131
132 bno = xfs_daddr_to_agbno(cur->bc_mp, xfs_buf_daddr(bp));
133 be32_add_cpu(&agf->agf_rmap_blocks, -1);
134 xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_RMAP_BLOCKS);
135 error = xfs_alloc_put_freelist(pag, cur->bc_tp, agbp, NULL, bno, 1);
136 if (error)
137 return error;
138
139 xfs_extent_busy_insert(cur->bc_tp, pag, bno, 1,
140 XFS_EXTENT_BUSY_SKIP_DISCARD);
141
142 xfs_ag_resv_free_extent(pag, XFS_AG_RESV_RMAPBT, NULL, 1);
143 return 0;
144 }
145
146 STATIC int
xfs_rmapbt_get_minrecs(struct xfs_btree_cur * cur,int level)147 xfs_rmapbt_get_minrecs(
148 struct xfs_btree_cur *cur,
149 int level)
150 {
151 return cur->bc_mp->m_rmap_mnr[level != 0];
152 }
153
154 STATIC int
xfs_rmapbt_get_maxrecs(struct xfs_btree_cur * cur,int level)155 xfs_rmapbt_get_maxrecs(
156 struct xfs_btree_cur *cur,
157 int level)
158 {
159 return cur->bc_mp->m_rmap_mxr[level != 0];
160 }
161
162 /*
163 * Convert the ondisk record's offset field into the ondisk key's offset field.
164 * Fork and bmbt are significant parts of the rmap record key, but written
165 * status is merely a record attribute.
166 */
ondisk_rec_offset_to_key(const union xfs_btree_rec * rec)167 static inline __be64 ondisk_rec_offset_to_key(const union xfs_btree_rec *rec)
168 {
169 return rec->rmap.rm_offset & ~cpu_to_be64(XFS_RMAP_OFF_UNWRITTEN);
170 }
171
172 STATIC void
xfs_rmapbt_init_key_from_rec(union xfs_btree_key * key,const union xfs_btree_rec * rec)173 xfs_rmapbt_init_key_from_rec(
174 union xfs_btree_key *key,
175 const union xfs_btree_rec *rec)
176 {
177 key->rmap.rm_startblock = rec->rmap.rm_startblock;
178 key->rmap.rm_owner = rec->rmap.rm_owner;
179 key->rmap.rm_offset = ondisk_rec_offset_to_key(rec);
180 }
181
182 /*
183 * The high key for a reverse mapping record can be computed by shifting
184 * the startblock and offset to the highest value that would still map
185 * to that record. In practice this means that we add blockcount-1 to
186 * the startblock for all records, and if the record is for a data/attr
187 * fork mapping, we add blockcount-1 to the offset too.
188 */
189 STATIC void
xfs_rmapbt_init_high_key_from_rec(union xfs_btree_key * key,const union xfs_btree_rec * rec)190 xfs_rmapbt_init_high_key_from_rec(
191 union xfs_btree_key *key,
192 const union xfs_btree_rec *rec)
193 {
194 uint64_t off;
195 int adj;
196
197 adj = be32_to_cpu(rec->rmap.rm_blockcount) - 1;
198
199 key->rmap.rm_startblock = rec->rmap.rm_startblock;
200 be32_add_cpu(&key->rmap.rm_startblock, adj);
201 key->rmap.rm_owner = rec->rmap.rm_owner;
202 key->rmap.rm_offset = ondisk_rec_offset_to_key(rec);
203 if (XFS_RMAP_NON_INODE_OWNER(be64_to_cpu(rec->rmap.rm_owner)) ||
204 XFS_RMAP_IS_BMBT_BLOCK(be64_to_cpu(rec->rmap.rm_offset)))
205 return;
206 off = be64_to_cpu(key->rmap.rm_offset);
207 off = (XFS_RMAP_OFF(off) + adj) | (off & ~XFS_RMAP_OFF_MASK);
208 key->rmap.rm_offset = cpu_to_be64(off);
209 }
210
211 STATIC void
xfs_rmapbt_init_rec_from_cur(struct xfs_btree_cur * cur,union xfs_btree_rec * rec)212 xfs_rmapbt_init_rec_from_cur(
213 struct xfs_btree_cur *cur,
214 union xfs_btree_rec *rec)
215 {
216 rec->rmap.rm_startblock = cpu_to_be32(cur->bc_rec.r.rm_startblock);
217 rec->rmap.rm_blockcount = cpu_to_be32(cur->bc_rec.r.rm_blockcount);
218 rec->rmap.rm_owner = cpu_to_be64(cur->bc_rec.r.rm_owner);
219 rec->rmap.rm_offset = cpu_to_be64(
220 xfs_rmap_irec_offset_pack(&cur->bc_rec.r));
221 }
222
223 STATIC void
xfs_rmapbt_init_ptr_from_cur(struct xfs_btree_cur * cur,union xfs_btree_ptr * ptr)224 xfs_rmapbt_init_ptr_from_cur(
225 struct xfs_btree_cur *cur,
226 union xfs_btree_ptr *ptr)
227 {
228 struct xfs_agf *agf = cur->bc_ag.agbp->b_addr;
229
230 ASSERT(cur->bc_ag.pag->pag_agno == be32_to_cpu(agf->agf_seqno));
231
232 ptr->s = agf->agf_rmap_root;
233 }
234
235 /*
236 * Mask the appropriate parts of the ondisk key field for a key comparison.
237 * Fork and bmbt are significant parts of the rmap record key, but written
238 * status is merely a record attribute.
239 */
offset_keymask(uint64_t offset)240 static inline uint64_t offset_keymask(uint64_t offset)
241 {
242 return offset & ~XFS_RMAP_OFF_UNWRITTEN;
243 }
244
245 STATIC int64_t
xfs_rmapbt_key_diff(struct xfs_btree_cur * cur,const union xfs_btree_key * key)246 xfs_rmapbt_key_diff(
247 struct xfs_btree_cur *cur,
248 const union xfs_btree_key *key)
249 {
250 struct xfs_rmap_irec *rec = &cur->bc_rec.r;
251 const struct xfs_rmap_key *kp = &key->rmap;
252 __u64 x, y;
253 int64_t d;
254
255 d = (int64_t)be32_to_cpu(kp->rm_startblock) - rec->rm_startblock;
256 if (d)
257 return d;
258
259 x = be64_to_cpu(kp->rm_owner);
260 y = rec->rm_owner;
261 if (x > y)
262 return 1;
263 else if (y > x)
264 return -1;
265
266 x = offset_keymask(be64_to_cpu(kp->rm_offset));
267 y = offset_keymask(xfs_rmap_irec_offset_pack(rec));
268 if (x > y)
269 return 1;
270 else if (y > x)
271 return -1;
272 return 0;
273 }
274
275 STATIC int64_t
xfs_rmapbt_diff_two_keys(struct xfs_btree_cur * cur,const union xfs_btree_key * k1,const union xfs_btree_key * k2,const union xfs_btree_key * mask)276 xfs_rmapbt_diff_two_keys(
277 struct xfs_btree_cur *cur,
278 const union xfs_btree_key *k1,
279 const union xfs_btree_key *k2,
280 const union xfs_btree_key *mask)
281 {
282 const struct xfs_rmap_key *kp1 = &k1->rmap;
283 const struct xfs_rmap_key *kp2 = &k2->rmap;
284 int64_t d;
285 __u64 x, y;
286
287 /* Doesn't make sense to mask off the physical space part */
288 ASSERT(!mask || mask->rmap.rm_startblock);
289
290 d = (int64_t)be32_to_cpu(kp1->rm_startblock) -
291 be32_to_cpu(kp2->rm_startblock);
292 if (d)
293 return d;
294
295 if (!mask || mask->rmap.rm_owner) {
296 x = be64_to_cpu(kp1->rm_owner);
297 y = be64_to_cpu(kp2->rm_owner);
298 if (x > y)
299 return 1;
300 else if (y > x)
301 return -1;
302 }
303
304 if (!mask || mask->rmap.rm_offset) {
305 /* Doesn't make sense to allow offset but not owner */
306 ASSERT(!mask || mask->rmap.rm_owner);
307
308 x = offset_keymask(be64_to_cpu(kp1->rm_offset));
309 y = offset_keymask(be64_to_cpu(kp2->rm_offset));
310 if (x > y)
311 return 1;
312 else if (y > x)
313 return -1;
314 }
315
316 return 0;
317 }
318
319 static xfs_failaddr_t
xfs_rmapbt_verify(struct xfs_buf * bp)320 xfs_rmapbt_verify(
321 struct xfs_buf *bp)
322 {
323 struct xfs_mount *mp = bp->b_mount;
324 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
325 struct xfs_perag *pag = bp->b_pag;
326 xfs_failaddr_t fa;
327 unsigned int level;
328
329 /*
330 * magic number and level verification
331 *
332 * During growfs operations, we can't verify the exact level or owner as
333 * the perag is not fully initialised and hence not attached to the
334 * buffer. In this case, check against the maximum tree depth.
335 *
336 * Similarly, during log recovery we will have a perag structure
337 * attached, but the agf information will not yet have been initialised
338 * from the on disk AGF. Again, we can only check against maximum limits
339 * in this case.
340 */
341 if (!xfs_verify_magic(bp, block->bb_magic))
342 return __this_address;
343
344 if (!xfs_has_rmapbt(mp))
345 return __this_address;
346 fa = xfs_btree_agblock_v5hdr_verify(bp);
347 if (fa)
348 return fa;
349
350 level = be16_to_cpu(block->bb_level);
351 if (pag && xfs_perag_initialised_agf(pag)) {
352 unsigned int maxlevel = pag->pagf_rmap_level;
353
354 #ifdef CONFIG_XFS_ONLINE_REPAIR
355 /*
356 * Online repair could be rewriting the free space btrees, so
357 * we'll validate against the larger of either tree while this
358 * is going on.
359 */
360 maxlevel = max_t(unsigned int, maxlevel,
361 pag->pagf_repair_rmap_level);
362 #endif
363 if (level >= maxlevel)
364 return __this_address;
365 } else if (level >= mp->m_rmap_maxlevels)
366 return __this_address;
367
368 return xfs_btree_agblock_verify(bp, mp->m_rmap_mxr[level != 0]);
369 }
370
371 static void
xfs_rmapbt_read_verify(struct xfs_buf * bp)372 xfs_rmapbt_read_verify(
373 struct xfs_buf *bp)
374 {
375 xfs_failaddr_t fa;
376
377 if (!xfs_btree_agblock_verify_crc(bp))
378 xfs_verifier_error(bp, -EFSBADCRC, __this_address);
379 else {
380 fa = xfs_rmapbt_verify(bp);
381 if (fa)
382 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
383 }
384
385 if (bp->b_error)
386 trace_xfs_btree_corrupt(bp, _RET_IP_);
387 }
388
389 static void
xfs_rmapbt_write_verify(struct xfs_buf * bp)390 xfs_rmapbt_write_verify(
391 struct xfs_buf *bp)
392 {
393 xfs_failaddr_t fa;
394
395 fa = xfs_rmapbt_verify(bp);
396 if (fa) {
397 trace_xfs_btree_corrupt(bp, _RET_IP_);
398 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
399 return;
400 }
401 xfs_btree_agblock_calc_crc(bp);
402
403 }
404
405 const struct xfs_buf_ops xfs_rmapbt_buf_ops = {
406 .name = "xfs_rmapbt",
407 .magic = { 0, cpu_to_be32(XFS_RMAP_CRC_MAGIC) },
408 .verify_read = xfs_rmapbt_read_verify,
409 .verify_write = xfs_rmapbt_write_verify,
410 .verify_struct = xfs_rmapbt_verify,
411 };
412
413 STATIC int
xfs_rmapbt_keys_inorder(struct xfs_btree_cur * cur,const union xfs_btree_key * k1,const union xfs_btree_key * k2)414 xfs_rmapbt_keys_inorder(
415 struct xfs_btree_cur *cur,
416 const union xfs_btree_key *k1,
417 const union xfs_btree_key *k2)
418 {
419 uint32_t x;
420 uint32_t y;
421 uint64_t a;
422 uint64_t b;
423
424 x = be32_to_cpu(k1->rmap.rm_startblock);
425 y = be32_to_cpu(k2->rmap.rm_startblock);
426 if (x < y)
427 return 1;
428 else if (x > y)
429 return 0;
430 a = be64_to_cpu(k1->rmap.rm_owner);
431 b = be64_to_cpu(k2->rmap.rm_owner);
432 if (a < b)
433 return 1;
434 else if (a > b)
435 return 0;
436 a = offset_keymask(be64_to_cpu(k1->rmap.rm_offset));
437 b = offset_keymask(be64_to_cpu(k2->rmap.rm_offset));
438 if (a <= b)
439 return 1;
440 return 0;
441 }
442
443 STATIC int
xfs_rmapbt_recs_inorder(struct xfs_btree_cur * cur,const union xfs_btree_rec * r1,const union xfs_btree_rec * r2)444 xfs_rmapbt_recs_inorder(
445 struct xfs_btree_cur *cur,
446 const union xfs_btree_rec *r1,
447 const union xfs_btree_rec *r2)
448 {
449 uint32_t x;
450 uint32_t y;
451 uint64_t a;
452 uint64_t b;
453
454 x = be32_to_cpu(r1->rmap.rm_startblock);
455 y = be32_to_cpu(r2->rmap.rm_startblock);
456 if (x < y)
457 return 1;
458 else if (x > y)
459 return 0;
460 a = be64_to_cpu(r1->rmap.rm_owner);
461 b = be64_to_cpu(r2->rmap.rm_owner);
462 if (a < b)
463 return 1;
464 else if (a > b)
465 return 0;
466 a = offset_keymask(be64_to_cpu(r1->rmap.rm_offset));
467 b = offset_keymask(be64_to_cpu(r2->rmap.rm_offset));
468 if (a <= b)
469 return 1;
470 return 0;
471 }
472
473 STATIC enum xbtree_key_contig
xfs_rmapbt_keys_contiguous(struct xfs_btree_cur * cur,const union xfs_btree_key * key1,const union xfs_btree_key * key2,const union xfs_btree_key * mask)474 xfs_rmapbt_keys_contiguous(
475 struct xfs_btree_cur *cur,
476 const union xfs_btree_key *key1,
477 const union xfs_btree_key *key2,
478 const union xfs_btree_key *mask)
479 {
480 ASSERT(!mask || mask->rmap.rm_startblock);
481
482 /*
483 * We only support checking contiguity of the physical space component.
484 * If any callers ever need more specificity than that, they'll have to
485 * implement it here.
486 */
487 ASSERT(!mask || (!mask->rmap.rm_owner && !mask->rmap.rm_offset));
488
489 return xbtree_key_contig(be32_to_cpu(key1->rmap.rm_startblock),
490 be32_to_cpu(key2->rmap.rm_startblock));
491 }
492
493 const struct xfs_btree_ops xfs_rmapbt_ops = {
494 .name = "rmap",
495 .type = XFS_BTREE_TYPE_AG,
496 .geom_flags = XFS_BTGEO_OVERLAPPING,
497
498 .rec_len = sizeof(struct xfs_rmap_rec),
499 /* Overlapping btree; 2 keys per pointer. */
500 .key_len = 2 * sizeof(struct xfs_rmap_key),
501 .ptr_len = XFS_BTREE_SHORT_PTR_LEN,
502
503 .lru_refs = XFS_RMAP_BTREE_REF,
504 .statoff = XFS_STATS_CALC_INDEX(xs_rmap_2),
505 .sick_mask = XFS_SICK_AG_RMAPBT,
506
507 .dup_cursor = xfs_rmapbt_dup_cursor,
508 .set_root = xfs_rmapbt_set_root,
509 .alloc_block = xfs_rmapbt_alloc_block,
510 .free_block = xfs_rmapbt_free_block,
511 .get_minrecs = xfs_rmapbt_get_minrecs,
512 .get_maxrecs = xfs_rmapbt_get_maxrecs,
513 .init_key_from_rec = xfs_rmapbt_init_key_from_rec,
514 .init_high_key_from_rec = xfs_rmapbt_init_high_key_from_rec,
515 .init_rec_from_cur = xfs_rmapbt_init_rec_from_cur,
516 .init_ptr_from_cur = xfs_rmapbt_init_ptr_from_cur,
517 .key_diff = xfs_rmapbt_key_diff,
518 .buf_ops = &xfs_rmapbt_buf_ops,
519 .diff_two_keys = xfs_rmapbt_diff_two_keys,
520 .keys_inorder = xfs_rmapbt_keys_inorder,
521 .recs_inorder = xfs_rmapbt_recs_inorder,
522 .keys_contiguous = xfs_rmapbt_keys_contiguous,
523 };
524
525 /*
526 * Create a new reverse mapping btree cursor.
527 *
528 * For staging cursors tp and agbp are NULL.
529 */
530 struct xfs_btree_cur *
xfs_rmapbt_init_cursor(struct xfs_mount * mp,struct xfs_trans * tp,struct xfs_buf * agbp,struct xfs_perag * pag)531 xfs_rmapbt_init_cursor(
532 struct xfs_mount *mp,
533 struct xfs_trans *tp,
534 struct xfs_buf *agbp,
535 struct xfs_perag *pag)
536 {
537 struct xfs_btree_cur *cur;
538
539 cur = xfs_btree_alloc_cursor(mp, tp, &xfs_rmapbt_ops,
540 mp->m_rmap_maxlevels, xfs_rmapbt_cur_cache);
541 cur->bc_ag.pag = xfs_perag_hold(pag);
542 cur->bc_ag.agbp = agbp;
543 if (agbp) {
544 struct xfs_agf *agf = agbp->b_addr;
545
546 cur->bc_nlevels = be32_to_cpu(agf->agf_rmap_level);
547 }
548 return cur;
549 }
550
551 #ifdef CONFIG_XFS_BTREE_IN_MEM
552 static inline unsigned int
xfs_rmapbt_mem_block_maxrecs(unsigned int blocklen,bool leaf)553 xfs_rmapbt_mem_block_maxrecs(
554 unsigned int blocklen,
555 bool leaf)
556 {
557 if (leaf)
558 return blocklen / sizeof(struct xfs_rmap_rec);
559 return blocklen /
560 (2 * sizeof(struct xfs_rmap_key) + sizeof(__be64));
561 }
562
563 /*
564 * Validate an in-memory rmap btree block. Callers are allowed to generate an
565 * in-memory btree even if the ondisk feature is not enabled.
566 */
567 static xfs_failaddr_t
xfs_rmapbt_mem_verify(struct xfs_buf * bp)568 xfs_rmapbt_mem_verify(
569 struct xfs_buf *bp)
570 {
571 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
572 xfs_failaddr_t fa;
573 unsigned int level;
574 unsigned int maxrecs;
575
576 if (!xfs_verify_magic(bp, block->bb_magic))
577 return __this_address;
578
579 fa = xfs_btree_fsblock_v5hdr_verify(bp, XFS_RMAP_OWN_UNKNOWN);
580 if (fa)
581 return fa;
582
583 level = be16_to_cpu(block->bb_level);
584 if (level >= xfs_rmapbt_maxlevels_ondisk())
585 return __this_address;
586
587 maxrecs = xfs_rmapbt_mem_block_maxrecs(
588 XFBNO_BLOCKSIZE - XFS_BTREE_LBLOCK_CRC_LEN, level == 0);
589 return xfs_btree_memblock_verify(bp, maxrecs);
590 }
591
592 static void
xfs_rmapbt_mem_rw_verify(struct xfs_buf * bp)593 xfs_rmapbt_mem_rw_verify(
594 struct xfs_buf *bp)
595 {
596 xfs_failaddr_t fa = xfs_rmapbt_mem_verify(bp);
597
598 if (fa)
599 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
600 }
601
602 /* skip crc checks on in-memory btrees to save time */
603 static const struct xfs_buf_ops xfs_rmapbt_mem_buf_ops = {
604 .name = "xfs_rmapbt_mem",
605 .magic = { 0, cpu_to_be32(XFS_RMAP_CRC_MAGIC) },
606 .verify_read = xfs_rmapbt_mem_rw_verify,
607 .verify_write = xfs_rmapbt_mem_rw_verify,
608 .verify_struct = xfs_rmapbt_mem_verify,
609 };
610
611 const struct xfs_btree_ops xfs_rmapbt_mem_ops = {
612 .name = "mem_rmap",
613 .type = XFS_BTREE_TYPE_MEM,
614 .geom_flags = XFS_BTGEO_OVERLAPPING,
615
616 .rec_len = sizeof(struct xfs_rmap_rec),
617 /* Overlapping btree; 2 keys per pointer. */
618 .key_len = 2 * sizeof(struct xfs_rmap_key),
619 .ptr_len = XFS_BTREE_LONG_PTR_LEN,
620
621 .lru_refs = XFS_RMAP_BTREE_REF,
622 .statoff = XFS_STATS_CALC_INDEX(xs_rmap_mem_2),
623
624 .dup_cursor = xfbtree_dup_cursor,
625 .set_root = xfbtree_set_root,
626 .alloc_block = xfbtree_alloc_block,
627 .free_block = xfbtree_free_block,
628 .get_minrecs = xfbtree_get_minrecs,
629 .get_maxrecs = xfbtree_get_maxrecs,
630 .init_key_from_rec = xfs_rmapbt_init_key_from_rec,
631 .init_high_key_from_rec = xfs_rmapbt_init_high_key_from_rec,
632 .init_rec_from_cur = xfs_rmapbt_init_rec_from_cur,
633 .init_ptr_from_cur = xfbtree_init_ptr_from_cur,
634 .key_diff = xfs_rmapbt_key_diff,
635 .buf_ops = &xfs_rmapbt_mem_buf_ops,
636 .diff_two_keys = xfs_rmapbt_diff_two_keys,
637 .keys_inorder = xfs_rmapbt_keys_inorder,
638 .recs_inorder = xfs_rmapbt_recs_inorder,
639 .keys_contiguous = xfs_rmapbt_keys_contiguous,
640 };
641
642 /* Create a cursor for an in-memory btree. */
643 struct xfs_btree_cur *
xfs_rmapbt_mem_cursor(struct xfs_perag * pag,struct xfs_trans * tp,struct xfbtree * xfbt)644 xfs_rmapbt_mem_cursor(
645 struct xfs_perag *pag,
646 struct xfs_trans *tp,
647 struct xfbtree *xfbt)
648 {
649 struct xfs_btree_cur *cur;
650 struct xfs_mount *mp = pag->pag_mount;
651
652 cur = xfs_btree_alloc_cursor(mp, tp, &xfs_rmapbt_mem_ops,
653 xfs_rmapbt_maxlevels_ondisk(), xfs_rmapbt_cur_cache);
654 cur->bc_mem.xfbtree = xfbt;
655 cur->bc_nlevels = xfbt->nlevels;
656
657 cur->bc_mem.pag = xfs_perag_hold(pag);
658 return cur;
659 }
660
661 /* Create an in-memory rmap btree. */
662 int
xfs_rmapbt_mem_init(struct xfs_mount * mp,struct xfbtree * xfbt,struct xfs_buftarg * btp,xfs_agnumber_t agno)663 xfs_rmapbt_mem_init(
664 struct xfs_mount *mp,
665 struct xfbtree *xfbt,
666 struct xfs_buftarg *btp,
667 xfs_agnumber_t agno)
668 {
669 xfbt->owner = agno;
670 return xfbtree_init(mp, xfbt, btp, &xfs_rmapbt_mem_ops);
671 }
672
673 /* Compute the max possible height for reverse mapping btrees in memory. */
674 static unsigned int
xfs_rmapbt_mem_maxlevels(void)675 xfs_rmapbt_mem_maxlevels(void)
676 {
677 unsigned int minrecs[2];
678 unsigned int blocklen;
679
680 blocklen = XFBNO_BLOCKSIZE - XFS_BTREE_LBLOCK_CRC_LEN;
681
682 minrecs[0] = xfs_rmapbt_mem_block_maxrecs(blocklen, true) / 2;
683 minrecs[1] = xfs_rmapbt_mem_block_maxrecs(blocklen, false) / 2;
684
685 /*
686 * How tall can an in-memory rmap btree become if we filled the entire
687 * AG with rmap records?
688 */
689 return xfs_btree_compute_maxlevels(minrecs,
690 XFS_MAX_AG_BYTES / sizeof(struct xfs_rmap_rec));
691 }
692 #else
693 # define xfs_rmapbt_mem_maxlevels() (0)
694 #endif /* CONFIG_XFS_BTREE_IN_MEM */
695
696 /*
697 * Install a new reverse mapping btree root. Caller is responsible for
698 * invalidating and freeing the old btree blocks.
699 */
700 void
xfs_rmapbt_commit_staged_btree(struct xfs_btree_cur * cur,struct xfs_trans * tp,struct xfs_buf * agbp)701 xfs_rmapbt_commit_staged_btree(
702 struct xfs_btree_cur *cur,
703 struct xfs_trans *tp,
704 struct xfs_buf *agbp)
705 {
706 struct xfs_agf *agf = agbp->b_addr;
707 struct xbtree_afakeroot *afake = cur->bc_ag.afake;
708
709 ASSERT(cur->bc_flags & XFS_BTREE_STAGING);
710
711 agf->agf_rmap_root = cpu_to_be32(afake->af_root);
712 agf->agf_rmap_level = cpu_to_be32(afake->af_levels);
713 agf->agf_rmap_blocks = cpu_to_be32(afake->af_blocks);
714 xfs_alloc_log_agf(tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS |
715 XFS_AGF_RMAP_BLOCKS);
716 xfs_btree_commit_afakeroot(cur, tp, agbp);
717 }
718
719 /* Calculate number of records in a reverse mapping btree block. */
720 static inline unsigned int
xfs_rmapbt_block_maxrecs(unsigned int blocklen,bool leaf)721 xfs_rmapbt_block_maxrecs(
722 unsigned int blocklen,
723 bool leaf)
724 {
725 if (leaf)
726 return blocklen / sizeof(struct xfs_rmap_rec);
727 return blocklen /
728 (2 * sizeof(struct xfs_rmap_key) + sizeof(xfs_rmap_ptr_t));
729 }
730
731 /*
732 * Calculate number of records in an rmap btree block.
733 */
734 unsigned int
xfs_rmapbt_maxrecs(struct xfs_mount * mp,unsigned int blocklen,bool leaf)735 xfs_rmapbt_maxrecs(
736 struct xfs_mount *mp,
737 unsigned int blocklen,
738 bool leaf)
739 {
740 blocklen -= XFS_RMAP_BLOCK_LEN;
741 return xfs_rmapbt_block_maxrecs(blocklen, leaf);
742 }
743
744 /* Compute the max possible height for reverse mapping btrees. */
745 unsigned int
xfs_rmapbt_maxlevels_ondisk(void)746 xfs_rmapbt_maxlevels_ondisk(void)
747 {
748 unsigned int minrecs[2];
749 unsigned int blocklen;
750
751 blocklen = XFS_MIN_CRC_BLOCKSIZE - XFS_BTREE_SBLOCK_CRC_LEN;
752
753 minrecs[0] = xfs_rmapbt_block_maxrecs(blocklen, true) / 2;
754 minrecs[1] = xfs_rmapbt_block_maxrecs(blocklen, false) / 2;
755
756 /*
757 * Compute the asymptotic maxlevels for an rmapbt on any reflink fs.
758 *
759 * On a reflink filesystem, each AG block can have up to 2^32 (per the
760 * refcount record format) owners, which means that theoretically we
761 * could face up to 2^64 rmap records. However, we're likely to run
762 * out of blocks in the AG long before that happens, which means that
763 * we must compute the max height based on what the btree will look
764 * like if it consumes almost all the blocks in the AG due to maximal
765 * sharing factor.
766 */
767 return max(xfs_btree_space_to_height(minrecs, XFS_MAX_CRC_AG_BLOCKS),
768 xfs_rmapbt_mem_maxlevels());
769 }
770
771 /* Compute the maximum height of an rmap btree. */
772 void
xfs_rmapbt_compute_maxlevels(struct xfs_mount * mp)773 xfs_rmapbt_compute_maxlevels(
774 struct xfs_mount *mp)
775 {
776 if (!xfs_has_rmapbt(mp)) {
777 mp->m_rmap_maxlevels = 0;
778 return;
779 }
780
781 if (xfs_has_reflink(mp)) {
782 /*
783 * Compute the asymptotic maxlevels for an rmap btree on a
784 * filesystem that supports reflink.
785 *
786 * On a reflink filesystem, each AG block can have up to 2^32
787 * (per the refcount record format) owners, which means that
788 * theoretically we could face up to 2^64 rmap records.
789 * However, we're likely to run out of blocks in the AG long
790 * before that happens, which means that we must compute the
791 * max height based on what the btree will look like if it
792 * consumes almost all the blocks in the AG due to maximal
793 * sharing factor.
794 */
795 mp->m_rmap_maxlevels = xfs_btree_space_to_height(mp->m_rmap_mnr,
796 mp->m_sb.sb_agblocks);
797 } else {
798 /*
799 * If there's no block sharing, compute the maximum rmapbt
800 * height assuming one rmap record per AG block.
801 */
802 mp->m_rmap_maxlevels = xfs_btree_compute_maxlevels(
803 mp->m_rmap_mnr, mp->m_sb.sb_agblocks);
804 }
805 ASSERT(mp->m_rmap_maxlevels <= xfs_rmapbt_maxlevels_ondisk());
806 }
807
808 /* Calculate the refcount btree size for some records. */
809 xfs_extlen_t
xfs_rmapbt_calc_size(struct xfs_mount * mp,unsigned long long len)810 xfs_rmapbt_calc_size(
811 struct xfs_mount *mp,
812 unsigned long long len)
813 {
814 return xfs_btree_calc_size(mp->m_rmap_mnr, len);
815 }
816
817 /*
818 * Calculate the maximum refcount btree size.
819 */
820 xfs_extlen_t
xfs_rmapbt_max_size(struct xfs_mount * mp,xfs_agblock_t agblocks)821 xfs_rmapbt_max_size(
822 struct xfs_mount *mp,
823 xfs_agblock_t agblocks)
824 {
825 /* Bail out if we're uninitialized, which can happen in mkfs. */
826 if (mp->m_rmap_mxr[0] == 0)
827 return 0;
828
829 return xfs_rmapbt_calc_size(mp, agblocks);
830 }
831
832 /*
833 * Figure out how many blocks to reserve and how many are used by this btree.
834 */
835 int
xfs_rmapbt_calc_reserves(struct xfs_mount * mp,struct xfs_trans * tp,struct xfs_perag * pag,xfs_extlen_t * ask,xfs_extlen_t * used)836 xfs_rmapbt_calc_reserves(
837 struct xfs_mount *mp,
838 struct xfs_trans *tp,
839 struct xfs_perag *pag,
840 xfs_extlen_t *ask,
841 xfs_extlen_t *used)
842 {
843 struct xfs_buf *agbp;
844 struct xfs_agf *agf;
845 xfs_agblock_t agblocks;
846 xfs_extlen_t tree_len;
847 int error;
848
849 if (!xfs_has_rmapbt(mp))
850 return 0;
851
852 error = xfs_alloc_read_agf(pag, tp, 0, &agbp);
853 if (error)
854 return error;
855
856 agf = agbp->b_addr;
857 agblocks = be32_to_cpu(agf->agf_length);
858 tree_len = be32_to_cpu(agf->agf_rmap_blocks);
859 xfs_trans_brelse(tp, agbp);
860
861 /*
862 * The log is permanently allocated, so the space it occupies will
863 * never be available for the kinds of things that would require btree
864 * expansion. We therefore can pretend the space isn't there.
865 */
866 if (xfs_ag_contains_log(mp, pag->pag_agno))
867 agblocks -= mp->m_sb.sb_logblocks;
868
869 /* Reserve 1% of the AG or enough for 1 block per record. */
870 *ask += max(agblocks / 100, xfs_rmapbt_max_size(mp, agblocks));
871 *used += tree_len;
872
873 return error;
874 }
875
876 int __init
xfs_rmapbt_init_cur_cache(void)877 xfs_rmapbt_init_cur_cache(void)
878 {
879 xfs_rmapbt_cur_cache = kmem_cache_create("xfs_rmapbt_cur",
880 xfs_btree_cur_sizeof(xfs_rmapbt_maxlevels_ondisk()),
881 0, 0, NULL);
882
883 if (!xfs_rmapbt_cur_cache)
884 return -ENOMEM;
885 return 0;
886 }
887
888 void
xfs_rmapbt_destroy_cur_cache(void)889 xfs_rmapbt_destroy_cur_cache(void)
890 {
891 kmem_cache_destroy(xfs_rmapbt_cur_cache);
892 xfs_rmapbt_cur_cache = NULL;
893 }
894