1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_sb.h"
14 #include "xfs_mount.h"
15 #include "xfs_inode.h"
16 #include "xfs_dir2.h"
17 #include "xfs_ialloc.h"
18 #include "xfs_alloc.h"
19 #include "xfs_rtalloc.h"
20 #include "xfs_bmap.h"
21 #include "xfs_trans.h"
22 #include "xfs_trans_priv.h"
23 #include "xfs_log.h"
24 #include "xfs_log_priv.h"
25 #include "xfs_error.h"
26 #include "xfs_quota.h"
27 #include "xfs_fsops.h"
28 #include "xfs_icache.h"
29 #include "xfs_sysfs.h"
30 #include "xfs_rmap_btree.h"
31 #include "xfs_refcount_btree.h"
32 #include "xfs_reflink.h"
33 #include "xfs_extent_busy.h"
34 #include "xfs_health.h"
35 #include "xfs_trace.h"
36 #include "xfs_ag.h"
37 #include "xfs_rtbitmap.h"
38 #include "scrub/stats.h"
39
40 static DEFINE_MUTEX(xfs_uuid_table_mutex);
41 static int xfs_uuid_table_size;
42 static uuid_t *xfs_uuid_table;
43
44 void
xfs_uuid_table_free(void)45 xfs_uuid_table_free(void)
46 {
47 if (xfs_uuid_table_size == 0)
48 return;
49 kfree(xfs_uuid_table);
50 xfs_uuid_table = NULL;
51 xfs_uuid_table_size = 0;
52 }
53
54 /*
55 * See if the UUID is unique among mounted XFS filesystems.
56 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
57 */
58 STATIC int
xfs_uuid_mount(struct xfs_mount * mp)59 xfs_uuid_mount(
60 struct xfs_mount *mp)
61 {
62 uuid_t *uuid = &mp->m_sb.sb_uuid;
63 int hole, i;
64
65 /* Publish UUID in struct super_block */
66 super_set_uuid(mp->m_super, uuid->b, sizeof(*uuid));
67
68 if (xfs_has_nouuid(mp))
69 return 0;
70
71 if (uuid_is_null(uuid)) {
72 xfs_warn(mp, "Filesystem has null UUID - can't mount");
73 return -EINVAL;
74 }
75
76 mutex_lock(&xfs_uuid_table_mutex);
77 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
78 if (uuid_is_null(&xfs_uuid_table[i])) {
79 hole = i;
80 continue;
81 }
82 if (uuid_equal(uuid, &xfs_uuid_table[i]))
83 goto out_duplicate;
84 }
85
86 if (hole < 0) {
87 xfs_uuid_table = krealloc(xfs_uuid_table,
88 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
89 GFP_KERNEL | __GFP_NOFAIL);
90 hole = xfs_uuid_table_size++;
91 }
92 xfs_uuid_table[hole] = *uuid;
93 mutex_unlock(&xfs_uuid_table_mutex);
94
95 return 0;
96
97 out_duplicate:
98 mutex_unlock(&xfs_uuid_table_mutex);
99 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
100 return -EINVAL;
101 }
102
103 STATIC void
xfs_uuid_unmount(struct xfs_mount * mp)104 xfs_uuid_unmount(
105 struct xfs_mount *mp)
106 {
107 uuid_t *uuid = &mp->m_sb.sb_uuid;
108 int i;
109
110 if (xfs_has_nouuid(mp))
111 return;
112
113 mutex_lock(&xfs_uuid_table_mutex);
114 for (i = 0; i < xfs_uuid_table_size; i++) {
115 if (uuid_is_null(&xfs_uuid_table[i]))
116 continue;
117 if (!uuid_equal(uuid, &xfs_uuid_table[i]))
118 continue;
119 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
120 break;
121 }
122 ASSERT(i < xfs_uuid_table_size);
123 mutex_unlock(&xfs_uuid_table_mutex);
124 }
125
126 /*
127 * Check size of device based on the (data/realtime) block count.
128 * Note: this check is used by the growfs code as well as mount.
129 */
130 int
xfs_sb_validate_fsb_count(xfs_sb_t * sbp,uint64_t nblocks)131 xfs_sb_validate_fsb_count(
132 xfs_sb_t *sbp,
133 uint64_t nblocks)
134 {
135 uint64_t max_bytes;
136
137 ASSERT(sbp->sb_blocklog >= BBSHIFT);
138
139 if (check_shl_overflow(nblocks, sbp->sb_blocklog, &max_bytes))
140 return -EFBIG;
141
142 /* Limited by ULONG_MAX of page cache index */
143 if (max_bytes >> PAGE_SHIFT > ULONG_MAX)
144 return -EFBIG;
145 return 0;
146 }
147
148 /*
149 * xfs_readsb
150 *
151 * Does the initial read of the superblock.
152 */
153 int
xfs_readsb(struct xfs_mount * mp,int flags)154 xfs_readsb(
155 struct xfs_mount *mp,
156 int flags)
157 {
158 unsigned int sector_size;
159 struct xfs_buf *bp;
160 struct xfs_sb *sbp = &mp->m_sb;
161 int error;
162 int loud = !(flags & XFS_MFSI_QUIET);
163 const struct xfs_buf_ops *buf_ops;
164
165 ASSERT(mp->m_sb_bp == NULL);
166 ASSERT(mp->m_ddev_targp != NULL);
167
168 /*
169 * For the initial read, we must guess at the sector
170 * size based on the block device. It's enough to
171 * get the sb_sectsize out of the superblock and
172 * then reread with the proper length.
173 * We don't verify it yet, because it may not be complete.
174 */
175 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
176 buf_ops = NULL;
177
178 /*
179 * Allocate a (locked) buffer to hold the superblock. This will be kept
180 * around at all times to optimize access to the superblock. Therefore,
181 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count
182 * elevated.
183 */
184 reread:
185 error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
186 BTOBB(sector_size), XBF_NO_IOACCT, &bp,
187 buf_ops);
188 if (error) {
189 if (loud)
190 xfs_warn(mp, "SB validate failed with error %d.", error);
191 /* bad CRC means corrupted metadata */
192 if (error == -EFSBADCRC)
193 error = -EFSCORRUPTED;
194 return error;
195 }
196
197 /*
198 * Initialize the mount structure from the superblock.
199 */
200 xfs_sb_from_disk(sbp, bp->b_addr);
201
202 /*
203 * If we haven't validated the superblock, do so now before we try
204 * to check the sector size and reread the superblock appropriately.
205 */
206 if (sbp->sb_magicnum != XFS_SB_MAGIC) {
207 if (loud)
208 xfs_warn(mp, "Invalid superblock magic number");
209 error = -EINVAL;
210 goto release_buf;
211 }
212
213 /*
214 * We must be able to do sector-sized and sector-aligned IO.
215 */
216 if (sector_size > sbp->sb_sectsize) {
217 if (loud)
218 xfs_warn(mp, "device supports %u byte sectors (not %u)",
219 sector_size, sbp->sb_sectsize);
220 error = -ENOSYS;
221 goto release_buf;
222 }
223
224 if (buf_ops == NULL) {
225 /*
226 * Re-read the superblock so the buffer is correctly sized,
227 * and properly verified.
228 */
229 xfs_buf_relse(bp);
230 sector_size = sbp->sb_sectsize;
231 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
232 goto reread;
233 }
234
235 mp->m_features |= xfs_sb_version_to_features(sbp);
236 xfs_reinit_percpu_counters(mp);
237
238 /*
239 * If logged xattrs are enabled after log recovery finishes, then set
240 * the opstate so that log recovery will work properly.
241 */
242 if (xfs_sb_version_haslogxattrs(&mp->m_sb))
243 xfs_set_using_logged_xattrs(mp);
244
245 /* no need to be quiet anymore, so reset the buf ops */
246 bp->b_ops = &xfs_sb_buf_ops;
247
248 mp->m_sb_bp = bp;
249 xfs_buf_unlock(bp);
250 return 0;
251
252 release_buf:
253 xfs_buf_relse(bp);
254 return error;
255 }
256
257 /*
258 * If the sunit/swidth change would move the precomputed root inode value, we
259 * must reject the ondisk change because repair will stumble over that.
260 * However, we allow the mount to proceed because we never rejected this
261 * combination before. Returns true to update the sb, false otherwise.
262 */
263 static inline int
xfs_check_new_dalign(struct xfs_mount * mp,int new_dalign,bool * update_sb)264 xfs_check_new_dalign(
265 struct xfs_mount *mp,
266 int new_dalign,
267 bool *update_sb)
268 {
269 struct xfs_sb *sbp = &mp->m_sb;
270 xfs_ino_t calc_ino;
271
272 calc_ino = xfs_ialloc_calc_rootino(mp, new_dalign);
273 trace_xfs_check_new_dalign(mp, new_dalign, calc_ino);
274
275 if (sbp->sb_rootino == calc_ino) {
276 *update_sb = true;
277 return 0;
278 }
279
280 xfs_warn(mp,
281 "Cannot change stripe alignment; would require moving root inode.");
282
283 /*
284 * XXX: Next time we add a new incompat feature, this should start
285 * returning -EINVAL to fail the mount. Until then, spit out a warning
286 * that we're ignoring the administrator's instructions.
287 */
288 xfs_warn(mp, "Skipping superblock stripe alignment update.");
289 *update_sb = false;
290 return 0;
291 }
292
293 /*
294 * If we were provided with new sunit/swidth values as mount options, make sure
295 * that they pass basic alignment and superblock feature checks, and convert
296 * them into the same units (FSB) that everything else expects. This step
297 * /must/ be done before computing the inode geometry.
298 */
299 STATIC int
xfs_validate_new_dalign(struct xfs_mount * mp)300 xfs_validate_new_dalign(
301 struct xfs_mount *mp)
302 {
303 if (mp->m_dalign == 0)
304 return 0;
305
306 /*
307 * If stripe unit and stripe width are not multiples
308 * of the fs blocksize turn off alignment.
309 */
310 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
311 (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
312 xfs_warn(mp,
313 "alignment check failed: sunit/swidth vs. blocksize(%d)",
314 mp->m_sb.sb_blocksize);
315 return -EINVAL;
316 }
317
318 /*
319 * Convert the stripe unit and width to FSBs.
320 */
321 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
322 if (mp->m_dalign && (mp->m_sb.sb_agblocks % mp->m_dalign)) {
323 xfs_warn(mp,
324 "alignment check failed: sunit/swidth vs. agsize(%d)",
325 mp->m_sb.sb_agblocks);
326 return -EINVAL;
327 }
328
329 if (!mp->m_dalign) {
330 xfs_warn(mp,
331 "alignment check failed: sunit(%d) less than bsize(%d)",
332 mp->m_dalign, mp->m_sb.sb_blocksize);
333 return -EINVAL;
334 }
335
336 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
337
338 if (!xfs_has_dalign(mp)) {
339 xfs_warn(mp,
340 "cannot change alignment: superblock does not support data alignment");
341 return -EINVAL;
342 }
343
344 return 0;
345 }
346
347 /* Update alignment values based on mount options and sb values. */
348 STATIC int
xfs_update_alignment(struct xfs_mount * mp)349 xfs_update_alignment(
350 struct xfs_mount *mp)
351 {
352 struct xfs_sb *sbp = &mp->m_sb;
353
354 if (mp->m_dalign) {
355 bool update_sb;
356 int error;
357
358 if (sbp->sb_unit == mp->m_dalign &&
359 sbp->sb_width == mp->m_swidth)
360 return 0;
361
362 error = xfs_check_new_dalign(mp, mp->m_dalign, &update_sb);
363 if (error || !update_sb)
364 return error;
365
366 sbp->sb_unit = mp->m_dalign;
367 sbp->sb_width = mp->m_swidth;
368 mp->m_update_sb = true;
369 } else if (!xfs_has_noalign(mp) && xfs_has_dalign(mp)) {
370 mp->m_dalign = sbp->sb_unit;
371 mp->m_swidth = sbp->sb_width;
372 }
373
374 return 0;
375 }
376
377 /*
378 * precalculate the low space thresholds for dynamic speculative preallocation.
379 */
380 void
xfs_set_low_space_thresholds(struct xfs_mount * mp)381 xfs_set_low_space_thresholds(
382 struct xfs_mount *mp)
383 {
384 uint64_t dblocks = mp->m_sb.sb_dblocks;
385 uint64_t rtexts = mp->m_sb.sb_rextents;
386 int i;
387
388 do_div(dblocks, 100);
389 do_div(rtexts, 100);
390
391 for (i = 0; i < XFS_LOWSP_MAX; i++) {
392 mp->m_low_space[i] = dblocks * (i + 1);
393 mp->m_low_rtexts[i] = rtexts * (i + 1);
394 }
395 }
396
397 /*
398 * Check that the data (and log if separate) is an ok size.
399 */
400 STATIC int
xfs_check_sizes(struct xfs_mount * mp)401 xfs_check_sizes(
402 struct xfs_mount *mp)
403 {
404 struct xfs_buf *bp;
405 xfs_daddr_t d;
406 int error;
407
408 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
409 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
410 xfs_warn(mp, "filesystem size mismatch detected");
411 return -EFBIG;
412 }
413 error = xfs_buf_read_uncached(mp->m_ddev_targp,
414 d - XFS_FSS_TO_BB(mp, 1),
415 XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
416 if (error) {
417 xfs_warn(mp, "last sector read failed");
418 return error;
419 }
420 xfs_buf_relse(bp);
421
422 if (mp->m_logdev_targp == mp->m_ddev_targp)
423 return 0;
424
425 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
426 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
427 xfs_warn(mp, "log size mismatch detected");
428 return -EFBIG;
429 }
430 error = xfs_buf_read_uncached(mp->m_logdev_targp,
431 d - XFS_FSB_TO_BB(mp, 1),
432 XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
433 if (error) {
434 xfs_warn(mp, "log device read failed");
435 return error;
436 }
437 xfs_buf_relse(bp);
438 return 0;
439 }
440
441 /*
442 * Clear the quotaflags in memory and in the superblock.
443 */
444 int
xfs_mount_reset_sbqflags(struct xfs_mount * mp)445 xfs_mount_reset_sbqflags(
446 struct xfs_mount *mp)
447 {
448 mp->m_qflags = 0;
449
450 /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
451 if (mp->m_sb.sb_qflags == 0)
452 return 0;
453 spin_lock(&mp->m_sb_lock);
454 mp->m_sb.sb_qflags = 0;
455 spin_unlock(&mp->m_sb_lock);
456
457 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
458 return 0;
459
460 return xfs_sync_sb(mp, false);
461 }
462
463 uint64_t
xfs_default_resblks(xfs_mount_t * mp)464 xfs_default_resblks(xfs_mount_t *mp)
465 {
466 uint64_t resblks;
467
468 /*
469 * We default to 5% or 8192 fsbs of space reserved, whichever is
470 * smaller. This is intended to cover concurrent allocation
471 * transactions when we initially hit enospc. These each require a 4
472 * block reservation. Hence by default we cover roughly 2000 concurrent
473 * allocation reservations.
474 */
475 resblks = mp->m_sb.sb_dblocks;
476 do_div(resblks, 20);
477 resblks = min_t(uint64_t, resblks, 8192);
478 return resblks;
479 }
480
481 /* Ensure the summary counts are correct. */
482 STATIC int
xfs_check_summary_counts(struct xfs_mount * mp)483 xfs_check_summary_counts(
484 struct xfs_mount *mp)
485 {
486 int error = 0;
487
488 /*
489 * The AG0 superblock verifier rejects in-progress filesystems,
490 * so we should never see the flag set this far into mounting.
491 */
492 if (mp->m_sb.sb_inprogress) {
493 xfs_err(mp, "sb_inprogress set after log recovery??");
494 WARN_ON(1);
495 return -EFSCORRUPTED;
496 }
497
498 /*
499 * Now the log is mounted, we know if it was an unclean shutdown or
500 * not. If it was, with the first phase of recovery has completed, we
501 * have consistent AG blocks on disk. We have not recovered EFIs yet,
502 * but they are recovered transactionally in the second recovery phase
503 * later.
504 *
505 * If the log was clean when we mounted, we can check the summary
506 * counters. If any of them are obviously incorrect, we can recompute
507 * them from the AGF headers in the next step.
508 */
509 if (xfs_is_clean(mp) &&
510 (mp->m_sb.sb_fdblocks > mp->m_sb.sb_dblocks ||
511 !xfs_verify_icount(mp, mp->m_sb.sb_icount) ||
512 mp->m_sb.sb_ifree > mp->m_sb.sb_icount))
513 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
514
515 /*
516 * We can safely re-initialise incore superblock counters from the
517 * per-ag data. These may not be correct if the filesystem was not
518 * cleanly unmounted, so we waited for recovery to finish before doing
519 * this.
520 *
521 * If the filesystem was cleanly unmounted or the previous check did
522 * not flag anything weird, then we can trust the values in the
523 * superblock to be correct and we don't need to do anything here.
524 * Otherwise, recalculate the summary counters.
525 */
526 if ((xfs_has_lazysbcount(mp) && !xfs_is_clean(mp)) ||
527 xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS)) {
528 error = xfs_initialize_perag_data(mp, mp->m_sb.sb_agcount);
529 if (error)
530 return error;
531 }
532
533 /*
534 * Older kernels misused sb_frextents to reflect both incore
535 * reservations made by running transactions and the actual count of
536 * free rt extents in the ondisk metadata. Transactions committed
537 * during runtime can therefore contain a superblock update that
538 * undercounts the number of free rt extents tracked in the rt bitmap.
539 * A clean unmount record will have the correct frextents value since
540 * there can be no other transactions running at that point.
541 *
542 * If we're mounting the rt volume after recovering the log, recompute
543 * frextents from the rtbitmap file to fix the inconsistency.
544 */
545 if (xfs_has_realtime(mp) && !xfs_is_clean(mp)) {
546 error = xfs_rtalloc_reinit_frextents(mp);
547 if (error)
548 return error;
549 }
550
551 return 0;
552 }
553
554 static void
xfs_unmount_check(struct xfs_mount * mp)555 xfs_unmount_check(
556 struct xfs_mount *mp)
557 {
558 if (xfs_is_shutdown(mp))
559 return;
560
561 if (percpu_counter_sum(&mp->m_ifree) >
562 percpu_counter_sum(&mp->m_icount)) {
563 xfs_alert(mp, "ifree/icount mismatch at unmount");
564 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
565 }
566 }
567
568 /*
569 * Flush and reclaim dirty inodes in preparation for unmount. Inodes and
570 * internal inode structures can be sitting in the CIL and AIL at this point,
571 * so we need to unpin them, write them back and/or reclaim them before unmount
572 * can proceed. In other words, callers are required to have inactivated all
573 * inodes.
574 *
575 * An inode cluster that has been freed can have its buffer still pinned in
576 * memory because the transaction is still sitting in a iclog. The stale inodes
577 * on that buffer will be pinned to the buffer until the transaction hits the
578 * disk and the callbacks run. Pushing the AIL will skip the stale inodes and
579 * may never see the pinned buffer, so nothing will push out the iclog and
580 * unpin the buffer.
581 *
582 * Hence we need to force the log to unpin everything first. However, log
583 * forces don't wait for the discards they issue to complete, so we have to
584 * explicitly wait for them to complete here as well.
585 *
586 * Then we can tell the world we are unmounting so that error handling knows
587 * that the filesystem is going away and we should error out anything that we
588 * have been retrying in the background. This will prevent never-ending
589 * retries in AIL pushing from hanging the unmount.
590 *
591 * Finally, we can push the AIL to clean all the remaining dirty objects, then
592 * reclaim the remaining inodes that are still in memory at this point in time.
593 */
594 static void
xfs_unmount_flush_inodes(struct xfs_mount * mp)595 xfs_unmount_flush_inodes(
596 struct xfs_mount *mp)
597 {
598 xfs_log_force(mp, XFS_LOG_SYNC);
599 xfs_extent_busy_wait_all(mp);
600 flush_workqueue(xfs_discard_wq);
601
602 xfs_set_unmounting(mp);
603
604 xfs_ail_push_all_sync(mp->m_ail);
605 xfs_inodegc_stop(mp);
606 cancel_delayed_work_sync(&mp->m_reclaim_work);
607 xfs_reclaim_inodes(mp);
608 xfs_health_unmount(mp);
609 }
610
611 static void
xfs_mount_setup_inode_geom(struct xfs_mount * mp)612 xfs_mount_setup_inode_geom(
613 struct xfs_mount *mp)
614 {
615 struct xfs_ino_geometry *igeo = M_IGEO(mp);
616
617 igeo->attr_fork_offset = xfs_bmap_compute_attr_offset(mp);
618 ASSERT(igeo->attr_fork_offset < XFS_LITINO(mp));
619
620 xfs_ialloc_setup_geometry(mp);
621 }
622
623 /* Compute maximum possible height for per-AG btree types for this fs. */
624 static inline void
xfs_agbtree_compute_maxlevels(struct xfs_mount * mp)625 xfs_agbtree_compute_maxlevels(
626 struct xfs_mount *mp)
627 {
628 unsigned int levels;
629
630 levels = max(mp->m_alloc_maxlevels, M_IGEO(mp)->inobt_maxlevels);
631 levels = max(levels, mp->m_rmap_maxlevels);
632 mp->m_agbtree_maxlevels = max(levels, mp->m_refc_maxlevels);
633 }
634
635 /*
636 * This function does the following on an initial mount of a file system:
637 * - reads the superblock from disk and init the mount struct
638 * - if we're a 32-bit kernel, do a size check on the superblock
639 * so we don't mount terabyte filesystems
640 * - init mount struct realtime fields
641 * - allocate inode hash table for fs
642 * - init directory manager
643 * - perform recovery and init the log manager
644 */
645 int
xfs_mountfs(struct xfs_mount * mp)646 xfs_mountfs(
647 struct xfs_mount *mp)
648 {
649 struct xfs_sb *sbp = &(mp->m_sb);
650 struct xfs_inode *rip;
651 struct xfs_ino_geometry *igeo = M_IGEO(mp);
652 uint quotamount = 0;
653 uint quotaflags = 0;
654 int error = 0;
655
656 xfs_sb_mount_common(mp, sbp);
657
658 /*
659 * Check for a mismatched features2 values. Older kernels read & wrote
660 * into the wrong sb offset for sb_features2 on some platforms due to
661 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
662 * which made older superblock reading/writing routines swap it as a
663 * 64-bit value.
664 *
665 * For backwards compatibility, we make both slots equal.
666 *
667 * If we detect a mismatched field, we OR the set bits into the existing
668 * features2 field in case it has already been modified; we don't want
669 * to lose any features. We then update the bad location with the ORed
670 * value so that older kernels will see any features2 flags. The
671 * superblock writeback code ensures the new sb_features2 is copied to
672 * sb_bad_features2 before it is logged or written to disk.
673 */
674 if (xfs_sb_has_mismatched_features2(sbp)) {
675 xfs_warn(mp, "correcting sb_features alignment problem");
676 sbp->sb_features2 |= sbp->sb_bad_features2;
677 mp->m_update_sb = true;
678 }
679
680
681 /* always use v2 inodes by default now */
682 if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
683 mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
684 mp->m_features |= XFS_FEAT_NLINK;
685 mp->m_update_sb = true;
686 }
687
688 /*
689 * If we were given new sunit/swidth options, do some basic validation
690 * checks and convert the incore dalign and swidth values to the
691 * same units (FSB) that everything else uses. This /must/ happen
692 * before computing the inode geometry.
693 */
694 error = xfs_validate_new_dalign(mp);
695 if (error)
696 goto out;
697
698 xfs_alloc_compute_maxlevels(mp);
699 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
700 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
701 xfs_mount_setup_inode_geom(mp);
702 xfs_rmapbt_compute_maxlevels(mp);
703 xfs_refcountbt_compute_maxlevels(mp);
704
705 xfs_agbtree_compute_maxlevels(mp);
706
707 /*
708 * Check if sb_agblocks is aligned at stripe boundary. If sb_agblocks
709 * is NOT aligned turn off m_dalign since allocator alignment is within
710 * an ag, therefore ag has to be aligned at stripe boundary. Note that
711 * we must compute the free space and rmap btree geometry before doing
712 * this.
713 */
714 error = xfs_update_alignment(mp);
715 if (error)
716 goto out;
717
718 /* enable fail_at_unmount as default */
719 mp->m_fail_unmount = true;
720
721 super_set_sysfs_name_id(mp->m_super);
722
723 error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype,
724 NULL, mp->m_super->s_id);
725 if (error)
726 goto out;
727
728 error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype,
729 &mp->m_kobj, "stats");
730 if (error)
731 goto out_remove_sysfs;
732
733 xchk_stats_register(mp->m_scrub_stats, mp->m_debugfs);
734
735 error = xfs_error_sysfs_init(mp);
736 if (error)
737 goto out_remove_scrub_stats;
738
739 error = xfs_errortag_init(mp);
740 if (error)
741 goto out_remove_error_sysfs;
742
743 error = xfs_uuid_mount(mp);
744 if (error)
745 goto out_remove_errortag;
746
747 /*
748 * Update the preferred write size based on the information from the
749 * on-disk superblock.
750 */
751 mp->m_allocsize_log =
752 max_t(uint32_t, sbp->sb_blocklog, mp->m_allocsize_log);
753 mp->m_allocsize_blocks = 1U << (mp->m_allocsize_log - sbp->sb_blocklog);
754
755 /* set the low space thresholds for dynamic preallocation */
756 xfs_set_low_space_thresholds(mp);
757
758 /*
759 * If enabled, sparse inode chunk alignment is expected to match the
760 * cluster size. Full inode chunk alignment must match the chunk size,
761 * but that is checked on sb read verification...
762 */
763 if (xfs_has_sparseinodes(mp) &&
764 mp->m_sb.sb_spino_align !=
765 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)) {
766 xfs_warn(mp,
767 "Sparse inode block alignment (%u) must match cluster size (%llu).",
768 mp->m_sb.sb_spino_align,
769 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw));
770 error = -EINVAL;
771 goto out_remove_uuid;
772 }
773
774 /*
775 * Check that the data (and log if separate) is an ok size.
776 */
777 error = xfs_check_sizes(mp);
778 if (error)
779 goto out_remove_uuid;
780
781 /*
782 * Initialize realtime fields in the mount structure
783 */
784 error = xfs_rtmount_init(mp);
785 if (error) {
786 xfs_warn(mp, "RT mount failed");
787 goto out_remove_uuid;
788 }
789
790 /*
791 * Copies the low order bits of the timestamp and the randomly
792 * set "sequence" number out of a UUID.
793 */
794 mp->m_fixedfsid[0] =
795 (get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) |
796 get_unaligned_be16(&sbp->sb_uuid.b[4]);
797 mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]);
798
799 error = xfs_da_mount(mp);
800 if (error) {
801 xfs_warn(mp, "Failed dir/attr init: %d", error);
802 goto out_remove_uuid;
803 }
804
805 /*
806 * Initialize the precomputed transaction reservations values.
807 */
808 xfs_trans_init(mp);
809
810 /*
811 * Allocate and initialize the per-ag data.
812 */
813 error = xfs_initialize_perag(mp, 0, sbp->sb_agcount,
814 mp->m_sb.sb_dblocks, &mp->m_maxagi);
815 if (error) {
816 xfs_warn(mp, "Failed per-ag init: %d", error);
817 goto out_free_dir;
818 }
819
820 if (XFS_IS_CORRUPT(mp, !sbp->sb_logblocks)) {
821 xfs_warn(mp, "no log defined");
822 error = -EFSCORRUPTED;
823 goto out_free_perag;
824 }
825
826 error = xfs_inodegc_register_shrinker(mp);
827 if (error)
828 goto out_fail_wait;
829
830 /*
831 * Log's mount-time initialization. The first part of recovery can place
832 * some items on the AIL, to be handled when recovery is finished or
833 * cancelled.
834 */
835 error = xfs_log_mount(mp, mp->m_logdev_targp,
836 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
837 XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
838 if (error) {
839 xfs_warn(mp, "log mount failed");
840 goto out_inodegc_shrinker;
841 }
842
843 /*
844 * If logged xattrs are still enabled after log recovery finishes, then
845 * they'll be available until unmount. Otherwise, turn them off.
846 */
847 if (xfs_sb_version_haslogxattrs(&mp->m_sb))
848 xfs_set_using_logged_xattrs(mp);
849 else
850 xfs_clear_using_logged_xattrs(mp);
851
852 /* Enable background inode inactivation workers. */
853 xfs_inodegc_start(mp);
854 xfs_blockgc_start(mp);
855
856 /*
857 * Now that we've recovered any pending superblock feature bit
858 * additions, we can finish setting up the attr2 behaviour for the
859 * mount. The noattr2 option overrides the superblock flag, so only
860 * check the superblock feature flag if the mount option is not set.
861 */
862 if (xfs_has_noattr2(mp)) {
863 mp->m_features &= ~XFS_FEAT_ATTR2;
864 } else if (!xfs_has_attr2(mp) &&
865 (mp->m_sb.sb_features2 & XFS_SB_VERSION2_ATTR2BIT)) {
866 mp->m_features |= XFS_FEAT_ATTR2;
867 }
868
869 /*
870 * Get and sanity-check the root inode.
871 * Save the pointer to it in the mount structure.
872 */
873 error = xfs_iget(mp, NULL, sbp->sb_rootino, XFS_IGET_UNTRUSTED,
874 XFS_ILOCK_EXCL, &rip);
875 if (error) {
876 xfs_warn(mp,
877 "Failed to read root inode 0x%llx, error %d",
878 sbp->sb_rootino, -error);
879 goto out_log_dealloc;
880 }
881
882 ASSERT(rip != NULL);
883
884 if (XFS_IS_CORRUPT(mp, !S_ISDIR(VFS_I(rip)->i_mode))) {
885 xfs_warn(mp, "corrupted root inode %llu: not a directory",
886 (unsigned long long)rip->i_ino);
887 xfs_iunlock(rip, XFS_ILOCK_EXCL);
888 error = -EFSCORRUPTED;
889 goto out_rele_rip;
890 }
891 mp->m_rootip = rip; /* save it */
892
893 xfs_iunlock(rip, XFS_ILOCK_EXCL);
894
895 /*
896 * Initialize realtime inode pointers in the mount structure
897 */
898 error = xfs_rtmount_inodes(mp);
899 if (error) {
900 /*
901 * Free up the root inode.
902 */
903 xfs_warn(mp, "failed to read RT inodes");
904 goto out_rele_rip;
905 }
906
907 /* Make sure the summary counts are ok. */
908 error = xfs_check_summary_counts(mp);
909 if (error)
910 goto out_rtunmount;
911
912 /*
913 * If this is a read-only mount defer the superblock updates until
914 * the next remount into writeable mode. Otherwise we would never
915 * perform the update e.g. for the root filesystem.
916 */
917 if (mp->m_update_sb && !xfs_is_readonly(mp)) {
918 error = xfs_sync_sb(mp, false);
919 if (error) {
920 xfs_warn(mp, "failed to write sb changes");
921 goto out_rtunmount;
922 }
923 }
924
925 /*
926 * Initialise the XFS quota management subsystem for this mount
927 */
928 if (XFS_IS_QUOTA_ON(mp)) {
929 error = xfs_qm_newmount(mp, "amount, "aflags);
930 if (error)
931 goto out_rtunmount;
932 } else {
933 /*
934 * If a file system had quotas running earlier, but decided to
935 * mount without -o uquota/pquota/gquota options, revoke the
936 * quotachecked license.
937 */
938 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
939 xfs_notice(mp, "resetting quota flags");
940 error = xfs_mount_reset_sbqflags(mp);
941 if (error)
942 goto out_rtunmount;
943 }
944 }
945
946 /*
947 * Finish recovering the file system. This part needed to be delayed
948 * until after the root and real-time bitmap inodes were consistently
949 * read in. Temporarily create per-AG space reservations for metadata
950 * btree shape changes because space freeing transactions (for inode
951 * inactivation) require the per-AG reservation in lieu of reserving
952 * blocks.
953 */
954 error = xfs_fs_reserve_ag_blocks(mp);
955 if (error && error == -ENOSPC)
956 xfs_warn(mp,
957 "ENOSPC reserving per-AG metadata pool, log recovery may fail.");
958 error = xfs_log_mount_finish(mp);
959 xfs_fs_unreserve_ag_blocks(mp);
960 if (error) {
961 xfs_warn(mp, "log mount finish failed");
962 goto out_rtunmount;
963 }
964
965 /*
966 * Now the log is fully replayed, we can transition to full read-only
967 * mode for read-only mounts. This will sync all the metadata and clean
968 * the log so that the recovery we just performed does not have to be
969 * replayed again on the next mount.
970 *
971 * We use the same quiesce mechanism as the rw->ro remount, as they are
972 * semantically identical operations.
973 */
974 if (xfs_is_readonly(mp) && !xfs_has_norecovery(mp))
975 xfs_log_clean(mp);
976
977 /*
978 * Complete the quota initialisation, post-log-replay component.
979 */
980 if (quotamount) {
981 ASSERT(mp->m_qflags == 0);
982 mp->m_qflags = quotaflags;
983
984 xfs_qm_mount_quotas(mp);
985 }
986
987 /*
988 * Now we are mounted, reserve a small amount of unused space for
989 * privileged transactions. This is needed so that transaction
990 * space required for critical operations can dip into this pool
991 * when at ENOSPC. This is needed for operations like create with
992 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
993 * are not allowed to use this reserved space.
994 *
995 * This may drive us straight to ENOSPC on mount, but that implies
996 * we were already there on the last unmount. Warn if this occurs.
997 */
998 if (!xfs_is_readonly(mp)) {
999 error = xfs_reserve_blocks(mp, xfs_default_resblks(mp));
1000 if (error)
1001 xfs_warn(mp,
1002 "Unable to allocate reserve blocks. Continuing without reserve pool.");
1003
1004 /* Reserve AG blocks for future btree expansion. */
1005 error = xfs_fs_reserve_ag_blocks(mp);
1006 if (error && error != -ENOSPC)
1007 goto out_agresv;
1008 }
1009
1010 return 0;
1011
1012 out_agresv:
1013 xfs_fs_unreserve_ag_blocks(mp);
1014 xfs_qm_unmount_quotas(mp);
1015 out_rtunmount:
1016 xfs_rtunmount_inodes(mp);
1017 out_rele_rip:
1018 xfs_irele(rip);
1019 /* Clean out dquots that might be in memory after quotacheck. */
1020 xfs_qm_unmount(mp);
1021
1022 /*
1023 * Inactivate all inodes that might still be in memory after a log
1024 * intent recovery failure so that reclaim can free them. Metadata
1025 * inodes and the root directory shouldn't need inactivation, but the
1026 * mount failed for some reason, so pull down all the state and flee.
1027 */
1028 xfs_inodegc_flush(mp);
1029
1030 /*
1031 * Flush all inode reclamation work and flush the log.
1032 * We have to do this /after/ rtunmount and qm_unmount because those
1033 * two will have scheduled delayed reclaim for the rt/quota inodes.
1034 *
1035 * This is slightly different from the unmountfs call sequence
1036 * because we could be tearing down a partially set up mount. In
1037 * particular, if log_mount_finish fails we bail out without calling
1038 * qm_unmount_quotas and therefore rely on qm_unmount to release the
1039 * quota inodes.
1040 */
1041 xfs_unmount_flush_inodes(mp);
1042 out_log_dealloc:
1043 xfs_log_mount_cancel(mp);
1044 out_inodegc_shrinker:
1045 shrinker_free(mp->m_inodegc_shrinker);
1046 out_fail_wait:
1047 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
1048 xfs_buftarg_drain(mp->m_logdev_targp);
1049 xfs_buftarg_drain(mp->m_ddev_targp);
1050 out_free_perag:
1051 xfs_free_perag_range(mp, 0, mp->m_sb.sb_agcount);
1052 out_free_dir:
1053 xfs_da_unmount(mp);
1054 out_remove_uuid:
1055 xfs_uuid_unmount(mp);
1056 out_remove_errortag:
1057 xfs_errortag_del(mp);
1058 out_remove_error_sysfs:
1059 xfs_error_sysfs_del(mp);
1060 out_remove_scrub_stats:
1061 xchk_stats_unregister(mp->m_scrub_stats);
1062 xfs_sysfs_del(&mp->m_stats.xs_kobj);
1063 out_remove_sysfs:
1064 xfs_sysfs_del(&mp->m_kobj);
1065 out:
1066 return error;
1067 }
1068
1069 /*
1070 * This flushes out the inodes,dquots and the superblock, unmounts the
1071 * log and makes sure that incore structures are freed.
1072 */
1073 void
xfs_unmountfs(struct xfs_mount * mp)1074 xfs_unmountfs(
1075 struct xfs_mount *mp)
1076 {
1077 int error;
1078
1079 /*
1080 * Perform all on-disk metadata updates required to inactivate inodes
1081 * that the VFS evicted earlier in the unmount process. Freeing inodes
1082 * and discarding CoW fork preallocations can cause shape changes to
1083 * the free inode and refcount btrees, respectively, so we must finish
1084 * this before we discard the metadata space reservations. Metadata
1085 * inodes and the root directory do not require inactivation.
1086 */
1087 xfs_inodegc_flush(mp);
1088
1089 xfs_blockgc_stop(mp);
1090 xfs_fs_unreserve_ag_blocks(mp);
1091 xfs_qm_unmount_quotas(mp);
1092 xfs_rtunmount_inodes(mp);
1093 xfs_irele(mp->m_rootip);
1094
1095 xfs_unmount_flush_inodes(mp);
1096
1097 xfs_qm_unmount(mp);
1098
1099 /*
1100 * Unreserve any blocks we have so that when we unmount we don't account
1101 * the reserved free space as used. This is really only necessary for
1102 * lazy superblock counting because it trusts the incore superblock
1103 * counters to be absolutely correct on clean unmount.
1104 *
1105 * We don't bother correcting this elsewhere for lazy superblock
1106 * counting because on mount of an unclean filesystem we reconstruct the
1107 * correct counter value and this is irrelevant.
1108 *
1109 * For non-lazy counter filesystems, this doesn't matter at all because
1110 * we only every apply deltas to the superblock and hence the incore
1111 * value does not matter....
1112 */
1113 error = xfs_reserve_blocks(mp, 0);
1114 if (error)
1115 xfs_warn(mp, "Unable to free reserved block pool. "
1116 "Freespace may not be correct on next mount.");
1117 xfs_unmount_check(mp);
1118
1119 /*
1120 * Indicate that it's ok to clear log incompat bits before cleaning
1121 * the log and writing the unmount record.
1122 */
1123 xfs_set_done_with_log_incompat(mp);
1124 xfs_log_unmount(mp);
1125 xfs_da_unmount(mp);
1126 xfs_uuid_unmount(mp);
1127
1128 #if defined(DEBUG)
1129 xfs_errortag_clearall(mp);
1130 #endif
1131 shrinker_free(mp->m_inodegc_shrinker);
1132 xfs_free_perag_range(mp, 0, mp->m_sb.sb_agcount);
1133 xfs_errortag_del(mp);
1134 xfs_error_sysfs_del(mp);
1135 xchk_stats_unregister(mp->m_scrub_stats);
1136 xfs_sysfs_del(&mp->m_stats.xs_kobj);
1137 xfs_sysfs_del(&mp->m_kobj);
1138 }
1139
1140 /*
1141 * Determine whether modifications can proceed. The caller specifies the minimum
1142 * freeze level for which modifications should not be allowed. This allows
1143 * certain operations to proceed while the freeze sequence is in progress, if
1144 * necessary.
1145 */
1146 bool
xfs_fs_writable(struct xfs_mount * mp,int level)1147 xfs_fs_writable(
1148 struct xfs_mount *mp,
1149 int level)
1150 {
1151 ASSERT(level > SB_UNFROZEN);
1152 if ((mp->m_super->s_writers.frozen >= level) ||
1153 xfs_is_shutdown(mp) || xfs_is_readonly(mp))
1154 return false;
1155
1156 return true;
1157 }
1158
1159 void
xfs_add_freecounter(struct xfs_mount * mp,struct percpu_counter * counter,uint64_t delta)1160 xfs_add_freecounter(
1161 struct xfs_mount *mp,
1162 struct percpu_counter *counter,
1163 uint64_t delta)
1164 {
1165 bool has_resv_pool = (counter == &mp->m_fdblocks);
1166 uint64_t res_used;
1167
1168 /*
1169 * If the reserve pool is depleted, put blocks back into it first.
1170 * Most of the time the pool is full.
1171 */
1172 if (!has_resv_pool || mp->m_resblks == mp->m_resblks_avail) {
1173 percpu_counter_add(counter, delta);
1174 return;
1175 }
1176
1177 spin_lock(&mp->m_sb_lock);
1178 res_used = mp->m_resblks - mp->m_resblks_avail;
1179 if (res_used > delta) {
1180 mp->m_resblks_avail += delta;
1181 } else {
1182 delta -= res_used;
1183 mp->m_resblks_avail = mp->m_resblks;
1184 percpu_counter_add(counter, delta);
1185 }
1186 spin_unlock(&mp->m_sb_lock);
1187 }
1188
1189 int
xfs_dec_freecounter(struct xfs_mount * mp,struct percpu_counter * counter,uint64_t delta,bool rsvd)1190 xfs_dec_freecounter(
1191 struct xfs_mount *mp,
1192 struct percpu_counter *counter,
1193 uint64_t delta,
1194 bool rsvd)
1195 {
1196 int64_t lcounter;
1197 uint64_t set_aside = 0;
1198 s32 batch;
1199 bool has_resv_pool;
1200
1201 ASSERT(counter == &mp->m_fdblocks || counter == &mp->m_frextents);
1202 has_resv_pool = (counter == &mp->m_fdblocks);
1203 if (rsvd)
1204 ASSERT(has_resv_pool);
1205
1206 /*
1207 * Taking blocks away, need to be more accurate the closer we
1208 * are to zero.
1209 *
1210 * If the counter has a value of less than 2 * max batch size,
1211 * then make everything serialise as we are real close to
1212 * ENOSPC.
1213 */
1214 if (__percpu_counter_compare(counter, 2 * XFS_FDBLOCKS_BATCH,
1215 XFS_FDBLOCKS_BATCH) < 0)
1216 batch = 1;
1217 else
1218 batch = XFS_FDBLOCKS_BATCH;
1219
1220 /*
1221 * Set aside allocbt blocks because these blocks are tracked as free
1222 * space but not available for allocation. Technically this means that a
1223 * single reservation cannot consume all remaining free space, but the
1224 * ratio of allocbt blocks to usable free blocks should be rather small.
1225 * The tradeoff without this is that filesystems that maintain high
1226 * perag block reservations can over reserve physical block availability
1227 * and fail physical allocation, which leads to much more serious
1228 * problems (i.e. transaction abort, pagecache discards, etc.) than
1229 * slightly premature -ENOSPC.
1230 */
1231 if (has_resv_pool)
1232 set_aside = xfs_fdblocks_unavailable(mp);
1233 percpu_counter_add_batch(counter, -((int64_t)delta), batch);
1234 if (__percpu_counter_compare(counter, set_aside,
1235 XFS_FDBLOCKS_BATCH) >= 0) {
1236 /* we had space! */
1237 return 0;
1238 }
1239
1240 /*
1241 * lock up the sb for dipping into reserves before releasing the space
1242 * that took us to ENOSPC.
1243 */
1244 spin_lock(&mp->m_sb_lock);
1245 percpu_counter_add(counter, delta);
1246 if (!has_resv_pool || !rsvd)
1247 goto fdblocks_enospc;
1248
1249 lcounter = (long long)mp->m_resblks_avail - delta;
1250 if (lcounter >= 0) {
1251 mp->m_resblks_avail = lcounter;
1252 spin_unlock(&mp->m_sb_lock);
1253 return 0;
1254 }
1255 xfs_warn_once(mp,
1256 "Reserve blocks depleted! Consider increasing reserve pool size.");
1257
1258 fdblocks_enospc:
1259 spin_unlock(&mp->m_sb_lock);
1260 return -ENOSPC;
1261 }
1262
1263 /*
1264 * Used to free the superblock along various error paths.
1265 */
1266 void
xfs_freesb(struct xfs_mount * mp)1267 xfs_freesb(
1268 struct xfs_mount *mp)
1269 {
1270 struct xfs_buf *bp = mp->m_sb_bp;
1271
1272 xfs_buf_lock(bp);
1273 mp->m_sb_bp = NULL;
1274 xfs_buf_relse(bp);
1275 }
1276
1277 /*
1278 * If the underlying (data/log/rt) device is readonly, there are some
1279 * operations that cannot proceed.
1280 */
1281 int
xfs_dev_is_read_only(struct xfs_mount * mp,char * message)1282 xfs_dev_is_read_only(
1283 struct xfs_mount *mp,
1284 char *message)
1285 {
1286 if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1287 xfs_readonly_buftarg(mp->m_logdev_targp) ||
1288 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1289 xfs_notice(mp, "%s required on read-only device.", message);
1290 xfs_notice(mp, "write access unavailable, cannot proceed.");
1291 return -EROFS;
1292 }
1293 return 0;
1294 }
1295
1296 /* Force the summary counters to be recalculated at next mount. */
1297 void
xfs_force_summary_recalc(struct xfs_mount * mp)1298 xfs_force_summary_recalc(
1299 struct xfs_mount *mp)
1300 {
1301 if (!xfs_has_lazysbcount(mp))
1302 return;
1303
1304 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
1305 }
1306
1307 /*
1308 * Enable a log incompat feature flag in the primary superblock. The caller
1309 * cannot have any other transactions in progress.
1310 */
1311 int
xfs_add_incompat_log_feature(struct xfs_mount * mp,uint32_t feature)1312 xfs_add_incompat_log_feature(
1313 struct xfs_mount *mp,
1314 uint32_t feature)
1315 {
1316 struct xfs_dsb *dsb;
1317 int error;
1318
1319 ASSERT(hweight32(feature) == 1);
1320 ASSERT(!(feature & XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
1321
1322 /*
1323 * Force the log to disk and kick the background AIL thread to reduce
1324 * the chances that the bwrite will stall waiting for the AIL to unpin
1325 * the primary superblock buffer. This isn't a data integrity
1326 * operation, so we don't need a synchronous push.
1327 */
1328 error = xfs_log_force(mp, XFS_LOG_SYNC);
1329 if (error)
1330 return error;
1331 xfs_ail_push_all(mp->m_ail);
1332
1333 /*
1334 * Lock the primary superblock buffer to serialize all callers that
1335 * are trying to set feature bits.
1336 */
1337 xfs_buf_lock(mp->m_sb_bp);
1338 xfs_buf_hold(mp->m_sb_bp);
1339
1340 if (xfs_is_shutdown(mp)) {
1341 error = -EIO;
1342 goto rele;
1343 }
1344
1345 if (xfs_sb_has_incompat_log_feature(&mp->m_sb, feature))
1346 goto rele;
1347
1348 /*
1349 * Write the primary superblock to disk immediately, because we need
1350 * the log_incompat bit to be set in the primary super now to protect
1351 * the log items that we're going to commit later.
1352 */
1353 dsb = mp->m_sb_bp->b_addr;
1354 xfs_sb_to_disk(dsb, &mp->m_sb);
1355 dsb->sb_features_log_incompat |= cpu_to_be32(feature);
1356 error = xfs_bwrite(mp->m_sb_bp);
1357 if (error)
1358 goto shutdown;
1359
1360 /*
1361 * Add the feature bits to the incore superblock before we unlock the
1362 * buffer.
1363 */
1364 xfs_sb_add_incompat_log_features(&mp->m_sb, feature);
1365 xfs_buf_relse(mp->m_sb_bp);
1366
1367 /* Log the superblock to disk. */
1368 return xfs_sync_sb(mp, false);
1369 shutdown:
1370 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1371 rele:
1372 xfs_buf_relse(mp->m_sb_bp);
1373 return error;
1374 }
1375
1376 /*
1377 * Clear all the log incompat flags from the superblock.
1378 *
1379 * The caller cannot be in a transaction, must ensure that the log does not
1380 * contain any log items protected by any log incompat bit, and must ensure
1381 * that there are no other threads that depend on the state of the log incompat
1382 * feature flags in the primary super.
1383 *
1384 * Returns true if the superblock is dirty.
1385 */
1386 bool
xfs_clear_incompat_log_features(struct xfs_mount * mp)1387 xfs_clear_incompat_log_features(
1388 struct xfs_mount *mp)
1389 {
1390 bool ret = false;
1391
1392 if (!xfs_has_crc(mp) ||
1393 !xfs_sb_has_incompat_log_feature(&mp->m_sb,
1394 XFS_SB_FEAT_INCOMPAT_LOG_ALL) ||
1395 xfs_is_shutdown(mp) ||
1396 !xfs_is_done_with_log_incompat(mp))
1397 return false;
1398
1399 /*
1400 * Update the incore superblock. We synchronize on the primary super
1401 * buffer lock to be consistent with the add function, though at least
1402 * in theory this shouldn't be necessary.
1403 */
1404 xfs_buf_lock(mp->m_sb_bp);
1405 xfs_buf_hold(mp->m_sb_bp);
1406
1407 if (xfs_sb_has_incompat_log_feature(&mp->m_sb,
1408 XFS_SB_FEAT_INCOMPAT_LOG_ALL)) {
1409 xfs_sb_remove_incompat_log_features(&mp->m_sb);
1410 ret = true;
1411 }
1412
1413 xfs_buf_relse(mp->m_sb_bp);
1414 return ret;
1415 }
1416
1417 /*
1418 * Update the in-core delayed block counter.
1419 *
1420 * We prefer to update the counter without having to take a spinlock for every
1421 * counter update (i.e. batching). Each change to delayed allocation
1422 * reservations can change can easily exceed the default percpu counter
1423 * batching, so we use a larger batch factor here.
1424 *
1425 * Note that we don't currently have any callers requiring fast summation
1426 * (e.g. percpu_counter_read) so we can use a big batch value here.
1427 */
1428 #define XFS_DELALLOC_BATCH (4096)
1429 void
xfs_mod_delalloc(struct xfs_inode * ip,int64_t data_delta,int64_t ind_delta)1430 xfs_mod_delalloc(
1431 struct xfs_inode *ip,
1432 int64_t data_delta,
1433 int64_t ind_delta)
1434 {
1435 struct xfs_mount *mp = ip->i_mount;
1436
1437 if (XFS_IS_REALTIME_INODE(ip)) {
1438 percpu_counter_add_batch(&mp->m_delalloc_rtextents,
1439 xfs_rtb_to_rtx(mp, data_delta),
1440 XFS_DELALLOC_BATCH);
1441 if (!ind_delta)
1442 return;
1443 data_delta = 0;
1444 }
1445 percpu_counter_add_batch(&mp->m_delalloc_blks, data_delta + ind_delta,
1446 XFS_DELALLOC_BATCH);
1447 }
1448