1 /*-
2 * Implementation of the Common Access Method Transport (XPT) layer.
3 *
4 * SPDX-License-Identifier: BSD-2-Clause
5 *
6 * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
7 * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
8 * All rights reserved.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions, and the following disclaimer,
15 * without modification, immediately at the beginning of the file.
16 * 2. The name of the author may not be used to endorse or promote products
17 * derived from this software without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
23 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 #include "opt_printf.h"
33
34 #include <sys/param.h>
35 #include <sys/bio.h>
36 #include <sys/bus.h>
37 #include <sys/systm.h>
38 #include <sys/types.h>
39 #include <sys/malloc.h>
40 #include <sys/kernel.h>
41 #include <sys/time.h>
42 #include <sys/conf.h>
43 #include <sys/fcntl.h>
44 #include <sys/proc.h>
45 #include <sys/sbuf.h>
46 #include <sys/smp.h>
47 #include <sys/taskqueue.h>
48
49 #include <sys/lock.h>
50 #include <sys/mutex.h>
51 #include <sys/sysctl.h>
52 #include <sys/kthread.h>
53
54 #include <cam/cam.h>
55 #include <cam/cam_ccb.h>
56 #include <cam/cam_iosched.h>
57 #include <cam/cam_periph.h>
58 #include <cam/cam_queue.h>
59 #include <cam/cam_sim.h>
60 #include <cam/cam_xpt.h>
61 #include <cam/cam_xpt_sim.h>
62 #include <cam/cam_xpt_periph.h>
63 #include <cam/cam_xpt_internal.h>
64 #include <cam/cam_debug.h>
65 #include <cam/cam_compat.h>
66
67 #include <cam/scsi/scsi_all.h>
68 #include <cam/scsi/scsi_message.h>
69 #include <cam/scsi/scsi_pass.h>
70
71 #include <machine/stdarg.h> /* for xpt_print below */
72
73 /* Wild guess based on not wanting to grow the stack too much */
74 #define XPT_PRINT_MAXLEN 512
75 #ifdef PRINTF_BUFR_SIZE
76 #define XPT_PRINT_LEN PRINTF_BUFR_SIZE
77 #else
78 #define XPT_PRINT_LEN 128
79 #endif
80 _Static_assert(XPT_PRINT_LEN <= XPT_PRINT_MAXLEN, "XPT_PRINT_LEN is too large");
81
82 /*
83 * This is the maximum number of high powered commands (e.g. start unit)
84 * that can be outstanding at a particular time.
85 */
86 #ifndef CAM_MAX_HIGHPOWER
87 #define CAM_MAX_HIGHPOWER 4
88 #endif
89
90 /* Datastructures internal to the xpt layer */
91 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers");
92 MALLOC_DEFINE(M_CAMDEV, "CAM DEV", "CAM devices");
93 MALLOC_DEFINE(M_CAMCCB, "CAM CCB", "CAM CCBs");
94 MALLOC_DEFINE(M_CAMPATH, "CAM path", "CAM paths");
95
96 struct xpt_softc {
97 uint32_t xpt_generation;
98
99 /* number of high powered commands that can go through right now */
100 struct mtx xpt_highpower_lock;
101 STAILQ_HEAD(highpowerlist, cam_ed) highpowerq;
102 int num_highpower;
103
104 /* queue for handling async rescan requests. */
105 TAILQ_HEAD(, ccb_hdr) ccb_scanq;
106 int buses_to_config;
107 int buses_config_done;
108
109 /*
110 * Registered buses
111 *
112 * N.B., "busses" is an archaic spelling of "buses". In new code
113 * "buses" is preferred.
114 */
115 TAILQ_HEAD(,cam_eb) xpt_busses;
116 u_int bus_generation;
117
118 int boot_delay;
119 struct callout boot_callout;
120 struct task boot_task;
121 struct root_hold_token xpt_rootmount;
122
123 struct mtx xpt_topo_lock;
124 struct taskqueue *xpt_taskq;
125 };
126
127 typedef enum {
128 DM_RET_COPY = 0x01,
129 DM_RET_FLAG_MASK = 0x0f,
130 DM_RET_NONE = 0x00,
131 DM_RET_STOP = 0x10,
132 DM_RET_DESCEND = 0x20,
133 DM_RET_ERROR = 0x30,
134 DM_RET_ACTION_MASK = 0xf0
135 } dev_match_ret;
136
137 typedef enum {
138 XPT_DEPTH_BUS,
139 XPT_DEPTH_TARGET,
140 XPT_DEPTH_DEVICE,
141 XPT_DEPTH_PERIPH
142 } xpt_traverse_depth;
143
144 struct xpt_traverse_config {
145 xpt_traverse_depth depth;
146 void *tr_func;
147 void *tr_arg;
148 };
149
150 typedef int xpt_busfunc_t (struct cam_eb *bus, void *arg);
151 typedef int xpt_targetfunc_t (struct cam_et *target, void *arg);
152 typedef int xpt_devicefunc_t (struct cam_ed *device, void *arg);
153 typedef int xpt_periphfunc_t (struct cam_periph *periph, void *arg);
154 typedef int xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg);
155
156 /* Transport layer configuration information */
157 static struct xpt_softc xsoftc;
158
159 MTX_SYSINIT(xpt_topo_init, &xsoftc.xpt_topo_lock, "XPT topology lock", MTX_DEF);
160
161 SYSCTL_INT(_kern_cam, OID_AUTO, boot_delay, CTLFLAG_RDTUN,
162 &xsoftc.boot_delay, 0, "Bus registration wait time");
163 SYSCTL_UINT(_kern_cam, OID_AUTO, xpt_generation, CTLFLAG_RD,
164 &xsoftc.xpt_generation, 0, "CAM peripheral generation count");
165
166 struct cam_doneq {
167 struct mtx_padalign cam_doneq_mtx;
168 STAILQ_HEAD(, ccb_hdr) cam_doneq;
169 int cam_doneq_sleep;
170 };
171
172 static struct cam_doneq cam_doneqs[MAXCPU];
173 static u_int __read_mostly cam_num_doneqs;
174 static struct proc *cam_proc;
175 static struct cam_doneq cam_async;
176
177 SYSCTL_INT(_kern_cam, OID_AUTO, num_doneqs, CTLFLAG_RDTUN,
178 &cam_num_doneqs, 0, "Number of completion queues/threads");
179
180 struct cam_periph *xpt_periph;
181
182 static periph_init_t xpt_periph_init;
183
184 static struct periph_driver xpt_driver =
185 {
186 xpt_periph_init, "xpt",
187 TAILQ_HEAD_INITIALIZER(xpt_driver.units), /* generation */ 0,
188 CAM_PERIPH_DRV_EARLY
189 };
190
191 PERIPHDRIVER_DECLARE(xpt, xpt_driver);
192
193 static d_open_t xptopen;
194 static d_close_t xptclose;
195 static d_ioctl_t xptioctl;
196 static d_ioctl_t xptdoioctl;
197
198 static struct cdevsw xpt_cdevsw = {
199 .d_version = D_VERSION,
200 .d_flags = 0,
201 .d_open = xptopen,
202 .d_close = xptclose,
203 .d_ioctl = xptioctl,
204 .d_name = "xpt",
205 };
206
207 /* Storage for debugging datastructures */
208 struct cam_path *cam_dpath;
209 uint32_t __read_mostly cam_dflags = CAM_DEBUG_FLAGS;
210 SYSCTL_UINT(_kern_cam, OID_AUTO, dflags, CTLFLAG_RWTUN,
211 &cam_dflags, 0, "Enabled debug flags");
212 uint32_t cam_debug_delay = CAM_DEBUG_DELAY;
213 SYSCTL_UINT(_kern_cam, OID_AUTO, debug_delay, CTLFLAG_RWTUN,
214 &cam_debug_delay, 0, "Delay in us after each debug message");
215
216 /* Our boot-time initialization hook */
217 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *);
218
219 static moduledata_t cam_moduledata = {
220 "cam",
221 cam_module_event_handler,
222 NULL
223 };
224
225 static int xpt_init(void *);
226
227 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND);
228 MODULE_VERSION(cam, 1);
229
230 static void xpt_async_bcast(struct async_list *async_head,
231 uint32_t async_code,
232 struct cam_path *path,
233 void *async_arg);
234 static path_id_t xptnextfreepathid(void);
235 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus);
236 static union ccb *xpt_get_ccb(struct cam_periph *periph);
237 static union ccb *xpt_get_ccb_nowait(struct cam_periph *periph);
238 static void xpt_run_allocq(struct cam_periph *periph, int sleep);
239 static void xpt_run_allocq_task(void *context, int pending);
240 static void xpt_run_devq(struct cam_devq *devq);
241 static callout_func_t xpt_release_devq_timeout;
242 static void xpt_acquire_bus(struct cam_eb *bus);
243 static void xpt_release_bus(struct cam_eb *bus);
244 static uint32_t xpt_freeze_devq_device(struct cam_ed *dev, u_int count);
245 static int xpt_release_devq_device(struct cam_ed *dev, u_int count,
246 int run_queue);
247 static struct cam_et*
248 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id);
249 static void xpt_acquire_target(struct cam_et *target);
250 static void xpt_release_target(struct cam_et *target);
251 static struct cam_eb*
252 xpt_find_bus(path_id_t path_id);
253 static struct cam_et*
254 xpt_find_target(struct cam_eb *bus, target_id_t target_id);
255 static struct cam_ed*
256 xpt_find_device(struct cam_et *target, lun_id_t lun_id);
257 static void xpt_config(void *arg);
258 static void xpt_hold_boot_locked(void);
259 static int xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo,
260 uint32_t new_priority);
261 static xpt_devicefunc_t xptpassannouncefunc;
262 static void xptaction(struct cam_sim *sim, union ccb *work_ccb);
263 static void xptpoll(struct cam_sim *sim);
264 static void camisr_runqueue(void);
265 static void xpt_done_process(struct ccb_hdr *ccb_h);
266 static void xpt_done_td(void *);
267 static void xpt_async_td(void *);
268 static dev_match_ret xptbusmatch(struct dev_match_pattern *patterns,
269 u_int num_patterns, struct cam_eb *bus);
270 static dev_match_ret xptdevicematch(struct dev_match_pattern *patterns,
271 u_int num_patterns,
272 struct cam_ed *device);
273 static dev_match_ret xptperiphmatch(struct dev_match_pattern *patterns,
274 u_int num_patterns,
275 struct cam_periph *periph);
276 static xpt_busfunc_t xptedtbusfunc;
277 static xpt_targetfunc_t xptedttargetfunc;
278 static xpt_devicefunc_t xptedtdevicefunc;
279 static xpt_periphfunc_t xptedtperiphfunc;
280 static xpt_pdrvfunc_t xptplistpdrvfunc;
281 static xpt_periphfunc_t xptplistperiphfunc;
282 static int xptedtmatch(struct ccb_dev_match *cdm);
283 static int xptperiphlistmatch(struct ccb_dev_match *cdm);
284 static int xptbustraverse(struct cam_eb *start_bus,
285 xpt_busfunc_t *tr_func, void *arg);
286 static int xpttargettraverse(struct cam_eb *bus,
287 struct cam_et *start_target,
288 xpt_targetfunc_t *tr_func, void *arg);
289 static int xptdevicetraverse(struct cam_et *target,
290 struct cam_ed *start_device,
291 xpt_devicefunc_t *tr_func, void *arg);
292 static int xptperiphtraverse(struct cam_ed *device,
293 struct cam_periph *start_periph,
294 xpt_periphfunc_t *tr_func, void *arg);
295 static int xptpdrvtraverse(struct periph_driver **start_pdrv,
296 xpt_pdrvfunc_t *tr_func, void *arg);
297 static int xptpdperiphtraverse(struct periph_driver **pdrv,
298 struct cam_periph *start_periph,
299 xpt_periphfunc_t *tr_func,
300 void *arg);
301 static xpt_busfunc_t xptdefbusfunc;
302 static xpt_targetfunc_t xptdeftargetfunc;
303 static xpt_devicefunc_t xptdefdevicefunc;
304 static xpt_periphfunc_t xptdefperiphfunc;
305 static void xpt_finishconfig_task(void *context, int pending);
306 static void xpt_dev_async_default(uint32_t async_code,
307 struct cam_eb *bus,
308 struct cam_et *target,
309 struct cam_ed *device,
310 void *async_arg);
311 static struct cam_ed * xpt_alloc_device_default(struct cam_eb *bus,
312 struct cam_et *target,
313 lun_id_t lun_id);
314 static xpt_devicefunc_t xptsetasyncfunc;
315 static xpt_busfunc_t xptsetasyncbusfunc;
316 static cam_status xptregister(struct cam_periph *periph,
317 void *arg);
318
319 static __inline int
xpt_schedule_devq(struct cam_devq * devq,struct cam_ed * dev)320 xpt_schedule_devq(struct cam_devq *devq, struct cam_ed *dev)
321 {
322 int retval;
323
324 mtx_assert(&devq->send_mtx, MA_OWNED);
325 if ((dev->ccbq.queue.entries > 0) &&
326 (dev->ccbq.dev_openings > 0) &&
327 (dev->ccbq.queue.qfrozen_cnt == 0)) {
328 /*
329 * The priority of a device waiting for controller
330 * resources is that of the highest priority CCB
331 * enqueued.
332 */
333 retval =
334 xpt_schedule_dev(&devq->send_queue,
335 &dev->devq_entry,
336 CAMQ_GET_PRIO(&dev->ccbq.queue));
337 } else {
338 retval = 0;
339 }
340 return (retval);
341 }
342
343 static __inline int
device_is_queued(struct cam_ed * device)344 device_is_queued(struct cam_ed *device)
345 {
346 return (device->devq_entry.index != CAM_UNQUEUED_INDEX);
347 }
348
349 static void
xpt_periph_init(void)350 xpt_periph_init(void)
351 {
352 make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0");
353 }
354
355 static int
xptopen(struct cdev * dev,int flags,int fmt,struct thread * td)356 xptopen(struct cdev *dev, int flags, int fmt, struct thread *td)
357 {
358
359 /*
360 * Only allow read-write access.
361 */
362 if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0))
363 return(EPERM);
364
365 /*
366 * We don't allow nonblocking access.
367 */
368 if ((flags & O_NONBLOCK) != 0) {
369 printf("%s: can't do nonblocking access\n", devtoname(dev));
370 return(ENODEV);
371 }
372
373 return(0);
374 }
375
376 static int
xptclose(struct cdev * dev,int flag,int fmt,struct thread * td)377 xptclose(struct cdev *dev, int flag, int fmt, struct thread *td)
378 {
379
380 return(0);
381 }
382
383 /*
384 * Don't automatically grab the xpt softc lock here even though this is going
385 * through the xpt device. The xpt device is really just a back door for
386 * accessing other devices and SIMs, so the right thing to do is to grab
387 * the appropriate SIM lock once the bus/SIM is located.
388 */
389 static int
xptioctl(struct cdev * dev,u_long cmd,caddr_t addr,int flag,struct thread * td)390 xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
391 {
392 int error;
393
394 if ((error = xptdoioctl(dev, cmd, addr, flag, td)) == ENOTTY) {
395 error = cam_compat_ioctl(dev, cmd, addr, flag, td, xptdoioctl);
396 }
397 return (error);
398 }
399
400 static int
xptdoioctl(struct cdev * dev,u_long cmd,caddr_t addr,int flag,struct thread * td)401 xptdoioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
402 {
403 int error;
404
405 error = 0;
406
407 switch(cmd) {
408 /*
409 * For the transport layer CAMIOCOMMAND ioctl, we really only want
410 * to accept CCB types that don't quite make sense to send through a
411 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated
412 * in the CAM spec.
413 */
414 case CAMIOCOMMAND: {
415 union ccb *ccb;
416 union ccb *inccb;
417 struct cam_eb *bus;
418
419 inccb = (union ccb *)addr;
420 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
421 if (inccb->ccb_h.func_code == XPT_SCSI_IO)
422 inccb->csio.bio = NULL;
423 #endif
424
425 if (inccb->ccb_h.flags & CAM_UNLOCKED)
426 return (EINVAL);
427
428 bus = xpt_find_bus(inccb->ccb_h.path_id);
429 if (bus == NULL)
430 return (EINVAL);
431
432 switch (inccb->ccb_h.func_code) {
433 case XPT_SCAN_BUS:
434 case XPT_RESET_BUS:
435 if (inccb->ccb_h.target_id != CAM_TARGET_WILDCARD ||
436 inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
437 xpt_release_bus(bus);
438 return (EINVAL);
439 }
440 break;
441 case XPT_SCAN_TGT:
442 if (inccb->ccb_h.target_id == CAM_TARGET_WILDCARD ||
443 inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
444 xpt_release_bus(bus);
445 return (EINVAL);
446 }
447 break;
448 default:
449 break;
450 }
451
452 switch(inccb->ccb_h.func_code) {
453 case XPT_SCAN_BUS:
454 case XPT_RESET_BUS:
455 case XPT_PATH_INQ:
456 case XPT_ENG_INQ:
457 case XPT_SCAN_LUN:
458 case XPT_SCAN_TGT:
459
460 ccb = xpt_alloc_ccb();
461
462 /*
463 * Create a path using the bus, target, and lun the
464 * user passed in.
465 */
466 if (xpt_create_path(&ccb->ccb_h.path, NULL,
467 inccb->ccb_h.path_id,
468 inccb->ccb_h.target_id,
469 inccb->ccb_h.target_lun) !=
470 CAM_REQ_CMP){
471 error = EINVAL;
472 xpt_free_ccb(ccb);
473 break;
474 }
475 /* Ensure all of our fields are correct */
476 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path,
477 inccb->ccb_h.pinfo.priority);
478 xpt_merge_ccb(ccb, inccb);
479 xpt_path_lock(ccb->ccb_h.path);
480 cam_periph_runccb(ccb, NULL, 0, 0, NULL);
481 xpt_path_unlock(ccb->ccb_h.path);
482 bcopy(ccb, inccb, sizeof(union ccb));
483 xpt_free_path(ccb->ccb_h.path);
484 xpt_free_ccb(ccb);
485 break;
486
487 case XPT_DEBUG: {
488 union ccb ccb;
489
490 /*
491 * This is an immediate CCB, so it's okay to
492 * allocate it on the stack.
493 */
494 memset(&ccb, 0, sizeof(ccb));
495
496 /*
497 * Create a path using the bus, target, and lun the
498 * user passed in.
499 */
500 if (xpt_create_path(&ccb.ccb_h.path, NULL,
501 inccb->ccb_h.path_id,
502 inccb->ccb_h.target_id,
503 inccb->ccb_h.target_lun) !=
504 CAM_REQ_CMP){
505 error = EINVAL;
506 break;
507 }
508 /* Ensure all of our fields are correct */
509 xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path,
510 inccb->ccb_h.pinfo.priority);
511 xpt_merge_ccb(&ccb, inccb);
512 xpt_action(&ccb);
513 bcopy(&ccb, inccb, sizeof(union ccb));
514 xpt_free_path(ccb.ccb_h.path);
515 break;
516 }
517 case XPT_DEV_MATCH: {
518 struct cam_periph_map_info mapinfo;
519 struct cam_path *old_path;
520
521 /*
522 * We can't deal with physical addresses for this
523 * type of transaction.
524 */
525 if ((inccb->ccb_h.flags & CAM_DATA_MASK) !=
526 CAM_DATA_VADDR) {
527 error = EINVAL;
528 break;
529 }
530
531 /*
532 * Save this in case the caller had it set to
533 * something in particular.
534 */
535 old_path = inccb->ccb_h.path;
536
537 /*
538 * We really don't need a path for the matching
539 * code. The path is needed because of the
540 * debugging statements in xpt_action(). They
541 * assume that the CCB has a valid path.
542 */
543 inccb->ccb_h.path = xpt_periph->path;
544
545 bzero(&mapinfo, sizeof(mapinfo));
546
547 /*
548 * Map the pattern and match buffers into kernel
549 * virtual address space.
550 */
551 error = cam_periph_mapmem(inccb, &mapinfo, maxphys);
552
553 if (error) {
554 inccb->ccb_h.path = old_path;
555 break;
556 }
557
558 /*
559 * This is an immediate CCB, we can send it on directly.
560 */
561 xpt_action(inccb);
562
563 /*
564 * Map the buffers back into user space.
565 */
566 error = cam_periph_unmapmem(inccb, &mapinfo);
567
568 inccb->ccb_h.path = old_path;
569 break;
570 }
571 default:
572 error = ENOTSUP;
573 break;
574 }
575 xpt_release_bus(bus);
576 break;
577 }
578 /*
579 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input,
580 * with the periphal driver name and unit name filled in. The other
581 * fields don't really matter as input. The passthrough driver name
582 * ("pass"), and unit number are passed back in the ccb. The current
583 * device generation number, and the index into the device peripheral
584 * driver list, and the status are also passed back. Note that
585 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb,
586 * we never return a status of CAM_GDEVLIST_LIST_CHANGED. It is
587 * (or rather should be) impossible for the device peripheral driver
588 * list to change since we look at the whole thing in one pass, and
589 * we do it with lock protection.
590 *
591 */
592 case CAMGETPASSTHRU: {
593 union ccb *ccb;
594 struct cam_periph *periph;
595 struct periph_driver **p_drv;
596 char *name;
597 u_int unit;
598 bool base_periph_found;
599
600 ccb = (union ccb *)addr;
601 unit = ccb->cgdl.unit_number;
602 name = ccb->cgdl.periph_name;
603 base_periph_found = false;
604 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
605 if (ccb->ccb_h.func_code == XPT_SCSI_IO)
606 ccb->csio.bio = NULL;
607 #endif
608
609 /*
610 * Sanity check -- make sure we don't get a null peripheral
611 * driver name.
612 */
613 if (*ccb->cgdl.periph_name == '\0') {
614 error = EINVAL;
615 break;
616 }
617
618 /* Keep the list from changing while we traverse it */
619 xpt_lock_buses();
620
621 /* first find our driver in the list of drivers */
622 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++)
623 if (strcmp((*p_drv)->driver_name, name) == 0)
624 break;
625
626 if (*p_drv == NULL) {
627 xpt_unlock_buses();
628 ccb->ccb_h.status = CAM_REQ_CMP_ERR;
629 ccb->cgdl.status = CAM_GDEVLIST_ERROR;
630 *ccb->cgdl.periph_name = '\0';
631 ccb->cgdl.unit_number = 0;
632 error = ENOENT;
633 break;
634 }
635
636 /*
637 * Run through every peripheral instance of this driver
638 * and check to see whether it matches the unit passed
639 * in by the user. If it does, get out of the loops and
640 * find the passthrough driver associated with that
641 * peripheral driver.
642 */
643 for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL;
644 periph = TAILQ_NEXT(periph, unit_links)) {
645 if (periph->unit_number == unit)
646 break;
647 }
648 /*
649 * If we found the peripheral driver that the user passed
650 * in, go through all of the peripheral drivers for that
651 * particular device and look for a passthrough driver.
652 */
653 if (periph != NULL) {
654 struct cam_ed *device;
655 int i;
656
657 base_periph_found = true;
658 device = periph->path->device;
659 for (i = 0, periph = SLIST_FIRST(&device->periphs);
660 periph != NULL;
661 periph = SLIST_NEXT(periph, periph_links), i++) {
662 /*
663 * Check to see whether we have a
664 * passthrough device or not.
665 */
666 if (strcmp(periph->periph_name, "pass") == 0) {
667 /*
668 * Fill in the getdevlist fields.
669 */
670 strlcpy(ccb->cgdl.periph_name,
671 periph->periph_name,
672 sizeof(ccb->cgdl.periph_name));
673 ccb->cgdl.unit_number =
674 periph->unit_number;
675 if (SLIST_NEXT(periph, periph_links))
676 ccb->cgdl.status =
677 CAM_GDEVLIST_MORE_DEVS;
678 else
679 ccb->cgdl.status =
680 CAM_GDEVLIST_LAST_DEVICE;
681 ccb->cgdl.generation =
682 device->generation;
683 ccb->cgdl.index = i;
684 /*
685 * Fill in some CCB header fields
686 * that the user may want.
687 */
688 ccb->ccb_h.path_id =
689 periph->path->bus->path_id;
690 ccb->ccb_h.target_id =
691 periph->path->target->target_id;
692 ccb->ccb_h.target_lun =
693 periph->path->device->lun_id;
694 ccb->ccb_h.status = CAM_REQ_CMP;
695 break;
696 }
697 }
698 }
699
700 /*
701 * If the periph is null here, one of two things has
702 * happened. The first possibility is that we couldn't
703 * find the unit number of the particular peripheral driver
704 * that the user is asking about. e.g. the user asks for
705 * the passthrough driver for "da11". We find the list of
706 * "da" peripherals all right, but there is no unit 11.
707 * The other possibility is that we went through the list
708 * of peripheral drivers attached to the device structure,
709 * but didn't find one with the name "pass". Either way,
710 * we return ENOENT, since we couldn't find something.
711 */
712 if (periph == NULL) {
713 ccb->ccb_h.status = CAM_REQ_CMP_ERR;
714 ccb->cgdl.status = CAM_GDEVLIST_ERROR;
715 *ccb->cgdl.periph_name = '\0';
716 ccb->cgdl.unit_number = 0;
717 error = ENOENT;
718 /*
719 * It is unfortunate that this is even necessary,
720 * but there are many, many clueless users out there.
721 * If this is true, the user is looking for the
722 * passthrough driver, but doesn't have one in his
723 * kernel.
724 */
725 if (base_periph_found) {
726 printf("xptioctl: pass driver is not in the "
727 "kernel\n");
728 printf("xptioctl: put \"device pass\" in "
729 "your kernel config file\n");
730 }
731 }
732 xpt_unlock_buses();
733 break;
734 }
735 default:
736 error = ENOTTY;
737 break;
738 }
739
740 return(error);
741 }
742
743 static int
cam_module_event_handler(module_t mod,int what,void * arg)744 cam_module_event_handler(module_t mod, int what, void *arg)
745 {
746 int error;
747
748 switch (what) {
749 case MOD_LOAD:
750 if ((error = xpt_init(NULL)) != 0)
751 return (error);
752 break;
753 case MOD_UNLOAD:
754 return EBUSY;
755 default:
756 return EOPNOTSUPP;
757 }
758
759 return 0;
760 }
761
762 static struct xpt_proto *
xpt_proto_find(cam_proto proto)763 xpt_proto_find(cam_proto proto)
764 {
765 struct xpt_proto **pp;
766
767 SET_FOREACH(pp, cam_xpt_proto_set) {
768 if ((*pp)->proto == proto)
769 return *pp;
770 }
771
772 return NULL;
773 }
774
775 static void
xpt_rescan_done(struct cam_periph * periph,union ccb * done_ccb)776 xpt_rescan_done(struct cam_periph *periph, union ccb *done_ccb)
777 {
778
779 if (done_ccb->ccb_h.ppriv_ptr1 == NULL) {
780 xpt_free_path(done_ccb->ccb_h.path);
781 xpt_free_ccb(done_ccb);
782 } else {
783 done_ccb->ccb_h.cbfcnp = done_ccb->ccb_h.ppriv_ptr1;
784 (*done_ccb->ccb_h.cbfcnp)(periph, done_ccb);
785 }
786 xpt_release_boot();
787 }
788
789 /* thread to handle bus rescans */
790 static void
xpt_scanner_thread(void * dummy)791 xpt_scanner_thread(void *dummy)
792 {
793 union ccb *ccb;
794 struct mtx *mtx;
795 struct cam_ed *device;
796
797 xpt_lock_buses();
798 for (;;) {
799 if (TAILQ_EMPTY(&xsoftc.ccb_scanq))
800 msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO,
801 "-", 0);
802 if ((ccb = (union ccb *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) {
803 TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
804 xpt_unlock_buses();
805
806 /*
807 * We need to lock the device's mutex which we use as
808 * the path mutex. We can't do it directly because the
809 * cam_path in the ccb may wind up going away because
810 * the path lock may be dropped and the path retired in
811 * the completion callback. We do this directly to keep
812 * the reference counts in cam_path sane. We also have
813 * to copy the device pointer because ccb_h.path may
814 * be freed in the callback.
815 */
816 mtx = xpt_path_mtx(ccb->ccb_h.path);
817 device = ccb->ccb_h.path->device;
818 xpt_acquire_device(device);
819 mtx_lock(mtx);
820 xpt_action(ccb);
821 mtx_unlock(mtx);
822 xpt_release_device(device);
823
824 xpt_lock_buses();
825 }
826 }
827 }
828
829 void
xpt_rescan(union ccb * ccb)830 xpt_rescan(union ccb *ccb)
831 {
832 struct ccb_hdr *hdr;
833
834 /* Prepare request */
835 if (ccb->ccb_h.path->target->target_id == CAM_TARGET_WILDCARD &&
836 ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
837 ccb->ccb_h.func_code = XPT_SCAN_BUS;
838 else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
839 ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
840 ccb->ccb_h.func_code = XPT_SCAN_TGT;
841 else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
842 ccb->ccb_h.path->device->lun_id != CAM_LUN_WILDCARD)
843 ccb->ccb_h.func_code = XPT_SCAN_LUN;
844 else {
845 xpt_print(ccb->ccb_h.path, "illegal scan path\n");
846 xpt_free_path(ccb->ccb_h.path);
847 xpt_free_ccb(ccb);
848 return;
849 }
850 CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE,
851 ("xpt_rescan: func %#x %s\n", ccb->ccb_h.func_code,
852 xpt_action_name(ccb->ccb_h.func_code)));
853
854 ccb->ccb_h.ppriv_ptr1 = ccb->ccb_h.cbfcnp;
855 ccb->ccb_h.cbfcnp = xpt_rescan_done;
856 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, CAM_PRIORITY_XPT);
857 /* Don't make duplicate entries for the same paths. */
858 xpt_lock_buses();
859 if (ccb->ccb_h.ppriv_ptr1 == NULL) {
860 TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) {
861 if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) {
862 wakeup(&xsoftc.ccb_scanq);
863 xpt_unlock_buses();
864 xpt_print(ccb->ccb_h.path, "rescan already queued\n");
865 xpt_free_path(ccb->ccb_h.path);
866 xpt_free_ccb(ccb);
867 return;
868 }
869 }
870 }
871 TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
872 xpt_hold_boot_locked();
873 wakeup(&xsoftc.ccb_scanq);
874 xpt_unlock_buses();
875 }
876
877 /* Functions accessed by the peripheral drivers */
878 static int
xpt_init(void * dummy)879 xpt_init(void *dummy)
880 {
881 struct cam_sim *xpt_sim;
882 struct cam_path *path;
883 struct cam_devq *devq;
884 cam_status status;
885 int error, i;
886
887 TAILQ_INIT(&xsoftc.xpt_busses);
888 TAILQ_INIT(&xsoftc.ccb_scanq);
889 STAILQ_INIT(&xsoftc.highpowerq);
890 xsoftc.num_highpower = CAM_MAX_HIGHPOWER;
891
892 mtx_init(&xsoftc.xpt_highpower_lock, "XPT highpower lock", NULL, MTX_DEF);
893 xsoftc.xpt_taskq = taskqueue_create("CAM XPT task", M_WAITOK,
894 taskqueue_thread_enqueue, /*context*/&xsoftc.xpt_taskq);
895
896 #ifdef CAM_BOOT_DELAY
897 /*
898 * Override this value at compile time to assist our users
899 * who don't use loader to boot a kernel.
900 */
901 xsoftc.boot_delay = CAM_BOOT_DELAY;
902 #endif
903
904 /*
905 * The xpt layer is, itself, the equivalent of a SIM.
906 * Allow 16 ccbs in the ccb pool for it. This should
907 * give decent parallelism when we probe buses and
908 * perform other XPT functions.
909 */
910 devq = cam_simq_alloc(16);
911 if (devq == NULL)
912 return (ENOMEM);
913 xpt_sim = cam_sim_alloc(xptaction,
914 xptpoll,
915 "xpt",
916 /*softc*/NULL,
917 /*unit*/0,
918 /*mtx*/NULL,
919 /*max_dev_transactions*/0,
920 /*max_tagged_dev_transactions*/0,
921 devq);
922 if (xpt_sim == NULL)
923 return (ENOMEM);
924
925 if ((error = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) {
926 printf("xpt_init: xpt_bus_register failed with errno %d,"
927 " failing attach\n", error);
928 return (EINVAL);
929 }
930
931 /*
932 * Looking at the XPT from the SIM layer, the XPT is
933 * the equivalent of a peripheral driver. Allocate
934 * a peripheral driver entry for us.
935 */
936 if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID,
937 CAM_TARGET_WILDCARD,
938 CAM_LUN_WILDCARD)) != CAM_REQ_CMP) {
939 printf("xpt_init: xpt_create_path failed with status %#x,"
940 " failing attach\n", status);
941 return (EINVAL);
942 }
943 xpt_path_lock(path);
944 cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO,
945 path, NULL, 0, xpt_sim);
946 xpt_path_unlock(path);
947 xpt_free_path(path);
948
949 if (cam_num_doneqs < 1)
950 cam_num_doneqs = 1 + mp_ncpus / 6;
951 else if (cam_num_doneqs > MAXCPU)
952 cam_num_doneqs = MAXCPU;
953 for (i = 0; i < cam_num_doneqs; i++) {
954 mtx_init(&cam_doneqs[i].cam_doneq_mtx, "CAM doneq", NULL,
955 MTX_DEF);
956 STAILQ_INIT(&cam_doneqs[i].cam_doneq);
957 error = kproc_kthread_add(xpt_done_td, &cam_doneqs[i],
958 &cam_proc, NULL, 0, 0, "cam", "doneq%d", i);
959 if (error != 0) {
960 cam_num_doneqs = i;
961 break;
962 }
963 }
964 if (cam_num_doneqs < 1) {
965 printf("xpt_init: Cannot init completion queues "
966 "- failing attach\n");
967 return (ENOMEM);
968 }
969
970 mtx_init(&cam_async.cam_doneq_mtx, "CAM async", NULL, MTX_DEF);
971 STAILQ_INIT(&cam_async.cam_doneq);
972 if (kproc_kthread_add(xpt_async_td, &cam_async,
973 &cam_proc, NULL, 0, 0, "cam", "async") != 0) {
974 printf("xpt_init: Cannot init async thread "
975 "- failing attach\n");
976 return (ENOMEM);
977 }
978
979 /*
980 * Register a callback for when interrupts are enabled.
981 */
982 config_intrhook_oneshot(xpt_config, NULL);
983
984 return (0);
985 }
986
987 static cam_status
xptregister(struct cam_periph * periph,void * arg)988 xptregister(struct cam_periph *periph, void *arg)
989 {
990 struct cam_sim *xpt_sim;
991
992 if (periph == NULL) {
993 printf("xptregister: periph was NULL!!\n");
994 return(CAM_REQ_CMP_ERR);
995 }
996
997 xpt_sim = (struct cam_sim *)arg;
998 xpt_sim->softc = periph;
999 xpt_periph = periph;
1000 periph->softc = NULL;
1001
1002 return(CAM_REQ_CMP);
1003 }
1004
1005 int32_t
xpt_add_periph(struct cam_periph * periph)1006 xpt_add_periph(struct cam_periph *periph)
1007 {
1008 struct cam_ed *device;
1009 int32_t status;
1010
1011 TASK_INIT(&periph->periph_run_task, 0, xpt_run_allocq_task, periph);
1012 device = periph->path->device;
1013 status = CAM_REQ_CMP;
1014 if (device != NULL) {
1015 mtx_lock(&device->target->bus->eb_mtx);
1016 device->generation++;
1017 SLIST_INSERT_HEAD(&device->periphs, periph, periph_links);
1018 mtx_unlock(&device->target->bus->eb_mtx);
1019 atomic_add_32(&xsoftc.xpt_generation, 1);
1020 }
1021
1022 return (status);
1023 }
1024
1025 void
xpt_remove_periph(struct cam_periph * periph)1026 xpt_remove_periph(struct cam_periph *periph)
1027 {
1028 struct cam_ed *device;
1029
1030 device = periph->path->device;
1031 if (device != NULL) {
1032 mtx_lock(&device->target->bus->eb_mtx);
1033 device->generation++;
1034 SLIST_REMOVE(&device->periphs, periph, cam_periph, periph_links);
1035 mtx_unlock(&device->target->bus->eb_mtx);
1036 atomic_add_32(&xsoftc.xpt_generation, 1);
1037 }
1038 }
1039
1040 void
xpt_announce_periph(struct cam_periph * periph,char * announce_string)1041 xpt_announce_periph(struct cam_periph *periph, char *announce_string)
1042 {
1043 char buf[128];
1044 struct sbuf sb;
1045
1046 (void)sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN | SBUF_INCLUDENUL);
1047 sbuf_set_drain(&sb, sbuf_printf_drain, NULL);
1048 xpt_announce_periph_sbuf(periph, &sb, announce_string);
1049 (void)sbuf_finish(&sb);
1050 }
1051
1052 void
xpt_announce_periph_sbuf(struct cam_periph * periph,struct sbuf * sb,char * announce_string)1053 xpt_announce_periph_sbuf(struct cam_periph *periph, struct sbuf *sb,
1054 char *announce_string)
1055 {
1056 struct cam_path *path = periph->path;
1057 struct xpt_proto *proto;
1058
1059 cam_periph_assert(periph, MA_OWNED);
1060 periph->flags |= CAM_PERIPH_ANNOUNCED;
1061
1062 sbuf_printf(sb, "%s%d at %s%d bus %d scbus%d target %d lun %jx\n",
1063 periph->periph_name, periph->unit_number,
1064 path->bus->sim->sim_name,
1065 path->bus->sim->unit_number,
1066 path->bus->sim->bus_id,
1067 path->bus->path_id,
1068 path->target->target_id,
1069 (uintmax_t)path->device->lun_id);
1070 sbuf_printf(sb, "%s%d: ", periph->periph_name, periph->unit_number);
1071 proto = xpt_proto_find(path->device->protocol);
1072 if (proto)
1073 proto->ops->announce_sbuf(path->device, sb);
1074 else
1075 sbuf_printf(sb, "Unknown protocol device %d\n",
1076 path->device->protocol);
1077 if (path->device->serial_num_len > 0) {
1078 /* Don't wrap the screen - print only the first 60 chars */
1079 sbuf_printf(sb, "%s%d: Serial Number %.60s\n",
1080 periph->periph_name, periph->unit_number,
1081 path->device->serial_num);
1082 }
1083 /* Announce transport details. */
1084 path->bus->xport->ops->announce_sbuf(periph, sb);
1085 /* Announce command queueing. */
1086 if (path->device->inq_flags & SID_CmdQue
1087 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1088 sbuf_printf(sb, "%s%d: Command Queueing enabled\n",
1089 periph->periph_name, periph->unit_number);
1090 }
1091 /* Announce caller's details if they've passed in. */
1092 if (announce_string != NULL)
1093 sbuf_printf(sb, "%s%d: %s\n", periph->periph_name,
1094 periph->unit_number, announce_string);
1095 }
1096
1097 void
xpt_announce_quirks(struct cam_periph * periph,int quirks,char * bit_string)1098 xpt_announce_quirks(struct cam_periph *periph, int quirks, char *bit_string)
1099 {
1100 if (quirks != 0) {
1101 printf("%s%d: quirks=0x%b\n", periph->periph_name,
1102 periph->unit_number, quirks, bit_string);
1103 }
1104 }
1105
1106 void
xpt_announce_quirks_sbuf(struct cam_periph * periph,struct sbuf * sb,int quirks,char * bit_string)1107 xpt_announce_quirks_sbuf(struct cam_periph *periph, struct sbuf *sb,
1108 int quirks, char *bit_string)
1109 {
1110 if (quirks != 0) {
1111 sbuf_printf(sb, "%s%d: quirks=0x%b\n", periph->periph_name,
1112 periph->unit_number, quirks, bit_string);
1113 }
1114 }
1115
1116 void
xpt_denounce_periph(struct cam_periph * periph)1117 xpt_denounce_periph(struct cam_periph *periph)
1118 {
1119 char buf[128];
1120 struct sbuf sb;
1121
1122 (void)sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN | SBUF_INCLUDENUL);
1123 sbuf_set_drain(&sb, sbuf_printf_drain, NULL);
1124 xpt_denounce_periph_sbuf(periph, &sb);
1125 (void)sbuf_finish(&sb);
1126 }
1127
1128 void
xpt_denounce_periph_sbuf(struct cam_periph * periph,struct sbuf * sb)1129 xpt_denounce_periph_sbuf(struct cam_periph *periph, struct sbuf *sb)
1130 {
1131 struct cam_path *path = periph->path;
1132 struct xpt_proto *proto;
1133
1134 cam_periph_assert(periph, MA_OWNED);
1135
1136 sbuf_printf(sb, "%s%d at %s%d bus %d scbus%d target %d lun %jx\n",
1137 periph->periph_name, periph->unit_number,
1138 path->bus->sim->sim_name,
1139 path->bus->sim->unit_number,
1140 path->bus->sim->bus_id,
1141 path->bus->path_id,
1142 path->target->target_id,
1143 (uintmax_t)path->device->lun_id);
1144 sbuf_printf(sb, "%s%d: ", periph->periph_name, periph->unit_number);
1145 proto = xpt_proto_find(path->device->protocol);
1146 if (proto)
1147 proto->ops->denounce_sbuf(path->device, sb);
1148 else
1149 sbuf_printf(sb, "Unknown protocol device %d",
1150 path->device->protocol);
1151 if (path->device->serial_num_len > 0)
1152 sbuf_printf(sb, " s/n %.60s", path->device->serial_num);
1153 sbuf_cat(sb, " detached\n");
1154 }
1155
1156 int
xpt_getattr(char * buf,size_t len,const char * attr,struct cam_path * path)1157 xpt_getattr(char *buf, size_t len, const char *attr, struct cam_path *path)
1158 {
1159 int ret = -1, l, o;
1160 struct ccb_dev_advinfo cdai;
1161 struct scsi_vpd_device_id *did;
1162 struct scsi_vpd_id_descriptor *idd;
1163
1164 xpt_path_assert(path, MA_OWNED);
1165
1166 memset(&cdai, 0, sizeof(cdai));
1167 xpt_setup_ccb(&cdai.ccb_h, path, CAM_PRIORITY_NORMAL);
1168 cdai.ccb_h.func_code = XPT_DEV_ADVINFO;
1169 cdai.flags = CDAI_FLAG_NONE;
1170 cdai.bufsiz = len;
1171 cdai.buf = buf;
1172
1173 if (!strcmp(attr, "GEOM::ident"))
1174 cdai.buftype = CDAI_TYPE_SERIAL_NUM;
1175 else if (!strcmp(attr, "GEOM::physpath"))
1176 cdai.buftype = CDAI_TYPE_PHYS_PATH;
1177 else if (strcmp(attr, "GEOM::lunid") == 0 ||
1178 strcmp(attr, "GEOM::lunname") == 0) {
1179 cdai.buftype = CDAI_TYPE_SCSI_DEVID;
1180 cdai.bufsiz = CAM_SCSI_DEVID_MAXLEN;
1181 cdai.buf = malloc(cdai.bufsiz, M_CAMXPT, M_NOWAIT);
1182 if (cdai.buf == NULL) {
1183 ret = ENOMEM;
1184 goto out;
1185 }
1186 } else
1187 goto out;
1188
1189 xpt_action((union ccb *)&cdai); /* can only be synchronous */
1190 if ((cdai.ccb_h.status & CAM_DEV_QFRZN) != 0)
1191 cam_release_devq(cdai.ccb_h.path, 0, 0, 0, FALSE);
1192 if (cdai.provsiz == 0)
1193 goto out;
1194 switch(cdai.buftype) {
1195 case CDAI_TYPE_SCSI_DEVID:
1196 did = (struct scsi_vpd_device_id *)cdai.buf;
1197 if (strcmp(attr, "GEOM::lunid") == 0) {
1198 idd = scsi_get_devid(did, cdai.provsiz,
1199 scsi_devid_is_lun_naa);
1200 if (idd == NULL)
1201 idd = scsi_get_devid(did, cdai.provsiz,
1202 scsi_devid_is_lun_eui64);
1203 if (idd == NULL)
1204 idd = scsi_get_devid(did, cdai.provsiz,
1205 scsi_devid_is_lun_uuid);
1206 if (idd == NULL)
1207 idd = scsi_get_devid(did, cdai.provsiz,
1208 scsi_devid_is_lun_md5);
1209 } else
1210 idd = NULL;
1211
1212 if (idd == NULL)
1213 idd = scsi_get_devid(did, cdai.provsiz,
1214 scsi_devid_is_lun_t10);
1215 if (idd == NULL)
1216 idd = scsi_get_devid(did, cdai.provsiz,
1217 scsi_devid_is_lun_name);
1218 if (idd == NULL)
1219 break;
1220
1221 ret = 0;
1222 if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) ==
1223 SVPD_ID_CODESET_ASCII) {
1224 if (idd->length < len) {
1225 for (l = 0; l < idd->length; l++)
1226 buf[l] = idd->identifier[l] ?
1227 idd->identifier[l] : ' ';
1228 buf[l] = 0;
1229 } else
1230 ret = EFAULT;
1231 break;
1232 }
1233 if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) ==
1234 SVPD_ID_CODESET_UTF8) {
1235 l = strnlen(idd->identifier, idd->length);
1236 if (l < len) {
1237 bcopy(idd->identifier, buf, l);
1238 buf[l] = 0;
1239 } else
1240 ret = EFAULT;
1241 break;
1242 }
1243 if ((idd->id_type & SVPD_ID_TYPE_MASK) ==
1244 SVPD_ID_TYPE_UUID && idd->identifier[0] == 0x10) {
1245 if ((idd->length - 2) * 2 + 4 >= len) {
1246 ret = EFAULT;
1247 break;
1248 }
1249 for (l = 2, o = 0; l < idd->length; l++) {
1250 if (l == 6 || l == 8 || l == 10 || l == 12)
1251 o += sprintf(buf + o, "-");
1252 o += sprintf(buf + o, "%02x",
1253 idd->identifier[l]);
1254 }
1255 break;
1256 }
1257 if (idd->length * 2 < len) {
1258 for (l = 0; l < idd->length; l++)
1259 sprintf(buf + l * 2, "%02x",
1260 idd->identifier[l]);
1261 } else
1262 ret = EFAULT;
1263 break;
1264 default:
1265 if (cdai.provsiz < len) {
1266 cdai.buf[cdai.provsiz] = 0;
1267 ret = 0;
1268 } else
1269 ret = EFAULT;
1270 break;
1271 }
1272
1273 out:
1274 if ((char *)cdai.buf != buf)
1275 free(cdai.buf, M_CAMXPT);
1276 return ret;
1277 }
1278
1279 static dev_match_ret
xptbusmatch(struct dev_match_pattern * patterns,u_int num_patterns,struct cam_eb * bus)1280 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1281 struct cam_eb *bus)
1282 {
1283 dev_match_ret retval;
1284 u_int i;
1285
1286 retval = DM_RET_NONE;
1287
1288 /*
1289 * If we aren't given something to match against, that's an error.
1290 */
1291 if (bus == NULL)
1292 return(DM_RET_ERROR);
1293
1294 /*
1295 * If there are no match entries, then this bus matches no
1296 * matter what.
1297 */
1298 if ((patterns == NULL) || (num_patterns == 0))
1299 return(DM_RET_DESCEND | DM_RET_COPY);
1300
1301 for (i = 0; i < num_patterns; i++) {
1302 struct bus_match_pattern *cur_pattern;
1303 struct device_match_pattern *dp = &patterns[i].pattern.device_pattern;
1304 struct periph_match_pattern *pp = &patterns[i].pattern.periph_pattern;
1305
1306 /*
1307 * If the pattern in question isn't for a bus node, we
1308 * aren't interested. However, we do indicate to the
1309 * calling routine that we should continue descending the
1310 * tree, since the user wants to match against lower-level
1311 * EDT elements.
1312 */
1313 if (patterns[i].type == DEV_MATCH_DEVICE &&
1314 (dp->flags & DEV_MATCH_PATH) != 0 &&
1315 dp->path_id != bus->path_id)
1316 continue;
1317 if (patterns[i].type == DEV_MATCH_PERIPH &&
1318 (pp->flags & PERIPH_MATCH_PATH) != 0 &&
1319 pp->path_id != bus->path_id)
1320 continue;
1321 if (patterns[i].type != DEV_MATCH_BUS) {
1322 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1323 retval |= DM_RET_DESCEND;
1324 continue;
1325 }
1326
1327 cur_pattern = &patterns[i].pattern.bus_pattern;
1328
1329 if (((cur_pattern->flags & BUS_MATCH_PATH) != 0)
1330 && (cur_pattern->path_id != bus->path_id))
1331 continue;
1332
1333 if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0)
1334 && (cur_pattern->bus_id != bus->sim->bus_id))
1335 continue;
1336
1337 if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0)
1338 && (cur_pattern->unit_number != bus->sim->unit_number))
1339 continue;
1340
1341 if (((cur_pattern->flags & BUS_MATCH_NAME) != 0)
1342 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name,
1343 DEV_IDLEN) != 0))
1344 continue;
1345
1346 /*
1347 * If we get to this point, the user definitely wants
1348 * information on this bus. So tell the caller to copy the
1349 * data out.
1350 */
1351 retval |= DM_RET_COPY;
1352
1353 /*
1354 * If the return action has been set to descend, then we
1355 * know that we've already seen a non-bus matching
1356 * expression, therefore we need to further descend the tree.
1357 * This won't change by continuing around the loop, so we
1358 * go ahead and return. If we haven't seen a non-bus
1359 * matching expression, we keep going around the loop until
1360 * we exhaust the matching expressions. We'll set the stop
1361 * flag once we fall out of the loop.
1362 */
1363 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1364 return(retval);
1365 }
1366
1367 /*
1368 * If the return action hasn't been set to descend yet, that means
1369 * we haven't seen anything other than bus matching patterns. So
1370 * tell the caller to stop descending the tree -- the user doesn't
1371 * want to match against lower level tree elements.
1372 */
1373 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1374 retval |= DM_RET_STOP;
1375
1376 return(retval);
1377 }
1378
1379 static dev_match_ret
xptdevicematch(struct dev_match_pattern * patterns,u_int num_patterns,struct cam_ed * device)1380 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns,
1381 struct cam_ed *device)
1382 {
1383 dev_match_ret retval;
1384 u_int i;
1385
1386 retval = DM_RET_NONE;
1387
1388 /*
1389 * If we aren't given something to match against, that's an error.
1390 */
1391 if (device == NULL)
1392 return(DM_RET_ERROR);
1393
1394 /*
1395 * If there are no match entries, then this device matches no
1396 * matter what.
1397 */
1398 if ((patterns == NULL) || (num_patterns == 0))
1399 return(DM_RET_DESCEND | DM_RET_COPY);
1400
1401 for (i = 0; i < num_patterns; i++) {
1402 struct device_match_pattern *cur_pattern;
1403 struct scsi_vpd_device_id *device_id_page;
1404 struct periph_match_pattern *pp = &patterns[i].pattern.periph_pattern;
1405
1406 /*
1407 * If the pattern in question isn't for a device node, we
1408 * aren't interested.
1409 */
1410 if (patterns[i].type == DEV_MATCH_PERIPH &&
1411 (pp->flags & PERIPH_MATCH_TARGET) != 0 &&
1412 pp->target_id != device->target->target_id)
1413 continue;
1414 if (patterns[i].type == DEV_MATCH_PERIPH &&
1415 (pp->flags & PERIPH_MATCH_LUN) != 0 &&
1416 pp->target_lun != device->lun_id)
1417 continue;
1418 if (patterns[i].type != DEV_MATCH_DEVICE) {
1419 if ((patterns[i].type == DEV_MATCH_PERIPH)
1420 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE))
1421 retval |= DM_RET_DESCEND;
1422 continue;
1423 }
1424
1425 cur_pattern = &patterns[i].pattern.device_pattern;
1426
1427 /* Error out if mutually exclusive options are specified. */
1428 if ((cur_pattern->flags & (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID))
1429 == (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID))
1430 return(DM_RET_ERROR);
1431
1432 if (((cur_pattern->flags & DEV_MATCH_PATH) != 0)
1433 && (cur_pattern->path_id != device->target->bus->path_id))
1434 continue;
1435
1436 if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0)
1437 && (cur_pattern->target_id != device->target->target_id))
1438 continue;
1439
1440 if (((cur_pattern->flags & DEV_MATCH_LUN) != 0)
1441 && (cur_pattern->target_lun != device->lun_id))
1442 continue;
1443
1444 if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0)
1445 && (cam_quirkmatch((caddr_t)&device->inq_data,
1446 (caddr_t)&cur_pattern->data.inq_pat,
1447 1, sizeof(cur_pattern->data.inq_pat),
1448 scsi_static_inquiry_match) == NULL))
1449 continue;
1450
1451 device_id_page = (struct scsi_vpd_device_id *)device->device_id;
1452 if (((cur_pattern->flags & DEV_MATCH_DEVID) != 0)
1453 && (device->device_id_len < SVPD_DEVICE_ID_HDR_LEN
1454 || scsi_devid_match((uint8_t *)device_id_page->desc_list,
1455 device->device_id_len
1456 - SVPD_DEVICE_ID_HDR_LEN,
1457 cur_pattern->data.devid_pat.id,
1458 cur_pattern->data.devid_pat.id_len) != 0))
1459 continue;
1460
1461 /*
1462 * If we get to this point, the user definitely wants
1463 * information on this device. So tell the caller to copy
1464 * the data out.
1465 */
1466 retval |= DM_RET_COPY;
1467
1468 /*
1469 * If the return action has been set to descend, then we
1470 * know that we've already seen a peripheral matching
1471 * expression, therefore we need to further descend the tree.
1472 * This won't change by continuing around the loop, so we
1473 * go ahead and return. If we haven't seen a peripheral
1474 * matching expression, we keep going around the loop until
1475 * we exhaust the matching expressions. We'll set the stop
1476 * flag once we fall out of the loop.
1477 */
1478 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1479 return(retval);
1480 }
1481
1482 /*
1483 * If the return action hasn't been set to descend yet, that means
1484 * we haven't seen any peripheral matching patterns. So tell the
1485 * caller to stop descending the tree -- the user doesn't want to
1486 * match against lower level tree elements.
1487 */
1488 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1489 retval |= DM_RET_STOP;
1490
1491 return(retval);
1492 }
1493
1494 /*
1495 * Match a single peripheral against any number of match patterns.
1496 */
1497 static dev_match_ret
xptperiphmatch(struct dev_match_pattern * patterns,u_int num_patterns,struct cam_periph * periph)1498 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1499 struct cam_periph *periph)
1500 {
1501 dev_match_ret retval;
1502 u_int i;
1503
1504 /*
1505 * If we aren't given something to match against, that's an error.
1506 */
1507 if (periph == NULL)
1508 return(DM_RET_ERROR);
1509
1510 /*
1511 * If there are no match entries, then this peripheral matches no
1512 * matter what.
1513 */
1514 if ((patterns == NULL) || (num_patterns == 0))
1515 return(DM_RET_STOP | DM_RET_COPY);
1516
1517 /*
1518 * There aren't any nodes below a peripheral node, so there's no
1519 * reason to descend the tree any further.
1520 */
1521 retval = DM_RET_STOP;
1522
1523 for (i = 0; i < num_patterns; i++) {
1524 struct periph_match_pattern *cur_pattern;
1525
1526 /*
1527 * If the pattern in question isn't for a peripheral, we
1528 * aren't interested.
1529 */
1530 if (patterns[i].type != DEV_MATCH_PERIPH)
1531 continue;
1532
1533 cur_pattern = &patterns[i].pattern.periph_pattern;
1534
1535 if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0)
1536 && (cur_pattern->path_id != periph->path->bus->path_id))
1537 continue;
1538
1539 /*
1540 * For the target and lun id's, we have to make sure the
1541 * target and lun pointers aren't NULL. The xpt peripheral
1542 * has a wildcard target and device.
1543 */
1544 if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0)
1545 && ((periph->path->target == NULL)
1546 ||(cur_pattern->target_id != periph->path->target->target_id)))
1547 continue;
1548
1549 if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0)
1550 && ((periph->path->device == NULL)
1551 || (cur_pattern->target_lun != periph->path->device->lun_id)))
1552 continue;
1553
1554 if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0)
1555 && (cur_pattern->unit_number != periph->unit_number))
1556 continue;
1557
1558 if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0)
1559 && (strncmp(cur_pattern->periph_name, periph->periph_name,
1560 DEV_IDLEN) != 0))
1561 continue;
1562
1563 /*
1564 * If we get to this point, the user definitely wants
1565 * information on this peripheral. So tell the caller to
1566 * copy the data out.
1567 */
1568 retval |= DM_RET_COPY;
1569
1570 /*
1571 * The return action has already been set to stop, since
1572 * peripherals don't have any nodes below them in the EDT.
1573 */
1574 return(retval);
1575 }
1576
1577 /*
1578 * If we get to this point, the peripheral that was passed in
1579 * doesn't match any of the patterns.
1580 */
1581 return(retval);
1582 }
1583
1584 static int
xptedtbusfunc(struct cam_eb * bus,void * arg)1585 xptedtbusfunc(struct cam_eb *bus, void *arg)
1586 {
1587 struct ccb_dev_match *cdm;
1588 struct cam_et *target;
1589 dev_match_ret retval;
1590
1591 cdm = (struct ccb_dev_match *)arg;
1592
1593 /*
1594 * If our position is for something deeper in the tree, that means
1595 * that we've already seen this node. So, we keep going down.
1596 */
1597 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1598 && (cdm->pos.cookie.bus == bus)
1599 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1600 && (cdm->pos.cookie.target != NULL))
1601 retval = DM_RET_DESCEND;
1602 else
1603 retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus);
1604
1605 /*
1606 * If we got an error, bail out of the search.
1607 */
1608 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1609 cdm->status = CAM_DEV_MATCH_ERROR;
1610 return(0);
1611 }
1612
1613 /*
1614 * If the copy flag is set, copy this bus out.
1615 */
1616 if (retval & DM_RET_COPY) {
1617 int spaceleft, j;
1618
1619 spaceleft = cdm->match_buf_len - (cdm->num_matches *
1620 sizeof(struct dev_match_result));
1621
1622 /*
1623 * If we don't have enough space to put in another
1624 * match result, save our position and tell the
1625 * user there are more devices to check.
1626 */
1627 if (spaceleft < sizeof(struct dev_match_result)) {
1628 bzero(&cdm->pos, sizeof(cdm->pos));
1629 cdm->pos.position_type =
1630 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS;
1631
1632 cdm->pos.cookie.bus = bus;
1633 cdm->pos.generations[CAM_BUS_GENERATION]=
1634 xsoftc.bus_generation;
1635 cdm->status = CAM_DEV_MATCH_MORE;
1636 return(0);
1637 }
1638 j = cdm->num_matches;
1639 cdm->num_matches++;
1640 cdm->matches[j].type = DEV_MATCH_BUS;
1641 cdm->matches[j].result.bus_result.path_id = bus->path_id;
1642 cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id;
1643 cdm->matches[j].result.bus_result.unit_number =
1644 bus->sim->unit_number;
1645 strlcpy(cdm->matches[j].result.bus_result.dev_name,
1646 bus->sim->sim_name,
1647 sizeof(cdm->matches[j].result.bus_result.dev_name));
1648 }
1649
1650 /*
1651 * If the user is only interested in buses, there's no
1652 * reason to descend to the next level in the tree.
1653 */
1654 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1655 return(1);
1656
1657 /*
1658 * If there is a target generation recorded, check it to
1659 * make sure the target list hasn't changed.
1660 */
1661 mtx_lock(&bus->eb_mtx);
1662 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1663 && (cdm->pos.cookie.bus == bus)
1664 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1665 && (cdm->pos.cookie.target != NULL)) {
1666 if ((cdm->pos.generations[CAM_TARGET_GENERATION] !=
1667 bus->generation)) {
1668 mtx_unlock(&bus->eb_mtx);
1669 cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1670 return (0);
1671 }
1672 target = (struct cam_et *)cdm->pos.cookie.target;
1673 target->refcount++;
1674 } else
1675 target = NULL;
1676 mtx_unlock(&bus->eb_mtx);
1677
1678 return (xpttargettraverse(bus, target, xptedttargetfunc, arg));
1679 }
1680
1681 static int
xptedttargetfunc(struct cam_et * target,void * arg)1682 xptedttargetfunc(struct cam_et *target, void *arg)
1683 {
1684 struct ccb_dev_match *cdm;
1685 struct cam_eb *bus;
1686 struct cam_ed *device;
1687
1688 cdm = (struct ccb_dev_match *)arg;
1689 bus = target->bus;
1690
1691 /*
1692 * If there is a device list generation recorded, check it to
1693 * make sure the device list hasn't changed.
1694 */
1695 mtx_lock(&bus->eb_mtx);
1696 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1697 && (cdm->pos.cookie.bus == bus)
1698 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1699 && (cdm->pos.cookie.target == target)
1700 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1701 && (cdm->pos.cookie.device != NULL)) {
1702 if (cdm->pos.generations[CAM_DEV_GENERATION] !=
1703 target->generation) {
1704 mtx_unlock(&bus->eb_mtx);
1705 cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1706 return(0);
1707 }
1708 device = (struct cam_ed *)cdm->pos.cookie.device;
1709 device->refcount++;
1710 } else
1711 device = NULL;
1712 mtx_unlock(&bus->eb_mtx);
1713
1714 return (xptdevicetraverse(target, device, xptedtdevicefunc, arg));
1715 }
1716
1717 static int
xptedtdevicefunc(struct cam_ed * device,void * arg)1718 xptedtdevicefunc(struct cam_ed *device, void *arg)
1719 {
1720 struct cam_eb *bus;
1721 struct cam_periph *periph;
1722 struct ccb_dev_match *cdm;
1723 dev_match_ret retval;
1724
1725 cdm = (struct ccb_dev_match *)arg;
1726 bus = device->target->bus;
1727
1728 /*
1729 * If our position is for something deeper in the tree, that means
1730 * that we've already seen this node. So, we keep going down.
1731 */
1732 if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1733 && (cdm->pos.cookie.device == device)
1734 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1735 && (cdm->pos.cookie.periph != NULL))
1736 retval = DM_RET_DESCEND;
1737 else
1738 retval = xptdevicematch(cdm->patterns, cdm->num_patterns,
1739 device);
1740
1741 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1742 cdm->status = CAM_DEV_MATCH_ERROR;
1743 return(0);
1744 }
1745
1746 /*
1747 * If the copy flag is set, copy this device out.
1748 */
1749 if (retval & DM_RET_COPY) {
1750 int spaceleft, j;
1751
1752 spaceleft = cdm->match_buf_len - (cdm->num_matches *
1753 sizeof(struct dev_match_result));
1754
1755 /*
1756 * If we don't have enough space to put in another
1757 * match result, save our position and tell the
1758 * user there are more devices to check.
1759 */
1760 if (spaceleft < sizeof(struct dev_match_result)) {
1761 bzero(&cdm->pos, sizeof(cdm->pos));
1762 cdm->pos.position_type =
1763 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1764 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE;
1765
1766 cdm->pos.cookie.bus = device->target->bus;
1767 cdm->pos.generations[CAM_BUS_GENERATION]=
1768 xsoftc.bus_generation;
1769 cdm->pos.cookie.target = device->target;
1770 cdm->pos.generations[CAM_TARGET_GENERATION] =
1771 device->target->bus->generation;
1772 cdm->pos.cookie.device = device;
1773 cdm->pos.generations[CAM_DEV_GENERATION] =
1774 device->target->generation;
1775 cdm->status = CAM_DEV_MATCH_MORE;
1776 return(0);
1777 }
1778 j = cdm->num_matches;
1779 cdm->num_matches++;
1780 cdm->matches[j].type = DEV_MATCH_DEVICE;
1781 cdm->matches[j].result.device_result.path_id =
1782 device->target->bus->path_id;
1783 cdm->matches[j].result.device_result.target_id =
1784 device->target->target_id;
1785 cdm->matches[j].result.device_result.target_lun =
1786 device->lun_id;
1787 cdm->matches[j].result.device_result.protocol =
1788 device->protocol;
1789 bcopy(&device->inq_data,
1790 &cdm->matches[j].result.device_result.inq_data,
1791 sizeof(struct scsi_inquiry_data));
1792 bcopy(&device->ident_data,
1793 &cdm->matches[j].result.device_result.ident_data,
1794 sizeof(struct ata_params));
1795
1796 /* Let the user know whether this device is unconfigured */
1797 if (device->flags & CAM_DEV_UNCONFIGURED)
1798 cdm->matches[j].result.device_result.flags =
1799 DEV_RESULT_UNCONFIGURED;
1800 else
1801 cdm->matches[j].result.device_result.flags =
1802 DEV_RESULT_NOFLAG;
1803 }
1804
1805 /*
1806 * If the user isn't interested in peripherals, don't descend
1807 * the tree any further.
1808 */
1809 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1810 return(1);
1811
1812 /*
1813 * If there is a peripheral list generation recorded, make sure
1814 * it hasn't changed.
1815 */
1816 xpt_lock_buses();
1817 mtx_lock(&bus->eb_mtx);
1818 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1819 && (cdm->pos.cookie.bus == bus)
1820 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1821 && (cdm->pos.cookie.target == device->target)
1822 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1823 && (cdm->pos.cookie.device == device)
1824 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1825 && (cdm->pos.cookie.periph != NULL)) {
1826 if (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
1827 device->generation) {
1828 mtx_unlock(&bus->eb_mtx);
1829 xpt_unlock_buses();
1830 cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1831 return(0);
1832 }
1833 periph = (struct cam_periph *)cdm->pos.cookie.periph;
1834 periph->refcount++;
1835 } else
1836 periph = NULL;
1837 mtx_unlock(&bus->eb_mtx);
1838 xpt_unlock_buses();
1839
1840 return (xptperiphtraverse(device, periph, xptedtperiphfunc, arg));
1841 }
1842
1843 static int
xptedtperiphfunc(struct cam_periph * periph,void * arg)1844 xptedtperiphfunc(struct cam_periph *periph, void *arg)
1845 {
1846 struct ccb_dev_match *cdm;
1847 dev_match_ret retval;
1848
1849 cdm = (struct ccb_dev_match *)arg;
1850
1851 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
1852
1853 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1854 cdm->status = CAM_DEV_MATCH_ERROR;
1855 return(0);
1856 }
1857
1858 /*
1859 * If the copy flag is set, copy this peripheral out.
1860 */
1861 if (retval & DM_RET_COPY) {
1862 int spaceleft, j;
1863 size_t l;
1864
1865 spaceleft = cdm->match_buf_len - (cdm->num_matches *
1866 sizeof(struct dev_match_result));
1867
1868 /*
1869 * If we don't have enough space to put in another
1870 * match result, save our position and tell the
1871 * user there are more devices to check.
1872 */
1873 if (spaceleft < sizeof(struct dev_match_result)) {
1874 bzero(&cdm->pos, sizeof(cdm->pos));
1875 cdm->pos.position_type =
1876 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1877 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE |
1878 CAM_DEV_POS_PERIPH;
1879
1880 cdm->pos.cookie.bus = periph->path->bus;
1881 cdm->pos.generations[CAM_BUS_GENERATION]=
1882 xsoftc.bus_generation;
1883 cdm->pos.cookie.target = periph->path->target;
1884 cdm->pos.generations[CAM_TARGET_GENERATION] =
1885 periph->path->bus->generation;
1886 cdm->pos.cookie.device = periph->path->device;
1887 cdm->pos.generations[CAM_DEV_GENERATION] =
1888 periph->path->target->generation;
1889 cdm->pos.cookie.periph = periph;
1890 cdm->pos.generations[CAM_PERIPH_GENERATION] =
1891 periph->path->device->generation;
1892 cdm->status = CAM_DEV_MATCH_MORE;
1893 return(0);
1894 }
1895
1896 j = cdm->num_matches;
1897 cdm->num_matches++;
1898 cdm->matches[j].type = DEV_MATCH_PERIPH;
1899 cdm->matches[j].result.periph_result.path_id =
1900 periph->path->bus->path_id;
1901 cdm->matches[j].result.periph_result.target_id =
1902 periph->path->target->target_id;
1903 cdm->matches[j].result.periph_result.target_lun =
1904 periph->path->device->lun_id;
1905 cdm->matches[j].result.periph_result.unit_number =
1906 periph->unit_number;
1907 l = sizeof(cdm->matches[j].result.periph_result.periph_name);
1908 strlcpy(cdm->matches[j].result.periph_result.periph_name,
1909 periph->periph_name, l);
1910 }
1911
1912 return(1);
1913 }
1914
1915 static int
xptedtmatch(struct ccb_dev_match * cdm)1916 xptedtmatch(struct ccb_dev_match *cdm)
1917 {
1918 struct cam_eb *bus;
1919 int ret;
1920
1921 cdm->num_matches = 0;
1922
1923 /*
1924 * Check the bus list generation. If it has changed, the user
1925 * needs to reset everything and start over.
1926 */
1927 xpt_lock_buses();
1928 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1929 && (cdm->pos.cookie.bus != NULL)) {
1930 if (cdm->pos.generations[CAM_BUS_GENERATION] !=
1931 xsoftc.bus_generation) {
1932 xpt_unlock_buses();
1933 cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1934 return(0);
1935 }
1936 bus = (struct cam_eb *)cdm->pos.cookie.bus;
1937 bus->refcount++;
1938 } else
1939 bus = NULL;
1940 xpt_unlock_buses();
1941
1942 ret = xptbustraverse(bus, xptedtbusfunc, cdm);
1943
1944 /*
1945 * If we get back 0, that means that we had to stop before fully
1946 * traversing the EDT. It also means that one of the subroutines
1947 * has set the status field to the proper value. If we get back 1,
1948 * we've fully traversed the EDT and copied out any matching entries.
1949 */
1950 if (ret == 1)
1951 cdm->status = CAM_DEV_MATCH_LAST;
1952
1953 return(ret);
1954 }
1955
1956 static int
xptplistpdrvfunc(struct periph_driver ** pdrv,void * arg)1957 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg)
1958 {
1959 struct cam_periph *periph;
1960 struct ccb_dev_match *cdm;
1961
1962 cdm = (struct ccb_dev_match *)arg;
1963
1964 xpt_lock_buses();
1965 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
1966 && (cdm->pos.cookie.pdrv == pdrv)
1967 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1968 && (cdm->pos.cookie.periph != NULL)) {
1969 if (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
1970 (*pdrv)->generation) {
1971 xpt_unlock_buses();
1972 cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1973 return(0);
1974 }
1975 periph = (struct cam_periph *)cdm->pos.cookie.periph;
1976 periph->refcount++;
1977 } else
1978 periph = NULL;
1979 xpt_unlock_buses();
1980
1981 return (xptpdperiphtraverse(pdrv, periph, xptplistperiphfunc, arg));
1982 }
1983
1984 static int
xptplistperiphfunc(struct cam_periph * periph,void * arg)1985 xptplistperiphfunc(struct cam_periph *periph, void *arg)
1986 {
1987 struct ccb_dev_match *cdm;
1988 dev_match_ret retval;
1989
1990 cdm = (struct ccb_dev_match *)arg;
1991
1992 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
1993
1994 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1995 cdm->status = CAM_DEV_MATCH_ERROR;
1996 return(0);
1997 }
1998
1999 /*
2000 * If the copy flag is set, copy this peripheral out.
2001 */
2002 if (retval & DM_RET_COPY) {
2003 int spaceleft, j;
2004 size_t l;
2005
2006 spaceleft = cdm->match_buf_len - (cdm->num_matches *
2007 sizeof(struct dev_match_result));
2008
2009 /*
2010 * If we don't have enough space to put in another
2011 * match result, save our position and tell the
2012 * user there are more devices to check.
2013 */
2014 if (spaceleft < sizeof(struct dev_match_result)) {
2015 struct periph_driver **pdrv;
2016
2017 pdrv = NULL;
2018 bzero(&cdm->pos, sizeof(cdm->pos));
2019 cdm->pos.position_type =
2020 CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR |
2021 CAM_DEV_POS_PERIPH;
2022
2023 /*
2024 * This may look a bit non-sensical, but it is
2025 * actually quite logical. There are very few
2026 * peripheral drivers, and bloating every peripheral
2027 * structure with a pointer back to its parent
2028 * peripheral driver linker set entry would cost
2029 * more in the long run than doing this quick lookup.
2030 */
2031 for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) {
2032 if (strcmp((*pdrv)->driver_name,
2033 periph->periph_name) == 0)
2034 break;
2035 }
2036
2037 if (*pdrv == NULL) {
2038 cdm->status = CAM_DEV_MATCH_ERROR;
2039 return(0);
2040 }
2041
2042 cdm->pos.cookie.pdrv = pdrv;
2043 /*
2044 * The periph generation slot does double duty, as
2045 * does the periph pointer slot. They are used for
2046 * both edt and pdrv lookups and positioning.
2047 */
2048 cdm->pos.cookie.periph = periph;
2049 cdm->pos.generations[CAM_PERIPH_GENERATION] =
2050 (*pdrv)->generation;
2051 cdm->status = CAM_DEV_MATCH_MORE;
2052 return(0);
2053 }
2054
2055 j = cdm->num_matches;
2056 cdm->num_matches++;
2057 cdm->matches[j].type = DEV_MATCH_PERIPH;
2058 cdm->matches[j].result.periph_result.path_id =
2059 periph->path->bus->path_id;
2060
2061 /*
2062 * The transport layer peripheral doesn't have a target or
2063 * lun.
2064 */
2065 if (periph->path->target)
2066 cdm->matches[j].result.periph_result.target_id =
2067 periph->path->target->target_id;
2068 else
2069 cdm->matches[j].result.periph_result.target_id =
2070 CAM_TARGET_WILDCARD;
2071
2072 if (periph->path->device)
2073 cdm->matches[j].result.periph_result.target_lun =
2074 periph->path->device->lun_id;
2075 else
2076 cdm->matches[j].result.periph_result.target_lun =
2077 CAM_LUN_WILDCARD;
2078
2079 cdm->matches[j].result.periph_result.unit_number =
2080 periph->unit_number;
2081 l = sizeof(cdm->matches[j].result.periph_result.periph_name);
2082 strlcpy(cdm->matches[j].result.periph_result.periph_name,
2083 periph->periph_name, l);
2084 }
2085
2086 return(1);
2087 }
2088
2089 static int
xptperiphlistmatch(struct ccb_dev_match * cdm)2090 xptperiphlistmatch(struct ccb_dev_match *cdm)
2091 {
2092 int ret;
2093
2094 cdm->num_matches = 0;
2095
2096 /*
2097 * At this point in the edt traversal function, we check the bus
2098 * list generation to make sure that no buses have been added or
2099 * removed since the user last sent a XPT_DEV_MATCH ccb through.
2100 * For the peripheral driver list traversal function, however, we
2101 * don't have to worry about new peripheral driver types coming or
2102 * going; they're in a linker set, and therefore can't change
2103 * without a recompile.
2104 */
2105
2106 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2107 && (cdm->pos.cookie.pdrv != NULL))
2108 ret = xptpdrvtraverse(
2109 (struct periph_driver **)cdm->pos.cookie.pdrv,
2110 xptplistpdrvfunc, cdm);
2111 else
2112 ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm);
2113
2114 /*
2115 * If we get back 0, that means that we had to stop before fully
2116 * traversing the peripheral driver tree. It also means that one of
2117 * the subroutines has set the status field to the proper value. If
2118 * we get back 1, we've fully traversed the EDT and copied out any
2119 * matching entries.
2120 */
2121 if (ret == 1)
2122 cdm->status = CAM_DEV_MATCH_LAST;
2123
2124 return(ret);
2125 }
2126
2127 static int
xptbustraverse(struct cam_eb * start_bus,xpt_busfunc_t * tr_func,void * arg)2128 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg)
2129 {
2130 struct cam_eb *bus, *next_bus;
2131 int retval;
2132
2133 retval = 1;
2134 if (start_bus)
2135 bus = start_bus;
2136 else {
2137 xpt_lock_buses();
2138 bus = TAILQ_FIRST(&xsoftc.xpt_busses);
2139 if (bus == NULL) {
2140 xpt_unlock_buses();
2141 return (retval);
2142 }
2143 bus->refcount++;
2144 xpt_unlock_buses();
2145 }
2146 for (; bus != NULL; bus = next_bus) {
2147 retval = tr_func(bus, arg);
2148 if (retval == 0) {
2149 xpt_release_bus(bus);
2150 break;
2151 }
2152 xpt_lock_buses();
2153 next_bus = TAILQ_NEXT(bus, links);
2154 if (next_bus)
2155 next_bus->refcount++;
2156 xpt_unlock_buses();
2157 xpt_release_bus(bus);
2158 }
2159 return(retval);
2160 }
2161
2162 static int
xpttargettraverse(struct cam_eb * bus,struct cam_et * start_target,xpt_targetfunc_t * tr_func,void * arg)2163 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target,
2164 xpt_targetfunc_t *tr_func, void *arg)
2165 {
2166 struct cam_et *target, *next_target;
2167 int retval;
2168
2169 retval = 1;
2170 if (start_target)
2171 target = start_target;
2172 else {
2173 mtx_lock(&bus->eb_mtx);
2174 target = TAILQ_FIRST(&bus->et_entries);
2175 if (target == NULL) {
2176 mtx_unlock(&bus->eb_mtx);
2177 return (retval);
2178 }
2179 target->refcount++;
2180 mtx_unlock(&bus->eb_mtx);
2181 }
2182 for (; target != NULL; target = next_target) {
2183 retval = tr_func(target, arg);
2184 if (retval == 0) {
2185 xpt_release_target(target);
2186 break;
2187 }
2188 mtx_lock(&bus->eb_mtx);
2189 next_target = TAILQ_NEXT(target, links);
2190 if (next_target)
2191 next_target->refcount++;
2192 mtx_unlock(&bus->eb_mtx);
2193 xpt_release_target(target);
2194 }
2195 return(retval);
2196 }
2197
2198 static int
xptdevicetraverse(struct cam_et * target,struct cam_ed * start_device,xpt_devicefunc_t * tr_func,void * arg)2199 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device,
2200 xpt_devicefunc_t *tr_func, void *arg)
2201 {
2202 struct cam_eb *bus;
2203 struct cam_ed *device, *next_device;
2204 int retval;
2205
2206 retval = 1;
2207 bus = target->bus;
2208 if (start_device)
2209 device = start_device;
2210 else {
2211 mtx_lock(&bus->eb_mtx);
2212 device = TAILQ_FIRST(&target->ed_entries);
2213 if (device == NULL) {
2214 mtx_unlock(&bus->eb_mtx);
2215 return (retval);
2216 }
2217 device->refcount++;
2218 mtx_unlock(&bus->eb_mtx);
2219 }
2220 for (; device != NULL; device = next_device) {
2221 mtx_lock(&device->device_mtx);
2222 retval = tr_func(device, arg);
2223 mtx_unlock(&device->device_mtx);
2224 if (retval == 0) {
2225 xpt_release_device(device);
2226 break;
2227 }
2228 mtx_lock(&bus->eb_mtx);
2229 next_device = TAILQ_NEXT(device, links);
2230 if (next_device)
2231 next_device->refcount++;
2232 mtx_unlock(&bus->eb_mtx);
2233 xpt_release_device(device);
2234 }
2235 return(retval);
2236 }
2237
2238 static int
xptperiphtraverse(struct cam_ed * device,struct cam_periph * start_periph,xpt_periphfunc_t * tr_func,void * arg)2239 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph,
2240 xpt_periphfunc_t *tr_func, void *arg)
2241 {
2242 struct cam_eb *bus;
2243 struct cam_periph *periph, *next_periph;
2244 int retval;
2245
2246 retval = 1;
2247
2248 bus = device->target->bus;
2249 if (start_periph)
2250 periph = start_periph;
2251 else {
2252 xpt_lock_buses();
2253 mtx_lock(&bus->eb_mtx);
2254 periph = SLIST_FIRST(&device->periphs);
2255 while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0)
2256 periph = SLIST_NEXT(periph, periph_links);
2257 if (periph == NULL) {
2258 mtx_unlock(&bus->eb_mtx);
2259 xpt_unlock_buses();
2260 return (retval);
2261 }
2262 periph->refcount++;
2263 mtx_unlock(&bus->eb_mtx);
2264 xpt_unlock_buses();
2265 }
2266 for (; periph != NULL; periph = next_periph) {
2267 retval = tr_func(periph, arg);
2268 if (retval == 0) {
2269 cam_periph_release_locked(periph);
2270 break;
2271 }
2272 xpt_lock_buses();
2273 mtx_lock(&bus->eb_mtx);
2274 next_periph = SLIST_NEXT(periph, periph_links);
2275 while (next_periph != NULL &&
2276 (next_periph->flags & CAM_PERIPH_FREE) != 0)
2277 next_periph = SLIST_NEXT(next_periph, periph_links);
2278 if (next_periph)
2279 next_periph->refcount++;
2280 mtx_unlock(&bus->eb_mtx);
2281 xpt_unlock_buses();
2282 cam_periph_release_locked(periph);
2283 }
2284 return(retval);
2285 }
2286
2287 static int
xptpdrvtraverse(struct periph_driver ** start_pdrv,xpt_pdrvfunc_t * tr_func,void * arg)2288 xptpdrvtraverse(struct periph_driver **start_pdrv,
2289 xpt_pdrvfunc_t *tr_func, void *arg)
2290 {
2291 struct periph_driver **pdrv;
2292 int retval;
2293
2294 retval = 1;
2295
2296 /*
2297 * We don't traverse the peripheral driver list like we do the
2298 * other lists, because it is a linker set, and therefore cannot be
2299 * changed during runtime. If the peripheral driver list is ever
2300 * re-done to be something other than a linker set (i.e. it can
2301 * change while the system is running), the list traversal should
2302 * be modified to work like the other traversal functions.
2303 */
2304 for (pdrv = (start_pdrv ? start_pdrv : periph_drivers);
2305 *pdrv != NULL; pdrv++) {
2306 retval = tr_func(pdrv, arg);
2307
2308 if (retval == 0)
2309 return(retval);
2310 }
2311
2312 return(retval);
2313 }
2314
2315 static int
xptpdperiphtraverse(struct periph_driver ** pdrv,struct cam_periph * start_periph,xpt_periphfunc_t * tr_func,void * arg)2316 xptpdperiphtraverse(struct periph_driver **pdrv,
2317 struct cam_periph *start_periph,
2318 xpt_periphfunc_t *tr_func, void *arg)
2319 {
2320 struct cam_periph *periph, *next_periph;
2321 int retval;
2322
2323 retval = 1;
2324
2325 if (start_periph)
2326 periph = start_periph;
2327 else {
2328 xpt_lock_buses();
2329 periph = TAILQ_FIRST(&(*pdrv)->units);
2330 while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0)
2331 periph = TAILQ_NEXT(periph, unit_links);
2332 if (periph == NULL) {
2333 xpt_unlock_buses();
2334 return (retval);
2335 }
2336 periph->refcount++;
2337 xpt_unlock_buses();
2338 }
2339 for (; periph != NULL; periph = next_periph) {
2340 cam_periph_lock(periph);
2341 retval = tr_func(periph, arg);
2342 cam_periph_unlock(periph);
2343 if (retval == 0) {
2344 cam_periph_release(periph);
2345 break;
2346 }
2347 xpt_lock_buses();
2348 next_periph = TAILQ_NEXT(periph, unit_links);
2349 while (next_periph != NULL &&
2350 (next_periph->flags & CAM_PERIPH_FREE) != 0)
2351 next_periph = TAILQ_NEXT(next_periph, unit_links);
2352 if (next_periph)
2353 next_periph->refcount++;
2354 xpt_unlock_buses();
2355 cam_periph_release(periph);
2356 }
2357 return(retval);
2358 }
2359
2360 static int
xptdefbusfunc(struct cam_eb * bus,void * arg)2361 xptdefbusfunc(struct cam_eb *bus, void *arg)
2362 {
2363 struct xpt_traverse_config *tr_config;
2364
2365 tr_config = (struct xpt_traverse_config *)arg;
2366
2367 if (tr_config->depth == XPT_DEPTH_BUS) {
2368 xpt_busfunc_t *tr_func;
2369
2370 tr_func = (xpt_busfunc_t *)tr_config->tr_func;
2371
2372 return(tr_func(bus, tr_config->tr_arg));
2373 } else
2374 return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg));
2375 }
2376
2377 static int
xptdeftargetfunc(struct cam_et * target,void * arg)2378 xptdeftargetfunc(struct cam_et *target, void *arg)
2379 {
2380 struct xpt_traverse_config *tr_config;
2381
2382 tr_config = (struct xpt_traverse_config *)arg;
2383
2384 if (tr_config->depth == XPT_DEPTH_TARGET) {
2385 xpt_targetfunc_t *tr_func;
2386
2387 tr_func = (xpt_targetfunc_t *)tr_config->tr_func;
2388
2389 return(tr_func(target, tr_config->tr_arg));
2390 } else
2391 return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg));
2392 }
2393
2394 static int
xptdefdevicefunc(struct cam_ed * device,void * arg)2395 xptdefdevicefunc(struct cam_ed *device, void *arg)
2396 {
2397 struct xpt_traverse_config *tr_config;
2398
2399 tr_config = (struct xpt_traverse_config *)arg;
2400
2401 if (tr_config->depth == XPT_DEPTH_DEVICE) {
2402 xpt_devicefunc_t *tr_func;
2403
2404 tr_func = (xpt_devicefunc_t *)tr_config->tr_func;
2405
2406 return(tr_func(device, tr_config->tr_arg));
2407 } else
2408 return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg));
2409 }
2410
2411 static int
xptdefperiphfunc(struct cam_periph * periph,void * arg)2412 xptdefperiphfunc(struct cam_periph *periph, void *arg)
2413 {
2414 struct xpt_traverse_config *tr_config;
2415 xpt_periphfunc_t *tr_func;
2416
2417 tr_config = (struct xpt_traverse_config *)arg;
2418
2419 tr_func = (xpt_periphfunc_t *)tr_config->tr_func;
2420
2421 /*
2422 * Unlike the other default functions, we don't check for depth
2423 * here. The peripheral driver level is the last level in the EDT,
2424 * so if we're here, we should execute the function in question.
2425 */
2426 return(tr_func(periph, tr_config->tr_arg));
2427 }
2428
2429 /*
2430 * Execute the given function for every bus in the EDT.
2431 */
2432 static int
xpt_for_all_busses(xpt_busfunc_t * tr_func,void * arg)2433 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg)
2434 {
2435 struct xpt_traverse_config tr_config;
2436
2437 tr_config.depth = XPT_DEPTH_BUS;
2438 tr_config.tr_func = tr_func;
2439 tr_config.tr_arg = arg;
2440
2441 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2442 }
2443
2444 /*
2445 * Execute the given function for every device in the EDT.
2446 */
2447 static int
xpt_for_all_devices(xpt_devicefunc_t * tr_func,void * arg)2448 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg)
2449 {
2450 struct xpt_traverse_config tr_config;
2451
2452 tr_config.depth = XPT_DEPTH_DEVICE;
2453 tr_config.tr_func = tr_func;
2454 tr_config.tr_arg = arg;
2455
2456 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2457 }
2458
2459 static int
xptsetasyncfunc(struct cam_ed * device,void * arg)2460 xptsetasyncfunc(struct cam_ed *device, void *arg)
2461 {
2462 struct cam_path path;
2463 struct ccb_getdev cgd;
2464 struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2465
2466 /*
2467 * Don't report unconfigured devices (Wildcard devs,
2468 * devices only for target mode, device instances
2469 * that have been invalidated but are waiting for
2470 * their last reference count to be released).
2471 */
2472 if ((device->flags & CAM_DEV_UNCONFIGURED) != 0)
2473 return (1);
2474
2475 memset(&cgd, 0, sizeof(cgd));
2476 xpt_compile_path(&path,
2477 NULL,
2478 device->target->bus->path_id,
2479 device->target->target_id,
2480 device->lun_id);
2481 xpt_setup_ccb(&cgd.ccb_h, &path, CAM_PRIORITY_NORMAL);
2482 cgd.ccb_h.func_code = XPT_GDEV_TYPE;
2483 xpt_action((union ccb *)&cgd);
2484 csa->callback(csa->callback_arg,
2485 AC_FOUND_DEVICE,
2486 &path, &cgd);
2487 xpt_release_path(&path);
2488
2489 return(1);
2490 }
2491
2492 static int
xptsetasyncbusfunc(struct cam_eb * bus,void * arg)2493 xptsetasyncbusfunc(struct cam_eb *bus, void *arg)
2494 {
2495 struct cam_path path;
2496 struct ccb_pathinq cpi;
2497 struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2498
2499 xpt_compile_path(&path, /*periph*/NULL,
2500 bus->path_id,
2501 CAM_TARGET_WILDCARD,
2502 CAM_LUN_WILDCARD);
2503 xpt_path_lock(&path);
2504 xpt_path_inq(&cpi, &path);
2505 csa->callback(csa->callback_arg,
2506 AC_PATH_REGISTERED,
2507 &path, &cpi);
2508 xpt_path_unlock(&path);
2509 xpt_release_path(&path);
2510
2511 return(1);
2512 }
2513
2514 void
xpt_action(union ccb * start_ccb)2515 xpt_action(union ccb *start_ccb)
2516 {
2517
2518 CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE,
2519 ("xpt_action: func %#x %s\n", start_ccb->ccb_h.func_code,
2520 xpt_action_name(start_ccb->ccb_h.func_code)));
2521
2522 start_ccb->ccb_h.status = CAM_REQ_INPROG;
2523 (*(start_ccb->ccb_h.path->bus->xport->ops->action))(start_ccb);
2524 }
2525
2526 void
xpt_action_default(union ccb * start_ccb)2527 xpt_action_default(union ccb *start_ccb)
2528 {
2529 struct cam_path *path;
2530 struct cam_sim *sim;
2531 struct mtx *mtx;
2532
2533 path = start_ccb->ccb_h.path;
2534 CAM_DEBUG(path, CAM_DEBUG_TRACE,
2535 ("xpt_action_default: func %#x %s\n", start_ccb->ccb_h.func_code,
2536 xpt_action_name(start_ccb->ccb_h.func_code)));
2537
2538 switch (start_ccb->ccb_h.func_code) {
2539 case XPT_SCSI_IO:
2540 {
2541 struct cam_ed *device;
2542
2543 /*
2544 * For the sake of compatibility with SCSI-1
2545 * devices that may not understand the identify
2546 * message, we include lun information in the
2547 * second byte of all commands. SCSI-1 specifies
2548 * that luns are a 3 bit value and reserves only 3
2549 * bits for lun information in the CDB. Later
2550 * revisions of the SCSI spec allow for more than 8
2551 * luns, but have deprecated lun information in the
2552 * CDB. So, if the lun won't fit, we must omit.
2553 *
2554 * Also be aware that during initial probing for devices,
2555 * the inquiry information is unknown but initialized to 0.
2556 * This means that this code will be exercised while probing
2557 * devices with an ANSI revision greater than 2.
2558 */
2559 device = path->device;
2560 if (device->protocol_version <= SCSI_REV_2
2561 && start_ccb->ccb_h.target_lun < 8
2562 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) {
2563 start_ccb->csio.cdb_io.cdb_bytes[1] |=
2564 start_ccb->ccb_h.target_lun << 5;
2565 }
2566 start_ccb->csio.scsi_status = SCSI_STATUS_OK;
2567 }
2568 /* FALLTHROUGH */
2569 case XPT_TARGET_IO:
2570 case XPT_CONT_TARGET_IO:
2571 start_ccb->csio.sense_resid = 0;
2572 start_ccb->csio.resid = 0;
2573 /* FALLTHROUGH */
2574 case XPT_ATA_IO:
2575 if (start_ccb->ccb_h.func_code == XPT_ATA_IO)
2576 start_ccb->ataio.resid = 0;
2577 /* FALLTHROUGH */
2578 case XPT_NVME_IO:
2579 case XPT_NVME_ADMIN:
2580 case XPT_MMC_IO:
2581 case XPT_MMC_GET_TRAN_SETTINGS:
2582 case XPT_MMC_SET_TRAN_SETTINGS:
2583 case XPT_RESET_DEV:
2584 case XPT_ENG_EXEC:
2585 case XPT_SMP_IO:
2586 {
2587 struct cam_devq *devq;
2588
2589 devq = path->bus->sim->devq;
2590 mtx_lock(&devq->send_mtx);
2591 cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb);
2592 if (xpt_schedule_devq(devq, path->device) != 0)
2593 xpt_run_devq(devq);
2594 mtx_unlock(&devq->send_mtx);
2595 break;
2596 }
2597 case XPT_CALC_GEOMETRY:
2598 /* Filter out garbage */
2599 if (start_ccb->ccg.block_size == 0
2600 || start_ccb->ccg.volume_size == 0) {
2601 start_ccb->ccg.cylinders = 0;
2602 start_ccb->ccg.heads = 0;
2603 start_ccb->ccg.secs_per_track = 0;
2604 start_ccb->ccb_h.status = CAM_REQ_CMP;
2605 break;
2606 }
2607 goto call_sim;
2608 case XPT_ABORT:
2609 {
2610 union ccb* abort_ccb;
2611
2612 abort_ccb = start_ccb->cab.abort_ccb;
2613 if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) {
2614 struct cam_ed *device;
2615 struct cam_devq *devq;
2616
2617 device = abort_ccb->ccb_h.path->device;
2618 devq = device->sim->devq;
2619
2620 mtx_lock(&devq->send_mtx);
2621 if (abort_ccb->ccb_h.pinfo.index > 0) {
2622 cam_ccbq_remove_ccb(&device->ccbq, abort_ccb);
2623 abort_ccb->ccb_h.status =
2624 CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2625 xpt_freeze_devq_device(device, 1);
2626 mtx_unlock(&devq->send_mtx);
2627 xpt_done(abort_ccb);
2628 start_ccb->ccb_h.status = CAM_REQ_CMP;
2629 break;
2630 }
2631 mtx_unlock(&devq->send_mtx);
2632
2633 if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX
2634 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) {
2635 /*
2636 * We've caught this ccb en route to
2637 * the SIM. Flag it for abort and the
2638 * SIM will do so just before starting
2639 * real work on the CCB.
2640 */
2641 abort_ccb->ccb_h.status =
2642 CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2643 xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2644 start_ccb->ccb_h.status = CAM_REQ_CMP;
2645 break;
2646 }
2647 }
2648 if (XPT_FC_IS_QUEUED(abort_ccb)
2649 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) {
2650 /*
2651 * It's already completed but waiting
2652 * for our SWI to get to it.
2653 */
2654 start_ccb->ccb_h.status = CAM_UA_ABORT;
2655 break;
2656 }
2657 /*
2658 * If we weren't able to take care of the abort request
2659 * in the XPT, pass the request down to the SIM for processing.
2660 */
2661 }
2662 /* FALLTHROUGH */
2663 case XPT_ACCEPT_TARGET_IO:
2664 case XPT_EN_LUN:
2665 case XPT_IMMED_NOTIFY:
2666 case XPT_NOTIFY_ACK:
2667 case XPT_RESET_BUS:
2668 case XPT_IMMEDIATE_NOTIFY:
2669 case XPT_NOTIFY_ACKNOWLEDGE:
2670 case XPT_GET_SIM_KNOB_OLD:
2671 case XPT_GET_SIM_KNOB:
2672 case XPT_SET_SIM_KNOB:
2673 case XPT_GET_TRAN_SETTINGS:
2674 case XPT_SET_TRAN_SETTINGS:
2675 case XPT_PATH_INQ:
2676 call_sim:
2677 sim = path->bus->sim;
2678 mtx = sim->mtx;
2679 if (mtx && !mtx_owned(mtx))
2680 mtx_lock(mtx);
2681 else
2682 mtx = NULL;
2683
2684 CAM_DEBUG(path, CAM_DEBUG_TRACE,
2685 ("Calling sim->sim_action(): func=%#x\n", start_ccb->ccb_h.func_code));
2686 (*(sim->sim_action))(sim, start_ccb);
2687 CAM_DEBUG(path, CAM_DEBUG_TRACE,
2688 ("sim->sim_action returned: status=%#x\n", start_ccb->ccb_h.status));
2689 if (mtx)
2690 mtx_unlock(mtx);
2691 break;
2692 case XPT_PATH_STATS:
2693 start_ccb->cpis.last_reset = path->bus->last_reset;
2694 start_ccb->ccb_h.status = CAM_REQ_CMP;
2695 break;
2696 case XPT_GDEV_TYPE:
2697 {
2698 struct cam_ed *dev;
2699
2700 dev = path->device;
2701 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2702 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2703 } else {
2704 struct ccb_getdev *cgd;
2705
2706 cgd = &start_ccb->cgd;
2707 cgd->protocol = dev->protocol;
2708 cgd->inq_data = dev->inq_data;
2709 cgd->ident_data = dev->ident_data;
2710 cgd->inq_flags = dev->inq_flags;
2711 cgd->ccb_h.status = CAM_REQ_CMP;
2712 cgd->serial_num_len = dev->serial_num_len;
2713 if ((dev->serial_num_len > 0)
2714 && (dev->serial_num != NULL))
2715 bcopy(dev->serial_num, cgd->serial_num,
2716 dev->serial_num_len);
2717 }
2718 break;
2719 }
2720 case XPT_GDEV_STATS:
2721 {
2722 struct ccb_getdevstats *cgds = &start_ccb->cgds;
2723 struct cam_ed *dev = path->device;
2724 struct cam_eb *bus = path->bus;
2725 struct cam_et *tar = path->target;
2726 struct cam_devq *devq = bus->sim->devq;
2727
2728 mtx_lock(&devq->send_mtx);
2729 cgds->dev_openings = dev->ccbq.dev_openings;
2730 cgds->dev_active = dev->ccbq.dev_active;
2731 cgds->allocated = dev->ccbq.allocated;
2732 cgds->queued = cam_ccbq_pending_ccb_count(&dev->ccbq);
2733 cgds->held = cgds->allocated - cgds->dev_active - cgds->queued;
2734 cgds->last_reset = tar->last_reset;
2735 cgds->maxtags = dev->maxtags;
2736 cgds->mintags = dev->mintags;
2737 if (timevalcmp(&tar->last_reset, &bus->last_reset, <))
2738 cgds->last_reset = bus->last_reset;
2739 mtx_unlock(&devq->send_mtx);
2740 cgds->ccb_h.status = CAM_REQ_CMP;
2741 break;
2742 }
2743 case XPT_GDEVLIST:
2744 {
2745 struct cam_periph *nperiph;
2746 struct periph_list *periph_head;
2747 struct ccb_getdevlist *cgdl;
2748 u_int i;
2749 struct cam_ed *device;
2750 bool found;
2751
2752 found = false;
2753
2754 /*
2755 * Don't want anyone mucking with our data.
2756 */
2757 device = path->device;
2758 periph_head = &device->periphs;
2759 cgdl = &start_ccb->cgdl;
2760
2761 /*
2762 * Check and see if the list has changed since the user
2763 * last requested a list member. If so, tell them that the
2764 * list has changed, and therefore they need to start over
2765 * from the beginning.
2766 */
2767 if ((cgdl->index != 0) &&
2768 (cgdl->generation != device->generation)) {
2769 cgdl->status = CAM_GDEVLIST_LIST_CHANGED;
2770 break;
2771 }
2772
2773 /*
2774 * Traverse the list of peripherals and attempt to find
2775 * the requested peripheral.
2776 */
2777 for (nperiph = SLIST_FIRST(periph_head), i = 0;
2778 (nperiph != NULL) && (i <= cgdl->index);
2779 nperiph = SLIST_NEXT(nperiph, periph_links), i++) {
2780 if (i == cgdl->index) {
2781 strlcpy(cgdl->periph_name,
2782 nperiph->periph_name,
2783 sizeof(cgdl->periph_name));
2784 cgdl->unit_number = nperiph->unit_number;
2785 found = true;
2786 }
2787 }
2788 if (!found) {
2789 cgdl->status = CAM_GDEVLIST_ERROR;
2790 break;
2791 }
2792
2793 if (nperiph == NULL)
2794 cgdl->status = CAM_GDEVLIST_LAST_DEVICE;
2795 else
2796 cgdl->status = CAM_GDEVLIST_MORE_DEVS;
2797
2798 cgdl->index++;
2799 cgdl->generation = device->generation;
2800
2801 cgdl->ccb_h.status = CAM_REQ_CMP;
2802 break;
2803 }
2804 case XPT_DEV_MATCH:
2805 {
2806 dev_pos_type position_type;
2807 struct ccb_dev_match *cdm;
2808
2809 cdm = &start_ccb->cdm;
2810
2811 /*
2812 * There are two ways of getting at information in the EDT.
2813 * The first way is via the primary EDT tree. It starts
2814 * with a list of buses, then a list of targets on a bus,
2815 * then devices/luns on a target, and then peripherals on a
2816 * device/lun. The "other" way is by the peripheral driver
2817 * lists. The peripheral driver lists are organized by
2818 * peripheral driver. (obviously) So it makes sense to
2819 * use the peripheral driver list if the user is looking
2820 * for something like "da1", or all "da" devices. If the
2821 * user is looking for something on a particular bus/target
2822 * or lun, it's generally better to go through the EDT tree.
2823 */
2824
2825 if (cdm->pos.position_type != CAM_DEV_POS_NONE)
2826 position_type = cdm->pos.position_type;
2827 else {
2828 u_int i;
2829
2830 position_type = CAM_DEV_POS_NONE;
2831
2832 for (i = 0; i < cdm->num_patterns; i++) {
2833 if ((cdm->patterns[i].type == DEV_MATCH_BUS)
2834 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){
2835 position_type = CAM_DEV_POS_EDT;
2836 break;
2837 }
2838 }
2839
2840 if (cdm->num_patterns == 0)
2841 position_type = CAM_DEV_POS_EDT;
2842 else if (position_type == CAM_DEV_POS_NONE)
2843 position_type = CAM_DEV_POS_PDRV;
2844 }
2845
2846 switch(position_type & CAM_DEV_POS_TYPEMASK) {
2847 case CAM_DEV_POS_EDT:
2848 xptedtmatch(cdm);
2849 break;
2850 case CAM_DEV_POS_PDRV:
2851 xptperiphlistmatch(cdm);
2852 break;
2853 default:
2854 cdm->status = CAM_DEV_MATCH_ERROR;
2855 break;
2856 }
2857
2858 if (cdm->status == CAM_DEV_MATCH_ERROR)
2859 start_ccb->ccb_h.status = CAM_REQ_CMP_ERR;
2860 else
2861 start_ccb->ccb_h.status = CAM_REQ_CMP;
2862
2863 break;
2864 }
2865 case XPT_SASYNC_CB:
2866 {
2867 struct ccb_setasync *csa;
2868 struct async_node *cur_entry;
2869 struct async_list *async_head;
2870 uint32_t added;
2871
2872 csa = &start_ccb->csa;
2873 added = csa->event_enable;
2874 async_head = &path->device->asyncs;
2875
2876 /*
2877 * If there is already an entry for us, simply
2878 * update it.
2879 */
2880 cur_entry = SLIST_FIRST(async_head);
2881 while (cur_entry != NULL) {
2882 if ((cur_entry->callback_arg == csa->callback_arg)
2883 && (cur_entry->callback == csa->callback))
2884 break;
2885 cur_entry = SLIST_NEXT(cur_entry, links);
2886 }
2887
2888 if (cur_entry != NULL) {
2889 /*
2890 * If the request has no flags set,
2891 * remove the entry.
2892 */
2893 added &= ~cur_entry->event_enable;
2894 if (csa->event_enable == 0) {
2895 SLIST_REMOVE(async_head, cur_entry,
2896 async_node, links);
2897 xpt_release_device(path->device);
2898 free(cur_entry, M_CAMXPT);
2899 } else {
2900 cur_entry->event_enable = csa->event_enable;
2901 }
2902 csa->event_enable = added;
2903 } else {
2904 cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT,
2905 M_NOWAIT);
2906 if (cur_entry == NULL) {
2907 csa->ccb_h.status = CAM_RESRC_UNAVAIL;
2908 break;
2909 }
2910 cur_entry->event_enable = csa->event_enable;
2911 cur_entry->event_lock = (path->bus->sim->mtx &&
2912 mtx_owned(path->bus->sim->mtx)) ? 1 : 0;
2913 cur_entry->callback_arg = csa->callback_arg;
2914 cur_entry->callback = csa->callback;
2915 SLIST_INSERT_HEAD(async_head, cur_entry, links);
2916 xpt_acquire_device(path->device);
2917 }
2918 start_ccb->ccb_h.status = CAM_REQ_CMP;
2919 break;
2920 }
2921 case XPT_REL_SIMQ:
2922 {
2923 struct ccb_relsim *crs;
2924 struct cam_ed *dev;
2925
2926 crs = &start_ccb->crs;
2927 dev = path->device;
2928 if (dev == NULL) {
2929 crs->ccb_h.status = CAM_DEV_NOT_THERE;
2930 break;
2931 }
2932
2933 if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) {
2934 /* Don't ever go below one opening */
2935 if (crs->openings > 0) {
2936 xpt_dev_ccbq_resize(path, crs->openings);
2937 if (bootverbose) {
2938 xpt_print(path,
2939 "number of openings is now %d\n",
2940 crs->openings);
2941 }
2942 }
2943 }
2944
2945 mtx_lock(&dev->sim->devq->send_mtx);
2946 if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) {
2947 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
2948 /*
2949 * Just extend the old timeout and decrement
2950 * the freeze count so that a single timeout
2951 * is sufficient for releasing the queue.
2952 */
2953 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2954 callout_stop(&dev->callout);
2955 } else {
2956 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2957 }
2958
2959 callout_reset_sbt(&dev->callout,
2960 SBT_1MS * crs->release_timeout, SBT_1MS,
2961 xpt_release_devq_timeout, dev, 0);
2962
2963 dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING;
2964 }
2965
2966 if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) {
2967 if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) {
2968 /*
2969 * Decrement the freeze count so that a single
2970 * completion is still sufficient to unfreeze
2971 * the queue.
2972 */
2973 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2974 } else {
2975 dev->flags |= CAM_DEV_REL_ON_COMPLETE;
2976 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2977 }
2978 }
2979
2980 if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) {
2981 if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
2982 || (dev->ccbq.dev_active == 0)) {
2983 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2984 } else {
2985 dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY;
2986 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2987 }
2988 }
2989 mtx_unlock(&dev->sim->devq->send_mtx);
2990
2991 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0)
2992 xpt_release_devq(path, /*count*/1, /*run_queue*/TRUE);
2993 start_ccb->crs.qfrozen_cnt = dev->ccbq.queue.qfrozen_cnt;
2994 start_ccb->ccb_h.status = CAM_REQ_CMP;
2995 break;
2996 }
2997 case XPT_DEBUG: {
2998 struct cam_path *oldpath;
2999
3000 /* Check that all request bits are supported. */
3001 if (start_ccb->cdbg.flags & ~(CAM_DEBUG_COMPILE)) {
3002 start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
3003 break;
3004 }
3005
3006 cam_dflags = CAM_DEBUG_NONE;
3007 if (cam_dpath != NULL) {
3008 oldpath = cam_dpath;
3009 cam_dpath = NULL;
3010 xpt_free_path(oldpath);
3011 }
3012 if (start_ccb->cdbg.flags != CAM_DEBUG_NONE) {
3013 if (xpt_create_path(&cam_dpath, NULL,
3014 start_ccb->ccb_h.path_id,
3015 start_ccb->ccb_h.target_id,
3016 start_ccb->ccb_h.target_lun) !=
3017 CAM_REQ_CMP) {
3018 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3019 } else {
3020 cam_dflags = start_ccb->cdbg.flags;
3021 start_ccb->ccb_h.status = CAM_REQ_CMP;
3022 xpt_print(cam_dpath, "debugging flags now %x\n",
3023 cam_dflags);
3024 }
3025 } else
3026 start_ccb->ccb_h.status = CAM_REQ_CMP;
3027 break;
3028 }
3029 case XPT_NOOP:
3030 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0)
3031 xpt_freeze_devq(path, 1);
3032 start_ccb->ccb_h.status = CAM_REQ_CMP;
3033 break;
3034 case XPT_REPROBE_LUN:
3035 xpt_async(AC_INQ_CHANGED, path, NULL);
3036 start_ccb->ccb_h.status = CAM_REQ_CMP;
3037 xpt_done(start_ccb);
3038 break;
3039 case XPT_ASYNC:
3040 /*
3041 * Queue the async operation so it can be run from a sleepable
3042 * context.
3043 */
3044 start_ccb->ccb_h.status = CAM_REQ_CMP;
3045 mtx_lock(&cam_async.cam_doneq_mtx);
3046 STAILQ_INSERT_TAIL(&cam_async.cam_doneq, &start_ccb->ccb_h, sim_links.stqe);
3047 start_ccb->ccb_h.pinfo.index = CAM_ASYNC_INDEX;
3048 mtx_unlock(&cam_async.cam_doneq_mtx);
3049 wakeup(&cam_async.cam_doneq);
3050 break;
3051 default:
3052 case XPT_SDEV_TYPE:
3053 case XPT_TERM_IO:
3054 case XPT_ENG_INQ:
3055 /* XXX Implement */
3056 xpt_print(start_ccb->ccb_h.path,
3057 "%s: CCB type %#x %s not supported\n", __func__,
3058 start_ccb->ccb_h.func_code,
3059 xpt_action_name(start_ccb->ccb_h.func_code));
3060 start_ccb->ccb_h.status = CAM_PROVIDE_FAIL;
3061 if (start_ccb->ccb_h.func_code & XPT_FC_DEV_QUEUED) {
3062 xpt_done(start_ccb);
3063 }
3064 break;
3065 }
3066 CAM_DEBUG(path, CAM_DEBUG_TRACE,
3067 ("xpt_action_default: func= %#x %s status %#x\n",
3068 start_ccb->ccb_h.func_code,
3069 xpt_action_name(start_ccb->ccb_h.func_code),
3070 start_ccb->ccb_h.status));
3071 }
3072
3073 /*
3074 * Call the sim poll routine to allow the sim to complete
3075 * any inflight requests, then call camisr_runqueue to
3076 * complete any CCB that the polling completed.
3077 */
3078 void
xpt_sim_poll(struct cam_sim * sim)3079 xpt_sim_poll(struct cam_sim *sim)
3080 {
3081 struct mtx *mtx;
3082
3083 KASSERT(cam_sim_pollable(sim), ("%s: non-pollable sim", __func__));
3084 mtx = sim->mtx;
3085 if (mtx)
3086 mtx_lock(mtx);
3087 (*(sim->sim_poll))(sim);
3088 if (mtx)
3089 mtx_unlock(mtx);
3090 camisr_runqueue();
3091 }
3092
3093 uint32_t
xpt_poll_setup(union ccb * start_ccb)3094 xpt_poll_setup(union ccb *start_ccb)
3095 {
3096 uint32_t timeout;
3097 struct cam_sim *sim;
3098 struct cam_devq *devq;
3099 struct cam_ed *dev;
3100
3101 timeout = start_ccb->ccb_h.timeout * 10;
3102 sim = start_ccb->ccb_h.path->bus->sim;
3103 devq = sim->devq;
3104 dev = start_ccb->ccb_h.path->device;
3105
3106 KASSERT(cam_sim_pollable(sim), ("%s: non-pollable sim", __func__));
3107
3108 /*
3109 * Steal an opening so that no other queued requests
3110 * can get it before us while we simulate interrupts.
3111 */
3112 mtx_lock(&devq->send_mtx);
3113 dev->ccbq.dev_openings--;
3114 while((devq->send_openings <= 0 || dev->ccbq.dev_openings < 0) &&
3115 (--timeout > 0)) {
3116 mtx_unlock(&devq->send_mtx);
3117 DELAY(100);
3118 xpt_sim_poll(sim);
3119 mtx_lock(&devq->send_mtx);
3120 }
3121 dev->ccbq.dev_openings++;
3122 mtx_unlock(&devq->send_mtx);
3123
3124 return (timeout);
3125 }
3126
3127 void
xpt_pollwait(union ccb * start_ccb,uint32_t timeout)3128 xpt_pollwait(union ccb *start_ccb, uint32_t timeout)
3129 {
3130
3131 KASSERT(cam_sim_pollable(start_ccb->ccb_h.path->bus->sim),
3132 ("%s: non-pollable sim", __func__));
3133 while (--timeout > 0) {
3134 xpt_sim_poll(start_ccb->ccb_h.path->bus->sim);
3135 if ((start_ccb->ccb_h.status & CAM_STATUS_MASK)
3136 != CAM_REQ_INPROG)
3137 break;
3138 DELAY(100);
3139 }
3140
3141 if (timeout == 0) {
3142 /*
3143 * XXX Is it worth adding a sim_timeout entry
3144 * point so we can attempt recovery? If
3145 * this is only used for dumps, I don't think
3146 * it is.
3147 */
3148 start_ccb->ccb_h.status = CAM_CMD_TIMEOUT;
3149 }
3150 }
3151
3152 /*
3153 * Schedule a peripheral driver to receive a ccb when its
3154 * target device has space for more transactions.
3155 */
3156 void
xpt_schedule(struct cam_periph * periph,uint32_t new_priority)3157 xpt_schedule(struct cam_periph *periph, uint32_t new_priority)
3158 {
3159
3160 CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n"));
3161 cam_periph_assert(periph, MA_OWNED);
3162 if (new_priority < periph->scheduled_priority) {
3163 periph->scheduled_priority = new_priority;
3164 xpt_run_allocq(periph, 0);
3165 }
3166 }
3167
3168 /*
3169 * Schedule a device to run on a given queue.
3170 * If the device was inserted as a new entry on the queue,
3171 * return 1 meaning the device queue should be run. If we
3172 * were already queued, implying someone else has already
3173 * started the queue, return 0 so the caller doesn't attempt
3174 * to run the queue.
3175 */
3176 static int
xpt_schedule_dev(struct camq * queue,cam_pinfo * pinfo,uint32_t new_priority)3177 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo,
3178 uint32_t new_priority)
3179 {
3180 int retval;
3181 uint32_t old_priority;
3182
3183 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n"));
3184
3185 old_priority = pinfo->priority;
3186
3187 /*
3188 * Are we already queued?
3189 */
3190 if (pinfo->index != CAM_UNQUEUED_INDEX) {
3191 /* Simply reorder based on new priority */
3192 if (new_priority < old_priority) {
3193 camq_change_priority(queue, pinfo->index,
3194 new_priority);
3195 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3196 ("changed priority to %d\n",
3197 new_priority));
3198 retval = 1;
3199 } else
3200 retval = 0;
3201 } else {
3202 /* New entry on the queue */
3203 if (new_priority < old_priority)
3204 pinfo->priority = new_priority;
3205
3206 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3207 ("Inserting onto queue\n"));
3208 pinfo->generation = ++queue->generation;
3209 camq_insert(queue, pinfo);
3210 retval = 1;
3211 }
3212 return (retval);
3213 }
3214
3215 static void
xpt_run_allocq_task(void * context,int pending)3216 xpt_run_allocq_task(void *context, int pending)
3217 {
3218 struct cam_periph *periph = context;
3219
3220 cam_periph_lock(periph);
3221 periph->flags &= ~CAM_PERIPH_RUN_TASK;
3222 xpt_run_allocq(periph, 1);
3223 cam_periph_unlock(periph);
3224 cam_periph_release(periph);
3225 }
3226
3227 static void
xpt_run_allocq(struct cam_periph * periph,int sleep)3228 xpt_run_allocq(struct cam_periph *periph, int sleep)
3229 {
3230 struct cam_ed *device;
3231 union ccb *ccb;
3232 uint32_t prio;
3233
3234 cam_periph_assert(periph, MA_OWNED);
3235 if (periph->periph_allocating)
3236 return;
3237 cam_periph_doacquire(periph);
3238 periph->periph_allocating = 1;
3239 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_allocq(%p)\n", periph));
3240 device = periph->path->device;
3241 ccb = NULL;
3242 restart:
3243 while ((prio = min(periph->scheduled_priority,
3244 periph->immediate_priority)) != CAM_PRIORITY_NONE &&
3245 (periph->periph_allocated - (ccb != NULL ? 1 : 0) <
3246 device->ccbq.total_openings || prio <= CAM_PRIORITY_OOB)) {
3247 if (ccb == NULL &&
3248 (ccb = xpt_get_ccb_nowait(periph)) == NULL) {
3249 if (sleep) {
3250 ccb = xpt_get_ccb(periph);
3251 goto restart;
3252 }
3253 if (periph->flags & CAM_PERIPH_RUN_TASK)
3254 break;
3255 cam_periph_doacquire(periph);
3256 periph->flags |= CAM_PERIPH_RUN_TASK;
3257 taskqueue_enqueue(xsoftc.xpt_taskq,
3258 &periph->periph_run_task);
3259 break;
3260 }
3261 xpt_setup_ccb(&ccb->ccb_h, periph->path, prio);
3262 if (prio == periph->immediate_priority) {
3263 periph->immediate_priority = CAM_PRIORITY_NONE;
3264 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3265 ("waking cam_periph_getccb()\n"));
3266 SLIST_INSERT_HEAD(&periph->ccb_list, &ccb->ccb_h,
3267 periph_links.sle);
3268 wakeup(&periph->ccb_list);
3269 } else {
3270 periph->scheduled_priority = CAM_PRIORITY_NONE;
3271 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3272 ("calling periph_start()\n"));
3273 periph->periph_start(periph, ccb);
3274 }
3275 ccb = NULL;
3276 }
3277 if (ccb != NULL)
3278 xpt_release_ccb(ccb);
3279 periph->periph_allocating = 0;
3280 cam_periph_release_locked(periph);
3281 }
3282
3283 static void
xpt_run_devq(struct cam_devq * devq)3284 xpt_run_devq(struct cam_devq *devq)
3285 {
3286 struct mtx *mtx;
3287
3288 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_devq\n"));
3289
3290 devq->send_queue.qfrozen_cnt++;
3291 while ((devq->send_queue.entries > 0)
3292 && (devq->send_openings > 0)
3293 && (devq->send_queue.qfrozen_cnt <= 1)) {
3294 struct cam_ed *device;
3295 union ccb *work_ccb;
3296 struct cam_sim *sim;
3297 struct xpt_proto *proto;
3298
3299 device = (struct cam_ed *)camq_remove(&devq->send_queue,
3300 CAMQ_HEAD);
3301 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3302 ("running device %p\n", device));
3303
3304 work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
3305 if (work_ccb == NULL) {
3306 printf("device on run queue with no ccbs???\n");
3307 continue;
3308 }
3309
3310 if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) {
3311 mtx_lock(&xsoftc.xpt_highpower_lock);
3312 if (xsoftc.num_highpower <= 0) {
3313 /*
3314 * We got a high power command, but we
3315 * don't have any available slots. Freeze
3316 * the device queue until we have a slot
3317 * available.
3318 */
3319 xpt_freeze_devq_device(device, 1);
3320 STAILQ_INSERT_TAIL(&xsoftc.highpowerq, device,
3321 highpowerq_entry);
3322
3323 mtx_unlock(&xsoftc.xpt_highpower_lock);
3324 continue;
3325 } else {
3326 /*
3327 * Consume a high power slot while
3328 * this ccb runs.
3329 */
3330 xsoftc.num_highpower--;
3331 }
3332 mtx_unlock(&xsoftc.xpt_highpower_lock);
3333 }
3334 cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
3335 cam_ccbq_send_ccb(&device->ccbq, work_ccb);
3336 devq->send_openings--;
3337 devq->send_active++;
3338 xpt_schedule_devq(devq, device);
3339 mtx_unlock(&devq->send_mtx);
3340
3341 if ((work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) {
3342 /*
3343 * The client wants to freeze the queue
3344 * after this CCB is sent.
3345 */
3346 xpt_freeze_devq(work_ccb->ccb_h.path, 1);
3347 }
3348
3349 /* In Target mode, the peripheral driver knows best... */
3350 if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) {
3351 if ((device->inq_flags & SID_CmdQue) != 0
3352 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE)
3353 work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID;
3354 else
3355 /*
3356 * Clear this in case of a retried CCB that
3357 * failed due to a rejected tag.
3358 */
3359 work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID;
3360 }
3361
3362 KASSERT(device == work_ccb->ccb_h.path->device,
3363 ("device (%p) / path->device (%p) mismatch",
3364 device, work_ccb->ccb_h.path->device));
3365 proto = xpt_proto_find(device->protocol);
3366 if (proto && proto->ops->debug_out)
3367 proto->ops->debug_out(work_ccb);
3368
3369 /*
3370 * Device queues can be shared among multiple SIM instances
3371 * that reside on different buses. Use the SIM from the
3372 * queued device, rather than the one from the calling bus.
3373 */
3374 sim = device->sim;
3375 mtx = sim->mtx;
3376 if (mtx && !mtx_owned(mtx))
3377 mtx_lock(mtx);
3378 else
3379 mtx = NULL;
3380 work_ccb->ccb_h.qos.periph_data = cam_iosched_now();
3381 (*(sim->sim_action))(sim, work_ccb);
3382 if (mtx)
3383 mtx_unlock(mtx);
3384 mtx_lock(&devq->send_mtx);
3385 }
3386 devq->send_queue.qfrozen_cnt--;
3387 }
3388
3389 /*
3390 * This function merges stuff from the src ccb into the dst ccb, while keeping
3391 * important fields in the dst ccb constant.
3392 */
3393 void
xpt_merge_ccb(union ccb * dst_ccb,union ccb * src_ccb)3394 xpt_merge_ccb(union ccb *dst_ccb, union ccb *src_ccb)
3395 {
3396
3397 /*
3398 * Pull fields that are valid for peripheral drivers to set
3399 * into the dst CCB along with the CCB "payload".
3400 */
3401 dst_ccb->ccb_h.retry_count = src_ccb->ccb_h.retry_count;
3402 dst_ccb->ccb_h.func_code = src_ccb->ccb_h.func_code;
3403 dst_ccb->ccb_h.timeout = src_ccb->ccb_h.timeout;
3404 dst_ccb->ccb_h.flags = src_ccb->ccb_h.flags;
3405 bcopy(&(&src_ccb->ccb_h)[1], &(&dst_ccb->ccb_h)[1],
3406 sizeof(union ccb) - sizeof(struct ccb_hdr));
3407 }
3408
3409 void
xpt_setup_ccb_flags(struct ccb_hdr * ccb_h,struct cam_path * path,uint32_t priority,uint32_t flags)3410 xpt_setup_ccb_flags(struct ccb_hdr *ccb_h, struct cam_path *path,
3411 uint32_t priority, uint32_t flags)
3412 {
3413
3414 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n"));
3415 ccb_h->pinfo.priority = priority;
3416 ccb_h->path = path;
3417 ccb_h->path_id = path->bus->path_id;
3418 if (path->target)
3419 ccb_h->target_id = path->target->target_id;
3420 else
3421 ccb_h->target_id = CAM_TARGET_WILDCARD;
3422 if (path->device) {
3423 ccb_h->target_lun = path->device->lun_id;
3424 ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation;
3425 } else {
3426 ccb_h->target_lun = CAM_TARGET_WILDCARD;
3427 }
3428 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
3429 ccb_h->flags = flags;
3430 ccb_h->xflags = 0;
3431 }
3432
3433 void
xpt_setup_ccb(struct ccb_hdr * ccb_h,struct cam_path * path,uint32_t priority)3434 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, uint32_t priority)
3435 {
3436 xpt_setup_ccb_flags(ccb_h, path, priority, /*flags*/ 0);
3437 }
3438
3439 /* Path manipulation functions */
3440 cam_status
xpt_create_path(struct cam_path ** new_path_ptr,struct cam_periph * perph,path_id_t path_id,target_id_t target_id,lun_id_t lun_id)3441 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph,
3442 path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3443 {
3444 struct cam_path *path;
3445 cam_status status;
3446
3447 path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT);
3448
3449 if (path == NULL) {
3450 status = CAM_RESRC_UNAVAIL;
3451 return(status);
3452 }
3453 status = xpt_compile_path(path, perph, path_id, target_id, lun_id);
3454 if (status != CAM_REQ_CMP) {
3455 free(path, M_CAMPATH);
3456 path = NULL;
3457 }
3458 *new_path_ptr = path;
3459 return (status);
3460 }
3461
3462 cam_status
xpt_create_path_unlocked(struct cam_path ** new_path_ptr,struct cam_periph * periph,path_id_t path_id,target_id_t target_id,lun_id_t lun_id)3463 xpt_create_path_unlocked(struct cam_path **new_path_ptr,
3464 struct cam_periph *periph, path_id_t path_id,
3465 target_id_t target_id, lun_id_t lun_id)
3466 {
3467
3468 return (xpt_create_path(new_path_ptr, periph, path_id, target_id,
3469 lun_id));
3470 }
3471
3472 cam_status
xpt_compile_path(struct cam_path * new_path,struct cam_periph * perph,path_id_t path_id,target_id_t target_id,lun_id_t lun_id)3473 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph,
3474 path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3475 {
3476 struct cam_eb *bus;
3477 struct cam_et *target;
3478 struct cam_ed *device;
3479 cam_status status;
3480
3481 status = CAM_REQ_CMP; /* Completed without error */
3482 target = NULL; /* Wildcarded */
3483 device = NULL; /* Wildcarded */
3484
3485 /*
3486 * We will potentially modify the EDT, so block interrupts
3487 * that may attempt to create cam paths.
3488 */
3489 bus = xpt_find_bus(path_id);
3490 if (bus == NULL) {
3491 status = CAM_PATH_INVALID;
3492 } else {
3493 xpt_lock_buses();
3494 mtx_lock(&bus->eb_mtx);
3495 target = xpt_find_target(bus, target_id);
3496 if (target == NULL) {
3497 /* Create one */
3498 struct cam_et *new_target;
3499
3500 new_target = xpt_alloc_target(bus, target_id);
3501 if (new_target == NULL) {
3502 status = CAM_RESRC_UNAVAIL;
3503 } else {
3504 target = new_target;
3505 }
3506 }
3507 xpt_unlock_buses();
3508 if (target != NULL) {
3509 device = xpt_find_device(target, lun_id);
3510 if (device == NULL) {
3511 /* Create one */
3512 struct cam_ed *new_device;
3513
3514 new_device =
3515 (*(bus->xport->ops->alloc_device))(bus,
3516 target,
3517 lun_id);
3518 if (new_device == NULL) {
3519 status = CAM_RESRC_UNAVAIL;
3520 } else {
3521 device = new_device;
3522 }
3523 }
3524 }
3525 mtx_unlock(&bus->eb_mtx);
3526 }
3527
3528 /*
3529 * Only touch the user's data if we are successful.
3530 */
3531 if (status == CAM_REQ_CMP) {
3532 new_path->periph = perph;
3533 new_path->bus = bus;
3534 new_path->target = target;
3535 new_path->device = device;
3536 CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n"));
3537 } else {
3538 if (device != NULL)
3539 xpt_release_device(device);
3540 if (target != NULL)
3541 xpt_release_target(target);
3542 if (bus != NULL)
3543 xpt_release_bus(bus);
3544 }
3545 return (status);
3546 }
3547
3548 int
xpt_clone_path(struct cam_path ** new_path_ptr,struct cam_path * path)3549 xpt_clone_path(struct cam_path **new_path_ptr, struct cam_path *path)
3550 {
3551 struct cam_path *new_path;
3552
3553 new_path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT);
3554 if (new_path == NULL)
3555 return (ENOMEM);
3556 *new_path = *path;
3557 if (path->bus != NULL)
3558 xpt_acquire_bus(path->bus);
3559 if (path->target != NULL)
3560 xpt_acquire_target(path->target);
3561 if (path->device != NULL)
3562 xpt_acquire_device(path->device);
3563 *new_path_ptr = new_path;
3564 return (0);
3565 }
3566
3567 void
xpt_release_path(struct cam_path * path)3568 xpt_release_path(struct cam_path *path)
3569 {
3570 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n"));
3571 if (path->device != NULL) {
3572 xpt_release_device(path->device);
3573 path->device = NULL;
3574 }
3575 if (path->target != NULL) {
3576 xpt_release_target(path->target);
3577 path->target = NULL;
3578 }
3579 if (path->bus != NULL) {
3580 xpt_release_bus(path->bus);
3581 path->bus = NULL;
3582 }
3583 }
3584
3585 void
xpt_free_path(struct cam_path * path)3586 xpt_free_path(struct cam_path *path)
3587 {
3588
3589 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n"));
3590 xpt_release_path(path);
3591 free(path, M_CAMPATH);
3592 }
3593
3594 void
xpt_path_counts(struct cam_path * path,uint32_t * bus_ref,uint32_t * periph_ref,uint32_t * target_ref,uint32_t * device_ref)3595 xpt_path_counts(struct cam_path *path, uint32_t *bus_ref,
3596 uint32_t *periph_ref, uint32_t *target_ref, uint32_t *device_ref)
3597 {
3598
3599 xpt_lock_buses();
3600 if (bus_ref) {
3601 if (path->bus)
3602 *bus_ref = path->bus->refcount;
3603 else
3604 *bus_ref = 0;
3605 }
3606 if (periph_ref) {
3607 if (path->periph)
3608 *periph_ref = path->periph->refcount;
3609 else
3610 *periph_ref = 0;
3611 }
3612 xpt_unlock_buses();
3613 if (target_ref) {
3614 if (path->target)
3615 *target_ref = path->target->refcount;
3616 else
3617 *target_ref = 0;
3618 }
3619 if (device_ref) {
3620 if (path->device)
3621 *device_ref = path->device->refcount;
3622 else
3623 *device_ref = 0;
3624 }
3625 }
3626
3627 /*
3628 * Return -1 for failure, 0 for exact match, 1 for match with wildcards
3629 * in path1, 2 for match with wildcards in path2.
3630 */
3631 int
xpt_path_comp(struct cam_path * path1,struct cam_path * path2)3632 xpt_path_comp(struct cam_path *path1, struct cam_path *path2)
3633 {
3634 int retval = 0;
3635
3636 if (path1->bus != path2->bus) {
3637 if (path1->bus->path_id == CAM_BUS_WILDCARD)
3638 retval = 1;
3639 else if (path2->bus->path_id == CAM_BUS_WILDCARD)
3640 retval = 2;
3641 else
3642 return (-1);
3643 }
3644 if (path1->target != path2->target) {
3645 if (path1->target->target_id == CAM_TARGET_WILDCARD) {
3646 if (retval == 0)
3647 retval = 1;
3648 } else if (path2->target->target_id == CAM_TARGET_WILDCARD)
3649 retval = 2;
3650 else
3651 return (-1);
3652 }
3653 if (path1->device != path2->device) {
3654 if (path1->device->lun_id == CAM_LUN_WILDCARD) {
3655 if (retval == 0)
3656 retval = 1;
3657 } else if (path2->device->lun_id == CAM_LUN_WILDCARD)
3658 retval = 2;
3659 else
3660 return (-1);
3661 }
3662 return (retval);
3663 }
3664
3665 int
xpt_path_comp_dev(struct cam_path * path,struct cam_ed * dev)3666 xpt_path_comp_dev(struct cam_path *path, struct cam_ed *dev)
3667 {
3668 int retval = 0;
3669
3670 if (path->bus != dev->target->bus) {
3671 if (path->bus->path_id == CAM_BUS_WILDCARD)
3672 retval = 1;
3673 else if (dev->target->bus->path_id == CAM_BUS_WILDCARD)
3674 retval = 2;
3675 else
3676 return (-1);
3677 }
3678 if (path->target != dev->target) {
3679 if (path->target->target_id == CAM_TARGET_WILDCARD) {
3680 if (retval == 0)
3681 retval = 1;
3682 } else if (dev->target->target_id == CAM_TARGET_WILDCARD)
3683 retval = 2;
3684 else
3685 return (-1);
3686 }
3687 if (path->device != dev) {
3688 if (path->device->lun_id == CAM_LUN_WILDCARD) {
3689 if (retval == 0)
3690 retval = 1;
3691 } else if (dev->lun_id == CAM_LUN_WILDCARD)
3692 retval = 2;
3693 else
3694 return (-1);
3695 }
3696 return (retval);
3697 }
3698
3699 void
xpt_print_path(struct cam_path * path)3700 xpt_print_path(struct cam_path *path)
3701 {
3702 struct sbuf sb;
3703 char buffer[XPT_PRINT_LEN];
3704
3705 sbuf_new(&sb, buffer, XPT_PRINT_LEN, SBUF_FIXEDLEN);
3706 xpt_path_sbuf(path, &sb);
3707 sbuf_finish(&sb);
3708 printf("%s", sbuf_data(&sb));
3709 sbuf_delete(&sb);
3710 }
3711
3712 static void
xpt_device_sbuf(struct cam_ed * device,struct sbuf * sb)3713 xpt_device_sbuf(struct cam_ed *device, struct sbuf *sb)
3714 {
3715 if (device == NULL)
3716 sbuf_cat(sb, "(nopath): ");
3717 else {
3718 sbuf_printf(sb, "(noperiph:%s%d:%d:%d:%jx): ",
3719 device->sim->sim_name,
3720 device->sim->unit_number,
3721 device->sim->bus_id,
3722 device->target->target_id,
3723 (uintmax_t)device->lun_id);
3724 }
3725 }
3726
3727 void
xpt_print(struct cam_path * path,const char * fmt,...)3728 xpt_print(struct cam_path *path, const char *fmt, ...)
3729 {
3730 va_list ap;
3731 struct sbuf sb;
3732 char buffer[XPT_PRINT_LEN];
3733
3734 sbuf_new(&sb, buffer, XPT_PRINT_LEN, SBUF_FIXEDLEN);
3735
3736 xpt_path_sbuf(path, &sb);
3737 va_start(ap, fmt);
3738 sbuf_vprintf(&sb, fmt, ap);
3739 va_end(ap);
3740
3741 sbuf_finish(&sb);
3742 printf("%s", sbuf_data(&sb));
3743 sbuf_delete(&sb);
3744 }
3745
3746 char *
xpt_path_string(struct cam_path * path,char * str,size_t str_len)3747 xpt_path_string(struct cam_path *path, char *str, size_t str_len)
3748 {
3749 struct sbuf sb;
3750
3751 sbuf_new(&sb, str, str_len, 0);
3752 xpt_path_sbuf(path, &sb);
3753 sbuf_finish(&sb);
3754 return (str);
3755 }
3756
3757 void
xpt_path_sbuf(struct cam_path * path,struct sbuf * sb)3758 xpt_path_sbuf(struct cam_path *path, struct sbuf *sb)
3759 {
3760
3761 if (path == NULL)
3762 sbuf_cat(sb, "(nopath): ");
3763 else {
3764 if (path->periph != NULL)
3765 sbuf_printf(sb, "(%s%d:", path->periph->periph_name,
3766 path->periph->unit_number);
3767 else
3768 sbuf_cat(sb, "(noperiph:");
3769
3770 if (path->bus != NULL)
3771 sbuf_printf(sb, "%s%d:%d:", path->bus->sim->sim_name,
3772 path->bus->sim->unit_number,
3773 path->bus->sim->bus_id);
3774 else
3775 sbuf_cat(sb, "nobus:");
3776
3777 if (path->target != NULL)
3778 sbuf_printf(sb, "%d:", path->target->target_id);
3779 else
3780 sbuf_cat(sb, "X:");
3781
3782 if (path->device != NULL)
3783 sbuf_printf(sb, "%jx): ",
3784 (uintmax_t)path->device->lun_id);
3785 else
3786 sbuf_cat(sb, "X): ");
3787 }
3788 }
3789
3790 path_id_t
xpt_path_path_id(struct cam_path * path)3791 xpt_path_path_id(struct cam_path *path)
3792 {
3793 return(path->bus->path_id);
3794 }
3795
3796 target_id_t
xpt_path_target_id(struct cam_path * path)3797 xpt_path_target_id(struct cam_path *path)
3798 {
3799 if (path->target != NULL)
3800 return (path->target->target_id);
3801 else
3802 return (CAM_TARGET_WILDCARD);
3803 }
3804
3805 lun_id_t
xpt_path_lun_id(struct cam_path * path)3806 xpt_path_lun_id(struct cam_path *path)
3807 {
3808 if (path->device != NULL)
3809 return (path->device->lun_id);
3810 else
3811 return (CAM_LUN_WILDCARD);
3812 }
3813
3814 struct cam_sim *
xpt_path_sim(struct cam_path * path)3815 xpt_path_sim(struct cam_path *path)
3816 {
3817
3818 return (path->bus->sim);
3819 }
3820
3821 struct cam_periph*
xpt_path_periph(struct cam_path * path)3822 xpt_path_periph(struct cam_path *path)
3823 {
3824
3825 return (path->periph);
3826 }
3827
3828 /*
3829 * Release a CAM control block for the caller. Remit the cost of the structure
3830 * to the device referenced by the path. If the this device had no 'credits'
3831 * and peripheral drivers have registered async callbacks for this notification
3832 * call them now.
3833 */
3834 void
xpt_release_ccb(union ccb * free_ccb)3835 xpt_release_ccb(union ccb *free_ccb)
3836 {
3837 struct cam_ed *device;
3838 struct cam_periph *periph;
3839
3840 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n"));
3841 xpt_path_assert(free_ccb->ccb_h.path, MA_OWNED);
3842 device = free_ccb->ccb_h.path->device;
3843 periph = free_ccb->ccb_h.path->periph;
3844
3845 xpt_free_ccb(free_ccb);
3846 periph->periph_allocated--;
3847 cam_ccbq_release_opening(&device->ccbq);
3848 xpt_run_allocq(periph, 0);
3849 }
3850
3851 /* Functions accessed by SIM drivers */
3852
3853 static struct xpt_xport_ops xport_default_ops = {
3854 .alloc_device = xpt_alloc_device_default,
3855 .action = xpt_action_default,
3856 .async = xpt_dev_async_default,
3857 };
3858 static struct xpt_xport xport_default = {
3859 .xport = XPORT_UNKNOWN,
3860 .name = "unknown",
3861 .ops = &xport_default_ops,
3862 };
3863
3864 CAM_XPT_XPORT(xport_default);
3865
3866 /*
3867 * A sim structure, listing the SIM entry points and instance
3868 * identification info is passed to xpt_bus_register to hook the SIM
3869 * into the CAM framework. xpt_bus_register creates a cam_eb entry
3870 * for this new bus and places it in the array of buses and assigns
3871 * it a path_id. The path_id may be influenced by "hard wiring"
3872 * information specified by the user. Once interrupt services are
3873 * available, the bus will be probed.
3874 */
3875 int
xpt_bus_register(struct cam_sim * sim,device_t parent,uint32_t bus)3876 xpt_bus_register(struct cam_sim *sim, device_t parent, uint32_t bus)
3877 {
3878 struct cam_eb *new_bus;
3879 struct cam_eb *old_bus;
3880 struct ccb_pathinq cpi;
3881 struct cam_path *path;
3882 cam_status status;
3883
3884 sim->bus_id = bus;
3885 new_bus = (struct cam_eb *)malloc(sizeof(*new_bus),
3886 M_CAMXPT, M_NOWAIT|M_ZERO);
3887 if (new_bus == NULL) {
3888 /* Couldn't satisfy request */
3889 return (ENOMEM);
3890 }
3891
3892 mtx_init(&new_bus->eb_mtx, "CAM bus lock", NULL, MTX_DEF);
3893 TAILQ_INIT(&new_bus->et_entries);
3894 cam_sim_hold(sim);
3895 new_bus->sim = sim;
3896 timevalclear(&new_bus->last_reset);
3897 new_bus->flags = 0;
3898 new_bus->refcount = 1; /* Held until a bus_deregister event */
3899 new_bus->generation = 0;
3900 new_bus->parent_dev = parent;
3901
3902 xpt_lock_buses();
3903 sim->path_id = new_bus->path_id =
3904 xptpathid(sim->sim_name, sim->unit_number, sim->bus_id);
3905 old_bus = TAILQ_FIRST(&xsoftc.xpt_busses);
3906 while (old_bus != NULL
3907 && old_bus->path_id < new_bus->path_id)
3908 old_bus = TAILQ_NEXT(old_bus, links);
3909 if (old_bus != NULL)
3910 TAILQ_INSERT_BEFORE(old_bus, new_bus, links);
3911 else
3912 TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links);
3913 xsoftc.bus_generation++;
3914 xpt_unlock_buses();
3915
3916 /*
3917 * Set a default transport so that a PATH_INQ can be issued to
3918 * the SIM. This will then allow for probing and attaching of
3919 * a more appropriate transport.
3920 */
3921 new_bus->xport = &xport_default;
3922
3923 status = xpt_create_path(&path, /*periph*/NULL, sim->path_id,
3924 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
3925 if (status != CAM_REQ_CMP) {
3926 xpt_release_bus(new_bus);
3927 return (ENOMEM);
3928 }
3929
3930 xpt_path_inq(&cpi, path);
3931
3932 /*
3933 * Use the results of PATH_INQ to pick a transport. Note that
3934 * the xpt bus (which uses XPORT_UNSPECIFIED) always uses
3935 * xport_default instead of a transport from
3936 * cam_xpt_port_set.
3937 */
3938 if (cam_ccb_success((union ccb *)&cpi) &&
3939 cpi.transport != XPORT_UNSPECIFIED) {
3940 struct xpt_xport **xpt;
3941
3942 SET_FOREACH(xpt, cam_xpt_xport_set) {
3943 if ((*xpt)->xport == cpi.transport) {
3944 new_bus->xport = *xpt;
3945 break;
3946 }
3947 }
3948 if (new_bus->xport == &xport_default) {
3949 xpt_print(path,
3950 "No transport found for %d\n", cpi.transport);
3951 xpt_release_bus(new_bus);
3952 xpt_free_path(path);
3953 return (EINVAL);
3954 }
3955 }
3956
3957 /* Notify interested parties */
3958 if (sim->path_id != CAM_XPT_PATH_ID) {
3959 xpt_async(AC_PATH_REGISTERED, path, &cpi);
3960 if ((cpi.hba_misc & PIM_NOSCAN) == 0) {
3961 union ccb *scan_ccb;
3962
3963 /* Initiate bus rescan. */
3964 scan_ccb = xpt_alloc_ccb_nowait();
3965 if (scan_ccb != NULL) {
3966 scan_ccb->ccb_h.path = path;
3967 scan_ccb->ccb_h.func_code = XPT_SCAN_BUS;
3968 scan_ccb->crcn.flags = 0;
3969 xpt_rescan(scan_ccb);
3970 } else {
3971 xpt_print(path,
3972 "Can't allocate CCB to scan bus\n");
3973 xpt_free_path(path);
3974 }
3975 } else
3976 xpt_free_path(path);
3977 } else
3978 xpt_free_path(path);
3979 return (CAM_SUCCESS);
3980 }
3981
3982 int
xpt_bus_deregister(path_id_t pathid)3983 xpt_bus_deregister(path_id_t pathid)
3984 {
3985 struct cam_path bus_path;
3986 cam_status status;
3987
3988 status = xpt_compile_path(&bus_path, NULL, pathid,
3989 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
3990 if (status != CAM_REQ_CMP)
3991 return (ENOMEM);
3992
3993 xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
3994 xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
3995
3996 /* Release the reference count held while registered. */
3997 xpt_release_bus(bus_path.bus);
3998 xpt_release_path(&bus_path);
3999
4000 return (CAM_SUCCESS);
4001 }
4002
4003 static path_id_t
xptnextfreepathid(void)4004 xptnextfreepathid(void)
4005 {
4006 struct cam_eb *bus;
4007 path_id_t pathid;
4008 const char *strval;
4009
4010 mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED);
4011 pathid = 0;
4012 bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4013 retry:
4014 /* Find an unoccupied pathid */
4015 while (bus != NULL && bus->path_id <= pathid) {
4016 if (bus->path_id == pathid)
4017 pathid++;
4018 bus = TAILQ_NEXT(bus, links);
4019 }
4020
4021 /*
4022 * Ensure that this pathid is not reserved for
4023 * a bus that may be registered in the future.
4024 */
4025 if (resource_string_value("scbus", pathid, "at", &strval) == 0) {
4026 ++pathid;
4027 /* Start the search over */
4028 goto retry;
4029 }
4030 return (pathid);
4031 }
4032
4033 static path_id_t
xptpathid(const char * sim_name,int sim_unit,int sim_bus)4034 xptpathid(const char *sim_name, int sim_unit, int sim_bus)
4035 {
4036 path_id_t pathid;
4037 int i, dunit, val;
4038 char buf[32];
4039 const char *dname;
4040
4041 pathid = CAM_XPT_PATH_ID;
4042 snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit);
4043 if (strcmp(buf, "xpt0") == 0 && sim_bus == 0)
4044 return (pathid);
4045 i = 0;
4046 while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) {
4047 if (strcmp(dname, "scbus")) {
4048 /* Avoid a bit of foot shooting. */
4049 continue;
4050 }
4051 if (dunit < 0) /* unwired?! */
4052 continue;
4053 if (resource_int_value("scbus", dunit, "bus", &val) == 0) {
4054 if (sim_bus == val) {
4055 pathid = dunit;
4056 break;
4057 }
4058 } else if (sim_bus == 0) {
4059 /* Unspecified matches bus 0 */
4060 pathid = dunit;
4061 break;
4062 } else {
4063 printf("Ambiguous scbus configuration for %s%d "
4064 "bus %d, cannot wire down. The kernel "
4065 "config entry for scbus%d should "
4066 "specify a controller bus.\n"
4067 "Scbus will be assigned dynamically.\n",
4068 sim_name, sim_unit, sim_bus, dunit);
4069 break;
4070 }
4071 }
4072
4073 if (pathid == CAM_XPT_PATH_ID)
4074 pathid = xptnextfreepathid();
4075 return (pathid);
4076 }
4077
4078 static const char *
xpt_async_string(uint32_t async_code)4079 xpt_async_string(uint32_t async_code)
4080 {
4081
4082 switch (async_code) {
4083 case AC_BUS_RESET: return ("AC_BUS_RESET");
4084 case AC_UNSOL_RESEL: return ("AC_UNSOL_RESEL");
4085 case AC_SCSI_AEN: return ("AC_SCSI_AEN");
4086 case AC_SENT_BDR: return ("AC_SENT_BDR");
4087 case AC_PATH_REGISTERED: return ("AC_PATH_REGISTERED");
4088 case AC_PATH_DEREGISTERED: return ("AC_PATH_DEREGISTERED");
4089 case AC_FOUND_DEVICE: return ("AC_FOUND_DEVICE");
4090 case AC_LOST_DEVICE: return ("AC_LOST_DEVICE");
4091 case AC_TRANSFER_NEG: return ("AC_TRANSFER_NEG");
4092 case AC_INQ_CHANGED: return ("AC_INQ_CHANGED");
4093 case AC_GETDEV_CHANGED: return ("AC_GETDEV_CHANGED");
4094 case AC_CONTRACT: return ("AC_CONTRACT");
4095 case AC_ADVINFO_CHANGED: return ("AC_ADVINFO_CHANGED");
4096 case AC_UNIT_ATTENTION: return ("AC_UNIT_ATTENTION");
4097 }
4098 return ("AC_UNKNOWN");
4099 }
4100
4101 static int
xpt_async_size(uint32_t async_code)4102 xpt_async_size(uint32_t async_code)
4103 {
4104
4105 switch (async_code) {
4106 case AC_BUS_RESET: return (0);
4107 case AC_UNSOL_RESEL: return (0);
4108 case AC_SCSI_AEN: return (0);
4109 case AC_SENT_BDR: return (0);
4110 case AC_PATH_REGISTERED: return (sizeof(struct ccb_pathinq));
4111 case AC_PATH_DEREGISTERED: return (0);
4112 case AC_FOUND_DEVICE: return (sizeof(struct ccb_getdev));
4113 case AC_LOST_DEVICE: return (0);
4114 case AC_TRANSFER_NEG: return (sizeof(struct ccb_trans_settings));
4115 case AC_INQ_CHANGED: return (0);
4116 case AC_GETDEV_CHANGED: return (0);
4117 case AC_CONTRACT: return (sizeof(struct ac_contract));
4118 case AC_ADVINFO_CHANGED: return (-1);
4119 case AC_UNIT_ATTENTION: return (sizeof(struct ccb_scsiio));
4120 }
4121 return (0);
4122 }
4123
4124 static int
xpt_async_process_dev(struct cam_ed * device,void * arg)4125 xpt_async_process_dev(struct cam_ed *device, void *arg)
4126 {
4127 union ccb *ccb = arg;
4128 struct cam_path *path = ccb->ccb_h.path;
4129 void *async_arg = ccb->casync.async_arg_ptr;
4130 uint32_t async_code = ccb->casync.async_code;
4131 bool relock;
4132
4133 if (path->device != device
4134 && path->device->lun_id != CAM_LUN_WILDCARD
4135 && device->lun_id != CAM_LUN_WILDCARD)
4136 return (1);
4137
4138 /*
4139 * The async callback could free the device.
4140 * If it is a broadcast async, it doesn't hold
4141 * device reference, so take our own reference.
4142 */
4143 xpt_acquire_device(device);
4144
4145 /*
4146 * If async for specific device is to be delivered to
4147 * the wildcard client, take the specific device lock.
4148 * XXX: We may need a way for client to specify it.
4149 */
4150 if ((device->lun_id == CAM_LUN_WILDCARD &&
4151 path->device->lun_id != CAM_LUN_WILDCARD) ||
4152 (device->target->target_id == CAM_TARGET_WILDCARD &&
4153 path->target->target_id != CAM_TARGET_WILDCARD) ||
4154 (device->target->bus->path_id == CAM_BUS_WILDCARD &&
4155 path->target->bus->path_id != CAM_BUS_WILDCARD)) {
4156 mtx_unlock(&device->device_mtx);
4157 xpt_path_lock(path);
4158 relock = true;
4159 } else
4160 relock = false;
4161
4162 (*(device->target->bus->xport->ops->async))(async_code,
4163 device->target->bus, device->target, device, async_arg);
4164 xpt_async_bcast(&device->asyncs, async_code, path, async_arg);
4165
4166 if (relock) {
4167 xpt_path_unlock(path);
4168 mtx_lock(&device->device_mtx);
4169 }
4170 xpt_release_device(device);
4171 return (1);
4172 }
4173
4174 static int
xpt_async_process_tgt(struct cam_et * target,void * arg)4175 xpt_async_process_tgt(struct cam_et *target, void *arg)
4176 {
4177 union ccb *ccb = arg;
4178 struct cam_path *path = ccb->ccb_h.path;
4179
4180 if (path->target != target
4181 && path->target->target_id != CAM_TARGET_WILDCARD
4182 && target->target_id != CAM_TARGET_WILDCARD)
4183 return (1);
4184
4185 if (ccb->casync.async_code == AC_SENT_BDR) {
4186 /* Update our notion of when the last reset occurred */
4187 microtime(&target->last_reset);
4188 }
4189
4190 return (xptdevicetraverse(target, NULL, xpt_async_process_dev, ccb));
4191 }
4192
4193 static void
xpt_async_process(struct cam_periph * periph,union ccb * ccb)4194 xpt_async_process(struct cam_periph *periph, union ccb *ccb)
4195 {
4196 struct cam_eb *bus;
4197 struct cam_path *path;
4198 void *async_arg;
4199 uint32_t async_code;
4200
4201 path = ccb->ccb_h.path;
4202 async_code = ccb->casync.async_code;
4203 async_arg = ccb->casync.async_arg_ptr;
4204 CAM_DEBUG(path, CAM_DEBUG_TRACE | CAM_DEBUG_INFO,
4205 ("xpt_async(%s)\n", xpt_async_string(async_code)));
4206 bus = path->bus;
4207
4208 if (async_code == AC_BUS_RESET) {
4209 /* Update our notion of when the last reset occurred */
4210 microtime(&bus->last_reset);
4211 }
4212
4213 xpttargettraverse(bus, NULL, xpt_async_process_tgt, ccb);
4214
4215 /*
4216 * If this wasn't a fully wildcarded async, tell all
4217 * clients that want all async events.
4218 */
4219 if (bus != xpt_periph->path->bus) {
4220 xpt_path_lock(xpt_periph->path);
4221 xpt_async_process_dev(xpt_periph->path->device, ccb);
4222 xpt_path_unlock(xpt_periph->path);
4223 }
4224
4225 if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD)
4226 xpt_release_devq(path, 1, TRUE);
4227 else
4228 xpt_release_simq(path->bus->sim, TRUE);
4229 if (ccb->casync.async_arg_size > 0)
4230 free(async_arg, M_CAMXPT);
4231 xpt_free_path(path);
4232 xpt_free_ccb(ccb);
4233 }
4234
4235 static void
xpt_async_bcast(struct async_list * async_head,uint32_t async_code,struct cam_path * path,void * async_arg)4236 xpt_async_bcast(struct async_list *async_head,
4237 uint32_t async_code,
4238 struct cam_path *path, void *async_arg)
4239 {
4240 struct async_node *cur_entry;
4241 struct mtx *mtx;
4242
4243 cur_entry = SLIST_FIRST(async_head);
4244 while (cur_entry != NULL) {
4245 struct async_node *next_entry;
4246 /*
4247 * Grab the next list entry before we call the current
4248 * entry's callback. This is because the callback function
4249 * can delete its async callback entry.
4250 */
4251 next_entry = SLIST_NEXT(cur_entry, links);
4252 if ((cur_entry->event_enable & async_code) != 0) {
4253 mtx = cur_entry->event_lock ?
4254 path->device->sim->mtx : NULL;
4255 if (mtx)
4256 mtx_lock(mtx);
4257 cur_entry->callback(cur_entry->callback_arg,
4258 async_code, path,
4259 async_arg);
4260 if (mtx)
4261 mtx_unlock(mtx);
4262 }
4263 cur_entry = next_entry;
4264 }
4265 }
4266
4267 void
xpt_async(uint32_t async_code,struct cam_path * path,void * async_arg)4268 xpt_async(uint32_t async_code, struct cam_path *path, void *async_arg)
4269 {
4270 union ccb *ccb;
4271 int size;
4272
4273 ccb = xpt_alloc_ccb_nowait();
4274 if (ccb == NULL) {
4275 xpt_print(path, "Can't allocate CCB to send %s\n",
4276 xpt_async_string(async_code));
4277 return;
4278 }
4279
4280 if (xpt_clone_path(&ccb->ccb_h.path, path) != 0) {
4281 xpt_print(path, "Can't allocate path to send %s\n",
4282 xpt_async_string(async_code));
4283 xpt_free_ccb(ccb);
4284 return;
4285 }
4286 ccb->ccb_h.path->periph = NULL;
4287 ccb->ccb_h.func_code = XPT_ASYNC;
4288 ccb->ccb_h.cbfcnp = xpt_async_process;
4289 ccb->ccb_h.flags |= CAM_UNLOCKED;
4290 ccb->casync.async_code = async_code;
4291 ccb->casync.async_arg_size = 0;
4292 size = xpt_async_size(async_code);
4293 CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE,
4294 ("xpt_async: func %#x %s aync_code %d %s\n",
4295 ccb->ccb_h.func_code,
4296 xpt_action_name(ccb->ccb_h.func_code),
4297 async_code,
4298 xpt_async_string(async_code)));
4299 if (size > 0 && async_arg != NULL) {
4300 ccb->casync.async_arg_ptr = malloc(size, M_CAMXPT, M_NOWAIT);
4301 if (ccb->casync.async_arg_ptr == NULL) {
4302 xpt_print(path, "Can't allocate argument to send %s\n",
4303 xpt_async_string(async_code));
4304 xpt_free_path(ccb->ccb_h.path);
4305 xpt_free_ccb(ccb);
4306 return;
4307 }
4308 memcpy(ccb->casync.async_arg_ptr, async_arg, size);
4309 ccb->casync.async_arg_size = size;
4310 } else if (size < 0) {
4311 ccb->casync.async_arg_ptr = async_arg;
4312 ccb->casync.async_arg_size = size;
4313 }
4314 if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD)
4315 xpt_freeze_devq(path, 1);
4316 else
4317 xpt_freeze_simq(path->bus->sim, 1);
4318 xpt_action(ccb);
4319 }
4320
4321 static void
xpt_dev_async_default(uint32_t async_code,struct cam_eb * bus,struct cam_et * target,struct cam_ed * device,void * async_arg)4322 xpt_dev_async_default(uint32_t async_code, struct cam_eb *bus,
4323 struct cam_et *target, struct cam_ed *device,
4324 void *async_arg)
4325 {
4326
4327 /*
4328 * We only need to handle events for real devices.
4329 */
4330 if (target->target_id == CAM_TARGET_WILDCARD
4331 || device->lun_id == CAM_LUN_WILDCARD)
4332 return;
4333
4334 printf("%s called\n", __func__);
4335 }
4336
4337 static uint32_t
xpt_freeze_devq_device(struct cam_ed * dev,u_int count)4338 xpt_freeze_devq_device(struct cam_ed *dev, u_int count)
4339 {
4340 struct cam_devq *devq;
4341 uint32_t freeze;
4342
4343 devq = dev->sim->devq;
4344 mtx_assert(&devq->send_mtx, MA_OWNED);
4345 CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE,
4346 ("xpt_freeze_devq_device(%d) %u->%u\n", count,
4347 dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt + count));
4348 freeze = (dev->ccbq.queue.qfrozen_cnt += count);
4349 /* Remove frozen device from sendq. */
4350 if (device_is_queued(dev))
4351 camq_remove(&devq->send_queue, dev->devq_entry.index);
4352 return (freeze);
4353 }
4354
4355 uint32_t
xpt_freeze_devq(struct cam_path * path,u_int count)4356 xpt_freeze_devq(struct cam_path *path, u_int count)
4357 {
4358 struct cam_ed *dev = path->device;
4359 struct cam_devq *devq;
4360 uint32_t freeze;
4361
4362 devq = dev->sim->devq;
4363 mtx_lock(&devq->send_mtx);
4364 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_freeze_devq(%d)\n", count));
4365 freeze = xpt_freeze_devq_device(dev, count);
4366 mtx_unlock(&devq->send_mtx);
4367 return (freeze);
4368 }
4369
4370 uint32_t
xpt_freeze_simq(struct cam_sim * sim,u_int count)4371 xpt_freeze_simq(struct cam_sim *sim, u_int count)
4372 {
4373 struct cam_devq *devq;
4374 uint32_t freeze;
4375
4376 devq = sim->devq;
4377 mtx_lock(&devq->send_mtx);
4378 freeze = (devq->send_queue.qfrozen_cnt += count);
4379 mtx_unlock(&devq->send_mtx);
4380 return (freeze);
4381 }
4382
4383 static void
xpt_release_devq_timeout(void * arg)4384 xpt_release_devq_timeout(void *arg)
4385 {
4386 struct cam_ed *dev;
4387 struct cam_devq *devq;
4388
4389 dev = (struct cam_ed *)arg;
4390 CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, ("xpt_release_devq_timeout\n"));
4391 devq = dev->sim->devq;
4392 mtx_assert(&devq->send_mtx, MA_OWNED);
4393 if (xpt_release_devq_device(dev, /*count*/1, /*run_queue*/TRUE))
4394 xpt_run_devq(devq);
4395 }
4396
4397 void
xpt_release_devq(struct cam_path * path,u_int count,int run_queue)4398 xpt_release_devq(struct cam_path *path, u_int count, int run_queue)
4399 {
4400 struct cam_ed *dev;
4401 struct cam_devq *devq;
4402
4403 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_devq(%d, %d)\n",
4404 count, run_queue));
4405 dev = path->device;
4406 devq = dev->sim->devq;
4407 mtx_lock(&devq->send_mtx);
4408 if (xpt_release_devq_device(dev, count, run_queue))
4409 xpt_run_devq(dev->sim->devq);
4410 mtx_unlock(&devq->send_mtx);
4411 }
4412
4413 static int
xpt_release_devq_device(struct cam_ed * dev,u_int count,int run_queue)4414 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue)
4415 {
4416
4417 mtx_assert(&dev->sim->devq->send_mtx, MA_OWNED);
4418 CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE,
4419 ("xpt_release_devq_device(%d, %d) %u->%u\n", count, run_queue,
4420 dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt - count));
4421 if (count > dev->ccbq.queue.qfrozen_cnt) {
4422 #ifdef INVARIANTS
4423 printf("xpt_release_devq(): requested %u > present %u\n",
4424 count, dev->ccbq.queue.qfrozen_cnt);
4425 #endif
4426 count = dev->ccbq.queue.qfrozen_cnt;
4427 }
4428 dev->ccbq.queue.qfrozen_cnt -= count;
4429 if (dev->ccbq.queue.qfrozen_cnt == 0) {
4430 /*
4431 * No longer need to wait for a successful
4432 * command completion.
4433 */
4434 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
4435 /*
4436 * Remove any timeouts that might be scheduled
4437 * to release this queue.
4438 */
4439 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
4440 callout_stop(&dev->callout);
4441 dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
4442 }
4443 /*
4444 * Now that we are unfrozen schedule the
4445 * device so any pending transactions are
4446 * run.
4447 */
4448 xpt_schedule_devq(dev->sim->devq, dev);
4449 } else
4450 run_queue = 0;
4451 return (run_queue);
4452 }
4453
4454 void
xpt_release_simq(struct cam_sim * sim,int run_queue)4455 xpt_release_simq(struct cam_sim *sim, int run_queue)
4456 {
4457 struct cam_devq *devq;
4458
4459 devq = sim->devq;
4460 mtx_lock(&devq->send_mtx);
4461 if (devq->send_queue.qfrozen_cnt <= 0) {
4462 #ifdef INVARIANTS
4463 printf("xpt_release_simq: requested 1 > present %u\n",
4464 devq->send_queue.qfrozen_cnt);
4465 #endif
4466 } else
4467 devq->send_queue.qfrozen_cnt--;
4468 if (devq->send_queue.qfrozen_cnt == 0) {
4469 if (run_queue) {
4470 /*
4471 * Now that we are unfrozen run the send queue.
4472 */
4473 xpt_run_devq(sim->devq);
4474 }
4475 }
4476 mtx_unlock(&devq->send_mtx);
4477 }
4478
4479 void
xpt_done(union ccb * done_ccb)4480 xpt_done(union ccb *done_ccb)
4481 {
4482 struct cam_doneq *queue;
4483 int run, hash;
4484
4485 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
4486 if (done_ccb->ccb_h.func_code == XPT_SCSI_IO &&
4487 done_ccb->csio.bio != NULL)
4488 biotrack(done_ccb->csio.bio, __func__);
4489 #endif
4490
4491 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE,
4492 ("xpt_done: func= %#x %s status %#x\n",
4493 done_ccb->ccb_h.func_code,
4494 xpt_action_name(done_ccb->ccb_h.func_code),
4495 done_ccb->ccb_h.status));
4496 if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0)
4497 return;
4498
4499 /* Store the time the ccb was in the sim */
4500 done_ccb->ccb_h.qos.periph_data = cam_iosched_delta_t(done_ccb->ccb_h.qos.periph_data);
4501 done_ccb->ccb_h.status |= CAM_QOS_VALID;
4502 hash = (u_int)(done_ccb->ccb_h.path_id + done_ccb->ccb_h.target_id +
4503 done_ccb->ccb_h.target_lun) % cam_num_doneqs;
4504 queue = &cam_doneqs[hash];
4505 mtx_lock(&queue->cam_doneq_mtx);
4506 run = (queue->cam_doneq_sleep && STAILQ_EMPTY(&queue->cam_doneq));
4507 STAILQ_INSERT_TAIL(&queue->cam_doneq, &done_ccb->ccb_h, sim_links.stqe);
4508 done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
4509 mtx_unlock(&queue->cam_doneq_mtx);
4510 if (run && !dumping)
4511 wakeup(&queue->cam_doneq);
4512 }
4513
4514 void
xpt_done_direct(union ccb * done_ccb)4515 xpt_done_direct(union ccb *done_ccb)
4516 {
4517
4518 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE,
4519 ("xpt_done_direct: status %#x\n", done_ccb->ccb_h.status));
4520 if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0)
4521 return;
4522
4523 /* Store the time the ccb was in the sim */
4524 done_ccb->ccb_h.qos.periph_data = cam_iosched_delta_t(done_ccb->ccb_h.qos.periph_data);
4525 done_ccb->ccb_h.status |= CAM_QOS_VALID;
4526 xpt_done_process(&done_ccb->ccb_h);
4527 }
4528
4529 union ccb *
xpt_alloc_ccb(void)4530 xpt_alloc_ccb(void)
4531 {
4532 union ccb *new_ccb;
4533
4534 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK);
4535 return (new_ccb);
4536 }
4537
4538 union ccb *
xpt_alloc_ccb_nowait(void)4539 xpt_alloc_ccb_nowait(void)
4540 {
4541 union ccb *new_ccb;
4542
4543 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT);
4544 return (new_ccb);
4545 }
4546
4547 void
xpt_free_ccb(union ccb * free_ccb)4548 xpt_free_ccb(union ccb *free_ccb)
4549 {
4550 struct cam_periph *periph;
4551
4552 if (free_ccb->ccb_h.alloc_flags & CAM_CCB_FROM_UMA) {
4553 /*
4554 * Looks like a CCB allocated from a periph UMA zone.
4555 */
4556 periph = free_ccb->ccb_h.path->periph;
4557 uma_zfree(periph->ccb_zone, free_ccb);
4558 } else {
4559 free(free_ccb, M_CAMCCB);
4560 }
4561 }
4562
4563 /* Private XPT functions */
4564
4565 /*
4566 * Get a CAM control block for the caller. Charge the structure to the device
4567 * referenced by the path. If we don't have sufficient resources to allocate
4568 * more ccbs, we return NULL.
4569 */
4570 static union ccb *
xpt_get_ccb_nowait(struct cam_periph * periph)4571 xpt_get_ccb_nowait(struct cam_periph *periph)
4572 {
4573 union ccb *new_ccb;
4574 int alloc_flags;
4575
4576 if (periph->ccb_zone != NULL) {
4577 alloc_flags = CAM_CCB_FROM_UMA;
4578 new_ccb = uma_zalloc(periph->ccb_zone, M_ZERO|M_NOWAIT);
4579 } else {
4580 alloc_flags = 0;
4581 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT);
4582 }
4583 if (new_ccb == NULL)
4584 return (NULL);
4585 new_ccb->ccb_h.alloc_flags = alloc_flags;
4586 periph->periph_allocated++;
4587 cam_ccbq_take_opening(&periph->path->device->ccbq);
4588 return (new_ccb);
4589 }
4590
4591 static union ccb *
xpt_get_ccb(struct cam_periph * periph)4592 xpt_get_ccb(struct cam_periph *periph)
4593 {
4594 union ccb *new_ccb;
4595 int alloc_flags;
4596
4597 cam_periph_unlock(periph);
4598 if (periph->ccb_zone != NULL) {
4599 alloc_flags = CAM_CCB_FROM_UMA;
4600 new_ccb = uma_zalloc(periph->ccb_zone, M_ZERO|M_WAITOK);
4601 } else {
4602 alloc_flags = 0;
4603 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK);
4604 }
4605 new_ccb->ccb_h.alloc_flags = alloc_flags;
4606 cam_periph_lock(periph);
4607 periph->periph_allocated++;
4608 cam_ccbq_take_opening(&periph->path->device->ccbq);
4609 return (new_ccb);
4610 }
4611
4612 union ccb *
cam_periph_getccb(struct cam_periph * periph,uint32_t priority)4613 cam_periph_getccb(struct cam_periph *periph, uint32_t priority)
4614 {
4615 struct ccb_hdr *ccb_h;
4616
4617 CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("cam_periph_getccb\n"));
4618 cam_periph_assert(periph, MA_OWNED);
4619 while ((ccb_h = SLIST_FIRST(&periph->ccb_list)) == NULL ||
4620 ccb_h->pinfo.priority != priority) {
4621 if (priority < periph->immediate_priority) {
4622 periph->immediate_priority = priority;
4623 xpt_run_allocq(periph, 0);
4624 } else
4625 cam_periph_sleep(periph, &periph->ccb_list, PRIBIO,
4626 "cgticb", 0);
4627 }
4628 SLIST_REMOVE_HEAD(&periph->ccb_list, periph_links.sle);
4629 return ((union ccb *)ccb_h);
4630 }
4631
4632 static void
xpt_acquire_bus(struct cam_eb * bus)4633 xpt_acquire_bus(struct cam_eb *bus)
4634 {
4635
4636 xpt_lock_buses();
4637 bus->refcount++;
4638 xpt_unlock_buses();
4639 }
4640
4641 static void
xpt_release_bus(struct cam_eb * bus)4642 xpt_release_bus(struct cam_eb *bus)
4643 {
4644
4645 xpt_lock_buses();
4646 KASSERT(bus->refcount >= 1, ("bus->refcount >= 1"));
4647 if (--bus->refcount > 0) {
4648 xpt_unlock_buses();
4649 return;
4650 }
4651 TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links);
4652 xsoftc.bus_generation++;
4653 xpt_unlock_buses();
4654 KASSERT(TAILQ_EMPTY(&bus->et_entries),
4655 ("destroying bus, but target list is not empty"));
4656 cam_sim_release(bus->sim);
4657 mtx_destroy(&bus->eb_mtx);
4658 free(bus, M_CAMXPT);
4659 }
4660
4661 static struct cam_et *
xpt_alloc_target(struct cam_eb * bus,target_id_t target_id)4662 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id)
4663 {
4664 struct cam_et *cur_target, *target;
4665
4666 mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED);
4667 mtx_assert(&bus->eb_mtx, MA_OWNED);
4668 target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT,
4669 M_NOWAIT|M_ZERO);
4670 if (target == NULL)
4671 return (NULL);
4672
4673 TAILQ_INIT(&target->ed_entries);
4674 target->bus = bus;
4675 target->target_id = target_id;
4676 target->refcount = 1;
4677 target->generation = 0;
4678 target->luns = NULL;
4679 mtx_init(&target->luns_mtx, "CAM LUNs lock", NULL, MTX_DEF);
4680 timevalclear(&target->last_reset);
4681 /*
4682 * Hold a reference to our parent bus so it
4683 * will not go away before we do.
4684 */
4685 bus->refcount++;
4686
4687 /* Insertion sort into our bus's target list */
4688 cur_target = TAILQ_FIRST(&bus->et_entries);
4689 while (cur_target != NULL && cur_target->target_id < target_id)
4690 cur_target = TAILQ_NEXT(cur_target, links);
4691 if (cur_target != NULL) {
4692 TAILQ_INSERT_BEFORE(cur_target, target, links);
4693 } else {
4694 TAILQ_INSERT_TAIL(&bus->et_entries, target, links);
4695 }
4696 bus->generation++;
4697 return (target);
4698 }
4699
4700 static void
xpt_acquire_target(struct cam_et * target)4701 xpt_acquire_target(struct cam_et *target)
4702 {
4703 struct cam_eb *bus = target->bus;
4704
4705 mtx_lock(&bus->eb_mtx);
4706 target->refcount++;
4707 mtx_unlock(&bus->eb_mtx);
4708 }
4709
4710 static void
xpt_release_target(struct cam_et * target)4711 xpt_release_target(struct cam_et *target)
4712 {
4713 struct cam_eb *bus = target->bus;
4714
4715 mtx_lock(&bus->eb_mtx);
4716 if (--target->refcount > 0) {
4717 mtx_unlock(&bus->eb_mtx);
4718 return;
4719 }
4720 TAILQ_REMOVE(&bus->et_entries, target, links);
4721 bus->generation++;
4722 mtx_unlock(&bus->eb_mtx);
4723 KASSERT(TAILQ_EMPTY(&target->ed_entries),
4724 ("destroying target, but device list is not empty"));
4725 xpt_release_bus(bus);
4726 mtx_destroy(&target->luns_mtx);
4727 if (target->luns)
4728 free(target->luns, M_CAMXPT);
4729 free(target, M_CAMXPT);
4730 }
4731
4732 static struct cam_ed *
xpt_alloc_device_default(struct cam_eb * bus,struct cam_et * target,lun_id_t lun_id)4733 xpt_alloc_device_default(struct cam_eb *bus, struct cam_et *target,
4734 lun_id_t lun_id)
4735 {
4736 struct cam_ed *device;
4737
4738 device = xpt_alloc_device(bus, target, lun_id);
4739 if (device == NULL)
4740 return (NULL);
4741
4742 device->mintags = 1;
4743 device->maxtags = 1;
4744 return (device);
4745 }
4746
4747 static void
xpt_destroy_device(void * context,int pending)4748 xpt_destroy_device(void *context, int pending)
4749 {
4750 struct cam_ed *device = context;
4751
4752 mtx_lock(&device->device_mtx);
4753 mtx_destroy(&device->device_mtx);
4754 free(device, M_CAMDEV);
4755 }
4756
4757 struct cam_ed *
xpt_alloc_device(struct cam_eb * bus,struct cam_et * target,lun_id_t lun_id)4758 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id)
4759 {
4760 struct cam_ed *cur_device, *device;
4761 struct cam_devq *devq;
4762 cam_status status;
4763
4764 mtx_assert(&bus->eb_mtx, MA_OWNED);
4765 /* Make space for us in the device queue on our bus */
4766 devq = bus->sim->devq;
4767 mtx_lock(&devq->send_mtx);
4768 status = cam_devq_resize(devq, devq->send_queue.array_size + 1);
4769 mtx_unlock(&devq->send_mtx);
4770 if (status != CAM_REQ_CMP)
4771 return (NULL);
4772
4773 device = (struct cam_ed *)malloc(sizeof(*device),
4774 M_CAMDEV, M_NOWAIT|M_ZERO);
4775 if (device == NULL)
4776 return (NULL);
4777
4778 cam_init_pinfo(&device->devq_entry);
4779 device->target = target;
4780 device->lun_id = lun_id;
4781 device->sim = bus->sim;
4782 if (cam_ccbq_init(&device->ccbq,
4783 bus->sim->max_dev_openings) != 0) {
4784 free(device, M_CAMDEV);
4785 return (NULL);
4786 }
4787 SLIST_INIT(&device->asyncs);
4788 SLIST_INIT(&device->periphs);
4789 device->generation = 0;
4790 device->flags = CAM_DEV_UNCONFIGURED;
4791 device->tag_delay_count = 0;
4792 device->tag_saved_openings = 0;
4793 device->refcount = 1;
4794 mtx_init(&device->device_mtx, "CAM device lock", NULL, MTX_DEF);
4795 callout_init_mtx(&device->callout, &devq->send_mtx, 0);
4796 TASK_INIT(&device->device_destroy_task, 0, xpt_destroy_device, device);
4797 /*
4798 * Hold a reference to our parent bus so it
4799 * will not go away before we do.
4800 */
4801 target->refcount++;
4802
4803 cur_device = TAILQ_FIRST(&target->ed_entries);
4804 while (cur_device != NULL && cur_device->lun_id < lun_id)
4805 cur_device = TAILQ_NEXT(cur_device, links);
4806 if (cur_device != NULL)
4807 TAILQ_INSERT_BEFORE(cur_device, device, links);
4808 else
4809 TAILQ_INSERT_TAIL(&target->ed_entries, device, links);
4810 target->generation++;
4811 return (device);
4812 }
4813
4814 void
xpt_acquire_device(struct cam_ed * device)4815 xpt_acquire_device(struct cam_ed *device)
4816 {
4817 struct cam_eb *bus = device->target->bus;
4818
4819 mtx_lock(&bus->eb_mtx);
4820 device->refcount++;
4821 mtx_unlock(&bus->eb_mtx);
4822 }
4823
4824 void
xpt_release_device(struct cam_ed * device)4825 xpt_release_device(struct cam_ed *device)
4826 {
4827 struct cam_eb *bus = device->target->bus;
4828 struct cam_devq *devq;
4829
4830 mtx_lock(&bus->eb_mtx);
4831 if (--device->refcount > 0) {
4832 mtx_unlock(&bus->eb_mtx);
4833 return;
4834 }
4835
4836 TAILQ_REMOVE(&device->target->ed_entries, device,links);
4837 device->target->generation++;
4838 mtx_unlock(&bus->eb_mtx);
4839
4840 /* Release our slot in the devq */
4841 devq = bus->sim->devq;
4842 mtx_lock(&devq->send_mtx);
4843 cam_devq_resize(devq, devq->send_queue.array_size - 1);
4844
4845 KASSERT(SLIST_EMPTY(&device->periphs),
4846 ("destroying device, but periphs list is not empty"));
4847 KASSERT(device->devq_entry.index == CAM_UNQUEUED_INDEX,
4848 ("destroying device while still queued for ccbs"));
4849
4850 /* The send_mtx must be held when accessing the callout */
4851 if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0)
4852 callout_stop(&device->callout);
4853
4854 mtx_unlock(&devq->send_mtx);
4855
4856 xpt_release_target(device->target);
4857
4858 cam_ccbq_fini(&device->ccbq);
4859 /*
4860 * Free allocated memory. free(9) does nothing if the
4861 * supplied pointer is NULL, so it is safe to call without
4862 * checking.
4863 */
4864 free(device->supported_vpds, M_CAMXPT);
4865 free(device->device_id, M_CAMXPT);
4866 free(device->ext_inq, M_CAMXPT);
4867 free(device->physpath, M_CAMXPT);
4868 free(device->rcap_buf, M_CAMXPT);
4869 free(device->serial_num, M_CAMXPT);
4870 free(device->nvme_data, M_CAMXPT);
4871 free(device->nvme_cdata, M_CAMXPT);
4872 taskqueue_enqueue(xsoftc.xpt_taskq, &device->device_destroy_task);
4873 }
4874
4875 uint32_t
xpt_dev_ccbq_resize(struct cam_path * path,int newopenings)4876 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings)
4877 {
4878 int result;
4879 struct cam_ed *dev;
4880
4881 dev = path->device;
4882 mtx_lock(&dev->sim->devq->send_mtx);
4883 result = cam_ccbq_resize(&dev->ccbq, newopenings);
4884 mtx_unlock(&dev->sim->devq->send_mtx);
4885 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
4886 || (dev->inq_flags & SID_CmdQue) != 0)
4887 dev->tag_saved_openings = newopenings;
4888 return (result);
4889 }
4890
4891 static struct cam_eb *
xpt_find_bus(path_id_t path_id)4892 xpt_find_bus(path_id_t path_id)
4893 {
4894 struct cam_eb *bus;
4895
4896 xpt_lock_buses();
4897 for (bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4898 bus != NULL;
4899 bus = TAILQ_NEXT(bus, links)) {
4900 if (bus->path_id == path_id) {
4901 bus->refcount++;
4902 break;
4903 }
4904 }
4905 xpt_unlock_buses();
4906 return (bus);
4907 }
4908
4909 static struct cam_et *
xpt_find_target(struct cam_eb * bus,target_id_t target_id)4910 xpt_find_target(struct cam_eb *bus, target_id_t target_id)
4911 {
4912 struct cam_et *target;
4913
4914 mtx_assert(&bus->eb_mtx, MA_OWNED);
4915 for (target = TAILQ_FIRST(&bus->et_entries);
4916 target != NULL;
4917 target = TAILQ_NEXT(target, links)) {
4918 if (target->target_id == target_id) {
4919 target->refcount++;
4920 break;
4921 }
4922 }
4923 return (target);
4924 }
4925
4926 static struct cam_ed *
xpt_find_device(struct cam_et * target,lun_id_t lun_id)4927 xpt_find_device(struct cam_et *target, lun_id_t lun_id)
4928 {
4929 struct cam_ed *device;
4930
4931 mtx_assert(&target->bus->eb_mtx, MA_OWNED);
4932 for (device = TAILQ_FIRST(&target->ed_entries);
4933 device != NULL;
4934 device = TAILQ_NEXT(device, links)) {
4935 if (device->lun_id == lun_id) {
4936 device->refcount++;
4937 break;
4938 }
4939 }
4940 return (device);
4941 }
4942
4943 void
xpt_start_tags(struct cam_path * path)4944 xpt_start_tags(struct cam_path *path)
4945 {
4946 struct ccb_relsim crs;
4947 struct cam_ed *device;
4948 struct cam_sim *sim;
4949 int newopenings;
4950
4951 device = path->device;
4952 sim = path->bus->sim;
4953 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
4954 xpt_freeze_devq(path, /*count*/1);
4955 device->inq_flags |= SID_CmdQue;
4956 if (device->tag_saved_openings != 0)
4957 newopenings = device->tag_saved_openings;
4958 else
4959 newopenings = min(device->maxtags,
4960 sim->max_tagged_dev_openings);
4961 xpt_dev_ccbq_resize(path, newopenings);
4962 xpt_async(AC_GETDEV_CHANGED, path, NULL);
4963 memset(&crs, 0, sizeof(crs));
4964 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
4965 crs.ccb_h.func_code = XPT_REL_SIMQ;
4966 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
4967 crs.openings
4968 = crs.release_timeout
4969 = crs.qfrozen_cnt
4970 = 0;
4971 xpt_action((union ccb *)&crs);
4972 }
4973
4974 void
xpt_stop_tags(struct cam_path * path)4975 xpt_stop_tags(struct cam_path *path)
4976 {
4977 struct ccb_relsim crs;
4978 struct cam_ed *device;
4979 struct cam_sim *sim;
4980
4981 device = path->device;
4982 sim = path->bus->sim;
4983 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
4984 device->tag_delay_count = 0;
4985 xpt_freeze_devq(path, /*count*/1);
4986 device->inq_flags &= ~SID_CmdQue;
4987 xpt_dev_ccbq_resize(path, sim->max_dev_openings);
4988 xpt_async(AC_GETDEV_CHANGED, path, NULL);
4989 memset(&crs, 0, sizeof(crs));
4990 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
4991 crs.ccb_h.func_code = XPT_REL_SIMQ;
4992 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
4993 crs.openings
4994 = crs.release_timeout
4995 = crs.qfrozen_cnt
4996 = 0;
4997 xpt_action((union ccb *)&crs);
4998 }
4999
5000 /*
5001 * Assume all possible buses are detected by this time, so allow boot
5002 * as soon as they all are scanned.
5003 */
5004 static void
xpt_boot_delay(void * arg)5005 xpt_boot_delay(void *arg)
5006 {
5007
5008 xpt_release_boot();
5009 }
5010
5011 /*
5012 * Now that all config hooks have completed, start boot_delay timer,
5013 * waiting for possibly still undetected buses (USB) to appear.
5014 */
5015 static void
xpt_ch_done(void * arg)5016 xpt_ch_done(void *arg)
5017 {
5018
5019 callout_init(&xsoftc.boot_callout, 1);
5020 callout_reset_sbt(&xsoftc.boot_callout, SBT_1MS * xsoftc.boot_delay,
5021 SBT_1MS, xpt_boot_delay, NULL, 0);
5022 }
5023 SYSINIT(xpt_hw_delay, SI_SUB_INT_CONFIG_HOOKS, SI_ORDER_ANY, xpt_ch_done, NULL);
5024
5025 /*
5026 * Now that interrupts are enabled, go find our devices
5027 */
5028 static void
xpt_config(void * arg)5029 xpt_config(void *arg)
5030 {
5031 if (taskqueue_start_threads(&xsoftc.xpt_taskq, 1, PRIBIO, "CAM taskq"))
5032 printf("xpt_config: failed to create taskqueue thread.\n");
5033
5034 /* Setup debugging path */
5035 if (cam_dflags != CAM_DEBUG_NONE) {
5036 if (xpt_create_path(&cam_dpath, NULL,
5037 CAM_DEBUG_BUS, CAM_DEBUG_TARGET,
5038 CAM_DEBUG_LUN) != CAM_REQ_CMP) {
5039 printf("xpt_config: xpt_create_path() failed for debug"
5040 " target %d:%d:%d, debugging disabled\n",
5041 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN);
5042 cam_dflags = CAM_DEBUG_NONE;
5043 }
5044 } else
5045 cam_dpath = NULL;
5046
5047 periphdriver_init(1);
5048 xpt_hold_boot();
5049
5050 /* Fire up rescan thread. */
5051 if (kproc_kthread_add(xpt_scanner_thread, NULL, &cam_proc, NULL, 0, 0,
5052 "cam", "scanner")) {
5053 printf("xpt_config: failed to create rescan thread.\n");
5054 }
5055 }
5056
5057 void
xpt_hold_boot_locked(void)5058 xpt_hold_boot_locked(void)
5059 {
5060
5061 if (xsoftc.buses_to_config++ == 0)
5062 root_mount_hold_token("CAM", &xsoftc.xpt_rootmount);
5063 }
5064
5065 void
xpt_hold_boot(void)5066 xpt_hold_boot(void)
5067 {
5068
5069 xpt_lock_buses();
5070 xpt_hold_boot_locked();
5071 xpt_unlock_buses();
5072 }
5073
5074 void
xpt_release_boot(void)5075 xpt_release_boot(void)
5076 {
5077
5078 xpt_lock_buses();
5079 if (--xsoftc.buses_to_config == 0) {
5080 if (xsoftc.buses_config_done == 0) {
5081 xsoftc.buses_config_done = 1;
5082 xsoftc.buses_to_config++;
5083 TASK_INIT(&xsoftc.boot_task, 0, xpt_finishconfig_task,
5084 NULL);
5085 taskqueue_enqueue(taskqueue_thread, &xsoftc.boot_task);
5086 } else
5087 root_mount_rel(&xsoftc.xpt_rootmount);
5088 }
5089 xpt_unlock_buses();
5090 }
5091
5092 /*
5093 * If the given device only has one peripheral attached to it, and if that
5094 * peripheral is the passthrough driver, announce it. This insures that the
5095 * user sees some sort of announcement for every peripheral in their system.
5096 */
5097 static int
xptpassannouncefunc(struct cam_ed * device,void * arg)5098 xptpassannouncefunc(struct cam_ed *device, void *arg)
5099 {
5100 struct cam_periph *periph;
5101 int i;
5102
5103 for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL;
5104 periph = SLIST_NEXT(periph, periph_links), i++);
5105
5106 periph = SLIST_FIRST(&device->periphs);
5107 if ((i == 1)
5108 && (strncmp(periph->periph_name, "pass", 4) == 0))
5109 xpt_announce_periph(periph, NULL);
5110
5111 return(1);
5112 }
5113
5114 static void
xpt_finishconfig_task(void * context,int pending)5115 xpt_finishconfig_task(void *context, int pending)
5116 {
5117
5118 periphdriver_init(2);
5119 /*
5120 * Check for devices with no "standard" peripheral driver
5121 * attached. For any devices like that, announce the
5122 * passthrough driver so the user will see something.
5123 */
5124 if (!bootverbose)
5125 xpt_for_all_devices(xptpassannouncefunc, NULL);
5126
5127 xpt_release_boot();
5128 }
5129
5130 cam_status
xpt_register_async(int event,ac_callback_t * cbfunc,void * cbarg,struct cam_path * path)5131 xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg,
5132 struct cam_path *path)
5133 {
5134 struct ccb_setasync csa;
5135 cam_status status;
5136 bool xptpath = false;
5137
5138 if (path == NULL) {
5139 status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID,
5140 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
5141 if (status != CAM_REQ_CMP)
5142 return (status);
5143 xpt_path_lock(path);
5144 xptpath = true;
5145 }
5146
5147 memset(&csa, 0, sizeof(csa));
5148 xpt_setup_ccb(&csa.ccb_h, path, CAM_PRIORITY_NORMAL);
5149 csa.ccb_h.func_code = XPT_SASYNC_CB;
5150 csa.event_enable = event;
5151 csa.callback = cbfunc;
5152 csa.callback_arg = cbarg;
5153 xpt_action((union ccb *)&csa);
5154 status = csa.ccb_h.status;
5155
5156 CAM_DEBUG(csa.ccb_h.path, CAM_DEBUG_TRACE,
5157 ("xpt_register_async: func %p\n", cbfunc));
5158
5159 if (xptpath) {
5160 xpt_path_unlock(path);
5161 xpt_free_path(path);
5162 }
5163
5164 if ((status == CAM_REQ_CMP) &&
5165 (csa.event_enable & AC_FOUND_DEVICE)) {
5166 /*
5167 * Get this peripheral up to date with all
5168 * the currently existing devices.
5169 */
5170 xpt_for_all_devices(xptsetasyncfunc, &csa);
5171 }
5172 if ((status == CAM_REQ_CMP) &&
5173 (csa.event_enable & AC_PATH_REGISTERED)) {
5174 /*
5175 * Get this peripheral up to date with all
5176 * the currently existing buses.
5177 */
5178 xpt_for_all_busses(xptsetasyncbusfunc, &csa);
5179 }
5180
5181 return (status);
5182 }
5183
5184 static void
xptaction(struct cam_sim * sim,union ccb * work_ccb)5185 xptaction(struct cam_sim *sim, union ccb *work_ccb)
5186 {
5187 CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n"));
5188
5189 switch (work_ccb->ccb_h.func_code) {
5190 /* Common cases first */
5191 case XPT_PATH_INQ: /* Path routing inquiry */
5192 {
5193 struct ccb_pathinq *cpi;
5194
5195 cpi = &work_ccb->cpi;
5196 cpi->version_num = 1; /* XXX??? */
5197 cpi->hba_inquiry = 0;
5198 cpi->target_sprt = 0;
5199 cpi->hba_misc = 0;
5200 cpi->hba_eng_cnt = 0;
5201 cpi->max_target = 0;
5202 cpi->max_lun = 0;
5203 cpi->initiator_id = 0;
5204 strlcpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
5205 strlcpy(cpi->hba_vid, "", HBA_IDLEN);
5206 strlcpy(cpi->dev_name, sim->sim_name, DEV_IDLEN);
5207 cpi->unit_number = sim->unit_number;
5208 cpi->bus_id = sim->bus_id;
5209 cpi->base_transfer_speed = 0;
5210 cpi->protocol = PROTO_UNSPECIFIED;
5211 cpi->protocol_version = PROTO_VERSION_UNSPECIFIED;
5212 cpi->transport = XPORT_UNSPECIFIED;
5213 cpi->transport_version = XPORT_VERSION_UNSPECIFIED;
5214 cpi->ccb_h.status = CAM_REQ_CMP;
5215 break;
5216 }
5217 default:
5218 work_ccb->ccb_h.status = CAM_REQ_INVALID;
5219 break;
5220 }
5221 xpt_done(work_ccb);
5222 }
5223
5224 /*
5225 * The xpt as a "controller" has no interrupt sources, so polling
5226 * is a no-op.
5227 */
5228 static void
xptpoll(struct cam_sim * sim)5229 xptpoll(struct cam_sim *sim)
5230 {
5231 }
5232
5233 void
xpt_lock_buses(void)5234 xpt_lock_buses(void)
5235 {
5236 mtx_lock(&xsoftc.xpt_topo_lock);
5237 }
5238
5239 void
xpt_unlock_buses(void)5240 xpt_unlock_buses(void)
5241 {
5242 mtx_unlock(&xsoftc.xpt_topo_lock);
5243 }
5244
5245 struct mtx *
xpt_path_mtx(struct cam_path * path)5246 xpt_path_mtx(struct cam_path *path)
5247 {
5248
5249 return (&path->device->device_mtx);
5250 }
5251
5252 static void
xpt_done_process(struct ccb_hdr * ccb_h)5253 xpt_done_process(struct ccb_hdr *ccb_h)
5254 {
5255 struct cam_sim *sim = NULL;
5256 struct cam_devq *devq = NULL;
5257 struct mtx *mtx = NULL;
5258
5259 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
5260 struct ccb_scsiio *csio;
5261
5262 if (ccb_h->func_code == XPT_SCSI_IO) {
5263 csio = &((union ccb *)ccb_h)->csio;
5264 if (csio->bio != NULL)
5265 biotrack(csio->bio, __func__);
5266 }
5267 #endif
5268
5269 if (ccb_h->flags & CAM_HIGH_POWER) {
5270 struct highpowerlist *hphead;
5271 struct cam_ed *device;
5272
5273 mtx_lock(&xsoftc.xpt_highpower_lock);
5274 hphead = &xsoftc.highpowerq;
5275
5276 device = STAILQ_FIRST(hphead);
5277
5278 /*
5279 * Increment the count since this command is done.
5280 */
5281 xsoftc.num_highpower++;
5282
5283 /*
5284 * Any high powered commands queued up?
5285 */
5286 if (device != NULL) {
5287 STAILQ_REMOVE_HEAD(hphead, highpowerq_entry);
5288 mtx_unlock(&xsoftc.xpt_highpower_lock);
5289
5290 mtx_lock(&device->sim->devq->send_mtx);
5291 xpt_release_devq_device(device,
5292 /*count*/1, /*runqueue*/TRUE);
5293 mtx_unlock(&device->sim->devq->send_mtx);
5294 } else
5295 mtx_unlock(&xsoftc.xpt_highpower_lock);
5296 }
5297
5298 /*
5299 * Insulate against a race where the periph is destroyed but CCBs are
5300 * still not all processed. This shouldn't happen, but allows us better
5301 * bug diagnostic when it does.
5302 */
5303 if (ccb_h->path->bus)
5304 sim = ccb_h->path->bus->sim;
5305
5306 if (ccb_h->status & CAM_RELEASE_SIMQ) {
5307 KASSERT(sim, ("sim missing for CAM_RELEASE_SIMQ request"));
5308 xpt_release_simq(sim, /*run_queue*/FALSE);
5309 ccb_h->status &= ~CAM_RELEASE_SIMQ;
5310 }
5311
5312 if ((ccb_h->flags & CAM_DEV_QFRZDIS)
5313 && (ccb_h->status & CAM_DEV_QFRZN)) {
5314 xpt_release_devq(ccb_h->path, /*count*/1, /*run_queue*/TRUE);
5315 ccb_h->status &= ~CAM_DEV_QFRZN;
5316 }
5317
5318 if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) {
5319 struct cam_ed *dev = ccb_h->path->device;
5320
5321 if (sim)
5322 devq = sim->devq;
5323 KASSERT(devq, ("Periph disappeared with CCB %p %s request pending.",
5324 ccb_h, xpt_action_name(ccb_h->func_code)));
5325
5326 mtx_lock(&devq->send_mtx);
5327 devq->send_active--;
5328 devq->send_openings++;
5329 cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h);
5330
5331 if (((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
5332 && (dev->ccbq.dev_active == 0))) {
5333 dev->flags &= ~CAM_DEV_REL_ON_QUEUE_EMPTY;
5334 xpt_release_devq_device(dev, /*count*/1,
5335 /*run_queue*/FALSE);
5336 }
5337
5338 if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0
5339 && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)) {
5340 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
5341 xpt_release_devq_device(dev, /*count*/1,
5342 /*run_queue*/FALSE);
5343 }
5344
5345 if (!device_is_queued(dev))
5346 (void)xpt_schedule_devq(devq, dev);
5347 xpt_run_devq(devq);
5348 mtx_unlock(&devq->send_mtx);
5349
5350 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0) {
5351 mtx = xpt_path_mtx(ccb_h->path);
5352 mtx_lock(mtx);
5353
5354 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
5355 && (--dev->tag_delay_count == 0))
5356 xpt_start_tags(ccb_h->path);
5357 }
5358 }
5359
5360 if ((ccb_h->flags & CAM_UNLOCKED) == 0) {
5361 if (mtx == NULL) {
5362 mtx = xpt_path_mtx(ccb_h->path);
5363 mtx_lock(mtx);
5364 }
5365 } else {
5366 if (mtx != NULL) {
5367 mtx_unlock(mtx);
5368 mtx = NULL;
5369 }
5370 }
5371
5372 /* Call the peripheral driver's callback */
5373 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
5374 (*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h);
5375 if (mtx != NULL)
5376 mtx_unlock(mtx);
5377 }
5378
5379 /*
5380 * Parameterize instead and use xpt_done_td?
5381 */
5382 static void
xpt_async_td(void * arg)5383 xpt_async_td(void *arg)
5384 {
5385 struct cam_doneq *queue = arg;
5386 struct ccb_hdr *ccb_h;
5387 STAILQ_HEAD(, ccb_hdr) doneq;
5388
5389 STAILQ_INIT(&doneq);
5390 mtx_lock(&queue->cam_doneq_mtx);
5391 while (1) {
5392 while (STAILQ_EMPTY(&queue->cam_doneq))
5393 msleep(&queue->cam_doneq, &queue->cam_doneq_mtx,
5394 PRIBIO, "-", 0);
5395 STAILQ_CONCAT(&doneq, &queue->cam_doneq);
5396 mtx_unlock(&queue->cam_doneq_mtx);
5397
5398 while ((ccb_h = STAILQ_FIRST(&doneq)) != NULL) {
5399 STAILQ_REMOVE_HEAD(&doneq, sim_links.stqe);
5400 xpt_done_process(ccb_h);
5401 }
5402
5403 mtx_lock(&queue->cam_doneq_mtx);
5404 }
5405 }
5406
5407 void
xpt_done_td(void * arg)5408 xpt_done_td(void *arg)
5409 {
5410 struct cam_doneq *queue = arg;
5411 struct ccb_hdr *ccb_h;
5412 STAILQ_HEAD(, ccb_hdr) doneq;
5413
5414 STAILQ_INIT(&doneq);
5415 mtx_lock(&queue->cam_doneq_mtx);
5416 while (1) {
5417 while (STAILQ_EMPTY(&queue->cam_doneq)) {
5418 queue->cam_doneq_sleep = 1;
5419 msleep(&queue->cam_doneq, &queue->cam_doneq_mtx,
5420 PRIBIO, "-", 0);
5421 queue->cam_doneq_sleep = 0;
5422 }
5423 STAILQ_CONCAT(&doneq, &queue->cam_doneq);
5424 mtx_unlock(&queue->cam_doneq_mtx);
5425
5426 THREAD_NO_SLEEPING();
5427 while ((ccb_h = STAILQ_FIRST(&doneq)) != NULL) {
5428 STAILQ_REMOVE_HEAD(&doneq, sim_links.stqe);
5429 xpt_done_process(ccb_h);
5430 }
5431 THREAD_SLEEPING_OK();
5432
5433 mtx_lock(&queue->cam_doneq_mtx);
5434 }
5435 }
5436
5437 static void
camisr_runqueue(void)5438 camisr_runqueue(void)
5439 {
5440 struct ccb_hdr *ccb_h;
5441 struct cam_doneq *queue;
5442 int i;
5443
5444 /* Process global queues. */
5445 for (i = 0; i < cam_num_doneqs; i++) {
5446 queue = &cam_doneqs[i];
5447 mtx_lock(&queue->cam_doneq_mtx);
5448 while ((ccb_h = STAILQ_FIRST(&queue->cam_doneq)) != NULL) {
5449 STAILQ_REMOVE_HEAD(&queue->cam_doneq, sim_links.stqe);
5450 mtx_unlock(&queue->cam_doneq_mtx);
5451 xpt_done_process(ccb_h);
5452 mtx_lock(&queue->cam_doneq_mtx);
5453 }
5454 mtx_unlock(&queue->cam_doneq_mtx);
5455 }
5456 }
5457
5458 /**
5459 * @brief Return the device_t associated with the path
5460 *
5461 * When a SIM is created, it registers a bus with a NEWBUS device_t. This is
5462 * stored in the internal cam_eb bus structure. There is no guarnatee any given
5463 * path will have a @c device_t associated with it (it's legal to call @c
5464 * xpt_bus_register with a @c NULL @c device_t.
5465 *
5466 * @param path Path to return the device_t for.
5467 */
5468 device_t
xpt_path_sim_device(const struct cam_path * path)5469 xpt_path_sim_device(const struct cam_path *path)
5470 {
5471 return (path->bus->parent_dev);
5472 }
5473
5474 struct kv
5475 {
5476 uint32_t v;
5477 const char *name;
5478 };
5479
5480 static struct kv map[] = {
5481 { XPT_NOOP, "XPT_NOOP" },
5482 { XPT_SCSI_IO, "XPT_SCSI_IO" },
5483 { XPT_GDEV_TYPE, "XPT_GDEV_TYPE" },
5484 { XPT_GDEVLIST, "XPT_GDEVLIST" },
5485 { XPT_PATH_INQ, "XPT_PATH_INQ" },
5486 { XPT_REL_SIMQ, "XPT_REL_SIMQ" },
5487 { XPT_SASYNC_CB, "XPT_SASYNC_CB" },
5488 { XPT_SDEV_TYPE, "XPT_SDEV_TYPE" },
5489 { XPT_SCAN_BUS, "XPT_SCAN_BUS" },
5490 { XPT_DEV_MATCH, "XPT_DEV_MATCH" },
5491 { XPT_DEBUG, "XPT_DEBUG" },
5492 { XPT_PATH_STATS, "XPT_PATH_STATS" },
5493 { XPT_GDEV_STATS, "XPT_GDEV_STATS" },
5494 { XPT_DEV_ADVINFO, "XPT_DEV_ADVINFO" },
5495 { XPT_ASYNC, "XPT_ASYNC" },
5496 { XPT_ABORT, "XPT_ABORT" },
5497 { XPT_RESET_BUS, "XPT_RESET_BUS" },
5498 { XPT_RESET_DEV, "XPT_RESET_DEV" },
5499 { XPT_TERM_IO, "XPT_TERM_IO" },
5500 { XPT_SCAN_LUN, "XPT_SCAN_LUN" },
5501 { XPT_GET_TRAN_SETTINGS, "XPT_GET_TRAN_SETTINGS" },
5502 { XPT_SET_TRAN_SETTINGS, "XPT_SET_TRAN_SETTINGS" },
5503 { XPT_CALC_GEOMETRY, "XPT_CALC_GEOMETRY" },
5504 { XPT_ATA_IO, "XPT_ATA_IO" },
5505 { XPT_GET_SIM_KNOB, "XPT_GET_SIM_KNOB" },
5506 { XPT_SET_SIM_KNOB, "XPT_SET_SIM_KNOB" },
5507 { XPT_NVME_IO, "XPT_NVME_IO" },
5508 { XPT_MMC_IO, "XPT_MMC_IO" },
5509 { XPT_SMP_IO, "XPT_SMP_IO" },
5510 { XPT_SCAN_TGT, "XPT_SCAN_TGT" },
5511 { XPT_NVME_ADMIN, "XPT_NVME_ADMIN" },
5512 { XPT_ENG_INQ, "XPT_ENG_INQ" },
5513 { XPT_ENG_EXEC, "XPT_ENG_EXEC" },
5514 { XPT_EN_LUN, "XPT_EN_LUN" },
5515 { XPT_TARGET_IO, "XPT_TARGET_IO" },
5516 { XPT_ACCEPT_TARGET_IO, "XPT_ACCEPT_TARGET_IO" },
5517 { XPT_CONT_TARGET_IO, "XPT_CONT_TARGET_IO" },
5518 { XPT_IMMED_NOTIFY, "XPT_IMMED_NOTIFY" },
5519 { XPT_NOTIFY_ACK, "XPT_NOTIFY_ACK" },
5520 { XPT_IMMEDIATE_NOTIFY, "XPT_IMMEDIATE_NOTIFY" },
5521 { XPT_NOTIFY_ACKNOWLEDGE, "XPT_NOTIFY_ACKNOWLEDGE" },
5522 { 0, 0 }
5523 };
5524
5525 const char *
xpt_action_name(uint32_t action)5526 xpt_action_name(uint32_t action)
5527 {
5528 static char buffer[32]; /* Only for unknown messages -- racy */
5529 struct kv *walker = map;
5530
5531 while (walker->name != NULL) {
5532 if (walker->v == action)
5533 return (walker->name);
5534 walker++;
5535 }
5536
5537 snprintf(buffer, sizeof(buffer), "%#x", action);
5538 return (buffer);
5539 }
5540
5541 void
xpt_cam_path_debug(struct cam_path * path,const char * fmt,...)5542 xpt_cam_path_debug(struct cam_path *path, const char *fmt, ...)
5543 {
5544 struct sbuf sbuf;
5545 char buf[XPT_PRINT_LEN]; /* balance to not eat too much stack */
5546 struct sbuf *sb = sbuf_new(&sbuf, buf, sizeof(buf), SBUF_FIXEDLEN);
5547 va_list ap;
5548
5549 sbuf_set_drain(sb, sbuf_printf_drain, NULL);
5550 xpt_path_sbuf(path, sb);
5551 va_start(ap, fmt);
5552 sbuf_vprintf(sb, fmt, ap);
5553 va_end(ap);
5554 sbuf_finish(sb);
5555 sbuf_delete(sb);
5556 if (cam_debug_delay != 0)
5557 DELAY(cam_debug_delay);
5558 }
5559
5560 void
xpt_cam_dev_debug(struct cam_ed * dev,const char * fmt,...)5561 xpt_cam_dev_debug(struct cam_ed *dev, const char *fmt, ...)
5562 {
5563 struct sbuf sbuf;
5564 char buf[XPT_PRINT_LEN]; /* balance to not eat too much stack */
5565 struct sbuf *sb = sbuf_new(&sbuf, buf, sizeof(buf), SBUF_FIXEDLEN);
5566 va_list ap;
5567
5568 sbuf_set_drain(sb, sbuf_printf_drain, NULL);
5569 xpt_device_sbuf(dev, sb);
5570 va_start(ap, fmt);
5571 sbuf_vprintf(sb, fmt, ap);
5572 va_end(ap);
5573 sbuf_finish(sb);
5574 sbuf_delete(sb);
5575 if (cam_debug_delay != 0)
5576 DELAY(cam_debug_delay);
5577 }
5578
5579 void
xpt_cam_debug(const char * fmt,...)5580 xpt_cam_debug(const char *fmt, ...)
5581 {
5582 struct sbuf sbuf;
5583 char buf[XPT_PRINT_LEN]; /* balance to not eat too much stack */
5584 struct sbuf *sb = sbuf_new(&sbuf, buf, sizeof(buf), SBUF_FIXEDLEN);
5585 va_list ap;
5586
5587 sbuf_set_drain(sb, sbuf_printf_drain, NULL);
5588 sbuf_cat(sb, "cam_debug: ");
5589 va_start(ap, fmt);
5590 sbuf_vprintf(sb, fmt, ap);
5591 va_end(ap);
5592 sbuf_finish(sb);
5593 sbuf_delete(sb);
5594 if (cam_debug_delay != 0)
5595 DELAY(cam_debug_delay);
5596 }
5597