1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * DVA-based Adjustable Replacement Cache
28  *
29  * While much of the theory of operation used here is
30  * based on the self-tuning, low overhead replacement cache
31  * presented by Megiddo and Modha at FAST 2003, there are some
32  * significant differences:
33  *
34  * 1. The Megiddo and Modha model assumes any page is evictable.
35  * Pages in its cache cannot be "locked" into memory.  This makes
36  * the eviction algorithm simple: evict the last page in the list.
37  * This also make the performance characteristics easy to reason
38  * about.  Our cache is not so simple.  At any given moment, some
39  * subset of the blocks in the cache are un-evictable because we
40  * have handed out a reference to them.  Blocks are only evictable
41  * when there are no external references active.  This makes
42  * eviction far more problematic:  we choose to evict the evictable
43  * blocks that are the "lowest" in the list.
44  *
45  * There are times when it is not possible to evict the requested
46  * space.  In these circumstances we are unable to adjust the cache
47  * size.  To prevent the cache growing unbounded at these times we
48  * implement a "cache throttle" that slows the flow of new data
49  * into the cache until we can make space available.
50  *
51  * 2. The Megiddo and Modha model assumes a fixed cache size.
52  * Pages are evicted when the cache is full and there is a cache
53  * miss.  Our model has a variable sized cache.  It grows with
54  * high use, but also tries to react to memory pressure from the
55  * operating system: decreasing its size when system memory is
56  * tight.
57  *
58  * 3. The Megiddo and Modha model assumes a fixed page size. All
59  * elements of the cache are therefor exactly the same size.  So
60  * when adjusting the cache size following a cache miss, its simply
61  * a matter of choosing a single page to evict.  In our model, we
62  * have variable sized cache blocks (rangeing from 512 bytes to
63  * 128K bytes).  We therefor choose a set of blocks to evict to make
64  * space for a cache miss that approximates as closely as possible
65  * the space used by the new block.
66  *
67  * See also:  "ARC: A Self-Tuning, Low Overhead Replacement Cache"
68  * by N. Megiddo & D. Modha, FAST 2003
69  */
70 
71 /*
72  * The locking model:
73  *
74  * A new reference to a cache buffer can be obtained in two
75  * ways: 1) via a hash table lookup using the DVA as a key,
76  * or 2) via one of the ARC lists.  The arc_read() interface
77  * uses method 1, while the internal arc algorithms for
78  * adjusting the cache use method 2.  We therefor provide two
79  * types of locks: 1) the hash table lock array, and 2) the
80  * arc list locks.
81  *
82  * Buffers do not have their own mutexs, rather they rely on the
83  * hash table mutexs for the bulk of their protection (i.e. most
84  * fields in the arc_buf_hdr_t are protected by these mutexs).
85  *
86  * buf_hash_find() returns the appropriate mutex (held) when it
87  * locates the requested buffer in the hash table.  It returns
88  * NULL for the mutex if the buffer was not in the table.
89  *
90  * buf_hash_remove() expects the appropriate hash mutex to be
91  * already held before it is invoked.
92  *
93  * Each arc state also has a mutex which is used to protect the
94  * buffer list associated with the state.  When attempting to
95  * obtain a hash table lock while holding an arc list lock you
96  * must use: mutex_tryenter() to avoid deadlock.  Also note that
97  * the active state mutex must be held before the ghost state mutex.
98  *
99  * Arc buffers may have an associated eviction callback function.
100  * This function will be invoked prior to removing the buffer (e.g.
101  * in arc_do_user_evicts()).  Note however that the data associated
102  * with the buffer may be evicted prior to the callback.  The callback
103  * must be made with *no locks held* (to prevent deadlock).  Additionally,
104  * the users of callbacks must ensure that their private data is
105  * protected from simultaneous callbacks from arc_buf_evict()
106  * and arc_do_user_evicts().
107  *
108  * Note that the majority of the performance stats are manipulated
109  * with atomic operations.
110  *
111  * The L2ARC uses the l2arc_buflist_mtx global mutex for the following:
112  *
113  *	- L2ARC buflist creation
114  *	- L2ARC buflist eviction
115  *	- L2ARC write completion, which walks L2ARC buflists
116  *	- ARC header destruction, as it removes from L2ARC buflists
117  *	- ARC header release, as it removes from L2ARC buflists
118  */
119 
120 #include <sys/spa.h>
121 #include <sys/zio.h>
122 #include <sys/zfs_context.h>
123 #include <sys/arc.h>
124 #include <sys/refcount.h>
125 #include <sys/vdev.h>
126 #include <sys/vdev_impl.h>
127 #ifdef _KERNEL
128 #include <sys/vmsystm.h>
129 #include <vm/anon.h>
130 #include <sys/fs/swapnode.h>
131 #include <sys/dnlc.h>
132 #endif
133 #include <sys/callb.h>
134 #include <sys/kstat.h>
135 #include <zfs_fletcher.h>
136 
137 #ifdef __NetBSD__
138 #include <uvm/uvm.h>
139 #ifndef btop
140 #define	btop(x)		((x) / PAGE_SIZE)
141 #endif
142 #define	needfree	(uvmexp.free < uvmexp.freetarg ? uvmexp.freetarg : 0)
143 #define	buf_init	arc_buf_init
144 #define	freemem		uvmexp.free
145 #define	minfree		uvmexp.freemin
146 #define	desfree		uvmexp.freetarg
147 #define	lotsfree	(desfree * 2)
148 #define	availrmem	desfree
149 #define	swapfs_minfree	0
150 #define	swapfs_reserve	0
151 #undef curproc
152 #define	curproc		curlwp
153 #define	proc_pageout	uvm.pagedaemon_lwp
154 
155 static void	*zio_arena;
156 
157 #include <sys/callback.h>
158 /* Structures used for memory and kva space reclaim. */
159 static struct callback_entry arc_kva_reclaim_entry;
160 
161 #endif	/* __NetBSD__ */
162 
163 static kmutex_t		arc_reclaim_thr_lock;
164 static kcondvar_t	arc_reclaim_thr_cv;	/* used to signal reclaim thr */
165 static uint8_t		arc_thread_exit;
166 
167 extern int zfs_write_limit_shift;
168 extern uint64_t zfs_write_limit_max;
169 extern kmutex_t zfs_write_limit_lock;
170 
171 #define	ARC_REDUCE_DNLC_PERCENT	3
172 uint_t arc_reduce_dnlc_percent = ARC_REDUCE_DNLC_PERCENT;
173 
174 typedef enum arc_reclaim_strategy {
175 	ARC_RECLAIM_AGGR,		/* Aggressive reclaim strategy */
176 	ARC_RECLAIM_CONS		/* Conservative reclaim strategy */
177 } arc_reclaim_strategy_t;
178 
179 /* number of seconds before growing cache again */
180 static int		arc_grow_retry = 60;
181 
182 /* shift of arc_c for calculating both min and max arc_p */
183 static int		arc_p_min_shift = 4;
184 
185 /* log2(fraction of arc to reclaim) */
186 static int		arc_shrink_shift = 5;
187 
188 /*
189  * minimum lifespan of a prefetch block in clock ticks
190  * (initialized in arc_init())
191  */
192 static int		arc_min_prefetch_lifespan;
193 
194 static int arc_dead;
195 
196 /*
197  * The arc has filled available memory and has now warmed up.
198  */
199 static boolean_t arc_warm;
200 
201 /*
202  * These tunables are for performance analysis.
203  */
204 uint64_t zfs_arc_max;
205 uint64_t zfs_arc_min;
206 uint64_t zfs_arc_meta_limit = 0;
207 int zfs_arc_grow_retry = 0;
208 int zfs_arc_shrink_shift = 0;
209 int zfs_arc_p_min_shift = 0;
210 
211 /*
212  * Note that buffers can be in one of 6 states:
213  *	ARC_anon	- anonymous (discussed below)
214  *	ARC_mru		- recently used, currently cached
215  *	ARC_mru_ghost	- recentely used, no longer in cache
216  *	ARC_mfu		- frequently used, currently cached
217  *	ARC_mfu_ghost	- frequently used, no longer in cache
218  *	ARC_l2c_only	- exists in L2ARC but not other states
219  * When there are no active references to the buffer, they are
220  * are linked onto a list in one of these arc states.  These are
221  * the only buffers that can be evicted or deleted.  Within each
222  * state there are multiple lists, one for meta-data and one for
223  * non-meta-data.  Meta-data (indirect blocks, blocks of dnodes,
224  * etc.) is tracked separately so that it can be managed more
225  * explicitly: favored over data, limited explicitly.
226  *
227  * Anonymous buffers are buffers that are not associated with
228  * a DVA.  These are buffers that hold dirty block copies
229  * before they are written to stable storage.  By definition,
230  * they are "ref'd" and are considered part of arc_mru
231  * that cannot be freed.  Generally, they will aquire a DVA
232  * as they are written and migrate onto the arc_mru list.
233  *
234  * The ARC_l2c_only state is for buffers that are in the second
235  * level ARC but no longer in any of the ARC_m* lists.  The second
236  * level ARC itself may also contain buffers that are in any of
237  * the ARC_m* states - meaning that a buffer can exist in two
238  * places.  The reason for the ARC_l2c_only state is to keep the
239  * buffer header in the hash table, so that reads that hit the
240  * second level ARC benefit from these fast lookups.
241  */
242 
243 typedef struct arc_state {
244 	list_t	arcs_list[ARC_BUFC_NUMTYPES];	/* list of evictable buffers */
245 	uint64_t arcs_lsize[ARC_BUFC_NUMTYPES];	/* amount of evictable data */
246 	uint64_t arcs_size;	/* total amount of data in this state */
247 	kmutex_t arcs_mtx;
248 } arc_state_t;
249 
250 /* The 6 states: */
251 static arc_state_t ARC_anon;
252 static arc_state_t ARC_mru;
253 static arc_state_t ARC_mru_ghost;
254 static arc_state_t ARC_mfu;
255 static arc_state_t ARC_mfu_ghost;
256 static arc_state_t ARC_l2c_only;
257 
258 typedef struct arc_stats {
259 	kstat_named_t arcstat_hits;
260 	kstat_named_t arcstat_misses;
261 	kstat_named_t arcstat_demand_data_hits;
262 	kstat_named_t arcstat_demand_data_misses;
263 	kstat_named_t arcstat_demand_metadata_hits;
264 	kstat_named_t arcstat_demand_metadata_misses;
265 	kstat_named_t arcstat_prefetch_data_hits;
266 	kstat_named_t arcstat_prefetch_data_misses;
267 	kstat_named_t arcstat_prefetch_metadata_hits;
268 	kstat_named_t arcstat_prefetch_metadata_misses;
269 	kstat_named_t arcstat_mru_hits;
270 	kstat_named_t arcstat_mru_ghost_hits;
271 	kstat_named_t arcstat_mfu_hits;
272 	kstat_named_t arcstat_mfu_ghost_hits;
273 	kstat_named_t arcstat_deleted;
274 	kstat_named_t arcstat_recycle_miss;
275 	kstat_named_t arcstat_mutex_miss;
276 	kstat_named_t arcstat_evict_skip;
277 	kstat_named_t arcstat_evict_l2_cached;
278 	kstat_named_t arcstat_evict_l2_eligible;
279 	kstat_named_t arcstat_evict_l2_ineligible;
280 	kstat_named_t arcstat_hash_elements;
281 	kstat_named_t arcstat_hash_elements_max;
282 	kstat_named_t arcstat_hash_collisions;
283 	kstat_named_t arcstat_hash_chains;
284 	kstat_named_t arcstat_hash_chain_max;
285 	kstat_named_t arcstat_p;
286 	kstat_named_t arcstat_c;
287 	kstat_named_t arcstat_c_min;
288 	kstat_named_t arcstat_c_max;
289 	kstat_named_t arcstat_size;
290 	kstat_named_t arcstat_hdr_size;
291 	kstat_named_t arcstat_data_size;
292 	kstat_named_t arcstat_other_size;
293 	kstat_named_t arcstat_l2_hits;
294 	kstat_named_t arcstat_l2_misses;
295 	kstat_named_t arcstat_l2_feeds;
296 	kstat_named_t arcstat_l2_rw_clash;
297 	kstat_named_t arcstat_l2_read_bytes;
298 	kstat_named_t arcstat_l2_write_bytes;
299 	kstat_named_t arcstat_l2_writes_sent;
300 	kstat_named_t arcstat_l2_writes_done;
301 	kstat_named_t arcstat_l2_writes_error;
302 	kstat_named_t arcstat_l2_writes_hdr_miss;
303 	kstat_named_t arcstat_l2_evict_lock_retry;
304 	kstat_named_t arcstat_l2_evict_reading;
305 	kstat_named_t arcstat_l2_free_on_write;
306 	kstat_named_t arcstat_l2_abort_lowmem;
307 	kstat_named_t arcstat_l2_cksum_bad;
308 	kstat_named_t arcstat_l2_io_error;
309 	kstat_named_t arcstat_l2_size;
310 	kstat_named_t arcstat_l2_hdr_size;
311 	kstat_named_t arcstat_memory_throttle_count;
312 } arc_stats_t;
313 
314 static arc_stats_t arc_stats = {
315 	{ "hits",			KSTAT_DATA_UINT64 },
316 	{ "misses",			KSTAT_DATA_UINT64 },
317 	{ "demand_data_hits",		KSTAT_DATA_UINT64 },
318 	{ "demand_data_misses",		KSTAT_DATA_UINT64 },
319 	{ "demand_metadata_hits",	KSTAT_DATA_UINT64 },
320 	{ "demand_metadata_misses",	KSTAT_DATA_UINT64 },
321 	{ "prefetch_data_hits",		KSTAT_DATA_UINT64 },
322 	{ "prefetch_data_misses",	KSTAT_DATA_UINT64 },
323 	{ "prefetch_metadata_hits",	KSTAT_DATA_UINT64 },
324 	{ "prefetch_metadata_misses",	KSTAT_DATA_UINT64 },
325 	{ "mru_hits",			KSTAT_DATA_UINT64 },
326 	{ "mru_ghost_hits",		KSTAT_DATA_UINT64 },
327 	{ "mfu_hits",			KSTAT_DATA_UINT64 },
328 	{ "mfu_ghost_hits",		KSTAT_DATA_UINT64 },
329 	{ "deleted",			KSTAT_DATA_UINT64 },
330 	{ "recycle_miss",		KSTAT_DATA_UINT64 },
331 	{ "mutex_miss",			KSTAT_DATA_UINT64 },
332 	{ "evict_skip",			KSTAT_DATA_UINT64 },
333 	{ "evict_l2_cached",		KSTAT_DATA_UINT64 },
334 	{ "evict_l2_eligible",		KSTAT_DATA_UINT64 },
335 	{ "evict_l2_ineligible",	KSTAT_DATA_UINT64 },
336 	{ "hash_elements",		KSTAT_DATA_UINT64 },
337 	{ "hash_elements_max",		KSTAT_DATA_UINT64 },
338 	{ "hash_collisions",		KSTAT_DATA_UINT64 },
339 	{ "hash_chains",		KSTAT_DATA_UINT64 },
340 	{ "hash_chain_max",		KSTAT_DATA_UINT64 },
341 	{ "p",				KSTAT_DATA_UINT64 },
342 	{ "c",				KSTAT_DATA_UINT64 },
343 	{ "c_min",			KSTAT_DATA_UINT64 },
344 	{ "c_max",			KSTAT_DATA_UINT64 },
345 	{ "size",			KSTAT_DATA_UINT64 },
346 	{ "hdr_size",			KSTAT_DATA_UINT64 },
347 	{ "data_size",			KSTAT_DATA_UINT64 },
348 	{ "other_size",			KSTAT_DATA_UINT64 },
349 	{ "l2_hits",			KSTAT_DATA_UINT64 },
350 	{ "l2_misses",			KSTAT_DATA_UINT64 },
351 	{ "l2_feeds",			KSTAT_DATA_UINT64 },
352 	{ "l2_rw_clash",		KSTAT_DATA_UINT64 },
353 	{ "l2_read_bytes",		KSTAT_DATA_UINT64 },
354 	{ "l2_write_bytes",		KSTAT_DATA_UINT64 },
355 	{ "l2_writes_sent",		KSTAT_DATA_UINT64 },
356 	{ "l2_writes_done",		KSTAT_DATA_UINT64 },
357 	{ "l2_writes_error",		KSTAT_DATA_UINT64 },
358 	{ "l2_writes_hdr_miss",		KSTAT_DATA_UINT64 },
359 	{ "l2_evict_lock_retry",	KSTAT_DATA_UINT64 },
360 	{ "l2_evict_reading",		KSTAT_DATA_UINT64 },
361 	{ "l2_free_on_write",		KSTAT_DATA_UINT64 },
362 	{ "l2_abort_lowmem",		KSTAT_DATA_UINT64 },
363 	{ "l2_cksum_bad",		KSTAT_DATA_UINT64 },
364 	{ "l2_io_error",		KSTAT_DATA_UINT64 },
365 	{ "l2_size",			KSTAT_DATA_UINT64 },
366 	{ "l2_hdr_size",		KSTAT_DATA_UINT64 },
367 	{ "memory_throttle_count",	KSTAT_DATA_UINT64 }
368 };
369 
370 #define	ARCSTAT(stat)	(arc_stats.stat.value.ui64)
371 
372 #define	ARCSTAT_INCR(stat, val) \
373 	atomic_add_64(&arc_stats.stat.value.ui64, (val));
374 
375 #define	ARCSTAT_BUMP(stat)	ARCSTAT_INCR(stat, 1)
376 #define	ARCSTAT_BUMPDOWN(stat)	ARCSTAT_INCR(stat, -1)
377 
378 #define	ARCSTAT_MAX(stat, val) {					\
379 	uint64_t m;							\
380 	while ((val) > (m = arc_stats.stat.value.ui64) &&		\
381 	    (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val))))	\
382 		continue;						\
383 }
384 
385 #define	ARCSTAT_MAXSTAT(stat) \
386 	ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
387 
388 /*
389  * We define a macro to allow ARC hits/misses to be easily broken down by
390  * two separate conditions, giving a total of four different subtypes for
391  * each of hits and misses (so eight statistics total).
392  */
393 #define	ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
394 	if (cond1) {							\
395 		if (cond2) {						\
396 			ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
397 		} else {						\
398 			ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
399 		}							\
400 	} else {							\
401 		if (cond2) {						\
402 			ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
403 		} else {						\
404 			ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
405 		}							\
406 	}
407 
408 kstat_t			*arc_ksp;
409 static arc_state_t	*arc_anon;
410 static arc_state_t	*arc_mru;
411 static arc_state_t	*arc_mru_ghost;
412 static arc_state_t	*arc_mfu;
413 static arc_state_t	*arc_mfu_ghost;
414 static arc_state_t	*arc_l2c_only;
415 
416 /*
417  * There are several ARC variables that are critical to export as kstats --
418  * but we don't want to have to grovel around in the kstat whenever we wish to
419  * manipulate them.  For these variables, we therefore define them to be in
420  * terms of the statistic variable.  This assures that we are not introducing
421  * the possibility of inconsistency by having shadow copies of the variables,
422  * while still allowing the code to be readable.
423  */
424 #define	arc_size	ARCSTAT(arcstat_size)	/* actual total arc size */
425 #define	arc_p		ARCSTAT(arcstat_p)	/* target size of MRU */
426 #define	arc_c		ARCSTAT(arcstat_c)	/* target size of cache */
427 #define	arc_c_min	ARCSTAT(arcstat_c_min)	/* min target cache size */
428 #define	arc_c_max	ARCSTAT(arcstat_c_max)	/* max target cache size */
429 
430 static int		arc_no_grow;	/* Don't try to grow cache size */
431 static uint64_t		arc_tempreserve;
432 static uint64_t		arc_loaned_bytes;
433 static uint64_t		arc_meta_used;
434 static uint64_t		arc_meta_limit;
435 static uint64_t		arc_meta_max = 0;
436 
437 typedef struct l2arc_buf_hdr l2arc_buf_hdr_t;
438 
439 typedef struct arc_callback arc_callback_t;
440 
441 struct arc_callback {
442 	void			*acb_private;
443 	arc_done_func_t		*acb_done;
444 	arc_buf_t		*acb_buf;
445 	zio_t			*acb_zio_dummy;
446 	arc_callback_t		*acb_next;
447 };
448 
449 typedef struct arc_write_callback arc_write_callback_t;
450 
451 struct arc_write_callback {
452 	void		*awcb_private;
453 	arc_done_func_t	*awcb_ready;
454 	arc_done_func_t	*awcb_done;
455 	arc_buf_t	*awcb_buf;
456 };
457 
458 struct arc_buf_hdr {
459 	/* protected by hash lock */
460 	dva_t			b_dva;
461 	uint64_t		b_birth;
462 	uint64_t		b_cksum0;
463 
464 	kmutex_t		b_freeze_lock;
465 	zio_cksum_t		*b_freeze_cksum;
466 
467 	arc_buf_hdr_t		*b_hash_next;
468 	arc_buf_t		*b_buf;
469 	uint32_t		b_flags;
470 	uint32_t		b_datacnt;
471 
472 	arc_callback_t		*b_acb;
473 	kcondvar_t		b_cv;
474 
475 	/* immutable */
476 	arc_buf_contents_t	b_type;
477 	uint64_t		b_size;
478 	uint64_t		b_spa;
479 
480 	/* protected by arc state mutex */
481 	arc_state_t		*b_state;
482 	list_node_t		b_arc_node;
483 
484 	/* updated atomically */
485 	clock_t			b_arc_access;
486 
487 	/* self protecting */
488 	refcount_t		b_refcnt;
489 
490 	l2arc_buf_hdr_t		*b_l2hdr;
491 	list_node_t		b_l2node;
492 };
493 
494 static arc_buf_t *arc_eviction_list;
495 static kmutex_t arc_eviction_mtx;
496 static arc_buf_hdr_t arc_eviction_hdr;
497 static void arc_get_data_buf(arc_buf_t *buf);
498 static void arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock);
499 static int arc_evict_needed(arc_buf_contents_t type);
500 static void arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes);
501 
502 static boolean_t l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab);
503 
504 #define	GHOST_STATE(state)	\
505 	((state) == arc_mru_ghost || (state) == arc_mfu_ghost ||	\
506 	(state) == arc_l2c_only)
507 
508 /*
509  * Private ARC flags.  These flags are private ARC only flags that will show up
510  * in b_flags in the arc_hdr_buf_t.  Some flags are publicly declared, and can
511  * be passed in as arc_flags in things like arc_read.  However, these flags
512  * should never be passed and should only be set by ARC code.  When adding new
513  * public flags, make sure not to smash the private ones.
514  */
515 
516 #define	ARC_IN_HASH_TABLE	(1 << 9)	/* this buffer is hashed */
517 #define	ARC_IO_IN_PROGRESS	(1 << 10)	/* I/O in progress for buf */
518 #define	ARC_IO_ERROR		(1 << 11)	/* I/O failed for buf */
519 #define	ARC_FREED_IN_READ	(1 << 12)	/* buf freed while in read */
520 #define	ARC_BUF_AVAILABLE	(1 << 13)	/* block not in active use */
521 #define	ARC_INDIRECT		(1 << 14)	/* this is an indirect block */
522 #define	ARC_FREE_IN_PROGRESS	(1 << 15)	/* hdr about to be freed */
523 #define	ARC_L2_WRITING		(1 << 16)	/* L2ARC write in progress */
524 #define	ARC_L2_EVICTED		(1 << 17)	/* evicted during I/O */
525 #define	ARC_L2_WRITE_HEAD	(1 << 18)	/* head of write list */
526 
527 #define	HDR_IN_HASH_TABLE(hdr)	((hdr)->b_flags & ARC_IN_HASH_TABLE)
528 #define	HDR_IO_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_IO_IN_PROGRESS)
529 #define	HDR_IO_ERROR(hdr)	((hdr)->b_flags & ARC_IO_ERROR)
530 #define	HDR_PREFETCH(hdr)	((hdr)->b_flags & ARC_PREFETCH)
531 #define	HDR_FREED_IN_READ(hdr)	((hdr)->b_flags & ARC_FREED_IN_READ)
532 #define	HDR_BUF_AVAILABLE(hdr)	((hdr)->b_flags & ARC_BUF_AVAILABLE)
533 #define	HDR_FREE_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_FREE_IN_PROGRESS)
534 #define	HDR_L2CACHE(hdr)	((hdr)->b_flags & ARC_L2CACHE)
535 #define	HDR_L2_READING(hdr)	((hdr)->b_flags & ARC_IO_IN_PROGRESS &&	\
536 				    (hdr)->b_l2hdr != NULL)
537 #define	HDR_L2_WRITING(hdr)	((hdr)->b_flags & ARC_L2_WRITING)
538 #define	HDR_L2_EVICTED(hdr)	((hdr)->b_flags & ARC_L2_EVICTED)
539 #define	HDR_L2_WRITE_HEAD(hdr)	((hdr)->b_flags & ARC_L2_WRITE_HEAD)
540 
541 /*
542  * Other sizes
543  */
544 
545 #define	HDR_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
546 #define	L2HDR_SIZE ((int64_t)sizeof (l2arc_buf_hdr_t))
547 
548 /*
549  * Hash table routines
550  */
551 
552 #define	HT_LOCK_PAD	64
553 
554 struct ht_lock {
555 	kmutex_t	ht_lock;
556 #ifdef _KERNEL
557 	unsigned char	pad[(HT_LOCK_PAD - sizeof (kmutex_t))];
558 #endif
559 };
560 
561 #define	BUF_LOCKS 256
562 typedef struct buf_hash_table {
563 	uint64_t ht_mask;
564 	arc_buf_hdr_t **ht_table;
565 	struct ht_lock ht_locks[BUF_LOCKS];
566 } buf_hash_table_t;
567 
568 static buf_hash_table_t buf_hash_table;
569 
570 #define	BUF_HASH_INDEX(spa, dva, birth) \
571 	(buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
572 #define	BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
573 #define	BUF_HASH_LOCK(idx)	(&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
574 #define	HDR_LOCK(buf) \
575 	(BUF_HASH_LOCK(BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth)))
576 
577 uint64_t zfs_crc64_table[256];
578 
579 /*
580  * Level 2 ARC
581  */
582 
583 #define	L2ARC_WRITE_SIZE	(8 * 1024 * 1024)	/* initial write max */
584 #define	L2ARC_HEADROOM		2		/* num of writes */
585 #define	L2ARC_FEED_SECS		1		/* caching interval secs */
586 #define	L2ARC_FEED_MIN_MS	200		/* min caching interval ms */
587 
588 #define	l2arc_writes_sent	ARCSTAT(arcstat_l2_writes_sent)
589 #define	l2arc_writes_done	ARCSTAT(arcstat_l2_writes_done)
590 
591 /*
592  * L2ARC Performance Tunables
593  */
594 uint64_t l2arc_write_max = L2ARC_WRITE_SIZE;	/* default max write size */
595 uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE;	/* extra write during warmup */
596 uint64_t l2arc_headroom = L2ARC_HEADROOM;	/* number of dev writes */
597 uint64_t l2arc_feed_secs = L2ARC_FEED_SECS;	/* interval seconds */
598 uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS;	/* min interval milliseconds */
599 boolean_t l2arc_noprefetch = B_TRUE;		/* don't cache prefetch bufs */
600 boolean_t l2arc_feed_again = B_TRUE;		/* turbo warmup */
601 boolean_t l2arc_norw = B_TRUE;			/* no reads during writes */
602 
603 /*
604  * L2ARC Internals
605  */
606 typedef struct l2arc_dev {
607 	vdev_t			*l2ad_vdev;	/* vdev */
608 	spa_t			*l2ad_spa;	/* spa */
609 	uint64_t		l2ad_hand;	/* next write location */
610 	uint64_t		l2ad_write;	/* desired write size, bytes */
611 	uint64_t		l2ad_boost;	/* warmup write boost, bytes */
612 	uint64_t		l2ad_start;	/* first addr on device */
613 	uint64_t		l2ad_end;	/* last addr on device */
614 	uint64_t		l2ad_evict;	/* last addr eviction reached */
615 	boolean_t		l2ad_first;	/* first sweep through */
616 	boolean_t		l2ad_writing;	/* currently writing */
617 	list_t			*l2ad_buflist;	/* buffer list */
618 	list_node_t		l2ad_node;	/* device list node */
619 } l2arc_dev_t;
620 
621 static list_t L2ARC_dev_list;			/* device list */
622 static list_t *l2arc_dev_list;			/* device list pointer */
623 static kmutex_t l2arc_dev_mtx;			/* device list mutex */
624 static l2arc_dev_t *l2arc_dev_last;		/* last device used */
625 static kmutex_t l2arc_buflist_mtx;		/* mutex for all buflists */
626 static list_t L2ARC_free_on_write;		/* free after write buf list */
627 static list_t *l2arc_free_on_write;		/* free after write list ptr */
628 static kmutex_t l2arc_free_on_write_mtx;	/* mutex for list */
629 static uint64_t l2arc_ndev;			/* number of devices */
630 
631 typedef struct l2arc_read_callback {
632 	arc_buf_t	*l2rcb_buf;		/* read buffer */
633 	spa_t		*l2rcb_spa;		/* spa */
634 	blkptr_t	l2rcb_bp;		/* original blkptr */
635 	zbookmark_t	l2rcb_zb;		/* original bookmark */
636 	int		l2rcb_flags;		/* original flags */
637 } l2arc_read_callback_t;
638 
639 typedef struct l2arc_write_callback {
640 	l2arc_dev_t	*l2wcb_dev;		/* device info */
641 	arc_buf_hdr_t	*l2wcb_head;		/* head of write buflist */
642 } l2arc_write_callback_t;
643 
644 struct l2arc_buf_hdr {
645 	/* protected by arc_buf_hdr  mutex */
646 	l2arc_dev_t	*b_dev;			/* L2ARC device */
647 	uint64_t	b_daddr;		/* disk address, offset byte */
648 };
649 
650 typedef struct l2arc_data_free {
651 	/* protected by l2arc_free_on_write_mtx */
652 	void		*l2df_data;
653 	size_t		l2df_size;
654 	void		(*l2df_func)(void *, size_t);
655 	list_node_t	l2df_list_node;
656 } l2arc_data_free_t;
657 
658 static kmutex_t l2arc_feed_thr_lock;
659 static kcondvar_t l2arc_feed_thr_cv;
660 static uint8_t l2arc_thread_exit;
661 
662 static void l2arc_read_done(zio_t *zio);
663 static void l2arc_hdr_stat_add(void);
664 static void l2arc_hdr_stat_remove(void);
665 
666 static uint64_t
buf_hash(uint64_t spa,const dva_t * dva,uint64_t birth)667 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
668 {
669 	uint8_t *vdva = (uint8_t *)dva;
670 	uint64_t crc = -1ULL;
671 	int i;
672 
673 	ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
674 
675 	for (i = 0; i < sizeof (dva_t); i++)
676 		crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF];
677 
678 	crc ^= (spa>>8) ^ birth;
679 
680 	return (crc);
681 }
682 
683 #define	BUF_EMPTY(buf)						\
684 	((buf)->b_dva.dva_word[0] == 0 &&			\
685 	(buf)->b_dva.dva_word[1] == 0 &&			\
686 	(buf)->b_birth == 0)
687 
688 #define	BUF_EQUAL(spa, dva, birth, buf)				\
689 	((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) &&	\
690 	((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) &&	\
691 	((buf)->b_birth == birth) && ((buf)->b_spa == spa)
692 
693 static arc_buf_hdr_t *
buf_hash_find(uint64_t spa,const dva_t * dva,uint64_t birth,kmutex_t ** lockp)694 buf_hash_find(uint64_t spa, const dva_t *dva, uint64_t birth, kmutex_t **lockp)
695 {
696 	uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
697 	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
698 	arc_buf_hdr_t *buf;
699 
700 	mutex_enter(hash_lock);
701 	for (buf = buf_hash_table.ht_table[idx]; buf != NULL;
702 	    buf = buf->b_hash_next) {
703 		if (BUF_EQUAL(spa, dva, birth, buf)) {
704 			*lockp = hash_lock;
705 			return (buf);
706 		}
707 	}
708 	mutex_exit(hash_lock);
709 	*lockp = NULL;
710 	return (NULL);
711 }
712 
713 /*
714  * Insert an entry into the hash table.  If there is already an element
715  * equal to elem in the hash table, then the already existing element
716  * will be returned and the new element will not be inserted.
717  * Otherwise returns NULL.
718  */
719 static arc_buf_hdr_t *
buf_hash_insert(arc_buf_hdr_t * buf,kmutex_t ** lockp)720 buf_hash_insert(arc_buf_hdr_t *buf, kmutex_t **lockp)
721 {
722 	uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
723 	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
724 	arc_buf_hdr_t *fbuf;
725 	uint32_t i;
726 
727 	ASSERT(!HDR_IN_HASH_TABLE(buf));
728 	*lockp = hash_lock;
729 	mutex_enter(hash_lock);
730 	for (fbuf = buf_hash_table.ht_table[idx], i = 0; fbuf != NULL;
731 	    fbuf = fbuf->b_hash_next, i++) {
732 		if (BUF_EQUAL(buf->b_spa, &buf->b_dva, buf->b_birth, fbuf))
733 			return (fbuf);
734 	}
735 
736 	buf->b_hash_next = buf_hash_table.ht_table[idx];
737 	buf_hash_table.ht_table[idx] = buf;
738 	buf->b_flags |= ARC_IN_HASH_TABLE;
739 
740 	/* collect some hash table performance data */
741 	if (i > 0) {
742 		ARCSTAT_BUMP(arcstat_hash_collisions);
743 		if (i == 1)
744 			ARCSTAT_BUMP(arcstat_hash_chains);
745 
746 		ARCSTAT_MAX(arcstat_hash_chain_max, i);
747 	}
748 
749 	ARCSTAT_BUMP(arcstat_hash_elements);
750 	ARCSTAT_MAXSTAT(arcstat_hash_elements);
751 
752 	return (NULL);
753 }
754 
755 static void
buf_hash_remove(arc_buf_hdr_t * buf)756 buf_hash_remove(arc_buf_hdr_t *buf)
757 {
758 	arc_buf_hdr_t *fbuf, **bufp;
759 	uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
760 
761 	ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
762 	ASSERT(HDR_IN_HASH_TABLE(buf));
763 
764 	bufp = &buf_hash_table.ht_table[idx];
765 	while ((fbuf = *bufp) != buf) {
766 		ASSERT(fbuf != NULL);
767 		bufp = &fbuf->b_hash_next;
768 	}
769 	*bufp = buf->b_hash_next;
770 	buf->b_hash_next = NULL;
771 	buf->b_flags &= ~ARC_IN_HASH_TABLE;
772 
773 	/* collect some hash table performance data */
774 	ARCSTAT_BUMPDOWN(arcstat_hash_elements);
775 
776 	if (buf_hash_table.ht_table[idx] &&
777 	    buf_hash_table.ht_table[idx]->b_hash_next == NULL)
778 		ARCSTAT_BUMPDOWN(arcstat_hash_chains);
779 }
780 
781 /*
782  * Global data structures and functions for the buf kmem cache.
783  */
784 static kmem_cache_t *hdr_cache;
785 static kmem_cache_t *buf_cache;
786 
787 static void
buf_fini(void)788 buf_fini(void)
789 {
790 	int i;
791 
792 	kmem_free(buf_hash_table.ht_table,
793 	    (buf_hash_table.ht_mask + 1) * sizeof (void *));
794 	for (i = 0; i < BUF_LOCKS; i++)
795 		mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
796 	kmem_cache_destroy(hdr_cache);
797 	kmem_cache_destroy(buf_cache);
798 }
799 
800 /*
801  * Constructor callback - called when the cache is empty
802  * and a new buf is requested.
803  */
804 /* ARGSUSED */
805 static int
hdr_cons(void * vbuf,void * unused,int kmflag)806 hdr_cons(void *vbuf, void *unused, int kmflag)
807 {
808 	arc_buf_hdr_t *buf = unused;
809 
810 	bzero(buf, sizeof (arc_buf_hdr_t));
811 	refcount_create(&buf->b_refcnt);
812 	cv_init(&buf->b_cv, NULL, CV_DEFAULT, NULL);
813 	mutex_init(&buf->b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
814 	arc_space_consume(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS);
815 
816 	return (0);
817 }
818 
819 /* ARGSUSED */
820 static int
buf_cons(void * vbuf,void * unused,int kmflag)821 buf_cons(void *vbuf, void *unused, int kmflag)
822 {
823 	arc_buf_t *buf = unused;
824 
825 	bzero(buf, sizeof (arc_buf_t));
826 	rw_init(&buf->b_lock, NULL, RW_DEFAULT, NULL);
827 	arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
828 
829 	return (0);
830 }
831 
832 /*
833  * Destructor callback - called when a cached buf is
834  * no longer required.
835  */
836 /* ARGSUSED */
837 static void
hdr_dest(void * vbuf,void * unused)838 hdr_dest(void *vbuf, void *unused)
839 {
840 	arc_buf_hdr_t *buf = unused;
841 
842 	ASSERT(BUF_EMPTY(buf));
843 	refcount_destroy(&buf->b_refcnt);
844 	cv_destroy(&buf->b_cv);
845 	mutex_destroy(&buf->b_freeze_lock);
846 	arc_space_return(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS);
847 }
848 
849 /* ARGSUSED */
850 static void
buf_dest(void * vbuf,void * unused)851 buf_dest(void *vbuf, void *unused)
852 {
853 	arc_buf_t *buf = unused;
854 
855 	rw_destroy(&buf->b_lock);
856 	arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
857 }
858 
859 /*
860  * Reclaim callback -- invoked when memory is low.
861  */
862 /* ARGSUSED */
863 static void
hdr_recl(void * unused)864 hdr_recl(void *unused)
865 {
866 	dprintf("hdr_recl called\n");
867 	/*
868 	 * umem calls the reclaim func when we destroy the buf cache,
869 	 * which is after we do arc_fini().
870 	 */
871 	if (!arc_dead)
872 		cv_signal(&arc_reclaim_thr_cv);
873 }
874 
875 static void
buf_init(void)876 buf_init(void)
877 {
878 	uint64_t *ct;
879 	uint64_t hsize = 1ULL << 12;
880 	int i, j;
881 
882 	/*
883 	 * The hash table is big enough to fill all of physical memory
884 	 * with an average 64K block size.  The table will take up
885 	 * totalmem*sizeof(void*)/64K (eg. 128KB/GB with 8-byte pointers).
886 	 */
887 	while (hsize * 65536 < (uint64_t)physmem * PAGESIZE)
888 		hsize <<= 1;
889 retry:
890 	buf_hash_table.ht_mask = hsize - 1;
891 	buf_hash_table.ht_table =
892 	    kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
893 	if (buf_hash_table.ht_table == NULL) {
894 		ASSERT(hsize > (1ULL << 8));
895 		hsize >>= 1;
896 		goto retry;
897 	}
898 
899 	hdr_cache = kmem_cache_create("arc_buf_hdr_t", sizeof (arc_buf_hdr_t),
900 	    0, hdr_cons, hdr_dest, hdr_recl, NULL, NULL, 0);
901 	buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
902 	    0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
903 
904 	for (i = 0; i < 256; i++)
905 		for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
906 			*ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
907 
908 	for (i = 0; i < BUF_LOCKS; i++) {
909 		mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
910 		    NULL, MUTEX_DEFAULT, NULL);
911 	}
912 }
913 
914 #define	ARC_MINTIME	(hz>>4) /* 62 ms */
915 
916 static void
arc_cksum_verify(arc_buf_t * buf)917 arc_cksum_verify(arc_buf_t *buf)
918 {
919 	zio_cksum_t zc;
920 
921 	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
922 		return;
923 
924 	mutex_enter(&buf->b_hdr->b_freeze_lock);
925 	if (buf->b_hdr->b_freeze_cksum == NULL ||
926 	    (buf->b_hdr->b_flags & ARC_IO_ERROR)) {
927 		mutex_exit(&buf->b_hdr->b_freeze_lock);
928 		return;
929 	}
930 	fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
931 	if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc))
932 		panic("buffer modified while frozen!");
933 	mutex_exit(&buf->b_hdr->b_freeze_lock);
934 }
935 
936 static int
arc_cksum_equal(arc_buf_t * buf)937 arc_cksum_equal(arc_buf_t *buf)
938 {
939 	zio_cksum_t zc;
940 	int equal;
941 
942 	mutex_enter(&buf->b_hdr->b_freeze_lock);
943 	fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
944 	equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc);
945 	mutex_exit(&buf->b_hdr->b_freeze_lock);
946 
947 	return (equal);
948 }
949 
950 static void
arc_cksum_compute(arc_buf_t * buf,boolean_t force)951 arc_cksum_compute(arc_buf_t *buf, boolean_t force)
952 {
953 	if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY))
954 		return;
955 
956 	mutex_enter(&buf->b_hdr->b_freeze_lock);
957 	if (buf->b_hdr->b_freeze_cksum != NULL) {
958 		mutex_exit(&buf->b_hdr->b_freeze_lock);
959 		return;
960 	}
961 	buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP);
962 	fletcher_2_native(buf->b_data, buf->b_hdr->b_size,
963 	    buf->b_hdr->b_freeze_cksum);
964 	mutex_exit(&buf->b_hdr->b_freeze_lock);
965 }
966 
967 void
arc_buf_thaw(arc_buf_t * buf)968 arc_buf_thaw(arc_buf_t *buf)
969 {
970 	if (zfs_flags & ZFS_DEBUG_MODIFY) {
971 		if (buf->b_hdr->b_state != arc_anon)
972 			panic("modifying non-anon buffer!");
973 		if (buf->b_hdr->b_flags & ARC_IO_IN_PROGRESS)
974 			panic("modifying buffer while i/o in progress!");
975 		arc_cksum_verify(buf);
976 	}
977 
978 	mutex_enter(&buf->b_hdr->b_freeze_lock);
979 	if (buf->b_hdr->b_freeze_cksum != NULL) {
980 		kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t));
981 		buf->b_hdr->b_freeze_cksum = NULL;
982 	}
983 	mutex_exit(&buf->b_hdr->b_freeze_lock);
984 }
985 
986 void
arc_buf_freeze(arc_buf_t * buf)987 arc_buf_freeze(arc_buf_t *buf)
988 {
989 	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
990 		return;
991 
992 	ASSERT(buf->b_hdr->b_freeze_cksum != NULL ||
993 	    buf->b_hdr->b_state == arc_anon);
994 	arc_cksum_compute(buf, B_FALSE);
995 }
996 
997 static void
add_reference(arc_buf_hdr_t * ab,kmutex_t * hash_lock,void * tag)998 add_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
999 {
1000 	ASSERT(MUTEX_HELD(hash_lock));
1001 
1002 	if ((refcount_add(&ab->b_refcnt, tag) == 1) &&
1003 	    (ab->b_state != arc_anon)) {
1004 		uint64_t delta = ab->b_size * ab->b_datacnt;
1005 		list_t *list = &ab->b_state->arcs_list[ab->b_type];
1006 		uint64_t *size = &ab->b_state->arcs_lsize[ab->b_type];
1007 
1008 		ASSERT(!MUTEX_HELD(&ab->b_state->arcs_mtx));
1009 		mutex_enter(&ab->b_state->arcs_mtx);
1010 		ASSERT(list_link_active(&ab->b_arc_node));
1011 		list_remove(list, ab);
1012 		if (GHOST_STATE(ab->b_state)) {
1013 			ASSERT3U(ab->b_datacnt, ==, 0);
1014 			ASSERT3P(ab->b_buf, ==, NULL);
1015 			delta = ab->b_size;
1016 		}
1017 		ASSERT(delta > 0);
1018 		ASSERT3U(*size, >=, delta);
1019 		atomic_add_64(size, -delta);
1020 		mutex_exit(&ab->b_state->arcs_mtx);
1021 		/* remove the prefetch flag if we get a reference */
1022 		if (ab->b_flags & ARC_PREFETCH)
1023 			ab->b_flags &= ~ARC_PREFETCH;
1024 	}
1025 }
1026 
1027 static int
remove_reference(arc_buf_hdr_t * ab,kmutex_t * hash_lock,void * tag)1028 remove_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
1029 {
1030 	int cnt;
1031 	arc_state_t *state = ab->b_state;
1032 
1033 	ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
1034 	ASSERT(!GHOST_STATE(state));
1035 
1036 	if (((cnt = refcount_remove(&ab->b_refcnt, tag)) == 0) &&
1037 	    (state != arc_anon)) {
1038 		uint64_t *size = &state->arcs_lsize[ab->b_type];
1039 
1040 		ASSERT(!MUTEX_HELD(&state->arcs_mtx));
1041 		mutex_enter(&state->arcs_mtx);
1042 		ASSERT(!list_link_active(&ab->b_arc_node));
1043 		list_insert_head(&state->arcs_list[ab->b_type], ab);
1044 		ASSERT(ab->b_datacnt > 0);
1045 		atomic_add_64(size, ab->b_size * ab->b_datacnt);
1046 		mutex_exit(&state->arcs_mtx);
1047 	}
1048 	return (cnt);
1049 }
1050 
1051 /*
1052  * Move the supplied buffer to the indicated state.  The mutex
1053  * for the buffer must be held by the caller.
1054  */
1055 static void
arc_change_state(arc_state_t * new_state,arc_buf_hdr_t * ab,kmutex_t * hash_lock)1056 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *ab, kmutex_t *hash_lock)
1057 {
1058 	arc_state_t *old_state = ab->b_state;
1059 	int64_t refcnt = refcount_count(&ab->b_refcnt);
1060 	uint64_t from_delta, to_delta;
1061 
1062 	ASSERT(MUTEX_HELD(hash_lock));
1063 	ASSERT(new_state != old_state);
1064 	ASSERT(refcnt == 0 || ab->b_datacnt > 0);
1065 	ASSERT(ab->b_datacnt == 0 || !GHOST_STATE(new_state));
1066 	ASSERT(ab->b_datacnt <= 1 || new_state != arc_anon);
1067 	ASSERT(ab->b_datacnt <= 1 || old_state != arc_anon);
1068 
1069 	from_delta = to_delta = ab->b_datacnt * ab->b_size;
1070 
1071 	/*
1072 	 * If this buffer is evictable, transfer it from the
1073 	 * old state list to the new state list.
1074 	 */
1075 	if (refcnt == 0) {
1076 		if (old_state != arc_anon) {
1077 			int use_mutex = !MUTEX_HELD(&old_state->arcs_mtx);
1078 			uint64_t *size = &old_state->arcs_lsize[ab->b_type];
1079 
1080 			if (use_mutex)
1081 				mutex_enter(&old_state->arcs_mtx);
1082 
1083 			ASSERT(list_link_active(&ab->b_arc_node));
1084 			list_remove(&old_state->arcs_list[ab->b_type], ab);
1085 
1086 			/*
1087 			 * If prefetching out of the ghost cache,
1088 			 * we will have a non-null datacnt.
1089 			 */
1090 			if (GHOST_STATE(old_state) && ab->b_datacnt == 0) {
1091 				/* ghost elements have a ghost size */
1092 				ASSERT(ab->b_buf == NULL);
1093 				from_delta = ab->b_size;
1094 			}
1095 			ASSERT3U(*size, >=, from_delta);
1096 			atomic_add_64(size, -from_delta);
1097 
1098 			if (use_mutex)
1099 				mutex_exit(&old_state->arcs_mtx);
1100 		}
1101 		if (new_state != arc_anon) {
1102 			int use_mutex = !MUTEX_HELD(&new_state->arcs_mtx);
1103 			uint64_t *size = &new_state->arcs_lsize[ab->b_type];
1104 
1105 			if (use_mutex)
1106 				mutex_enter(&new_state->arcs_mtx);
1107 
1108 			list_insert_head(&new_state->arcs_list[ab->b_type], ab);
1109 
1110 			/* ghost elements have a ghost size */
1111 			if (GHOST_STATE(new_state)) {
1112 				ASSERT(ab->b_datacnt == 0);
1113 				ASSERT(ab->b_buf == NULL);
1114 				to_delta = ab->b_size;
1115 			}
1116 			atomic_add_64(size, to_delta);
1117 
1118 			if (use_mutex)
1119 				mutex_exit(&new_state->arcs_mtx);
1120 		}
1121 	}
1122 
1123 	ASSERT(!BUF_EMPTY(ab));
1124 	if (new_state == arc_anon) {
1125 		buf_hash_remove(ab);
1126 	}
1127 
1128 	/* adjust state sizes */
1129 	if (to_delta)
1130 		atomic_add_64(&new_state->arcs_size, to_delta);
1131 	if (from_delta) {
1132 		ASSERT3U(old_state->arcs_size, >=, from_delta);
1133 		atomic_add_64(&old_state->arcs_size, -from_delta);
1134 	}
1135 	ab->b_state = new_state;
1136 
1137 	/* adjust l2arc hdr stats */
1138 	if (new_state == arc_l2c_only)
1139 		l2arc_hdr_stat_add();
1140 	else if (old_state == arc_l2c_only)
1141 		l2arc_hdr_stat_remove();
1142 }
1143 
1144 void
arc_space_consume(uint64_t space,arc_space_type_t type)1145 arc_space_consume(uint64_t space, arc_space_type_t type)
1146 {
1147 	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1148 
1149 	switch (type) {
1150 	case ARC_SPACE_DATA:
1151 		ARCSTAT_INCR(arcstat_data_size, space);
1152 		break;
1153 	case ARC_SPACE_OTHER:
1154 		ARCSTAT_INCR(arcstat_other_size, space);
1155 		break;
1156 	case ARC_SPACE_HDRS:
1157 		ARCSTAT_INCR(arcstat_hdr_size, space);
1158 		break;
1159 	case ARC_SPACE_L2HDRS:
1160 		ARCSTAT_INCR(arcstat_l2_hdr_size, space);
1161 		break;
1162 	}
1163 
1164 	atomic_add_64(&arc_meta_used, space);
1165 	atomic_add_64(&arc_size, space);
1166 }
1167 
1168 void
arc_space_return(uint64_t space,arc_space_type_t type)1169 arc_space_return(uint64_t space, arc_space_type_t type)
1170 {
1171 	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1172 
1173 	switch (type) {
1174 	case ARC_SPACE_DATA:
1175 		ARCSTAT_INCR(arcstat_data_size, -space);
1176 		break;
1177 	case ARC_SPACE_OTHER:
1178 		ARCSTAT_INCR(arcstat_other_size, -space);
1179 		break;
1180 	case ARC_SPACE_HDRS:
1181 		ARCSTAT_INCR(arcstat_hdr_size, -space);
1182 		break;
1183 	case ARC_SPACE_L2HDRS:
1184 		ARCSTAT_INCR(arcstat_l2_hdr_size, -space);
1185 		break;
1186 	}
1187 
1188 	ASSERT(arc_meta_used >= space);
1189 	if (arc_meta_max < arc_meta_used)
1190 		arc_meta_max = arc_meta_used;
1191 	atomic_add_64(&arc_meta_used, -space);
1192 	ASSERT(arc_size >= space);
1193 	atomic_add_64(&arc_size, -space);
1194 }
1195 
1196 void *
arc_data_buf_alloc(uint64_t size)1197 arc_data_buf_alloc(uint64_t size)
1198 {
1199 	if (arc_evict_needed(ARC_BUFC_DATA))
1200 		cv_signal(&arc_reclaim_thr_cv);
1201 	atomic_add_64(&arc_size, size);
1202 	return (zio_data_buf_alloc(size));
1203 }
1204 
1205 void
arc_data_buf_free(void * buf,uint64_t size)1206 arc_data_buf_free(void *buf, uint64_t size)
1207 {
1208 	zio_data_buf_free(buf, size);
1209 	ASSERT(arc_size >= size);
1210 	atomic_add_64(&arc_size, -size);
1211 }
1212 
1213 arc_buf_t *
arc_buf_alloc(spa_t * spa,int size,void * tag,arc_buf_contents_t type)1214 arc_buf_alloc(spa_t *spa, int size, void *tag, arc_buf_contents_t type)
1215 {
1216 	arc_buf_hdr_t *hdr;
1217 	arc_buf_t *buf;
1218 
1219 	ASSERT3U(size, >, 0);
1220 	hdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
1221 	ASSERT(BUF_EMPTY(hdr));
1222 	hdr->b_size = size;
1223 	hdr->b_type = type;
1224 	hdr->b_spa = spa_guid(spa);
1225 	hdr->b_state = arc_anon;
1226 	hdr->b_arc_access = 0;
1227 	buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1228 	buf->b_hdr = hdr;
1229 	buf->b_data = NULL;
1230 	buf->b_efunc = NULL;
1231 	buf->b_private = NULL;
1232 	buf->b_next = NULL;
1233 	hdr->b_buf = buf;
1234 	arc_get_data_buf(buf);
1235 	hdr->b_datacnt = 1;
1236 	hdr->b_flags = 0;
1237 	ASSERT(refcount_is_zero(&hdr->b_refcnt));
1238 	(void) refcount_add(&hdr->b_refcnt, tag);
1239 
1240 	return (buf);
1241 }
1242 
1243 static char *arc_onloan_tag = "onloan";
1244 
1245 /*
1246  * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
1247  * flight data by arc_tempreserve_space() until they are "returned". Loaned
1248  * buffers must be returned to the arc before they can be used by the DMU or
1249  * freed.
1250  */
1251 arc_buf_t *
arc_loan_buf(spa_t * spa,int size)1252 arc_loan_buf(spa_t *spa, int size)
1253 {
1254 	arc_buf_t *buf;
1255 
1256 	buf = arc_buf_alloc(spa, size, arc_onloan_tag, ARC_BUFC_DATA);
1257 
1258 	atomic_add_64(&arc_loaned_bytes, size);
1259 	return (buf);
1260 }
1261 
1262 /*
1263  * Return a loaned arc buffer to the arc.
1264  */
1265 void
arc_return_buf(arc_buf_t * buf,void * tag)1266 arc_return_buf(arc_buf_t *buf, void *tag)
1267 {
1268 	arc_buf_hdr_t *hdr = buf->b_hdr;
1269 
1270 	ASSERT(buf->b_data != NULL);
1271 	(void) refcount_add(&hdr->b_refcnt, tag);
1272 	(void) refcount_remove(&hdr->b_refcnt, arc_onloan_tag);
1273 
1274 	atomic_add_64(&arc_loaned_bytes, -hdr->b_size);
1275 }
1276 
1277 /* Detach an arc_buf from a dbuf (tag) */
1278 void
arc_loan_inuse_buf(arc_buf_t * buf,void * tag)1279 arc_loan_inuse_buf(arc_buf_t *buf, void *tag)
1280 {
1281 	arc_buf_hdr_t *hdr;
1282 
1283 	rw_enter(&buf->b_lock, RW_WRITER);
1284 	ASSERT(buf->b_data != NULL);
1285 	hdr = buf->b_hdr;
1286 	(void) refcount_add(&hdr->b_refcnt, arc_onloan_tag);
1287 	(void) refcount_remove(&hdr->b_refcnt, tag);
1288 	buf->b_efunc = NULL;
1289 	buf->b_private = NULL;
1290 
1291 	atomic_add_64(&arc_loaned_bytes, hdr->b_size);
1292 	rw_exit(&buf->b_lock);
1293 }
1294 
1295 static arc_buf_t *
arc_buf_clone(arc_buf_t * from)1296 arc_buf_clone(arc_buf_t *from)
1297 {
1298 	arc_buf_t *buf;
1299 	arc_buf_hdr_t *hdr = from->b_hdr;
1300 	uint64_t size = hdr->b_size;
1301 
1302 	ASSERT(hdr->b_state != arc_anon);
1303 
1304 	buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1305 	buf->b_hdr = hdr;
1306 	buf->b_data = NULL;
1307 	buf->b_efunc = NULL;
1308 	buf->b_private = NULL;
1309 	buf->b_next = hdr->b_buf;
1310 	hdr->b_buf = buf;
1311 	arc_get_data_buf(buf);
1312 	bcopy(from->b_data, buf->b_data, size);
1313 	hdr->b_datacnt += 1;
1314 	return (buf);
1315 }
1316 
1317 void
arc_buf_add_ref(arc_buf_t * buf,void * tag)1318 arc_buf_add_ref(arc_buf_t *buf, void* tag)
1319 {
1320 	arc_buf_hdr_t *hdr;
1321 	kmutex_t *hash_lock;
1322 
1323 	/*
1324 	 * Check to see if this buffer is evicted.  Callers
1325 	 * must verify b_data != NULL to know if the add_ref
1326 	 * was successful.
1327 	 */
1328 	rw_enter(&buf->b_lock, RW_READER);
1329 	if (buf->b_data == NULL) {
1330 		rw_exit(&buf->b_lock);
1331 		return;
1332 	}
1333 	hdr = buf->b_hdr;
1334 	ASSERT(hdr != NULL);
1335 	hash_lock = HDR_LOCK(hdr);
1336 	mutex_enter(hash_lock);
1337 	rw_exit(&buf->b_lock);
1338 
1339 	ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
1340 	add_reference(hdr, hash_lock, tag);
1341 	DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
1342 	arc_access(hdr, hash_lock);
1343 	mutex_exit(hash_lock);
1344 	ARCSTAT_BUMP(arcstat_hits);
1345 	ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
1346 	    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
1347 	    data, metadata, hits);
1348 }
1349 
1350 /*
1351  * Free the arc data buffer.  If it is an l2arc write in progress,
1352  * the buffer is placed on l2arc_free_on_write to be freed later.
1353  */
1354 static void
arc_buf_data_free(arc_buf_hdr_t * hdr,void (* free_func)(void *,size_t),void * data,size_t size)1355 arc_buf_data_free(arc_buf_hdr_t *hdr, void (*free_func)(void *, size_t),
1356     void *data, size_t size)
1357 {
1358 	if (HDR_L2_WRITING(hdr)) {
1359 		l2arc_data_free_t *df;
1360 		df = kmem_alloc(sizeof (l2arc_data_free_t), KM_SLEEP);
1361 		df->l2df_data = data;
1362 		df->l2df_size = size;
1363 		df->l2df_func = free_func;
1364 		mutex_enter(&l2arc_free_on_write_mtx);
1365 		list_insert_head(l2arc_free_on_write, df);
1366 		mutex_exit(&l2arc_free_on_write_mtx);
1367 		ARCSTAT_BUMP(arcstat_l2_free_on_write);
1368 	} else {
1369 		free_func(data, size);
1370 	}
1371 }
1372 
1373 static void
arc_buf_destroy(arc_buf_t * buf,boolean_t recycle,boolean_t all)1374 arc_buf_destroy(arc_buf_t *buf, boolean_t recycle, boolean_t all)
1375 {
1376 	arc_buf_t **bufp;
1377 
1378 	/* free up data associated with the buf */
1379 	if (buf->b_data) {
1380 		arc_state_t *state = buf->b_hdr->b_state;
1381 		uint64_t size = buf->b_hdr->b_size;
1382 		arc_buf_contents_t type = buf->b_hdr->b_type;
1383 
1384 		arc_cksum_verify(buf);
1385 
1386 		if (!recycle) {
1387 			if (type == ARC_BUFC_METADATA) {
1388 				arc_buf_data_free(buf->b_hdr, zio_buf_free,
1389 				    buf->b_data, size);
1390 				arc_space_return(size, ARC_SPACE_DATA);
1391 			} else {
1392 				ASSERT(type == ARC_BUFC_DATA);
1393 				arc_buf_data_free(buf->b_hdr,
1394 				    zio_data_buf_free, buf->b_data, size);
1395 				ARCSTAT_INCR(arcstat_data_size, -size);
1396 				atomic_add_64(&arc_size, -size);
1397 			}
1398 		}
1399 		if (list_link_active(&buf->b_hdr->b_arc_node)) {
1400 			uint64_t *cnt = &state->arcs_lsize[type];
1401 
1402 			ASSERT(refcount_is_zero(&buf->b_hdr->b_refcnt));
1403 			ASSERT(state != arc_anon);
1404 
1405 			ASSERT3U(*cnt, >=, size);
1406 			atomic_add_64(cnt, -size);
1407 		}
1408 		ASSERT3U(state->arcs_size, >=, size);
1409 		atomic_add_64(&state->arcs_size, -size);
1410 		buf->b_data = NULL;
1411 		ASSERT(buf->b_hdr->b_datacnt > 0);
1412 		buf->b_hdr->b_datacnt -= 1;
1413 	}
1414 
1415 	/* only remove the buf if requested */
1416 	if (!all)
1417 		return;
1418 
1419 	/* remove the buf from the hdr list */
1420 	for (bufp = &buf->b_hdr->b_buf; *bufp != buf; bufp = &(*bufp)->b_next)
1421 		continue;
1422 	*bufp = buf->b_next;
1423 
1424 	ASSERT(buf->b_efunc == NULL);
1425 
1426 	/* clean up the buf */
1427 	buf->b_hdr = NULL;
1428 	kmem_cache_free(buf_cache, buf);
1429 }
1430 
1431 static void
arc_hdr_destroy(arc_buf_hdr_t * hdr)1432 arc_hdr_destroy(arc_buf_hdr_t *hdr)
1433 {
1434 	ASSERT(refcount_is_zero(&hdr->b_refcnt));
1435 	ASSERT3P(hdr->b_state, ==, arc_anon);
1436 	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
1437 	l2arc_buf_hdr_t *l2hdr = hdr->b_l2hdr;
1438 
1439 	if (l2hdr != NULL) {
1440 		boolean_t buflist_held = MUTEX_HELD(&l2arc_buflist_mtx);
1441 		/*
1442 		 * To prevent arc_free() and l2arc_evict() from
1443 		 * attempting to free the same buffer at the same time,
1444 		 * a FREE_IN_PROGRESS flag is given to arc_free() to
1445 		 * give it priority.  l2arc_evict() can't destroy this
1446 		 * header while we are waiting on l2arc_buflist_mtx.
1447 		 *
1448 		 * The hdr may be removed from l2ad_buflist before we
1449 		 * grab l2arc_buflist_mtx, so b_l2hdr is rechecked.
1450 		 */
1451 		if (!buflist_held) {
1452 			mutex_enter(&l2arc_buflist_mtx);
1453 			l2hdr = hdr->b_l2hdr;
1454 		}
1455 
1456 		if (l2hdr != NULL) {
1457 			list_remove(l2hdr->b_dev->l2ad_buflist, hdr);
1458 			ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
1459 			kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t));
1460 			if (hdr->b_state == arc_l2c_only)
1461 				l2arc_hdr_stat_remove();
1462 			hdr->b_l2hdr = NULL;
1463 		}
1464 
1465 		if (!buflist_held)
1466 			mutex_exit(&l2arc_buflist_mtx);
1467 	}
1468 
1469 	if (!BUF_EMPTY(hdr)) {
1470 		ASSERT(!HDR_IN_HASH_TABLE(hdr));
1471 		bzero(&hdr->b_dva, sizeof (dva_t));
1472 		hdr->b_birth = 0;
1473 		hdr->b_cksum0 = 0;
1474 	}
1475 	while (hdr->b_buf) {
1476 		arc_buf_t *buf = hdr->b_buf;
1477 
1478 		if (buf->b_efunc) {
1479 			mutex_enter(&arc_eviction_mtx);
1480 			rw_enter(&buf->b_lock, RW_WRITER);
1481 			ASSERT(buf->b_hdr != NULL);
1482 			arc_buf_destroy(hdr->b_buf, FALSE, FALSE);
1483 			hdr->b_buf = buf->b_next;
1484 			buf->b_hdr = &arc_eviction_hdr;
1485 			buf->b_next = arc_eviction_list;
1486 			arc_eviction_list = buf;
1487 			rw_exit(&buf->b_lock);
1488 			mutex_exit(&arc_eviction_mtx);
1489 		} else {
1490 			arc_buf_destroy(hdr->b_buf, FALSE, TRUE);
1491 		}
1492 	}
1493 	if (hdr->b_freeze_cksum != NULL) {
1494 		kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1495 		hdr->b_freeze_cksum = NULL;
1496 	}
1497 
1498 	ASSERT(!list_link_active(&hdr->b_arc_node));
1499 	ASSERT3P(hdr->b_hash_next, ==, NULL);
1500 	ASSERT3P(hdr->b_acb, ==, NULL);
1501 	kmem_cache_free(hdr_cache, hdr);
1502 }
1503 
1504 void
arc_buf_free(arc_buf_t * buf,void * tag)1505 arc_buf_free(arc_buf_t *buf, void *tag)
1506 {
1507 	arc_buf_hdr_t *hdr = buf->b_hdr;
1508 	int hashed = hdr->b_state != arc_anon;
1509 
1510 	ASSERT(buf->b_efunc == NULL);
1511 	ASSERT(buf->b_data != NULL);
1512 
1513 	if (hashed) {
1514 		kmutex_t *hash_lock = HDR_LOCK(hdr);
1515 
1516 		mutex_enter(hash_lock);
1517 		(void) remove_reference(hdr, hash_lock, tag);
1518 		if (hdr->b_datacnt > 1) {
1519 			arc_buf_destroy(buf, FALSE, TRUE);
1520 		} else {
1521 			ASSERT(buf == hdr->b_buf);
1522 			ASSERT(buf->b_efunc == NULL);
1523 			hdr->b_flags |= ARC_BUF_AVAILABLE;
1524 		}
1525 		mutex_exit(hash_lock);
1526 	} else if (HDR_IO_IN_PROGRESS(hdr)) {
1527 		int destroy_hdr;
1528 		/*
1529 		 * We are in the middle of an async write.  Don't destroy
1530 		 * this buffer unless the write completes before we finish
1531 		 * decrementing the reference count.
1532 		 */
1533 		mutex_enter(&arc_eviction_mtx);
1534 		(void) remove_reference(hdr, NULL, tag);
1535 		ASSERT(refcount_is_zero(&hdr->b_refcnt));
1536 		destroy_hdr = !HDR_IO_IN_PROGRESS(hdr);
1537 		mutex_exit(&arc_eviction_mtx);
1538 		if (destroy_hdr)
1539 			arc_hdr_destroy(hdr);
1540 	} else {
1541 		if (remove_reference(hdr, NULL, tag) > 0) {
1542 			ASSERT(HDR_IO_ERROR(hdr));
1543 			arc_buf_destroy(buf, FALSE, TRUE);
1544 		} else {
1545 			arc_hdr_destroy(hdr);
1546 		}
1547 	}
1548 }
1549 
1550 int
arc_buf_remove_ref(arc_buf_t * buf,void * tag)1551 arc_buf_remove_ref(arc_buf_t *buf, void* tag)
1552 {
1553 	arc_buf_hdr_t *hdr = buf->b_hdr;
1554 	kmutex_t *hash_lock = HDR_LOCK(hdr);
1555 	int no_callback = (buf->b_efunc == NULL);
1556 
1557 	if (hdr->b_state == arc_anon) {
1558 		ASSERT(hdr->b_datacnt == 1);
1559 		arc_buf_free(buf, tag);
1560 		return (no_callback);
1561 	}
1562 
1563 	mutex_enter(hash_lock);
1564 	ASSERT(hdr->b_state != arc_anon);
1565 	ASSERT(buf->b_data != NULL);
1566 
1567 	(void) remove_reference(hdr, hash_lock, tag);
1568 	if (hdr->b_datacnt > 1) {
1569 		if (no_callback)
1570 			arc_buf_destroy(buf, FALSE, TRUE);
1571 	} else if (no_callback) {
1572 		ASSERT(hdr->b_buf == buf && buf->b_next == NULL);
1573 		ASSERT(buf->b_efunc == NULL);
1574 		hdr->b_flags |= ARC_BUF_AVAILABLE;
1575 	}
1576 	ASSERT(no_callback || hdr->b_datacnt > 1 ||
1577 	    refcount_is_zero(&hdr->b_refcnt));
1578 	mutex_exit(hash_lock);
1579 	return (no_callback);
1580 }
1581 
1582 int
arc_buf_size(arc_buf_t * buf)1583 arc_buf_size(arc_buf_t *buf)
1584 {
1585 	return (buf->b_hdr->b_size);
1586 }
1587 
1588 /*
1589  * Evict buffers from list until we've removed the specified number of
1590  * bytes.  Move the removed buffers to the appropriate evict state.
1591  * If the recycle flag is set, then attempt to "recycle" a buffer:
1592  * - look for a buffer to evict that is `bytes' long.
1593  * - return the data block from this buffer rather than freeing it.
1594  * This flag is used by callers that are trying to make space for a
1595  * new buffer in a full arc cache.
1596  *
1597  * This function makes a "best effort".  It skips over any buffers
1598  * it can't get a hash_lock on, and so may not catch all candidates.
1599  * It may also return without evicting as much space as requested.
1600  */
1601 static void *
arc_evict(arc_state_t * state,uint64_t spa,int64_t bytes,boolean_t recycle,arc_buf_contents_t type)1602 arc_evict(arc_state_t *state, uint64_t spa, int64_t bytes, boolean_t recycle,
1603     arc_buf_contents_t type)
1604 {
1605 	arc_state_t *evicted_state;
1606 	uint64_t bytes_evicted = 0, skipped = 0, missed = 0;
1607 	arc_buf_hdr_t *ab, *ab_prev = NULL;
1608 	list_t *list = &state->arcs_list[type];
1609 	kmutex_t *hash_lock;
1610 	boolean_t have_lock;
1611 	void *stolen = NULL;
1612 
1613 	ASSERT(state == arc_mru || state == arc_mfu);
1614 
1615 	evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
1616 
1617 	mutex_enter(&state->arcs_mtx);
1618 	mutex_enter(&evicted_state->arcs_mtx);
1619 
1620 	for (ab = list_tail(list); ab; ab = ab_prev) {
1621 		ab_prev = list_prev(list, ab);
1622 		/* prefetch buffers have a minimum lifespan */
1623 		if (HDR_IO_IN_PROGRESS(ab) ||
1624 		    (spa && ab->b_spa != spa) ||
1625 		    (ab->b_flags & (ARC_PREFETCH|ARC_INDIRECT) &&
1626 		    ddi_get_lbolt() - ab->b_arc_access <
1627 		    arc_min_prefetch_lifespan)) {
1628 			skipped++;
1629 			continue;
1630 		}
1631 		/* "lookahead" for better eviction candidate */
1632 		if (recycle && ab->b_size != bytes &&
1633 		    ab_prev && ab_prev->b_size == bytes)
1634 			continue;
1635 		hash_lock = HDR_LOCK(ab);
1636 		have_lock = MUTEX_HELD(hash_lock);
1637 		if (have_lock || mutex_tryenter(hash_lock)) {
1638 			ASSERT3U(refcount_count(&ab->b_refcnt), ==, 0);
1639 			ASSERT(ab->b_datacnt > 0);
1640 			while (ab->b_buf) {
1641 				arc_buf_t *buf = ab->b_buf;
1642 				if (!rw_tryenter(&buf->b_lock, RW_WRITER)) {
1643 					missed += 1;
1644 					break;
1645 				}
1646 				if (buf->b_data) {
1647 					bytes_evicted += ab->b_size;
1648 					if (recycle && ab->b_type == type &&
1649 					    ab->b_size == bytes &&
1650 					    !HDR_L2_WRITING(ab)) {
1651 						stolen = buf->b_data;
1652 						recycle = FALSE;
1653 					}
1654 				}
1655 				if (buf->b_efunc) {
1656 					mutex_enter(&arc_eviction_mtx);
1657 					arc_buf_destroy(buf,
1658 					    buf->b_data == stolen, FALSE);
1659 					ab->b_buf = buf->b_next;
1660 					buf->b_hdr = &arc_eviction_hdr;
1661 					buf->b_next = arc_eviction_list;
1662 					arc_eviction_list = buf;
1663 					mutex_exit(&arc_eviction_mtx);
1664 					rw_exit(&buf->b_lock);
1665 				} else {
1666 					rw_exit(&buf->b_lock);
1667 					arc_buf_destroy(buf,
1668 					    buf->b_data == stolen, TRUE);
1669 				}
1670 			}
1671 
1672 			if (ab->b_l2hdr) {
1673 				ARCSTAT_INCR(arcstat_evict_l2_cached,
1674 				    ab->b_size);
1675 			} else {
1676 				if (l2arc_write_eligible(ab->b_spa, ab)) {
1677 					ARCSTAT_INCR(arcstat_evict_l2_eligible,
1678 					    ab->b_size);
1679 				} else {
1680 					ARCSTAT_INCR(
1681 					    arcstat_evict_l2_ineligible,
1682 					    ab->b_size);
1683 				}
1684 			}
1685 
1686 			if (ab->b_datacnt == 0) {
1687 				arc_change_state(evicted_state, ab, hash_lock);
1688 				ASSERT(HDR_IN_HASH_TABLE(ab));
1689 				ab->b_flags |= ARC_IN_HASH_TABLE;
1690 				ab->b_flags &= ~ARC_BUF_AVAILABLE;
1691 				DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, ab);
1692 			}
1693 			if (!have_lock)
1694 				mutex_exit(hash_lock);
1695 			if (bytes >= 0 && bytes_evicted >= bytes)
1696 				break;
1697 		} else {
1698 			missed += 1;
1699 		}
1700 	}
1701 
1702 	mutex_exit(&evicted_state->arcs_mtx);
1703 	mutex_exit(&state->arcs_mtx);
1704 
1705 	if (bytes_evicted < bytes)
1706 		dprintf("only evicted %lld bytes from %x",
1707 		    (longlong_t)bytes_evicted, state);
1708 
1709 	if (skipped)
1710 		ARCSTAT_INCR(arcstat_evict_skip, skipped);
1711 
1712 	if (missed)
1713 		ARCSTAT_INCR(arcstat_mutex_miss, missed);
1714 
1715 	/*
1716 	 * We have just evicted some date into the ghost state, make
1717 	 * sure we also adjust the ghost state size if necessary.
1718 	 */
1719 	if (arc_no_grow &&
1720 	    arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size > arc_c) {
1721 		int64_t mru_over = arc_anon->arcs_size + arc_mru->arcs_size +
1722 		    arc_mru_ghost->arcs_size - arc_c;
1723 
1724 		if (mru_over > 0 && arc_mru_ghost->arcs_lsize[type] > 0) {
1725 			int64_t todelete =
1726 			    MIN(arc_mru_ghost->arcs_lsize[type], mru_over);
1727 			arc_evict_ghost(arc_mru_ghost, 0, todelete);
1728 		} else if (arc_mfu_ghost->arcs_lsize[type] > 0) {
1729 			int64_t todelete = MIN(arc_mfu_ghost->arcs_lsize[type],
1730 			    arc_mru_ghost->arcs_size +
1731 			    arc_mfu_ghost->arcs_size - arc_c);
1732 			arc_evict_ghost(arc_mfu_ghost, 0, todelete);
1733 		}
1734 	}
1735 
1736 	return (stolen);
1737 }
1738 
1739 /*
1740  * Remove buffers from list until we've removed the specified number of
1741  * bytes.  Destroy the buffers that are removed.
1742  */
1743 static void
arc_evict_ghost(arc_state_t * state,uint64_t spa,int64_t bytes)1744 arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes)
1745 {
1746 	arc_buf_hdr_t *ab, *ab_prev;
1747 	list_t *list = &state->arcs_list[ARC_BUFC_DATA];
1748 	kmutex_t *hash_lock;
1749 	uint64_t bytes_deleted = 0;
1750 	uint64_t bufs_skipped = 0;
1751 	boolean_t have_lock;
1752 
1753 	ASSERT(GHOST_STATE(state));
1754 top:
1755 	mutex_enter(&state->arcs_mtx);
1756 	for (ab = list_tail(list); ab; ab = ab_prev) {
1757 		ab_prev = list_prev(list, ab);
1758 		if (spa && ab->b_spa != spa)
1759 			continue;
1760 		hash_lock = HDR_LOCK(ab);
1761 		have_lock = MUTEX_HELD(hash_lock);
1762 		if (have_lock || mutex_tryenter(hash_lock)) {
1763 			ASSERT(!HDR_IO_IN_PROGRESS(ab));
1764 			ASSERT(ab->b_buf == NULL);
1765 			ARCSTAT_BUMP(arcstat_deleted);
1766 			bytes_deleted += ab->b_size;
1767 
1768 			if (ab->b_l2hdr != NULL) {
1769 				/*
1770 				 * This buffer is cached on the 2nd Level ARC;
1771 				 * don't destroy the header.
1772 				 */
1773 				arc_change_state(arc_l2c_only, ab, hash_lock);
1774 				if (!have_lock)
1775 					mutex_exit(hash_lock);
1776 			} else {
1777 				arc_change_state(arc_anon, ab, hash_lock);
1778 				if (!have_lock)
1779 					mutex_exit(hash_lock);
1780 				arc_hdr_destroy(ab);
1781 			}
1782 
1783 			DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, ab);
1784 			if (bytes >= 0 && bytes_deleted >= bytes)
1785 				break;
1786 		} else {
1787 			if (bytes < 0) {
1788 				mutex_exit(&state->arcs_mtx);
1789 				mutex_enter(hash_lock);
1790 				mutex_exit(hash_lock);
1791 				goto top;
1792 			}
1793 			bufs_skipped += 1;
1794 		}
1795 	}
1796 	mutex_exit(&state->arcs_mtx);
1797 
1798 	if (list == &state->arcs_list[ARC_BUFC_DATA] &&
1799 	    (bytes < 0 || bytes_deleted < bytes)) {
1800 		list = &state->arcs_list[ARC_BUFC_METADATA];
1801 		goto top;
1802 	}
1803 
1804 	if (bufs_skipped) {
1805 		ARCSTAT_INCR(arcstat_mutex_miss, bufs_skipped);
1806 		ASSERT(bytes >= 0);
1807 	}
1808 
1809 	if (bytes_deleted < bytes)
1810 		dprintf("only deleted %lld bytes from %p",
1811 		    (longlong_t)bytes_deleted, state);
1812 }
1813 
1814 static void
arc_adjust(void)1815 arc_adjust(void)
1816 {
1817 	int64_t adjustment, delta;
1818 
1819 	/*
1820 	 * Adjust MRU size
1821 	 */
1822 
1823 	adjustment = MIN(arc_size - arc_c,
1824 	    arc_anon->arcs_size + arc_mru->arcs_size + arc_meta_used - arc_p);
1825 
1826 	if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_DATA] > 0) {
1827 		delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_DATA], adjustment);
1828 		(void) arc_evict(arc_mru, 0, delta, FALSE, ARC_BUFC_DATA);
1829 		adjustment -= delta;
1830 	}
1831 
1832 	if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_METADATA] > 0) {
1833 		delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_METADATA], adjustment);
1834 		(void) arc_evict(arc_mru, 0, delta, FALSE,
1835 		    ARC_BUFC_METADATA);
1836 	}
1837 
1838 	/*
1839 	 * Adjust MFU size
1840 	 */
1841 
1842 	adjustment = arc_size - arc_c;
1843 
1844 	if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_DATA] > 0) {
1845 		delta = MIN(adjustment, arc_mfu->arcs_lsize[ARC_BUFC_DATA]);
1846 		(void) arc_evict(arc_mfu, 0, delta, FALSE, ARC_BUFC_DATA);
1847 		adjustment -= delta;
1848 	}
1849 
1850 	if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_METADATA] > 0) {
1851 		int64_t delta = MIN(adjustment,
1852 		    arc_mfu->arcs_lsize[ARC_BUFC_METADATA]);
1853 		(void) arc_evict(arc_mfu, 0, delta, FALSE,
1854 		    ARC_BUFC_METADATA);
1855 	}
1856 
1857 	/*
1858 	 * Adjust ghost lists
1859 	 */
1860 
1861 	adjustment = arc_mru->arcs_size + arc_mru_ghost->arcs_size - arc_c;
1862 
1863 	if (adjustment > 0 && arc_mru_ghost->arcs_size > 0) {
1864 		delta = MIN(arc_mru_ghost->arcs_size, adjustment);
1865 		arc_evict_ghost(arc_mru_ghost, 0, delta);
1866 	}
1867 
1868 	adjustment =
1869 	    arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size - arc_c;
1870 
1871 	if (adjustment > 0 && arc_mfu_ghost->arcs_size > 0) {
1872 		delta = MIN(arc_mfu_ghost->arcs_size, adjustment);
1873 		arc_evict_ghost(arc_mfu_ghost, 0, delta);
1874 	}
1875 }
1876 
1877 static void
arc_do_user_evicts(void)1878 arc_do_user_evicts(void)
1879 {
1880 	mutex_enter(&arc_eviction_mtx);
1881 	while (arc_eviction_list != NULL) {
1882 		arc_buf_t *buf = arc_eviction_list;
1883 		arc_eviction_list = buf->b_next;
1884 		rw_enter(&buf->b_lock, RW_WRITER);
1885 		buf->b_hdr = NULL;
1886 		rw_exit(&buf->b_lock);
1887 		mutex_exit(&arc_eviction_mtx);
1888 
1889 		if (buf->b_efunc != NULL)
1890 			VERIFY(buf->b_efunc(buf) == 0);
1891 
1892 		buf->b_efunc = NULL;
1893 		buf->b_private = NULL;
1894 		kmem_cache_free(buf_cache, buf);
1895 		mutex_enter(&arc_eviction_mtx);
1896 	}
1897 	mutex_exit(&arc_eviction_mtx);
1898 }
1899 
1900 /*
1901  * Flush all *evictable* data from the cache for the given spa.
1902  * NOTE: this will not touch "active" (i.e. referenced) data.
1903  */
1904 void
arc_flush(spa_t * spa)1905 arc_flush(spa_t *spa)
1906 {
1907 	uint64_t guid = 0;
1908 
1909 	if (spa)
1910 		guid = spa_guid(spa);
1911 
1912 	while (list_head(&arc_mru->arcs_list[ARC_BUFC_DATA])) {
1913 		(void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_DATA);
1914 		if (spa)
1915 			break;
1916 	}
1917 	while (list_head(&arc_mru->arcs_list[ARC_BUFC_METADATA])) {
1918 		(void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_METADATA);
1919 		if (spa)
1920 			break;
1921 	}
1922 	while (list_head(&arc_mfu->arcs_list[ARC_BUFC_DATA])) {
1923 		(void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_DATA);
1924 		if (spa)
1925 			break;
1926 	}
1927 	while (list_head(&arc_mfu->arcs_list[ARC_BUFC_METADATA])) {
1928 		(void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_METADATA);
1929 		if (spa)
1930 			break;
1931 	}
1932 
1933 	arc_evict_ghost(arc_mru_ghost, guid, -1);
1934 	arc_evict_ghost(arc_mfu_ghost, guid, -1);
1935 
1936 	mutex_enter(&arc_reclaim_thr_lock);
1937 	arc_do_user_evicts();
1938 	mutex_exit(&arc_reclaim_thr_lock);
1939 	ASSERT(spa || arc_eviction_list == NULL);
1940 }
1941 
1942 void
arc_shrink(void)1943 arc_shrink(void)
1944 {
1945 	if (arc_c > arc_c_min) {
1946 		uint64_t to_free;
1947 
1948 #ifdef _KERNEL
1949 		to_free = MAX(arc_c >> arc_shrink_shift, ptob(needfree));
1950 #else
1951 		to_free = arc_c >> arc_shrink_shift;
1952 #endif
1953 		if (arc_c > arc_c_min + to_free)
1954 			atomic_add_64(&arc_c, -to_free);
1955 		else
1956 			arc_c = arc_c_min;
1957 
1958 		atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
1959 		if (arc_c > arc_size)
1960 			arc_c = MAX(arc_size, arc_c_min);
1961 		if (arc_p > arc_c)
1962 			arc_p = (arc_c >> 1);
1963 		ASSERT(arc_c >= arc_c_min);
1964 		ASSERT((int64_t)arc_p >= 0);
1965 	}
1966 
1967 	if (arc_size > arc_c)
1968 		arc_adjust();
1969 }
1970 
1971 static int
arc_reclaim_needed(void)1972 arc_reclaim_needed(void)
1973 {
1974 	uint64_t extra;
1975 
1976 #ifdef _KERNEL
1977 
1978 	if (needfree)
1979 		return (1);
1980 
1981 	/*
1982 	 * take 'desfree' extra pages, so we reclaim sooner, rather than later
1983 	 */
1984 	extra = desfree;
1985 
1986 	/*
1987 	 * check that we're out of range of the pageout scanner.  It starts to
1988 	 * schedule paging if freemem is less than lotsfree and needfree.
1989 	 * lotsfree is the high-water mark for pageout, and needfree is the
1990 	 * number of needed free pages.  We add extra pages here to make sure
1991 	 * the scanner doesn't start up while we're freeing memory.
1992 	 */
1993 	if (freemem < lotsfree + needfree + extra)
1994 		return (1);
1995 
1996 	/*
1997 	 * check to make sure that swapfs has enough space so that anon
1998 	 * reservations can still succeed. anon_resvmem() checks that the
1999 	 * availrmem is greater than swapfs_minfree, and the number of reserved
2000 	 * swap pages.  We also add a bit of extra here just to prevent
2001 	 * circumstances from getting really dire.
2002 	 */
2003 	if (availrmem < swapfs_minfree + swapfs_reserve + extra)
2004 		return (1);
2005 
2006 #if defined(__i386)
2007 	/*
2008 	 * If we're on an i386 platform, it's possible that we'll exhaust the
2009 	 * kernel heap space before we ever run out of available physical
2010 	 * memory.  Most checks of the size of the kmem_area compare against
2011 	 * tune.t_minarmem, which is the minimum available real memory that we
2012 	 * can have in the system.  However, this is generally fixed at 25 pages
2013 	 * which is so low that it's useless.  In this comparison, we seek to
2014 	 * calculate the total heap-size, and reclaim if more than 3/4ths of the
2015 	 * heap is allocated.  (Or, in the calculation, if less than 1/4th is
2016 	 * free)
2017 	 */
2018 	if (btop(vmem_size(kmem_arena, VMEM_FREE)) <
2019 	    (btop(vmem_size(kmem_arena, VMEM_FREE | VMEM_ALLOC)) >> 2))
2020 		return (1);
2021 #endif
2022 
2023 #else
2024 	if (spa_get_random(100) == 0)
2025 		return (1);
2026 #endif
2027 	return (0);
2028 }
2029 
2030 static void
arc_kmem_reap_now(arc_reclaim_strategy_t strat)2031 arc_kmem_reap_now(arc_reclaim_strategy_t strat)
2032 {
2033 	size_t			i;
2034 	kmem_cache_t		*prev_cache = NULL;
2035 	kmem_cache_t		*prev_data_cache = NULL;
2036 	extern kmem_cache_t	*zio_buf_cache[];
2037 	extern kmem_cache_t	*zio_data_buf_cache[];
2038 
2039 #ifdef _KERNEL
2040 	if (arc_meta_used >= arc_meta_limit) {
2041 		/*
2042 		 * We are exceeding our meta-data cache limit.
2043 		 * Purge some DNLC entries to release holds on meta-data.
2044 		 */
2045 		dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent);
2046 	}
2047 #if defined(__i386)
2048 	/*
2049 	 * Reclaim unused memory from all kmem caches.
2050 	 */
2051 	kmem_reap();
2052 #endif
2053 #endif
2054 
2055 	/*
2056 	 * An aggressive reclamation will shrink the cache size as well as
2057 	 * reap free buffers from the arc kmem caches.
2058 	 */
2059 	if (strat == ARC_RECLAIM_AGGR)
2060 		arc_shrink();
2061 
2062 	for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
2063 		if (zio_buf_cache[i] != prev_cache) {
2064 			prev_cache = zio_buf_cache[i];
2065 			kmem_cache_reap_now(zio_buf_cache[i]);
2066 		}
2067 		if (zio_data_buf_cache[i] != prev_data_cache) {
2068 			prev_data_cache = zio_data_buf_cache[i];
2069 			kmem_cache_reap_now(zio_data_buf_cache[i]);
2070 		}
2071 	}
2072 	kmem_cache_reap_now(buf_cache);
2073 	kmem_cache_reap_now(hdr_cache);
2074 }
2075 
2076 static void
arc_reclaim_thread(void * unused __unused)2077 arc_reclaim_thread(void *unused __unused)
2078 {
2079 	clock_t			growtime = 0;
2080 	arc_reclaim_strategy_t	last_reclaim = ARC_RECLAIM_CONS;
2081 	callb_cpr_t		cpr;
2082 
2083 	CALLB_CPR_INIT(&cpr, &arc_reclaim_thr_lock, callb_generic_cpr, FTAG);
2084 
2085 	mutex_enter(&arc_reclaim_thr_lock);
2086 	while (arc_thread_exit == 0) {
2087 		if (arc_reclaim_needed()) {
2088 
2089 			if (arc_no_grow) {
2090 				if (last_reclaim == ARC_RECLAIM_CONS) {
2091 					last_reclaim = ARC_RECLAIM_AGGR;
2092 				} else {
2093 					last_reclaim = ARC_RECLAIM_CONS;
2094 				}
2095 			} else {
2096 				arc_no_grow = TRUE;
2097 				last_reclaim = ARC_RECLAIM_AGGR;
2098 				membar_producer();
2099 			}
2100 
2101 			/* reset the growth delay for every reclaim */
2102 			growtime = ddi_get_lbolt() + (arc_grow_retry * hz);
2103 
2104 			arc_kmem_reap_now(last_reclaim);
2105 			arc_warm = B_TRUE;
2106 
2107 		} else if (arc_no_grow && ddi_get_lbolt() >= growtime) {
2108 			arc_no_grow = FALSE;
2109 		}
2110 
2111 		if (2 * arc_c < arc_size +
2112 		    arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size)
2113 			arc_adjust();
2114 
2115 		if (arc_eviction_list != NULL)
2116 			arc_do_user_evicts();
2117 
2118 		/* block until needed, or one second, whichever is shorter */
2119 		CALLB_CPR_SAFE_BEGIN(&cpr);
2120 		(void) cv_timedwait(&arc_reclaim_thr_cv,
2121 		    &arc_reclaim_thr_lock, (hz));
2122 		CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_thr_lock);
2123 	}
2124 
2125 	arc_thread_exit = 0;
2126 	cv_broadcast(&arc_reclaim_thr_cv);
2127 	CALLB_CPR_EXIT(&cpr);		/* drops arc_reclaim_thr_lock */
2128 	thread_exit();
2129 }
2130 
2131 /*
2132  * Adapt arc info given the number of bytes we are trying to add and
2133  * the state that we are comming from.  This function is only called
2134  * when we are adding new content to the cache.
2135  */
2136 static void
arc_adapt(int bytes,arc_state_t * state)2137 arc_adapt(int bytes, arc_state_t *state)
2138 {
2139 	int mult;
2140 	uint64_t arc_p_min = (arc_c >> arc_p_min_shift);
2141 
2142 	if (state == arc_l2c_only)
2143 		return;
2144 
2145 	ASSERT(bytes > 0);
2146 	/*
2147 	 * Adapt the target size of the MRU list:
2148 	 *	- if we just hit in the MRU ghost list, then increase
2149 	 *	  the target size of the MRU list.
2150 	 *	- if we just hit in the MFU ghost list, then increase
2151 	 *	  the target size of the MFU list by decreasing the
2152 	 *	  target size of the MRU list.
2153 	 */
2154 	if (state == arc_mru_ghost) {
2155 		mult = ((arc_mru_ghost->arcs_size >= arc_mfu_ghost->arcs_size) ?
2156 		    1 : (arc_mfu_ghost->arcs_size/arc_mru_ghost->arcs_size));
2157 
2158 		arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
2159 	} else if (state == arc_mfu_ghost) {
2160 		uint64_t delta;
2161 
2162 		mult = ((arc_mfu_ghost->arcs_size >= arc_mru_ghost->arcs_size) ?
2163 		    1 : (arc_mru_ghost->arcs_size/arc_mfu_ghost->arcs_size));
2164 
2165 		delta = MIN(bytes * mult, arc_p);
2166 		arc_p = MAX(arc_p_min, arc_p - delta);
2167 	}
2168 	ASSERT((int64_t)arc_p >= 0);
2169 
2170 	if (arc_reclaim_needed()) {
2171 		cv_signal(&arc_reclaim_thr_cv);
2172 		return;
2173 	}
2174 
2175 	if (arc_no_grow)
2176 		return;
2177 
2178 	if (arc_c >= arc_c_max)
2179 		return;
2180 
2181 	/*
2182 	 * If we're within (2 * maxblocksize) bytes of the target
2183 	 * cache size, increment the target cache size
2184 	 */
2185 	if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
2186 		atomic_add_64(&arc_c, (int64_t)bytes);
2187 		if (arc_c > arc_c_max)
2188 			arc_c = arc_c_max;
2189 		else if (state == arc_anon)
2190 			atomic_add_64(&arc_p, (int64_t)bytes);
2191 		if (arc_p > arc_c)
2192 			arc_p = arc_c;
2193 	}
2194 	ASSERT((int64_t)arc_p >= 0);
2195 }
2196 
2197 /*
2198  * Check if the cache has reached its limits and eviction is required
2199  * prior to insert.
2200  */
2201 static int
arc_evict_needed(arc_buf_contents_t type)2202 arc_evict_needed(arc_buf_contents_t type)
2203 {
2204 	if (type == ARC_BUFC_METADATA && arc_meta_used >= arc_meta_limit)
2205 		return (1);
2206 
2207 #ifdef _KERNEL
2208 	/*
2209 	 * If zio data pages are being allocated out of a separate heap segment,
2210 	 * then enforce that the size of available vmem for this area remains
2211 	 * above about 1/32nd free.
2212 	 */
2213 	if (type == ARC_BUFC_DATA && zio_arena != NULL &&
2214 	    vmem_size(zio_arena, VMEM_FREE) <
2215 	    (vmem_size(zio_arena, VMEM_ALLOC) >> 5))
2216 		return (1);
2217 #endif
2218 
2219 	if (arc_reclaim_needed())
2220 		return (1);
2221 
2222 	return (arc_size > arc_c);
2223 }
2224 
2225 /*
2226  * The buffer, supplied as the first argument, needs a data block.
2227  * So, if we are at cache max, determine which cache should be victimized.
2228  * We have the following cases:
2229  *
2230  * 1. Insert for MRU, p > sizeof(arc_anon + arc_mru) ->
2231  * In this situation if we're out of space, but the resident size of the MFU is
2232  * under the limit, victimize the MFU cache to satisfy this insertion request.
2233  *
2234  * 2. Insert for MRU, p <= sizeof(arc_anon + arc_mru) ->
2235  * Here, we've used up all of the available space for the MRU, so we need to
2236  * evict from our own cache instead.  Evict from the set of resident MRU
2237  * entries.
2238  *
2239  * 3. Insert for MFU (c - p) > sizeof(arc_mfu) ->
2240  * c minus p represents the MFU space in the cache, since p is the size of the
2241  * cache that is dedicated to the MRU.  In this situation there's still space on
2242  * the MFU side, so the MRU side needs to be victimized.
2243  *
2244  * 4. Insert for MFU (c - p) < sizeof(arc_mfu) ->
2245  * MFU's resident set is consuming more space than it has been allotted.  In
2246  * this situation, we must victimize our own cache, the MFU, for this insertion.
2247  */
2248 static void
arc_get_data_buf(arc_buf_t * buf)2249 arc_get_data_buf(arc_buf_t *buf)
2250 {
2251 	arc_state_t		*state = buf->b_hdr->b_state;
2252 	uint64_t		size = buf->b_hdr->b_size;
2253 	arc_buf_contents_t	type = buf->b_hdr->b_type;
2254 
2255 	arc_adapt(size, state);
2256 
2257 	/*
2258 	 * We have not yet reached cache maximum size,
2259 	 * just allocate a new buffer.
2260 	 */
2261 	if (!arc_evict_needed(type)) {
2262 		if (type == ARC_BUFC_METADATA) {
2263 			buf->b_data = zio_buf_alloc(size);
2264 			arc_space_consume(size, ARC_SPACE_DATA);
2265 		} else {
2266 			ASSERT(type == ARC_BUFC_DATA);
2267 			buf->b_data = zio_data_buf_alloc(size);
2268 			ARCSTAT_INCR(arcstat_data_size, size);
2269 			atomic_add_64(&arc_size, size);
2270 		}
2271 		goto out;
2272 	}
2273 
2274 	/*
2275 	 * If we are prefetching from the mfu ghost list, this buffer
2276 	 * will end up on the mru list; so steal space from there.
2277 	 */
2278 	if (state == arc_mfu_ghost)
2279 		state = buf->b_hdr->b_flags & ARC_PREFETCH ? arc_mru : arc_mfu;
2280 	else if (state == arc_mru_ghost)
2281 		state = arc_mru;
2282 
2283 	if (state == arc_mru || state == arc_anon) {
2284 		uint64_t mru_used = arc_anon->arcs_size + arc_mru->arcs_size;
2285 		state = (arc_mfu->arcs_lsize[type] >= size &&
2286 		    arc_p > mru_used) ? arc_mfu : arc_mru;
2287 	} else {
2288 		/* MFU cases */
2289 		uint64_t mfu_space = arc_c - arc_p;
2290 		state =  (arc_mru->arcs_lsize[type] >= size &&
2291 		    mfu_space > arc_mfu->arcs_size) ? arc_mru : arc_mfu;
2292 	}
2293 	if ((buf->b_data = arc_evict(state, 0, size, TRUE, type)) == NULL) {
2294 		if (type == ARC_BUFC_METADATA) {
2295 			buf->b_data = zio_buf_alloc(size);
2296 			arc_space_consume(size, ARC_SPACE_DATA);
2297 		} else {
2298 			ASSERT(type == ARC_BUFC_DATA);
2299 			buf->b_data = zio_data_buf_alloc(size);
2300 			ARCSTAT_INCR(arcstat_data_size, size);
2301 			atomic_add_64(&arc_size, size);
2302 		}
2303 		ARCSTAT_BUMP(arcstat_recycle_miss);
2304 	}
2305 	ASSERT(buf->b_data != NULL);
2306 out:
2307 	/*
2308 	 * Update the state size.  Note that ghost states have a
2309 	 * "ghost size" and so don't need to be updated.
2310 	 */
2311 	if (!GHOST_STATE(buf->b_hdr->b_state)) {
2312 		arc_buf_hdr_t *hdr = buf->b_hdr;
2313 
2314 		atomic_add_64(&hdr->b_state->arcs_size, size);
2315 		if (list_link_active(&hdr->b_arc_node)) {
2316 			ASSERT(refcount_is_zero(&hdr->b_refcnt));
2317 			atomic_add_64(&hdr->b_state->arcs_lsize[type], size);
2318 		}
2319 		/*
2320 		 * If we are growing the cache, and we are adding anonymous
2321 		 * data, and we have outgrown arc_p, update arc_p
2322 		 */
2323 		if (arc_size < arc_c && hdr->b_state == arc_anon &&
2324 		    arc_anon->arcs_size + arc_mru->arcs_size > arc_p)
2325 			arc_p = MIN(arc_c, arc_p + size);
2326 	}
2327 }
2328 
2329 /*
2330  * This routine is called whenever a buffer is accessed.
2331  * NOTE: the hash lock is dropped in this function.
2332  */
2333 static void
arc_access(arc_buf_hdr_t * buf,kmutex_t * hash_lock)2334 arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock)
2335 {
2336 	clock_t now;
2337 
2338 	ASSERT(MUTEX_HELD(hash_lock));
2339 
2340 	if (buf->b_state == arc_anon) {
2341 		/*
2342 		 * This buffer is not in the cache, and does not
2343 		 * appear in our "ghost" list.  Add the new buffer
2344 		 * to the MRU state.
2345 		 */
2346 
2347 		ASSERT(buf->b_arc_access == 0);
2348 		buf->b_arc_access = ddi_get_lbolt();
2349 		DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
2350 		arc_change_state(arc_mru, buf, hash_lock);
2351 
2352 	} else if (buf->b_state == arc_mru) {
2353 		now = ddi_get_lbolt();
2354 
2355 		/*
2356 		 * If this buffer is here because of a prefetch, then either:
2357 		 * - clear the flag if this is a "referencing" read
2358 		 *   (any subsequent access will bump this into the MFU state).
2359 		 * or
2360 		 * - move the buffer to the head of the list if this is
2361 		 *   another prefetch (to make it less likely to be evicted).
2362 		 */
2363 		if ((buf->b_flags & ARC_PREFETCH) != 0) {
2364 			if (refcount_count(&buf->b_refcnt) == 0) {
2365 				ASSERT(list_link_active(&buf->b_arc_node));
2366 			} else {
2367 				buf->b_flags &= ~ARC_PREFETCH;
2368 				ARCSTAT_BUMP(arcstat_mru_hits);
2369 			}
2370 			buf->b_arc_access = now;
2371 			return;
2372 		}
2373 
2374 		/*
2375 		 * This buffer has been "accessed" only once so far,
2376 		 * but it is still in the cache. Move it to the MFU
2377 		 * state.
2378 		 */
2379 		if (now > buf->b_arc_access + ARC_MINTIME) {
2380 			/*
2381 			 * More than 125ms have passed since we
2382 			 * instantiated this buffer.  Move it to the
2383 			 * most frequently used state.
2384 			 */
2385 			buf->b_arc_access = now;
2386 			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2387 			arc_change_state(arc_mfu, buf, hash_lock);
2388 		}
2389 		ARCSTAT_BUMP(arcstat_mru_hits);
2390 	} else if (buf->b_state == arc_mru_ghost) {
2391 		arc_state_t	*new_state;
2392 		/*
2393 		 * This buffer has been "accessed" recently, but
2394 		 * was evicted from the cache.  Move it to the
2395 		 * MFU state.
2396 		 */
2397 
2398 		if (buf->b_flags & ARC_PREFETCH) {
2399 			new_state = arc_mru;
2400 			if (refcount_count(&buf->b_refcnt) > 0)
2401 				buf->b_flags &= ~ARC_PREFETCH;
2402 			DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
2403 		} else {
2404 			new_state = arc_mfu;
2405 			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2406 		}
2407 
2408 		buf->b_arc_access = ddi_get_lbolt();
2409 		arc_change_state(new_state, buf, hash_lock);
2410 
2411 		ARCSTAT_BUMP(arcstat_mru_ghost_hits);
2412 	} else if (buf->b_state == arc_mfu) {
2413 		/*
2414 		 * This buffer has been accessed more than once and is
2415 		 * still in the cache.  Keep it in the MFU state.
2416 		 *
2417 		 * NOTE: an add_reference() that occurred when we did
2418 		 * the arc_read() will have kicked this off the list.
2419 		 * If it was a prefetch, we will explicitly move it to
2420 		 * the head of the list now.
2421 		 */
2422 		if ((buf->b_flags & ARC_PREFETCH) != 0) {
2423 			ASSERT(refcount_count(&buf->b_refcnt) == 0);
2424 			ASSERT(list_link_active(&buf->b_arc_node));
2425 		}
2426 		ARCSTAT_BUMP(arcstat_mfu_hits);
2427 		buf->b_arc_access = ddi_get_lbolt();
2428 	} else if (buf->b_state == arc_mfu_ghost) {
2429 		arc_state_t	*new_state = arc_mfu;
2430 		/*
2431 		 * This buffer has been accessed more than once but has
2432 		 * been evicted from the cache.  Move it back to the
2433 		 * MFU state.
2434 		 */
2435 
2436 		if (buf->b_flags & ARC_PREFETCH) {
2437 			/*
2438 			 * This is a prefetch access...
2439 			 * move this block back to the MRU state.
2440 			 */
2441 			ASSERT3U(refcount_count(&buf->b_refcnt), ==, 0);
2442 			new_state = arc_mru;
2443 		}
2444 
2445 		buf->b_arc_access = ddi_get_lbolt();
2446 		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2447 		arc_change_state(new_state, buf, hash_lock);
2448 
2449 		ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
2450 	} else if (buf->b_state == arc_l2c_only) {
2451 		/*
2452 		 * This buffer is on the 2nd Level ARC.
2453 		 */
2454 
2455 		buf->b_arc_access = ddi_get_lbolt();
2456 		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2457 		arc_change_state(arc_mfu, buf, hash_lock);
2458 	} else {
2459 		ASSERT(!"invalid arc state");
2460 	}
2461 }
2462 
2463 /* a generic arc_done_func_t which you can use */
2464 /* ARGSUSED */
2465 void
arc_bcopy_func(zio_t * zio,arc_buf_t * buf,void * arg)2466 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
2467 {
2468 	bcopy(buf->b_data, arg, buf->b_hdr->b_size);
2469 	VERIFY(arc_buf_remove_ref(buf, arg) == 1);
2470 }
2471 
2472 /* a generic arc_done_func_t */
2473 void
arc_getbuf_func(zio_t * zio,arc_buf_t * buf,void * arg)2474 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
2475 {
2476 	arc_buf_t **bufp = arg;
2477 	if (zio && zio->io_error) {
2478 		VERIFY(arc_buf_remove_ref(buf, arg) == 1);
2479 		*bufp = NULL;
2480 	} else {
2481 		*bufp = buf;
2482 	}
2483 }
2484 
2485 static void
arc_read_done(zio_t * zio)2486 arc_read_done(zio_t *zio)
2487 {
2488 	arc_buf_hdr_t	*hdr, *found;
2489 	arc_buf_t	*buf;
2490 	arc_buf_t	*abuf;	/* buffer we're assigning to callback */
2491 	kmutex_t	*hash_lock;
2492 	arc_callback_t	*callback_list, *acb;
2493 	int		freeable = FALSE;
2494 
2495 	buf = zio->io_private;
2496 	hdr = buf->b_hdr;
2497 
2498 	/*
2499 	 * The hdr was inserted into hash-table and removed from lists
2500 	 * prior to starting I/O.  We should find this header, since
2501 	 * it's in the hash table, and it should be legit since it's
2502 	 * not possible to evict it during the I/O.  The only possible
2503 	 * reason for it not to be found is if we were freed during the
2504 	 * read.
2505 	 */
2506 	found = buf_hash_find(hdr->b_spa, &hdr->b_dva, hdr->b_birth,
2507 	    &hash_lock);
2508 
2509 	ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) && hash_lock == NULL) ||
2510 	    (found == hdr && DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
2511 	    (found == hdr && HDR_L2_READING(hdr)));
2512 
2513 	hdr->b_flags &= ~ARC_L2_EVICTED;
2514 	if (l2arc_noprefetch && (hdr->b_flags & ARC_PREFETCH))
2515 		hdr->b_flags &= ~ARC_L2CACHE;
2516 
2517 	/* byteswap if necessary */
2518 	callback_list = hdr->b_acb;
2519 	ASSERT(callback_list != NULL);
2520 	if (BP_SHOULD_BYTESWAP(zio->io_bp) && zio->io_error == 0) {
2521 		arc_byteswap_func_t *func = BP_GET_LEVEL(zio->io_bp) > 0 ?
2522 		    byteswap_uint64_array :
2523 		    dmu_ot[BP_GET_TYPE(zio->io_bp)].ot_byteswap;
2524 		func(buf->b_data, hdr->b_size);
2525 	}
2526 
2527 	arc_cksum_compute(buf, B_FALSE);
2528 
2529 	if (hash_lock && zio->io_error == 0 && hdr->b_state == arc_anon) {
2530 		/*
2531 		 * Only call arc_access on anonymous buffers.  This is because
2532 		 * if we've issued an I/O for an evicted buffer, we've already
2533 		 * called arc_access (to prevent any simultaneous readers from
2534 		 * getting confused).
2535 		 */
2536 		arc_access(hdr, hash_lock);
2537 	}
2538 
2539 	/* create copies of the data buffer for the callers */
2540 	abuf = buf;
2541 	for (acb = callback_list; acb; acb = acb->acb_next) {
2542 		if (acb->acb_done) {
2543 			if (abuf == NULL)
2544 				abuf = arc_buf_clone(buf);
2545 			acb->acb_buf = abuf;
2546 			abuf = NULL;
2547 		}
2548 	}
2549 	hdr->b_acb = NULL;
2550 	hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
2551 	ASSERT(!HDR_BUF_AVAILABLE(hdr));
2552 	if (abuf == buf) {
2553 		ASSERT(buf->b_efunc == NULL);
2554 		ASSERT(hdr->b_datacnt == 1);
2555 		hdr->b_flags |= ARC_BUF_AVAILABLE;
2556 	}
2557 
2558 	ASSERT(refcount_is_zero(&hdr->b_refcnt) || callback_list != NULL);
2559 
2560 	if (zio->io_error != 0) {
2561 		hdr->b_flags |= ARC_IO_ERROR;
2562 		if (hdr->b_state != arc_anon)
2563 			arc_change_state(arc_anon, hdr, hash_lock);
2564 		if (HDR_IN_HASH_TABLE(hdr))
2565 			buf_hash_remove(hdr);
2566 		freeable = refcount_is_zero(&hdr->b_refcnt);
2567 	}
2568 
2569 	/*
2570 	 * Broadcast before we drop the hash_lock to avoid the possibility
2571 	 * that the hdr (and hence the cv) might be freed before we get to
2572 	 * the cv_broadcast().
2573 	 */
2574 	cv_broadcast(&hdr->b_cv);
2575 
2576 	if (hash_lock) {
2577 		mutex_exit(hash_lock);
2578 	} else {
2579 		/*
2580 		 * This block was freed while we waited for the read to
2581 		 * complete.  It has been removed from the hash table and
2582 		 * moved to the anonymous state (so that it won't show up
2583 		 * in the cache).
2584 		 */
2585 		ASSERT3P(hdr->b_state, ==, arc_anon);
2586 		freeable = refcount_is_zero(&hdr->b_refcnt);
2587 	}
2588 
2589 	/* execute each callback and free its structure */
2590 	while ((acb = callback_list) != NULL) {
2591 		if (acb->acb_done)
2592 			acb->acb_done(zio, acb->acb_buf, acb->acb_private);
2593 
2594 		if (acb->acb_zio_dummy != NULL) {
2595 			acb->acb_zio_dummy->io_error = zio->io_error;
2596 			zio_nowait(acb->acb_zio_dummy);
2597 		}
2598 
2599 		callback_list = acb->acb_next;
2600 		kmem_free(acb, sizeof (arc_callback_t));
2601 	}
2602 
2603 	if (freeable)
2604 		arc_hdr_destroy(hdr);
2605 }
2606 
2607 /*
2608  * "Read" the block block at the specified DVA (in bp) via the
2609  * cache.  If the block is found in the cache, invoke the provided
2610  * callback immediately and return.  Note that the `zio' parameter
2611  * in the callback will be NULL in this case, since no IO was
2612  * required.  If the block is not in the cache pass the read request
2613  * on to the spa with a substitute callback function, so that the
2614  * requested block will be added to the cache.
2615  *
2616  * If a read request arrives for a block that has a read in-progress,
2617  * either wait for the in-progress read to complete (and return the
2618  * results); or, if this is a read with a "done" func, add a record
2619  * to the read to invoke the "done" func when the read completes,
2620  * and return; or just return.
2621  *
2622  * arc_read_done() will invoke all the requested "done" functions
2623  * for readers of this block.
2624  *
2625  * Normal callers should use arc_read and pass the arc buffer and offset
2626  * for the bp.  But if you know you don't need locking, you can use
2627  * arc_read_bp.
2628  */
2629 int
arc_read(zio_t * pio,spa_t * spa,const blkptr_t * bp,arc_buf_t * pbuf,arc_done_func_t * done,void * private,int priority,int zio_flags,uint32_t * arc_flags,const zbookmark_t * zb)2630 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_buf_t *pbuf,
2631     arc_done_func_t *done, void *private, int priority, int zio_flags,
2632     uint32_t *arc_flags, const zbookmark_t *zb)
2633 {
2634 	int err;
2635 
2636 	ASSERT(!refcount_is_zero(&pbuf->b_hdr->b_refcnt));
2637 	ASSERT3U((char *)bp - (char *)pbuf->b_data, <, pbuf->b_hdr->b_size);
2638 	rw_enter(&pbuf->b_lock, RW_READER);
2639 
2640 	err = arc_read_nolock(pio, spa, bp, done, private, priority,
2641 	    zio_flags, arc_flags, zb);
2642 	rw_exit(&pbuf->b_lock);
2643 
2644 	return (err);
2645 }
2646 
2647 int
arc_read_nolock(zio_t * pio,spa_t * spa,const blkptr_t * bp,arc_done_func_t * done,void * private,int priority,int zio_flags,uint32_t * arc_flags,const zbookmark_t * zb)2648 arc_read_nolock(zio_t *pio, spa_t *spa, const blkptr_t *bp,
2649     arc_done_func_t *done, void *private, int priority, int zio_flags,
2650     uint32_t *arc_flags, const zbookmark_t *zb)
2651 {
2652 	arc_buf_hdr_t *hdr;
2653 	arc_buf_t *buf;
2654 	kmutex_t *hash_lock;
2655 	zio_t *rzio;
2656 	uint64_t guid = spa_guid(spa);
2657 
2658 top:
2659 	hdr = buf_hash_find(guid, BP_IDENTITY(bp), BP_PHYSICAL_BIRTH(bp),
2660 	    &hash_lock);
2661 	if (hdr && hdr->b_datacnt > 0) {
2662 
2663 		*arc_flags |= ARC_CACHED;
2664 
2665 		if (HDR_IO_IN_PROGRESS(hdr)) {
2666 
2667 			if (*arc_flags & ARC_WAIT) {
2668 				cv_wait(&hdr->b_cv, hash_lock);
2669 				mutex_exit(hash_lock);
2670 				goto top;
2671 			}
2672 			ASSERT(*arc_flags & ARC_NOWAIT);
2673 
2674 			if (done) {
2675 				arc_callback_t	*acb = NULL;
2676 
2677 				acb = kmem_zalloc(sizeof (arc_callback_t),
2678 				    KM_SLEEP);
2679 				acb->acb_done = done;
2680 				acb->acb_private = private;
2681 				if (pio != NULL)
2682 					acb->acb_zio_dummy = zio_null(pio,
2683 					    spa, NULL, NULL, NULL, zio_flags);
2684 
2685 				ASSERT(acb->acb_done != NULL);
2686 				acb->acb_next = hdr->b_acb;
2687 				hdr->b_acb = acb;
2688 				add_reference(hdr, hash_lock, private);
2689 				mutex_exit(hash_lock);
2690 				return (0);
2691 			}
2692 			mutex_exit(hash_lock);
2693 			return (0);
2694 		}
2695 
2696 		ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
2697 
2698 		if (done) {
2699 			add_reference(hdr, hash_lock, private);
2700 			/*
2701 			 * If this block is already in use, create a new
2702 			 * copy of the data so that we will be guaranteed
2703 			 * that arc_release() will always succeed.
2704 			 */
2705 			buf = hdr->b_buf;
2706 			ASSERT(buf);
2707 			ASSERT(buf->b_data);
2708 			if (HDR_BUF_AVAILABLE(hdr)) {
2709 				ASSERT(buf->b_efunc == NULL);
2710 				hdr->b_flags &= ~ARC_BUF_AVAILABLE;
2711 			} else {
2712 				buf = arc_buf_clone(buf);
2713 			}
2714 
2715 		} else if (*arc_flags & ARC_PREFETCH &&
2716 		    refcount_count(&hdr->b_refcnt) == 0) {
2717 			hdr->b_flags |= ARC_PREFETCH;
2718 		}
2719 		DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
2720 		arc_access(hdr, hash_lock);
2721 		if (*arc_flags & ARC_L2CACHE)
2722 			hdr->b_flags |= ARC_L2CACHE;
2723 		mutex_exit(hash_lock);
2724 		ARCSTAT_BUMP(arcstat_hits);
2725 		ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
2726 		    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
2727 		    data, metadata, hits);
2728 
2729 		if (done)
2730 			done(NULL, buf, private);
2731 	} else {
2732 		uint64_t size = BP_GET_LSIZE(bp);
2733 		arc_callback_t	*acb;
2734 		vdev_t *vd = NULL;
2735 		uint64_t addr;
2736 		boolean_t devw = B_FALSE;
2737 
2738 		if (hdr == NULL) {
2739 			/* this block is not in the cache */
2740 			arc_buf_hdr_t	*exists;
2741 			arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
2742 			buf = arc_buf_alloc(spa, size, private, type);
2743 			hdr = buf->b_hdr;
2744 			hdr->b_dva = *BP_IDENTITY(bp);
2745 			hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
2746 			hdr->b_cksum0 = bp->blk_cksum.zc_word[0];
2747 			exists = buf_hash_insert(hdr, &hash_lock);
2748 			if (exists) {
2749 				/* somebody beat us to the hash insert */
2750 				mutex_exit(hash_lock);
2751 				bzero(&hdr->b_dva, sizeof (dva_t));
2752 				hdr->b_birth = 0;
2753 				hdr->b_cksum0 = 0;
2754 				(void) arc_buf_remove_ref(buf, private);
2755 				goto top; /* restart the IO request */
2756 			}
2757 			/* if this is a prefetch, we don't have a reference */
2758 			if (*arc_flags & ARC_PREFETCH) {
2759 				(void) remove_reference(hdr, hash_lock,
2760 				    private);
2761 				hdr->b_flags |= ARC_PREFETCH;
2762 			}
2763 			if (*arc_flags & ARC_L2CACHE)
2764 				hdr->b_flags |= ARC_L2CACHE;
2765 			if (BP_GET_LEVEL(bp) > 0)
2766 				hdr->b_flags |= ARC_INDIRECT;
2767 		} else {
2768 			/* this block is in the ghost cache */
2769 			ASSERT(GHOST_STATE(hdr->b_state));
2770 			ASSERT(!HDR_IO_IN_PROGRESS(hdr));
2771 			ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 0);
2772 			ASSERT(hdr->b_buf == NULL);
2773 
2774 			/* if this is a prefetch, we don't have a reference */
2775 			if (*arc_flags & ARC_PREFETCH)
2776 				hdr->b_flags |= ARC_PREFETCH;
2777 			else
2778 				add_reference(hdr, hash_lock, private);
2779 			if (*arc_flags & ARC_L2CACHE)
2780 				hdr->b_flags |= ARC_L2CACHE;
2781 			buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
2782 			buf->b_hdr = hdr;
2783 			buf->b_data = NULL;
2784 			buf->b_efunc = NULL;
2785 			buf->b_private = NULL;
2786 			buf->b_next = NULL;
2787 			hdr->b_buf = buf;
2788 			arc_get_data_buf(buf);
2789 			ASSERT(hdr->b_datacnt == 0);
2790 			hdr->b_datacnt = 1;
2791 		}
2792 
2793 		acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
2794 		acb->acb_done = done;
2795 		acb->acb_private = private;
2796 
2797 		ASSERT(hdr->b_acb == NULL);
2798 		hdr->b_acb = acb;
2799 		hdr->b_flags |= ARC_IO_IN_PROGRESS;
2800 
2801 		/*
2802 		 * If the buffer has been evicted, migrate it to a present state
2803 		 * before issuing the I/O.  Once we drop the hash-table lock,
2804 		 * the header will be marked as I/O in progress and have an
2805 		 * attached buffer.  At this point, anybody who finds this
2806 		 * buffer ought to notice that it's legit but has a pending I/O.
2807 		 */
2808 
2809 		if (GHOST_STATE(hdr->b_state))
2810 			arc_access(hdr, hash_lock);
2811 
2812 		if (HDR_L2CACHE(hdr) && hdr->b_l2hdr != NULL &&
2813 		    (vd = hdr->b_l2hdr->b_dev->l2ad_vdev) != NULL) {
2814 			devw = hdr->b_l2hdr->b_dev->l2ad_writing;
2815 			addr = hdr->b_l2hdr->b_daddr;
2816 			/*
2817 			 * Lock out device removal.
2818 			 */
2819 			if (vdev_is_dead(vd) ||
2820 			    !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
2821 				vd = NULL;
2822 		}
2823 
2824 		mutex_exit(hash_lock);
2825 
2826 		ASSERT3U(hdr->b_size, ==, size);
2827 		DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp,
2828 		    uint64_t, size, zbookmark_t *, zb);
2829 		ARCSTAT_BUMP(arcstat_misses);
2830 		ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
2831 		    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
2832 		    data, metadata, misses);
2833 
2834 		if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
2835 			/*
2836 			 * Read from the L2ARC if the following are true:
2837 			 * 1. The L2ARC vdev was previously cached.
2838 			 * 2. This buffer still has L2ARC metadata.
2839 			 * 3. This buffer isn't currently writing to the L2ARC.
2840 			 * 4. The L2ARC entry wasn't evicted, which may
2841 			 *    also have invalidated the vdev.
2842 			 * 5. This isn't prefetch and l2arc_noprefetch is set.
2843 			 */
2844 			if (hdr->b_l2hdr != NULL &&
2845 			    !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
2846 			    !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
2847 				l2arc_read_callback_t *cb;
2848 
2849 				DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
2850 				ARCSTAT_BUMP(arcstat_l2_hits);
2851 
2852 				cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
2853 				    KM_SLEEP);
2854 				cb->l2rcb_buf = buf;
2855 				cb->l2rcb_spa = spa;
2856 				cb->l2rcb_bp = *bp;
2857 				cb->l2rcb_zb = *zb;
2858 				cb->l2rcb_flags = zio_flags;
2859 
2860 				/*
2861 				 * l2arc read.  The SCL_L2ARC lock will be
2862 				 * released by l2arc_read_done().
2863 				 */
2864 				rzio = zio_read_phys(pio, vd, addr, size,
2865 				    buf->b_data, ZIO_CHECKSUM_OFF,
2866 				    l2arc_read_done, cb, priority, zio_flags |
2867 				    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL |
2868 				    ZIO_FLAG_DONT_PROPAGATE |
2869 				    ZIO_FLAG_DONT_RETRY, B_FALSE);
2870 				DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
2871 				    zio_t *, rzio);
2872 				ARCSTAT_INCR(arcstat_l2_read_bytes, size);
2873 
2874 				if (*arc_flags & ARC_NOWAIT) {
2875 					zio_nowait(rzio);
2876 					return (0);
2877 				}
2878 
2879 				ASSERT(*arc_flags & ARC_WAIT);
2880 				if (zio_wait(rzio) == 0)
2881 					return (0);
2882 
2883 				/* l2arc read error; goto zio_read() */
2884 			} else {
2885 				DTRACE_PROBE1(l2arc__miss,
2886 				    arc_buf_hdr_t *, hdr);
2887 				ARCSTAT_BUMP(arcstat_l2_misses);
2888 				if (HDR_L2_WRITING(hdr))
2889 					ARCSTAT_BUMP(arcstat_l2_rw_clash);
2890 				spa_config_exit(spa, SCL_L2ARC, vd);
2891 			}
2892 		} else {
2893 			if (vd != NULL)
2894 				spa_config_exit(spa, SCL_L2ARC, vd);
2895 			if (l2arc_ndev != 0) {
2896 				DTRACE_PROBE1(l2arc__miss,
2897 				    arc_buf_hdr_t *, hdr);
2898 				ARCSTAT_BUMP(arcstat_l2_misses);
2899 			}
2900 		}
2901 
2902 		rzio = zio_read(pio, spa, bp, buf->b_data, size,
2903 		    arc_read_done, buf, priority, zio_flags, zb);
2904 
2905 		if (*arc_flags & ARC_WAIT)
2906 			return (zio_wait(rzio));
2907 
2908 		ASSERT(*arc_flags & ARC_NOWAIT);
2909 		zio_nowait(rzio);
2910 	}
2911 	return (0);
2912 }
2913 
2914 void
arc_set_callback(arc_buf_t * buf,arc_evict_func_t * func,void * private)2915 arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private)
2916 {
2917 	ASSERT(buf->b_hdr != NULL);
2918 	ASSERT(buf->b_hdr->b_state != arc_anon);
2919 	ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt) || func == NULL);
2920 	ASSERT(buf->b_efunc == NULL);
2921 	ASSERT(!HDR_BUF_AVAILABLE(buf->b_hdr));
2922 
2923 	buf->b_efunc = func;
2924 	buf->b_private = private;
2925 }
2926 
2927 /*
2928  * This is used by the DMU to let the ARC know that a buffer is
2929  * being evicted, so the ARC should clean up.  If this arc buf
2930  * is not yet in the evicted state, it will be put there.
2931  */
2932 int
arc_buf_evict(arc_buf_t * buf)2933 arc_buf_evict(arc_buf_t *buf)
2934 {
2935 	arc_buf_hdr_t *hdr;
2936 	kmutex_t *hash_lock;
2937 	arc_buf_t **bufp;
2938 
2939 	rw_enter(&buf->b_lock, RW_WRITER);
2940 	hdr = buf->b_hdr;
2941 	if (hdr == NULL) {
2942 		/*
2943 		 * We are in arc_do_user_evicts().
2944 		 */
2945 		ASSERT(buf->b_data == NULL);
2946 		rw_exit(&buf->b_lock);
2947 		return (0);
2948 	} else if (buf->b_data == NULL) {
2949 		arc_buf_t copy = *buf; /* structure assignment */
2950 		/*
2951 		 * We are on the eviction list; process this buffer now
2952 		 * but let arc_do_user_evicts() do the reaping.
2953 		 */
2954 		buf->b_efunc = NULL;
2955 		rw_exit(&buf->b_lock);
2956 		VERIFY(copy.b_efunc(&copy) == 0);
2957 		return (1);
2958 	}
2959 	hash_lock = HDR_LOCK(hdr);
2960 	mutex_enter(hash_lock);
2961 
2962 	ASSERT(buf->b_hdr == hdr);
2963 	ASSERT3U(refcount_count(&hdr->b_refcnt), <, hdr->b_datacnt);
2964 	ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
2965 
2966 	/*
2967 	 * Pull this buffer off of the hdr
2968 	 */
2969 	bufp = &hdr->b_buf;
2970 	while (*bufp != buf)
2971 		bufp = &(*bufp)->b_next;
2972 	*bufp = buf->b_next;
2973 
2974 	ASSERT(buf->b_data != NULL);
2975 	arc_buf_destroy(buf, FALSE, FALSE);
2976 
2977 	if (hdr->b_datacnt == 0) {
2978 		arc_state_t *old_state = hdr->b_state;
2979 		arc_state_t *evicted_state;
2980 
2981 		ASSERT(refcount_is_zero(&hdr->b_refcnt));
2982 
2983 		evicted_state =
2984 		    (old_state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
2985 
2986 		mutex_enter(&old_state->arcs_mtx);
2987 		mutex_enter(&evicted_state->arcs_mtx);
2988 
2989 		arc_change_state(evicted_state, hdr, hash_lock);
2990 		ASSERT(HDR_IN_HASH_TABLE(hdr));
2991 		hdr->b_flags |= ARC_IN_HASH_TABLE;
2992 		hdr->b_flags &= ~ARC_BUF_AVAILABLE;
2993 
2994 		mutex_exit(&evicted_state->arcs_mtx);
2995 		mutex_exit(&old_state->arcs_mtx);
2996 	}
2997 	mutex_exit(hash_lock);
2998 	rw_exit(&buf->b_lock);
2999 
3000 	VERIFY(buf->b_efunc(buf) == 0);
3001 	buf->b_efunc = NULL;
3002 	buf->b_private = NULL;
3003 	buf->b_hdr = NULL;
3004 	kmem_cache_free(buf_cache, buf);
3005 	return (1);
3006 }
3007 
3008 /*
3009  * Release this buffer from the cache.  This must be done
3010  * after a read and prior to modifying the buffer contents.
3011  * If the buffer has more than one reference, we must make
3012  * a new hdr for the buffer.
3013  */
3014 void
arc_release(arc_buf_t * buf,void * tag)3015 arc_release(arc_buf_t *buf, void *tag)
3016 {
3017 	arc_buf_hdr_t *hdr;
3018 	kmutex_t *hash_lock;
3019 	l2arc_buf_hdr_t *l2hdr;
3020 	uint64_t buf_size;
3021 	boolean_t released = B_FALSE;
3022 
3023 	rw_enter(&buf->b_lock, RW_WRITER);
3024 	hdr = buf->b_hdr;
3025 
3026 	/* this buffer is not on any list */
3027 	ASSERT(refcount_count(&hdr->b_refcnt) > 0);
3028 
3029 	if (hdr->b_state == arc_anon) {
3030 		/* this buffer is already released */
3031 		ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 1);
3032 		ASSERT(BUF_EMPTY(hdr));
3033 		ASSERT(buf->b_efunc == NULL);
3034 		arc_buf_thaw(buf);
3035 		rw_exit(&buf->b_lock);
3036 		released = B_TRUE;
3037 	} else {
3038 		hash_lock = HDR_LOCK(hdr);
3039 		mutex_enter(hash_lock);
3040 	}
3041 
3042 	l2hdr = hdr->b_l2hdr;
3043 	if (l2hdr) {
3044 		mutex_enter(&l2arc_buflist_mtx);
3045 		hdr->b_l2hdr = NULL;
3046 		buf_size = hdr->b_size;
3047 	}
3048 
3049 	if (released)
3050 		goto out;
3051 
3052 	/*
3053 	 * Do we have more than one buf?
3054 	 */
3055 	if (hdr->b_datacnt > 1) {
3056 		arc_buf_hdr_t *nhdr;
3057 		arc_buf_t **bufp;
3058 		uint64_t blksz = hdr->b_size;
3059 		uint64_t spa = hdr->b_spa;
3060 		arc_buf_contents_t type = hdr->b_type;
3061 		uint32_t flags = hdr->b_flags;
3062 
3063 		ASSERT(hdr->b_buf != buf || buf->b_next != NULL);
3064 		/*
3065 		 * Pull the data off of this buf and attach it to
3066 		 * a new anonymous buf.
3067 		 */
3068 		(void) remove_reference(hdr, hash_lock, tag);
3069 		bufp = &hdr->b_buf;
3070 		while (*bufp != buf)
3071 			bufp = &(*bufp)->b_next;
3072 		*bufp = (*bufp)->b_next;
3073 		buf->b_next = NULL;
3074 
3075 		ASSERT3U(hdr->b_state->arcs_size, >=, hdr->b_size);
3076 		atomic_add_64(&hdr->b_state->arcs_size, -hdr->b_size);
3077 		if (refcount_is_zero(&hdr->b_refcnt)) {
3078 			uint64_t *size = &hdr->b_state->arcs_lsize[hdr->b_type];
3079 			ASSERT3U(*size, >=, hdr->b_size);
3080 			atomic_add_64(size, -hdr->b_size);
3081 		}
3082 		hdr->b_datacnt -= 1;
3083 		arc_cksum_verify(buf);
3084 
3085 		mutex_exit(hash_lock);
3086 
3087 		nhdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
3088 		nhdr->b_size = blksz;
3089 		nhdr->b_spa = spa;
3090 		nhdr->b_type = type;
3091 		nhdr->b_buf = buf;
3092 		nhdr->b_state = arc_anon;
3093 		nhdr->b_arc_access = 0;
3094 		nhdr->b_flags = flags & ARC_L2_WRITING;
3095 		nhdr->b_l2hdr = NULL;
3096 		nhdr->b_datacnt = 1;
3097 		nhdr->b_freeze_cksum = NULL;
3098 		(void) refcount_add(&nhdr->b_refcnt, tag);
3099 		buf->b_hdr = nhdr;
3100 		rw_exit(&buf->b_lock);
3101 		atomic_add_64(&arc_anon->arcs_size, blksz);
3102 	} else {
3103 		rw_exit(&buf->b_lock);
3104 		ASSERT(refcount_count(&hdr->b_refcnt) == 1);
3105 		ASSERT(!list_link_active(&hdr->b_arc_node));
3106 		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3107 		arc_change_state(arc_anon, hdr, hash_lock);
3108 		hdr->b_arc_access = 0;
3109 		mutex_exit(hash_lock);
3110 
3111 		bzero(&hdr->b_dva, sizeof (dva_t));
3112 		hdr->b_birth = 0;
3113 		hdr->b_cksum0 = 0;
3114 		arc_buf_thaw(buf);
3115 	}
3116 	buf->b_efunc = NULL;
3117 	buf->b_private = NULL;
3118 
3119 out:
3120 	if (l2hdr) {
3121 		list_remove(l2hdr->b_dev->l2ad_buflist, hdr);
3122 		kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t));
3123 		ARCSTAT_INCR(arcstat_l2_size, -buf_size);
3124 		mutex_exit(&l2arc_buflist_mtx);
3125 	}
3126 }
3127 
3128 int
arc_released(arc_buf_t * buf)3129 arc_released(arc_buf_t *buf)
3130 {
3131 	int released;
3132 
3133 	rw_enter(&buf->b_lock, RW_READER);
3134 	released = (buf->b_data != NULL && buf->b_hdr->b_state == arc_anon);
3135 	rw_exit(&buf->b_lock);
3136 	return (released);
3137 }
3138 
3139 int
arc_has_callback(arc_buf_t * buf)3140 arc_has_callback(arc_buf_t *buf)
3141 {
3142 	int callback;
3143 
3144 	rw_enter(&buf->b_lock, RW_READER);
3145 	callback = (buf->b_efunc != NULL);
3146 	rw_exit(&buf->b_lock);
3147 	return (callback);
3148 }
3149 
3150 #ifdef ZFS_DEBUG
3151 int
arc_referenced(arc_buf_t * buf)3152 arc_referenced(arc_buf_t *buf)
3153 {
3154 	int referenced;
3155 
3156 	rw_enter(&buf->b_lock, RW_READER);
3157 	referenced = (refcount_count(&buf->b_hdr->b_refcnt));
3158 	rw_exit(&buf->b_lock);
3159 	return (referenced);
3160 }
3161 #endif
3162 
3163 static void
arc_write_ready(zio_t * zio)3164 arc_write_ready(zio_t *zio)
3165 {
3166 	arc_write_callback_t *callback = zio->io_private;
3167 	arc_buf_t *buf = callback->awcb_buf;
3168 	arc_buf_hdr_t *hdr = buf->b_hdr;
3169 
3170 	ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt));
3171 	callback->awcb_ready(zio, buf, callback->awcb_private);
3172 
3173 	/*
3174 	 * If the IO is already in progress, then this is a re-write
3175 	 * attempt, so we need to thaw and re-compute the cksum.
3176 	 * It is the responsibility of the callback to handle the
3177 	 * accounting for any re-write attempt.
3178 	 */
3179 	if (HDR_IO_IN_PROGRESS(hdr)) {
3180 		mutex_enter(&hdr->b_freeze_lock);
3181 		if (hdr->b_freeze_cksum != NULL) {
3182 			kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
3183 			hdr->b_freeze_cksum = NULL;
3184 		}
3185 		mutex_exit(&hdr->b_freeze_lock);
3186 	}
3187 	arc_cksum_compute(buf, B_FALSE);
3188 	hdr->b_flags |= ARC_IO_IN_PROGRESS;
3189 }
3190 
3191 static void
arc_write_done(zio_t * zio)3192 arc_write_done(zio_t *zio)
3193 {
3194 	arc_write_callback_t *callback = zio->io_private;
3195 	arc_buf_t *buf = callback->awcb_buf;
3196 	arc_buf_hdr_t *hdr = buf->b_hdr;
3197 
3198 	ASSERT(hdr->b_acb == NULL);
3199 
3200 	if (zio->io_error == 0) {
3201 		hdr->b_dva = *BP_IDENTITY(zio->io_bp);
3202 		hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
3203 		hdr->b_cksum0 = zio->io_bp->blk_cksum.zc_word[0];
3204 	} else {
3205 		ASSERT(BUF_EMPTY(hdr));
3206 	}
3207 
3208 	/*
3209 	 * If the block to be written was all-zero, we may have
3210 	 * compressed it away.  In this case no write was performed
3211 	 * so there will be no dva/birth-date/checksum.  The buffer
3212 	 * must therefor remain anonymous (and uncached).
3213 	 */
3214 	if (!BUF_EMPTY(hdr)) {
3215 		arc_buf_hdr_t *exists;
3216 		kmutex_t *hash_lock;
3217 
3218 		ASSERT(zio->io_error == 0);
3219 
3220 		arc_cksum_verify(buf);
3221 
3222 		exists = buf_hash_insert(hdr, &hash_lock);
3223 		if (exists) {
3224 			/*
3225 			 * This can only happen if we overwrite for
3226 			 * sync-to-convergence, because we remove
3227 			 * buffers from the hash table when we arc_free().
3228 			 */
3229 			if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
3230 				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
3231 					panic("bad overwrite, hdr=%p exists=%p",
3232 					    (void *)hdr, (void *)exists);
3233 				ASSERT(refcount_is_zero(&exists->b_refcnt));
3234 				arc_change_state(arc_anon, exists, hash_lock);
3235 				mutex_exit(hash_lock);
3236 				arc_hdr_destroy(exists);
3237 				exists = buf_hash_insert(hdr, &hash_lock);
3238 				ASSERT3P(exists, ==, NULL);
3239 			} else {
3240 				/* Dedup */
3241 				ASSERT(hdr->b_datacnt == 1);
3242 				ASSERT(hdr->b_state == arc_anon);
3243 				ASSERT(BP_GET_DEDUP(zio->io_bp));
3244 				ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
3245 			}
3246 		}
3247 		hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
3248 		/* if it's not anon, we are doing a scrub */
3249 		if (!exists && hdr->b_state == arc_anon)
3250 			arc_access(hdr, hash_lock);
3251 		mutex_exit(hash_lock);
3252 	} else {
3253 		hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
3254 	}
3255 
3256 	ASSERT(!refcount_is_zero(&hdr->b_refcnt));
3257 	callback->awcb_done(zio, buf, callback->awcb_private);
3258 
3259 	kmem_free(callback, sizeof (arc_write_callback_t));
3260 }
3261 
3262 zio_t *
arc_write(zio_t * pio,spa_t * spa,uint64_t txg,blkptr_t * bp,arc_buf_t * buf,boolean_t l2arc,const zio_prop_t * zp,arc_done_func_t * ready,arc_done_func_t * done,void * private,int priority,int zio_flags,const zbookmark_t * zb)3263 arc_write(zio_t *pio, spa_t *spa, uint64_t txg,
3264     blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, const zio_prop_t *zp,
3265     arc_done_func_t *ready, arc_done_func_t *done, void *private,
3266     int priority, int zio_flags, const zbookmark_t *zb)
3267 {
3268 	arc_buf_hdr_t *hdr = buf->b_hdr;
3269 	arc_write_callback_t *callback;
3270 	zio_t *zio;
3271 
3272 	ASSERT(ready != NULL);
3273 	ASSERT(done != NULL);
3274 	ASSERT(!HDR_IO_ERROR(hdr));
3275 	ASSERT((hdr->b_flags & ARC_IO_IN_PROGRESS) == 0);
3276 	ASSERT(hdr->b_acb == NULL);
3277 	if (l2arc)
3278 		hdr->b_flags |= ARC_L2CACHE;
3279 	callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
3280 	callback->awcb_ready = ready;
3281 	callback->awcb_done = done;
3282 	callback->awcb_private = private;
3283 	callback->awcb_buf = buf;
3284 
3285 	zio = zio_write(pio, spa, txg, bp, buf->b_data, hdr->b_size, zp,
3286 	    arc_write_ready, arc_write_done, callback, priority, zio_flags, zb);
3287 
3288 	return (zio);
3289 }
3290 
3291 void
arc_free(spa_t * spa,const blkptr_t * bp)3292 arc_free(spa_t *spa, const blkptr_t *bp)
3293 {
3294 	arc_buf_hdr_t *ab;
3295 	kmutex_t *hash_lock;
3296 	uint64_t guid = spa_guid(spa);
3297 
3298 	/*
3299 	 * If this buffer is in the cache, release it, so it can be re-used.
3300 	 */
3301 	ab = buf_hash_find(guid, BP_IDENTITY(bp), BP_PHYSICAL_BIRTH(bp),
3302 	    &hash_lock);
3303 	if (ab != NULL) {
3304 		if (ab->b_state != arc_anon)
3305 			arc_change_state(arc_anon, ab, hash_lock);
3306 		if (HDR_IO_IN_PROGRESS(ab)) {
3307 			/*
3308 			 * This should only happen when we prefetch.
3309 			 */
3310 			ASSERT(ab->b_flags & ARC_PREFETCH);
3311 			ASSERT3U(ab->b_datacnt, ==, 1);
3312 			ab->b_flags |= ARC_FREED_IN_READ;
3313 			if (HDR_IN_HASH_TABLE(ab))
3314 				buf_hash_remove(ab);
3315 			ab->b_arc_access = 0;
3316 			bzero(&ab->b_dva, sizeof (dva_t));
3317 			ab->b_birth = 0;
3318 			ab->b_cksum0 = 0;
3319 			ab->b_buf->b_efunc = NULL;
3320 			ab->b_buf->b_private = NULL;
3321 			mutex_exit(hash_lock);
3322 		} else {
3323 			ASSERT(refcount_is_zero(&ab->b_refcnt));
3324 			ab->b_flags |= ARC_FREE_IN_PROGRESS;
3325 			mutex_exit(hash_lock);
3326 			arc_hdr_destroy(ab);
3327 			ARCSTAT_BUMP(arcstat_deleted);
3328 		}
3329 	}
3330 }
3331 
3332 static int
arc_memory_throttle(uint64_t reserve,uint64_t inflight_data,uint64_t txg)3333 arc_memory_throttle(uint64_t reserve, uint64_t inflight_data, uint64_t txg)
3334 {
3335 #ifdef _KERNEL
3336 	uint64_t available_memory = ptob(freemem);
3337 	static uint64_t page_load = 0;
3338 	static uint64_t last_txg = 0;
3339 
3340 	available_memory =
3341 	    MIN(available_memory, vmem_size(kmem_arena, VMEM_FREE));
3342 	if (available_memory >= zfs_write_limit_max)
3343 		return (0);
3344 
3345 	if (txg > last_txg) {
3346 		last_txg = txg;
3347 		page_load = 0;
3348 	}
3349 	/*
3350 	 * If we are in pageout, we know that memory is already tight,
3351 	 * the arc is already going to be evicting, so we just want to
3352 	 * continue to let page writes occur as quickly as possible.
3353 	 */
3354 	if (curproc == proc_pageout) {
3355 		if (page_load > MAX(ptob(minfree), available_memory) / 4)
3356 			return (ERESTART);
3357 		/* Note: reserve is inflated, so we deflate */
3358 		page_load += reserve / 8;
3359 		return (0);
3360 	} else if (page_load > 0 && arc_reclaim_needed()) {
3361 		/* memory is low, delay before restarting */
3362 		ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
3363 		return (EAGAIN);
3364 	}
3365 	page_load = 0;
3366 
3367 	if (arc_size > arc_c_min) {
3368 		uint64_t evictable_memory =
3369 		    arc_mru->arcs_lsize[ARC_BUFC_DATA] +
3370 		    arc_mru->arcs_lsize[ARC_BUFC_METADATA] +
3371 		    arc_mfu->arcs_lsize[ARC_BUFC_DATA] +
3372 		    arc_mfu->arcs_lsize[ARC_BUFC_METADATA];
3373 		available_memory += MIN(evictable_memory, arc_size - arc_c_min);
3374 	}
3375 
3376 	if (inflight_data > available_memory / 4) {
3377 		ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
3378 		return (ERESTART);
3379 	}
3380 #endif
3381 	return (0);
3382 }
3383 
3384 void
arc_tempreserve_clear(uint64_t reserve)3385 arc_tempreserve_clear(uint64_t reserve)
3386 {
3387 	atomic_add_64(&arc_tempreserve, -reserve);
3388 	ASSERT((int64_t)arc_tempreserve >= 0);
3389 }
3390 
3391 int
arc_tempreserve_space(uint64_t reserve,uint64_t txg)3392 arc_tempreserve_space(uint64_t reserve, uint64_t txg)
3393 {
3394 	int error;
3395 	uint64_t anon_size;
3396 
3397 #ifdef ZFS_DEBUG
3398 	/*
3399 	 * Once in a while, fail for no reason.  Everything should cope.
3400 	 */
3401 	if (spa_get_random(10000) == 0) {
3402 		dprintf("forcing random failure\n");
3403 		return (ERESTART);
3404 	}
3405 #endif
3406 	if (reserve > arc_c/4 && !arc_no_grow)
3407 		arc_c = MIN(arc_c_max, reserve * 4);
3408 	if (reserve > arc_c)
3409 		return (ENOMEM);
3410 
3411 	/*
3412 	 * Don't count loaned bufs as in flight dirty data to prevent long
3413 	 * network delays from blocking transactions that are ready to be
3414 	 * assigned to a txg.
3415 	 */
3416 	anon_size = MAX((int64_t)(arc_anon->arcs_size - arc_loaned_bytes), 0);
3417 
3418 	/*
3419 	 * Writes will, almost always, require additional memory allocations
3420 	 * in order to compress/encrypt/etc the data.  We therefor need to
3421 	 * make sure that there is sufficient available memory for this.
3422 	 */
3423 	if (error = arc_memory_throttle(reserve, anon_size, txg))
3424 		return (error);
3425 
3426 	/*
3427 	 * Throttle writes when the amount of dirty data in the cache
3428 	 * gets too large.  We try to keep the cache less than half full
3429 	 * of dirty blocks so that our sync times don't grow too large.
3430 	 * Note: if two requests come in concurrently, we might let them
3431 	 * both succeed, when one of them should fail.  Not a huge deal.
3432 	 */
3433 
3434 	if (reserve + arc_tempreserve + anon_size > arc_c / 2 &&
3435 	    anon_size > arc_c / 4) {
3436 		dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
3437 		    "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
3438 		    arc_tempreserve>>10,
3439 		    arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10,
3440 		    arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10,
3441 		    reserve>>10, arc_c>>10);
3442 		return (ERESTART);
3443 	}
3444 	atomic_add_64(&arc_tempreserve, reserve);
3445 	return (0);
3446 }
3447 
3448 #if defined(__NetBSD__) && defined(_KERNEL)
3449 /* Reclaim hook registered to uvm for reclaiming KVM and memory */
3450 static void
arc_uvm_reclaim_hook(void)3451 arc_uvm_reclaim_hook(void)
3452 {
3453 
3454 	if (mutex_tryenter(&arc_reclaim_thr_lock)) {
3455 		cv_broadcast(&arc_reclaim_thr_cv);
3456 		mutex_exit(&arc_reclaim_thr_lock);
3457 	}
3458 }
3459 
3460 static int
arc_kva_reclaim_callback(struct callback_entry * ce,void * obj,void * arg)3461 arc_kva_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
3462 {
3463 
3464 
3465 	if (mutex_tryenter(&arc_reclaim_thr_lock)) {
3466 		cv_broadcast(&arc_reclaim_thr_cv);
3467 		mutex_exit(&arc_reclaim_thr_lock);
3468 	}
3469 
3470 	return CALLBACK_CHAIN_CONTINUE;
3471 }
3472 
3473 #endif /* __NetBSD__ */
3474 
3475 void
arc_init(void)3476 arc_init(void)
3477 {
3478 	mutex_init(&arc_reclaim_thr_lock, NULL, MUTEX_DEFAULT, NULL);
3479 	cv_init(&arc_reclaim_thr_cv, NULL, CV_DEFAULT, NULL);
3480 
3481 	/* Convert seconds to clock ticks */
3482 	arc_min_prefetch_lifespan = 1 * hz;
3483 
3484 	/* Start out with 1/8 of all memory */
3485 	arc_c = physmem * PAGESIZE / 8;
3486 
3487 #ifdef _KERNEL
3488 	/*
3489 	 * On architectures where the physical memory can be larger
3490 	 * than the addressable space (intel in 32-bit mode), we may
3491 	 * need to limit the cache to 1/8 of VM size.
3492 	 */
3493 	arc_c = MIN(arc_c, vmem_size(kmem_arena, VMEM_ALLOC | VMEM_FREE) / 8);
3494 #endif
3495 
3496 	/* set min cache to 1/32 of all memory, or 64MB, whichever is more */
3497 	arc_c_min = MAX(arc_c / 4, 64<<20);
3498 	/* set max to 3/4 of all memory, or all but 1GB, whichever is more */
3499 	if (arc_c * 8 >= 1<<30)
3500 		arc_c_max = (arc_c * 8) - (1<<30);
3501 	else
3502 		arc_c_max = arc_c_min;
3503 	arc_c_max = MAX(arc_c * 6, arc_c_max);
3504 
3505 	/*
3506 	 * Allow the tunables to override our calculations if they are
3507 	 * reasonable (ie. over 64MB)
3508 	 */
3509 	if (zfs_arc_max > 64<<20 && zfs_arc_max < physmem * PAGESIZE)
3510 		arc_c_max = zfs_arc_max;
3511 	if (zfs_arc_min > 64<<20 && zfs_arc_min <= arc_c_max)
3512 		arc_c_min = zfs_arc_min;
3513 
3514 	arc_c = arc_c_max;
3515 	arc_p = (arc_c >> 1);
3516 
3517 	/* limit meta-data to 1/4 of the arc capacity */
3518 	arc_meta_limit = arc_c_max / 4;
3519 
3520 	/* Allow the tunable to override if it is reasonable */
3521 	if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max)
3522 		arc_meta_limit = zfs_arc_meta_limit;
3523 
3524 	if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0)
3525 		arc_c_min = arc_meta_limit / 2;
3526 
3527 	if (zfs_arc_grow_retry > 0)
3528 		arc_grow_retry = zfs_arc_grow_retry;
3529 
3530 	if (zfs_arc_shrink_shift > 0)
3531 		arc_shrink_shift = zfs_arc_shrink_shift;
3532 
3533 	if (zfs_arc_p_min_shift > 0)
3534 		arc_p_min_shift = zfs_arc_p_min_shift;
3535 
3536 	/* if kmem_flags are set, lets try to use less memory */
3537 	if (kmem_debugging())
3538 		arc_c = arc_c / 2;
3539 	if (arc_c < arc_c_min)
3540 		arc_c = arc_c_min;
3541 
3542 	arc_anon = &ARC_anon;
3543 	arc_mru = &ARC_mru;
3544 	arc_mru_ghost = &ARC_mru_ghost;
3545 	arc_mfu = &ARC_mfu;
3546 	arc_mfu_ghost = &ARC_mfu_ghost;
3547 	arc_l2c_only = &ARC_l2c_only;
3548 	arc_size = 0;
3549 
3550 	mutex_init(&arc_anon->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3551 	mutex_init(&arc_mru->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3552 	mutex_init(&arc_mru_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3553 	mutex_init(&arc_mfu->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3554 	mutex_init(&arc_mfu_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3555 	mutex_init(&arc_l2c_only->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3556 
3557 	list_create(&arc_mru->arcs_list[ARC_BUFC_METADATA],
3558 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3559 	list_create(&arc_mru->arcs_list[ARC_BUFC_DATA],
3560 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3561 	list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA],
3562 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3563 	list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA],
3564 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3565 	list_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA],
3566 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3567 	list_create(&arc_mfu->arcs_list[ARC_BUFC_DATA],
3568 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3569 	list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA],
3570 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3571 	list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA],
3572 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3573 	list_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA],
3574 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3575 	list_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA],
3576 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3577 
3578 	buf_init();
3579 
3580 	arc_thread_exit = 0;
3581 	arc_eviction_list = NULL;
3582 	mutex_init(&arc_eviction_mtx, NULL, MUTEX_DEFAULT, NULL);
3583 	bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t));
3584 
3585 	arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
3586 	    sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
3587 
3588 	if (arc_ksp != NULL) {
3589 		arc_ksp->ks_data = &arc_stats;
3590 		kstat_install(arc_ksp);
3591 	}
3592 
3593 	(void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0,
3594 	    TS_RUN, maxclsyspri);
3595 
3596 #if defined(__NetBSD__) && defined(_KERNEL)
3597 /* 	arc_hook.uvm_reclaim_hook = &arc_uvm_reclaim_hook;
3598 
3599 	uvm_reclaim_hook_add(&arc_hook);
3600 	callback_register(&vm_map_to_kernel(kernel_map)->vmk_reclaim_callback,
3601 	    &arc_kva_reclaim_entry, NULL, arc_kva_reclaim_callback); */
3602 
3603 #endif
3604 
3605 	arc_dead = FALSE;
3606 	arc_warm = B_FALSE;
3607 
3608 	if (zfs_write_limit_max == 0)
3609 		zfs_write_limit_max = ptob(physmem) >> zfs_write_limit_shift;
3610 	else
3611 		zfs_write_limit_shift = 0;
3612 	mutex_init(&zfs_write_limit_lock, NULL, MUTEX_DEFAULT, NULL);
3613 }
3614 
3615 void
arc_fini(void)3616 arc_fini(void)
3617 {
3618 	mutex_enter(&arc_reclaim_thr_lock);
3619 	arc_thread_exit = 1;
3620 	while (arc_thread_exit != 0)
3621 		cv_wait(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock);
3622 	mutex_exit(&arc_reclaim_thr_lock);
3623 
3624 	arc_flush(NULL);
3625 
3626 	arc_dead = TRUE;
3627 
3628 	if (arc_ksp != NULL) {
3629 		kstat_delete(arc_ksp);
3630 		arc_ksp = NULL;
3631 	}
3632 
3633 	mutex_destroy(&arc_eviction_mtx);
3634 	mutex_destroy(&arc_reclaim_thr_lock);
3635 	cv_destroy(&arc_reclaim_thr_cv);
3636 
3637 	list_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]);
3638 	list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
3639 	list_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]);
3640 	list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
3641 	list_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]);
3642 	list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
3643 	list_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]);
3644 	list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
3645 
3646 	mutex_destroy(&arc_anon->arcs_mtx);
3647 	mutex_destroy(&arc_mru->arcs_mtx);
3648 	mutex_destroy(&arc_mru_ghost->arcs_mtx);
3649 	mutex_destroy(&arc_mfu->arcs_mtx);
3650 	mutex_destroy(&arc_mfu_ghost->arcs_mtx);
3651 	mutex_destroy(&arc_l2c_only->arcs_mtx);
3652 
3653 	mutex_destroy(&zfs_write_limit_lock);
3654 
3655 #if defined(__NetBSD__) && defined(_KERNEL)
3656 /*	uvm_reclaim_hook_del(&arc_hook);
3657 	callback_unregister(&vm_map_to_kernel(kernel_map)->vmk_reclaim_callback,
3658 	    &arc_kva_reclaim_entry); */
3659 #endif
3660 
3661 	buf_fini();
3662 
3663 	ASSERT(arc_loaned_bytes == 0);
3664 }
3665 
3666 /*
3667  * Level 2 ARC
3668  *
3669  * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
3670  * It uses dedicated storage devices to hold cached data, which are populated
3671  * using large infrequent writes.  The main role of this cache is to boost
3672  * the performance of random read workloads.  The intended L2ARC devices
3673  * include short-stroked disks, solid state disks, and other media with
3674  * substantially faster read latency than disk.
3675  *
3676  *                 +-----------------------+
3677  *                 |         ARC           |
3678  *                 +-----------------------+
3679  *                    |         ^     ^
3680  *                    |         |     |
3681  *      l2arc_feed_thread()    arc_read()
3682  *                    |         |     |
3683  *                    |  l2arc read   |
3684  *                    V         |     |
3685  *               +---------------+    |
3686  *               |     L2ARC     |    |
3687  *               +---------------+    |
3688  *                   |    ^           |
3689  *          l2arc_write() |           |
3690  *                   |    |           |
3691  *                   V    |           |
3692  *                 +-------+      +-------+
3693  *                 | vdev  |      | vdev  |
3694  *                 | cache |      | cache |
3695  *                 +-------+      +-------+
3696  *                 +=========+     .-----.
3697  *                 :  L2ARC  :    |-_____-|
3698  *                 : devices :    | Disks |
3699  *                 +=========+    `-_____-'
3700  *
3701  * Read requests are satisfied from the following sources, in order:
3702  *
3703  *	1) ARC
3704  *	2) vdev cache of L2ARC devices
3705  *	3) L2ARC devices
3706  *	4) vdev cache of disks
3707  *	5) disks
3708  *
3709  * Some L2ARC device types exhibit extremely slow write performance.
3710  * To accommodate for this there are some significant differences between
3711  * the L2ARC and traditional cache design:
3712  *
3713  * 1. There is no eviction path from the ARC to the L2ARC.  Evictions from
3714  * the ARC behave as usual, freeing buffers and placing headers on ghost
3715  * lists.  The ARC does not send buffers to the L2ARC during eviction as
3716  * this would add inflated write latencies for all ARC memory pressure.
3717  *
3718  * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
3719  * It does this by periodically scanning buffers from the eviction-end of
3720  * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
3721  * not already there.  It scans until a headroom of buffers is satisfied,
3722  * which itself is a buffer for ARC eviction.  The thread that does this is
3723  * l2arc_feed_thread(), illustrated below; example sizes are included to
3724  * provide a better sense of ratio than this diagram:
3725  *
3726  *	       head -->                        tail
3727  *	        +---------------------+----------+
3728  *	ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->.   # already on L2ARC
3729  *	        +---------------------+----------+   |   o L2ARC eligible
3730  *	ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->|   : ARC buffer
3731  *	        +---------------------+----------+   |
3732  *	             15.9 Gbytes      ^ 32 Mbytes    |
3733  *	                           headroom          |
3734  *	                                      l2arc_feed_thread()
3735  *	                                             |
3736  *	                 l2arc write hand <--[oooo]--'
3737  *	                         |           8 Mbyte
3738  *	                         |          write max
3739  *	                         V
3740  *		  +==============================+
3741  *	L2ARC dev |####|#|###|###|    |####| ... |
3742  *	          +==============================+
3743  *	                     32 Gbytes
3744  *
3745  * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
3746  * evicted, then the L2ARC has cached a buffer much sooner than it probably
3747  * needed to, potentially wasting L2ARC device bandwidth and storage.  It is
3748  * safe to say that this is an uncommon case, since buffers at the end of
3749  * the ARC lists have moved there due to inactivity.
3750  *
3751  * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
3752  * then the L2ARC simply misses copying some buffers.  This serves as a
3753  * pressure valve to prevent heavy read workloads from both stalling the ARC
3754  * with waits and clogging the L2ARC with writes.  This also helps prevent
3755  * the potential for the L2ARC to churn if it attempts to cache content too
3756  * quickly, such as during backups of the entire pool.
3757  *
3758  * 5. After system boot and before the ARC has filled main memory, there are
3759  * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
3760  * lists can remain mostly static.  Instead of searching from tail of these
3761  * lists as pictured, the l2arc_feed_thread() will search from the list heads
3762  * for eligible buffers, greatly increasing its chance of finding them.
3763  *
3764  * The L2ARC device write speed is also boosted during this time so that
3765  * the L2ARC warms up faster.  Since there have been no ARC evictions yet,
3766  * there are no L2ARC reads, and no fear of degrading read performance
3767  * through increased writes.
3768  *
3769  * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
3770  * the vdev queue can aggregate them into larger and fewer writes.  Each
3771  * device is written to in a rotor fashion, sweeping writes through
3772  * available space then repeating.
3773  *
3774  * 7. The L2ARC does not store dirty content.  It never needs to flush
3775  * write buffers back to disk based storage.
3776  *
3777  * 8. If an ARC buffer is written (and dirtied) which also exists in the
3778  * L2ARC, the now stale L2ARC buffer is immediately dropped.
3779  *
3780  * The performance of the L2ARC can be tweaked by a number of tunables, which
3781  * may be necessary for different workloads:
3782  *
3783  *	l2arc_write_max		max write bytes per interval
3784  *	l2arc_write_boost	extra write bytes during device warmup
3785  *	l2arc_noprefetch	skip caching prefetched buffers
3786  *	l2arc_headroom		number of max device writes to precache
3787  *	l2arc_feed_secs		seconds between L2ARC writing
3788  *
3789  * Tunables may be removed or added as future performance improvements are
3790  * integrated, and also may become zpool properties.
3791  *
3792  * There are three key functions that control how the L2ARC warms up:
3793  *
3794  *	l2arc_write_eligible()	check if a buffer is eligible to cache
3795  *	l2arc_write_size()	calculate how much to write
3796  *	l2arc_write_interval()	calculate sleep delay between writes
3797  *
3798  * These three functions determine what to write, how much, and how quickly
3799  * to send writes.
3800  */
3801 
3802 static boolean_t
l2arc_write_eligible(uint64_t spa_guid,arc_buf_hdr_t * ab)3803 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab)
3804 {
3805 	/*
3806 	 * A buffer is *not* eligible for the L2ARC if it:
3807 	 * 1. belongs to a different spa.
3808 	 * 2. is already cached on the L2ARC.
3809 	 * 3. has an I/O in progress (it may be an incomplete read).
3810 	 * 4. is flagged not eligible (zfs property).
3811 	 */
3812 	if (ab->b_spa != spa_guid || ab->b_l2hdr != NULL ||
3813 	    HDR_IO_IN_PROGRESS(ab) || !HDR_L2CACHE(ab))
3814 		return (B_FALSE);
3815 
3816 	return (B_TRUE);
3817 }
3818 
3819 static uint64_t
l2arc_write_size(l2arc_dev_t * dev)3820 l2arc_write_size(l2arc_dev_t *dev)
3821 {
3822 	uint64_t size;
3823 
3824 	size = dev->l2ad_write;
3825 
3826 	if (arc_warm == B_FALSE)
3827 		size += dev->l2ad_boost;
3828 
3829 	return (size);
3830 
3831 }
3832 
3833 static clock_t
l2arc_write_interval(clock_t began,uint64_t wanted,uint64_t wrote)3834 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
3835 {
3836 	clock_t interval, next, now;
3837 
3838 	/*
3839 	 * If the ARC lists are busy, increase our write rate; if the
3840 	 * lists are stale, idle back.  This is achieved by checking
3841 	 * how much we previously wrote - if it was more than half of
3842 	 * what we wanted, schedule the next write much sooner.
3843 	 */
3844 	if (l2arc_feed_again && wrote > (wanted / 2))
3845 		interval = (hz * l2arc_feed_min_ms) / 1000;
3846 	else
3847 		interval = hz * l2arc_feed_secs;
3848 
3849 	now = ddi_get_lbolt();
3850 	next = MAX(now, MIN(now + interval, began + interval));
3851 
3852 	return (next);
3853 }
3854 
3855 static void
l2arc_hdr_stat_add(void)3856 l2arc_hdr_stat_add(void)
3857 {
3858 	ARCSTAT_INCR(arcstat_l2_hdr_size, HDR_SIZE + L2HDR_SIZE);
3859 	ARCSTAT_INCR(arcstat_hdr_size, -HDR_SIZE);
3860 }
3861 
3862 static void
l2arc_hdr_stat_remove(void)3863 l2arc_hdr_stat_remove(void)
3864 {
3865 	ARCSTAT_INCR(arcstat_l2_hdr_size, -(HDR_SIZE + L2HDR_SIZE));
3866 	ARCSTAT_INCR(arcstat_hdr_size, HDR_SIZE);
3867 }
3868 
3869 /*
3870  * Cycle through L2ARC devices.  This is how L2ARC load balances.
3871  * If a device is returned, this also returns holding the spa config lock.
3872  */
3873 static l2arc_dev_t *
l2arc_dev_get_next(void)3874 l2arc_dev_get_next(void)
3875 {
3876 	l2arc_dev_t *first, *next = NULL;
3877 
3878 	/*
3879 	 * Lock out the removal of spas (spa_namespace_lock), then removal
3880 	 * of cache devices (l2arc_dev_mtx).  Once a device has been selected,
3881 	 * both locks will be dropped and a spa config lock held instead.
3882 	 */
3883 	mutex_enter(&spa_namespace_lock);
3884 	mutex_enter(&l2arc_dev_mtx);
3885 
3886 	/* if there are no vdevs, there is nothing to do */
3887 	if (l2arc_ndev == 0)
3888 		goto out;
3889 
3890 	first = NULL;
3891 	next = l2arc_dev_last;
3892 	do {
3893 		/* loop around the list looking for a non-faulted vdev */
3894 		if (next == NULL) {
3895 			next = list_head(l2arc_dev_list);
3896 		} else {
3897 			next = list_next(l2arc_dev_list, next);
3898 			if (next == NULL)
3899 				next = list_head(l2arc_dev_list);
3900 		}
3901 
3902 		/* if we have come back to the start, bail out */
3903 		if (first == NULL)
3904 			first = next;
3905 		else if (next == first)
3906 			break;
3907 
3908 	} while (vdev_is_dead(next->l2ad_vdev));
3909 
3910 	/* if we were unable to find any usable vdevs, return NULL */
3911 	if (vdev_is_dead(next->l2ad_vdev))
3912 		next = NULL;
3913 
3914 	l2arc_dev_last = next;
3915 
3916 out:
3917 	mutex_exit(&l2arc_dev_mtx);
3918 
3919 	/*
3920 	 * Grab the config lock to prevent the 'next' device from being
3921 	 * removed while we are writing to it.
3922 	 */
3923 	if (next != NULL)
3924 		spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
3925 	mutex_exit(&spa_namespace_lock);
3926 
3927 	return (next);
3928 }
3929 
3930 /*
3931  * Free buffers that were tagged for destruction.
3932  */
3933 static void
l2arc_do_free_on_write()3934 l2arc_do_free_on_write()
3935 {
3936 	list_t *buflist;
3937 	l2arc_data_free_t *df, *df_prev;
3938 
3939 	mutex_enter(&l2arc_free_on_write_mtx);
3940 	buflist = l2arc_free_on_write;
3941 
3942 	for (df = list_tail(buflist); df; df = df_prev) {
3943 		df_prev = list_prev(buflist, df);
3944 		ASSERT(df->l2df_data != NULL);
3945 		ASSERT(df->l2df_func != NULL);
3946 		df->l2df_func(df->l2df_data, df->l2df_size);
3947 		list_remove(buflist, df);
3948 		kmem_free(df, sizeof (l2arc_data_free_t));
3949 	}
3950 
3951 	mutex_exit(&l2arc_free_on_write_mtx);
3952 }
3953 
3954 /*
3955  * A write to a cache device has completed.  Update all headers to allow
3956  * reads from these buffers to begin.
3957  */
3958 static void
l2arc_write_done(zio_t * zio)3959 l2arc_write_done(zio_t *zio)
3960 {
3961 	l2arc_write_callback_t *cb;
3962 	l2arc_dev_t *dev;
3963 	list_t *buflist;
3964 	arc_buf_hdr_t *head, *ab, *ab_prev;
3965 	l2arc_buf_hdr_t *abl2;
3966 	kmutex_t *hash_lock;
3967 
3968 	cb = zio->io_private;
3969 	ASSERT(cb != NULL);
3970 	dev = cb->l2wcb_dev;
3971 	ASSERT(dev != NULL);
3972 	head = cb->l2wcb_head;
3973 	ASSERT(head != NULL);
3974 	buflist = dev->l2ad_buflist;
3975 	ASSERT(buflist != NULL);
3976 	DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
3977 	    l2arc_write_callback_t *, cb);
3978 
3979 	if (zio->io_error != 0)
3980 		ARCSTAT_BUMP(arcstat_l2_writes_error);
3981 
3982 	mutex_enter(&l2arc_buflist_mtx);
3983 
3984 	/*
3985 	 * All writes completed, or an error was hit.
3986 	 */
3987 	for (ab = list_prev(buflist, head); ab; ab = ab_prev) {
3988 		ab_prev = list_prev(buflist, ab);
3989 
3990 		hash_lock = HDR_LOCK(ab);
3991 		if (!mutex_tryenter(hash_lock)) {
3992 			/*
3993 			 * This buffer misses out.  It may be in a stage
3994 			 * of eviction.  Its ARC_L2_WRITING flag will be
3995 			 * left set, denying reads to this buffer.
3996 			 */
3997 			ARCSTAT_BUMP(arcstat_l2_writes_hdr_miss);
3998 			continue;
3999 		}
4000 
4001 		if (zio->io_error != 0) {
4002 			/*
4003 			 * Error - drop L2ARC entry.
4004 			 */
4005 			list_remove(buflist, ab);
4006 			abl2 = ab->b_l2hdr;
4007 			ab->b_l2hdr = NULL;
4008 			kmem_free(abl2, sizeof (l2arc_buf_hdr_t));
4009 			ARCSTAT_INCR(arcstat_l2_size, -ab->b_size);
4010 		}
4011 
4012 		/*
4013 		 * Allow ARC to begin reads to this L2ARC entry.
4014 		 */
4015 		ab->b_flags &= ~ARC_L2_WRITING;
4016 
4017 		mutex_exit(hash_lock);
4018 	}
4019 
4020 	atomic_inc_64(&l2arc_writes_done);
4021 	list_remove(buflist, head);
4022 	kmem_cache_free(hdr_cache, head);
4023 	mutex_exit(&l2arc_buflist_mtx);
4024 
4025 	l2arc_do_free_on_write();
4026 
4027 	kmem_free(cb, sizeof (l2arc_write_callback_t));
4028 }
4029 
4030 /*
4031  * A read to a cache device completed.  Validate buffer contents before
4032  * handing over to the regular ARC routines.
4033  */
4034 static void
l2arc_read_done(zio_t * zio)4035 l2arc_read_done(zio_t *zio)
4036 {
4037 	l2arc_read_callback_t *cb;
4038 	arc_buf_hdr_t *hdr;
4039 	arc_buf_t *buf;
4040 	kmutex_t *hash_lock;
4041 	int equal;
4042 
4043 	ASSERT(zio->io_vd != NULL);
4044 	ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
4045 
4046 	spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
4047 
4048 	cb = zio->io_private;
4049 	ASSERT(cb != NULL);
4050 	buf = cb->l2rcb_buf;
4051 	ASSERT(buf != NULL);
4052 	hdr = buf->b_hdr;
4053 	ASSERT(hdr != NULL);
4054 
4055 	hash_lock = HDR_LOCK(hdr);
4056 	mutex_enter(hash_lock);
4057 
4058 	/*
4059 	 * Check this survived the L2ARC journey.
4060 	 */
4061 	equal = arc_cksum_equal(buf);
4062 	if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) {
4063 		mutex_exit(hash_lock);
4064 		zio->io_private = buf;
4065 		zio->io_bp_copy = cb->l2rcb_bp;	/* XXX fix in L2ARC 2.0	*/
4066 		zio->io_bp = &zio->io_bp_copy;	/* XXX fix in L2ARC 2.0	*/
4067 		arc_read_done(zio);
4068 	} else {
4069 		mutex_exit(hash_lock);
4070 		/*
4071 		 * Buffer didn't survive caching.  Increment stats and
4072 		 * reissue to the original storage device.
4073 		 */
4074 		if (zio->io_error != 0) {
4075 			ARCSTAT_BUMP(arcstat_l2_io_error);
4076 		} else {
4077 			zio->io_error = EIO;
4078 		}
4079 		if (!equal)
4080 			ARCSTAT_BUMP(arcstat_l2_cksum_bad);
4081 
4082 		/*
4083 		 * If there's no waiter, issue an async i/o to the primary
4084 		 * storage now.  If there *is* a waiter, the caller must
4085 		 * issue the i/o in a context where it's OK to block.
4086 		 */
4087 		if (zio->io_waiter == NULL) {
4088 			zio_t *pio = zio_unique_parent(zio);
4089 
4090 			ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
4091 
4092 			zio_nowait(zio_read(pio, cb->l2rcb_spa, &cb->l2rcb_bp,
4093 			    buf->b_data, zio->io_size, arc_read_done, buf,
4094 			    zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb));
4095 		}
4096 	}
4097 
4098 	kmem_free(cb, sizeof (l2arc_read_callback_t));
4099 }
4100 
4101 /*
4102  * This is the list priority from which the L2ARC will search for pages to
4103  * cache.  This is used within loops (0..3) to cycle through lists in the
4104  * desired order.  This order can have a significant effect on cache
4105  * performance.
4106  *
4107  * Currently the metadata lists are hit first, MFU then MRU, followed by
4108  * the data lists.  This function returns a locked list, and also returns
4109  * the lock pointer.
4110  */
4111 static list_t *
l2arc_list_locked(int list_num,kmutex_t ** lock)4112 l2arc_list_locked(int list_num, kmutex_t **lock)
4113 {
4114 	list_t *list;
4115 
4116 	ASSERT(list_num >= 0 && list_num <= 3);
4117 
4118 	switch (list_num) {
4119 	case 0:
4120 		list = &arc_mfu->arcs_list[ARC_BUFC_METADATA];
4121 		*lock = &arc_mfu->arcs_mtx;
4122 		break;
4123 	case 1:
4124 		list = &arc_mru->arcs_list[ARC_BUFC_METADATA];
4125 		*lock = &arc_mru->arcs_mtx;
4126 		break;
4127 	case 2:
4128 		list = &arc_mfu->arcs_list[ARC_BUFC_DATA];
4129 		*lock = &arc_mfu->arcs_mtx;
4130 		break;
4131 	case 3:
4132 		list = &arc_mru->arcs_list[ARC_BUFC_DATA];
4133 		*lock = &arc_mru->arcs_mtx;
4134 		break;
4135 	}
4136 
4137 	ASSERT(!(MUTEX_HELD(*lock)));
4138 	mutex_enter(*lock);
4139 	return (list);
4140 }
4141 
4142 /*
4143  * Evict buffers from the device write hand to the distance specified in
4144  * bytes.  This distance may span populated buffers, it may span nothing.
4145  * This is clearing a region on the L2ARC device ready for writing.
4146  * If the 'all' boolean is set, every buffer is evicted.
4147  */
4148 static void
l2arc_evict(l2arc_dev_t * dev,uint64_t distance,boolean_t all)4149 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
4150 {
4151 	list_t *buflist;
4152 	l2arc_buf_hdr_t *abl2;
4153 	arc_buf_hdr_t *ab, *ab_prev;
4154 	kmutex_t *hash_lock;
4155 	uint64_t taddr;
4156 
4157 	buflist = dev->l2ad_buflist;
4158 
4159 	if (buflist == NULL)
4160 		return;
4161 
4162 	if (!all && dev->l2ad_first) {
4163 		/*
4164 		 * This is the first sweep through the device.  There is
4165 		 * nothing to evict.
4166 		 */
4167 		return;
4168 	}
4169 
4170 	if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) {
4171 		/*
4172 		 * When nearing the end of the device, evict to the end
4173 		 * before the device write hand jumps to the start.
4174 		 */
4175 		taddr = dev->l2ad_end;
4176 	} else {
4177 		taddr = dev->l2ad_hand + distance;
4178 	}
4179 	DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
4180 	    uint64_t, taddr, boolean_t, all);
4181 
4182 top:
4183 	mutex_enter(&l2arc_buflist_mtx);
4184 	for (ab = list_tail(buflist); ab; ab = ab_prev) {
4185 		ab_prev = list_prev(buflist, ab);
4186 
4187 		hash_lock = HDR_LOCK(ab);
4188 		if (!mutex_tryenter(hash_lock)) {
4189 			/*
4190 			 * Missed the hash lock.  Retry.
4191 			 */
4192 			ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
4193 			mutex_exit(&l2arc_buflist_mtx);
4194 			mutex_enter(hash_lock);
4195 			mutex_exit(hash_lock);
4196 			goto top;
4197 		}
4198 
4199 		if (HDR_L2_WRITE_HEAD(ab)) {
4200 			/*
4201 			 * We hit a write head node.  Leave it for
4202 			 * l2arc_write_done().
4203 			 */
4204 			list_remove(buflist, ab);
4205 			mutex_exit(hash_lock);
4206 			continue;
4207 		}
4208 
4209 		if (!all && ab->b_l2hdr != NULL &&
4210 		    (ab->b_l2hdr->b_daddr > taddr ||
4211 		    ab->b_l2hdr->b_daddr < dev->l2ad_hand)) {
4212 			/*
4213 			 * We've evicted to the target address,
4214 			 * or the end of the device.
4215 			 */
4216 			mutex_exit(hash_lock);
4217 			break;
4218 		}
4219 
4220 		if (HDR_FREE_IN_PROGRESS(ab)) {
4221 			/*
4222 			 * Already on the path to destruction.
4223 			 */
4224 			mutex_exit(hash_lock);
4225 			continue;
4226 		}
4227 
4228 		if (ab->b_state == arc_l2c_only) {
4229 			ASSERT(!HDR_L2_READING(ab));
4230 			/*
4231 			 * This doesn't exist in the ARC.  Destroy.
4232 			 * arc_hdr_destroy() will call list_remove()
4233 			 * and decrement arcstat_l2_size.
4234 			 */
4235 			arc_change_state(arc_anon, ab, hash_lock);
4236 			arc_hdr_destroy(ab);
4237 		} else {
4238 			/*
4239 			 * Invalidate issued or about to be issued
4240 			 * reads, since we may be about to write
4241 			 * over this location.
4242 			 */
4243 			if (HDR_L2_READING(ab)) {
4244 				ARCSTAT_BUMP(arcstat_l2_evict_reading);
4245 				ab->b_flags |= ARC_L2_EVICTED;
4246 			}
4247 
4248 			/*
4249 			 * Tell ARC this no longer exists in L2ARC.
4250 			 */
4251 			if (ab->b_l2hdr != NULL) {
4252 				abl2 = ab->b_l2hdr;
4253 				ab->b_l2hdr = NULL;
4254 				kmem_free(abl2, sizeof (l2arc_buf_hdr_t));
4255 				ARCSTAT_INCR(arcstat_l2_size, -ab->b_size);
4256 			}
4257 			list_remove(buflist, ab);
4258 
4259 			/*
4260 			 * This may have been leftover after a
4261 			 * failed write.
4262 			 */
4263 			ab->b_flags &= ~ARC_L2_WRITING;
4264 		}
4265 		mutex_exit(hash_lock);
4266 	}
4267 	mutex_exit(&l2arc_buflist_mtx);
4268 
4269 	vdev_space_update(dev->l2ad_vdev, -(taddr - dev->l2ad_evict), 0, 0);
4270 	dev->l2ad_evict = taddr;
4271 }
4272 
4273 /*
4274  * Find and write ARC buffers to the L2ARC device.
4275  *
4276  * An ARC_L2_WRITING flag is set so that the L2ARC buffers are not valid
4277  * for reading until they have completed writing.
4278  */
4279 static uint64_t
l2arc_write_buffers(spa_t * spa,l2arc_dev_t * dev,uint64_t target_sz)4280 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz)
4281 {
4282 	arc_buf_hdr_t *ab, *ab_prev, *head;
4283 	l2arc_buf_hdr_t *hdrl2;
4284 	list_t *list;
4285 	uint64_t passed_sz, write_sz, buf_sz, headroom;
4286 	void *buf_data;
4287 	kmutex_t *hash_lock, *list_lock;
4288 	boolean_t have_lock, full;
4289 	l2arc_write_callback_t *cb;
4290 	zio_t *pio, *wzio;
4291 	uint64_t guid = spa_guid(spa);
4292 
4293 	ASSERT(dev->l2ad_vdev != NULL);
4294 
4295 	pio = NULL;
4296 	write_sz = 0;
4297 	full = B_FALSE;
4298 	head = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
4299 	head->b_flags |= ARC_L2_WRITE_HEAD;
4300 
4301 	/*
4302 	 * Copy buffers for L2ARC writing.
4303 	 */
4304 	mutex_enter(&l2arc_buflist_mtx);
4305 	for (int try = 0; try <= 3; try++) {
4306 		list = l2arc_list_locked(try, &list_lock);
4307 		passed_sz = 0;
4308 
4309 		/*
4310 		 * L2ARC fast warmup.
4311 		 *
4312 		 * Until the ARC is warm and starts to evict, read from the
4313 		 * head of the ARC lists rather than the tail.
4314 		 */
4315 		headroom = target_sz * l2arc_headroom;
4316 		if (arc_warm == B_FALSE)
4317 			ab = list_head(list);
4318 		else
4319 			ab = list_tail(list);
4320 
4321 		for (; ab; ab = ab_prev) {
4322 			if (arc_warm == B_FALSE)
4323 				ab_prev = list_next(list, ab);
4324 			else
4325 				ab_prev = list_prev(list, ab);
4326 
4327 			hash_lock = HDR_LOCK(ab);
4328 			have_lock = MUTEX_HELD(hash_lock);
4329 			if (!have_lock && !mutex_tryenter(hash_lock)) {
4330 				/*
4331 				 * Skip this buffer rather than waiting.
4332 				 */
4333 				continue;
4334 			}
4335 
4336 			passed_sz += ab->b_size;
4337 			if (passed_sz > headroom) {
4338 				/*
4339 				 * Searched too far.
4340 				 */
4341 				mutex_exit(hash_lock);
4342 				break;
4343 			}
4344 
4345 			if (!l2arc_write_eligible(guid, ab)) {
4346 				mutex_exit(hash_lock);
4347 				continue;
4348 			}
4349 
4350 			if ((write_sz + ab->b_size) > target_sz) {
4351 				full = B_TRUE;
4352 				mutex_exit(hash_lock);
4353 				break;
4354 			}
4355 
4356 			if (pio == NULL) {
4357 				/*
4358 				 * Insert a dummy header on the buflist so
4359 				 * l2arc_write_done() can find where the
4360 				 * write buffers begin without searching.
4361 				 */
4362 				list_insert_head(dev->l2ad_buflist, head);
4363 
4364 				cb = kmem_alloc(
4365 				    sizeof (l2arc_write_callback_t), KM_SLEEP);
4366 				cb->l2wcb_dev = dev;
4367 				cb->l2wcb_head = head;
4368 				pio = zio_root(spa, l2arc_write_done, cb,
4369 				    ZIO_FLAG_CANFAIL);
4370 			}
4371 
4372 			/*
4373 			 * Create and add a new L2ARC header.
4374 			 */
4375 			hdrl2 = kmem_zalloc(sizeof (l2arc_buf_hdr_t), KM_SLEEP);
4376 			hdrl2->b_dev = dev;
4377 			hdrl2->b_daddr = dev->l2ad_hand;
4378 
4379 			ab->b_flags |= ARC_L2_WRITING;
4380 			ab->b_l2hdr = hdrl2;
4381 			list_insert_head(dev->l2ad_buflist, ab);
4382 			buf_data = ab->b_buf->b_data;
4383 			buf_sz = ab->b_size;
4384 
4385 			/*
4386 			 * Compute and store the buffer cksum before
4387 			 * writing.  On debug the cksum is verified first.
4388 			 */
4389 			arc_cksum_verify(ab->b_buf);
4390 			arc_cksum_compute(ab->b_buf, B_TRUE);
4391 
4392 			mutex_exit(hash_lock);
4393 
4394 			wzio = zio_write_phys(pio, dev->l2ad_vdev,
4395 			    dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF,
4396 			    NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE,
4397 			    ZIO_FLAG_CANFAIL, B_FALSE);
4398 
4399 			DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
4400 			    zio_t *, wzio);
4401 			(void) zio_nowait(wzio);
4402 
4403 			/*
4404 			 * Keep the clock hand suitably device-aligned.
4405 			 */
4406 			buf_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz);
4407 
4408 			write_sz += buf_sz;
4409 			dev->l2ad_hand += buf_sz;
4410 		}
4411 
4412 		mutex_exit(list_lock);
4413 
4414 		if (full == B_TRUE)
4415 			break;
4416 	}
4417 	mutex_exit(&l2arc_buflist_mtx);
4418 
4419 	if (pio == NULL) {
4420 		ASSERT3U(write_sz, ==, 0);
4421 		kmem_cache_free(hdr_cache, head);
4422 		return (0);
4423 	}
4424 
4425 	ASSERT3U(write_sz, <=, target_sz);
4426 	ARCSTAT_BUMP(arcstat_l2_writes_sent);
4427 	ARCSTAT_INCR(arcstat_l2_write_bytes, write_sz);
4428 	ARCSTAT_INCR(arcstat_l2_size, write_sz);
4429 	vdev_space_update(dev->l2ad_vdev, write_sz, 0, 0);
4430 
4431 	/*
4432 	 * Bump device hand to the device start if it is approaching the end.
4433 	 * l2arc_evict() will already have evicted ahead for this case.
4434 	 */
4435 	if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) {
4436 		vdev_space_update(dev->l2ad_vdev,
4437 		    dev->l2ad_end - dev->l2ad_hand, 0, 0);
4438 		dev->l2ad_hand = dev->l2ad_start;
4439 		dev->l2ad_evict = dev->l2ad_start;
4440 		dev->l2ad_first = B_FALSE;
4441 	}
4442 
4443 	dev->l2ad_writing = B_TRUE;
4444 	(void) zio_wait(pio);
4445 	dev->l2ad_writing = B_FALSE;
4446 
4447 	return (write_sz);
4448 }
4449 
4450 /*
4451  * This thread feeds the L2ARC at regular intervals.  This is the beating
4452  * heart of the L2ARC.
4453  */
4454 static void
l2arc_feed_thread(void * unused __unused)4455 l2arc_feed_thread(void *unused __unused)
4456 {
4457 	callb_cpr_t cpr;
4458 	l2arc_dev_t *dev;
4459 	spa_t *spa;
4460 	uint64_t size, wrote;
4461 	clock_t begin, next = ddi_get_lbolt();
4462 
4463 	CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
4464 
4465 	mutex_enter(&l2arc_feed_thr_lock);
4466 
4467 	while (l2arc_thread_exit == 0) {
4468 		CALLB_CPR_SAFE_BEGIN(&cpr);
4469 		(void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock,
4470 		    (hz * l2arc_feed_secs));
4471 		CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
4472 		next = ddi_get_lbolt();
4473 
4474 		/*
4475 		 * Quick check for L2ARC devices.
4476 		 */
4477 		mutex_enter(&l2arc_dev_mtx);
4478 		if (l2arc_ndev == 0) {
4479 			mutex_exit(&l2arc_dev_mtx);
4480 			continue;
4481 		}
4482 		mutex_exit(&l2arc_dev_mtx);
4483 		begin = ddi_get_lbolt();
4484 
4485 		/*
4486 		 * This selects the next l2arc device to write to, and in
4487 		 * doing so the next spa to feed from: dev->l2ad_spa.   This
4488 		 * will return NULL if there are now no l2arc devices or if
4489 		 * they are all faulted.
4490 		 *
4491 		 * If a device is returned, its spa's config lock is also
4492 		 * held to prevent device removal.  l2arc_dev_get_next()
4493 		 * will grab and release l2arc_dev_mtx.
4494 		 */
4495 		if ((dev = l2arc_dev_get_next()) == NULL)
4496 			continue;
4497 
4498 		spa = dev->l2ad_spa;
4499 		ASSERT(spa != NULL);
4500 
4501 		/*
4502 		 * Avoid contributing to memory pressure.
4503 		 */
4504 		if (arc_reclaim_needed()) {
4505 			ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
4506 			spa_config_exit(spa, SCL_L2ARC, dev);
4507 			continue;
4508 		}
4509 
4510 		ARCSTAT_BUMP(arcstat_l2_feeds);
4511 
4512 		size = l2arc_write_size(dev);
4513 
4514 		/*
4515 		 * Evict L2ARC buffers that will be overwritten.
4516 		 */
4517 		l2arc_evict(dev, size, B_FALSE);
4518 
4519 		/*
4520 		 * Write ARC buffers.
4521 		 */
4522 		wrote = l2arc_write_buffers(spa, dev, size);
4523 
4524 		/*
4525 		 * Calculate interval between writes.
4526 		 */
4527 		next = l2arc_write_interval(begin, size, wrote);
4528 		spa_config_exit(spa, SCL_L2ARC, dev);
4529 	}
4530 
4531 	l2arc_thread_exit = 0;
4532 	cv_broadcast(&l2arc_feed_thr_cv);
4533 	CALLB_CPR_EXIT(&cpr);		/* drops l2arc_feed_thr_lock */
4534 	thread_exit();
4535 }
4536 
4537 boolean_t
l2arc_vdev_present(vdev_t * vd)4538 l2arc_vdev_present(vdev_t *vd)
4539 {
4540 	l2arc_dev_t *dev;
4541 
4542 	mutex_enter(&l2arc_dev_mtx);
4543 	for (dev = list_head(l2arc_dev_list); dev != NULL;
4544 	    dev = list_next(l2arc_dev_list, dev)) {
4545 		if (dev->l2ad_vdev == vd)
4546 			break;
4547 	}
4548 	mutex_exit(&l2arc_dev_mtx);
4549 
4550 	return (dev != NULL);
4551 }
4552 
4553 /*
4554  * Add a vdev for use by the L2ARC.  By this point the spa has already
4555  * validated the vdev and opened it.
4556  */
4557 void
l2arc_add_vdev(spa_t * spa,vdev_t * vd)4558 l2arc_add_vdev(spa_t *spa, vdev_t *vd)
4559 {
4560 	l2arc_dev_t *adddev;
4561 
4562 	ASSERT(!l2arc_vdev_present(vd));
4563 
4564 	/*
4565 	 * Create a new l2arc device entry.
4566 	 */
4567 	adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
4568 	adddev->l2ad_spa = spa;
4569 	adddev->l2ad_vdev = vd;
4570 	adddev->l2ad_write = l2arc_write_max;
4571 	adddev->l2ad_boost = l2arc_write_boost;
4572 	adddev->l2ad_start = VDEV_LABEL_START_SIZE;
4573 	adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
4574 	adddev->l2ad_hand = adddev->l2ad_start;
4575 	adddev->l2ad_evict = adddev->l2ad_start;
4576 	adddev->l2ad_first = B_TRUE;
4577 	adddev->l2ad_writing = B_FALSE;
4578 	ASSERT3U(adddev->l2ad_write, >, 0);
4579 
4580 	/*
4581 	 * This is a list of all ARC buffers that are still valid on the
4582 	 * device.
4583 	 */
4584 	adddev->l2ad_buflist = kmem_zalloc(sizeof (list_t), KM_SLEEP);
4585 	list_create(adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
4586 	    offsetof(arc_buf_hdr_t, b_l2node));
4587 
4588 	vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
4589 
4590 	/*
4591 	 * Add device to global list
4592 	 */
4593 	mutex_enter(&l2arc_dev_mtx);
4594 	list_insert_head(l2arc_dev_list, adddev);
4595 	atomic_inc_64(&l2arc_ndev);
4596 	mutex_exit(&l2arc_dev_mtx);
4597 }
4598 
4599 /*
4600  * Remove a vdev from the L2ARC.
4601  */
4602 void
l2arc_remove_vdev(vdev_t * vd)4603 l2arc_remove_vdev(vdev_t *vd)
4604 {
4605 	l2arc_dev_t *dev, *nextdev, *remdev = NULL;
4606 
4607 	/*
4608 	 * Find the device by vdev
4609 	 */
4610 	mutex_enter(&l2arc_dev_mtx);
4611 	for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
4612 		nextdev = list_next(l2arc_dev_list, dev);
4613 		if (vd == dev->l2ad_vdev) {
4614 			remdev = dev;
4615 			break;
4616 		}
4617 	}
4618 	ASSERT(remdev != NULL);
4619 
4620 	/*
4621 	 * Remove device from global list
4622 	 */
4623 	list_remove(l2arc_dev_list, remdev);
4624 	l2arc_dev_last = NULL;		/* may have been invalidated */
4625 	atomic_dec_64(&l2arc_ndev);
4626 	mutex_exit(&l2arc_dev_mtx);
4627 
4628 	/*
4629 	 * Clear all buflists and ARC references.  L2ARC device flush.
4630 	 */
4631 	l2arc_evict(remdev, 0, B_TRUE);
4632 	list_destroy(remdev->l2ad_buflist);
4633 	kmem_free(remdev->l2ad_buflist, sizeof (list_t));
4634 	kmem_free(remdev, sizeof (l2arc_dev_t));
4635 }
4636 
4637 void
l2arc_init(void)4638 l2arc_init(void)
4639 {
4640 	l2arc_thread_exit = 0;
4641 	l2arc_ndev = 0;
4642 	l2arc_writes_sent = 0;
4643 	l2arc_writes_done = 0;
4644 
4645 	mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
4646 	cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
4647 	mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
4648 	mutex_init(&l2arc_buflist_mtx, NULL, MUTEX_DEFAULT, NULL);
4649 	mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
4650 
4651 	l2arc_dev_list = &L2ARC_dev_list;
4652 	l2arc_free_on_write = &L2ARC_free_on_write;
4653 	list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
4654 	    offsetof(l2arc_dev_t, l2ad_node));
4655 	list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
4656 	    offsetof(l2arc_data_free_t, l2df_list_node));
4657 }
4658 
4659 void
l2arc_fini(void)4660 l2arc_fini(void)
4661 {
4662 	/*
4663 	 * This is called from dmu_fini(), which is called from spa_fini();
4664 	 * Because of this, we can assume that all l2arc devices have
4665 	 * already been removed when the pools themselves were removed.
4666 	 */
4667 
4668 	l2arc_do_free_on_write();
4669 
4670 	mutex_destroy(&l2arc_feed_thr_lock);
4671 	cv_destroy(&l2arc_feed_thr_cv);
4672 	mutex_destroy(&l2arc_dev_mtx);
4673 	mutex_destroy(&l2arc_buflist_mtx);
4674 	mutex_destroy(&l2arc_free_on_write_mtx);
4675 
4676 	list_destroy(l2arc_dev_list);
4677 	list_destroy(l2arc_free_on_write);
4678 }
4679 
4680 void
l2arc_start(void)4681 l2arc_start(void)
4682 {
4683 	if (!(spa_mode_global & FWRITE))
4684 		return;
4685 
4686 	(void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
4687 	    TS_RUN, minclsyspri);
4688 }
4689 
4690 void
l2arc_stop(void)4691 l2arc_stop(void)
4692 {
4693 	if (!(spa_mode_global & FWRITE))
4694 		return;
4695 
4696 	mutex_enter(&l2arc_feed_thr_lock);
4697 	cv_signal(&l2arc_feed_thr_cv);	/* kick thread out of startup */
4698 	l2arc_thread_exit = 1;
4699 	while (l2arc_thread_exit != 0)
4700 		cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
4701 	mutex_exit(&l2arc_feed_thr_lock);
4702 }
4703