1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
24 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
25 * Copyright 2013 Martin Matuska <mm@FreeBSD.org>. All rights reserved.
26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27 * Copyright 2013 Saso Kiselkov. All rights reserved.
28 * Copyright (c) 2014 Integros [integros.com]
29 */
30
31 #include <sys/zfs_context.h>
32 #include <sys/spa_impl.h>
33 #include <sys/spa_boot.h>
34 #include <sys/zio.h>
35 #include <sys/zio_checksum.h>
36 #include <sys/zio_compress.h>
37 #include <sys/dmu.h>
38 #include <sys/dmu_tx.h>
39 #include <sys/zap.h>
40 #include <sys/zil.h>
41 #include <sys/vdev_impl.h>
42 #include <sys/metaslab.h>
43 #include <sys/uberblock_impl.h>
44 #include <sys/txg.h>
45 #include <sys/avl.h>
46 #include <sys/unique.h>
47 #include <sys/dsl_pool.h>
48 #include <sys/dsl_dir.h>
49 #include <sys/dsl_prop.h>
50 #include <sys/dsl_scan.h>
51 #include <sys/fs/zfs.h>
52 #include <sys/metaslab_impl.h>
53 #include <sys/arc.h>
54 #include <sys/ddt.h>
55 #include "zfs_prop.h"
56 #include <sys/zfeature.h>
57
58 #if defined(__FreeBSD__) && defined(_KERNEL)
59 #include <sys/types.h>
60 #include <sys/sysctl.h>
61 #endif
62
63 #if defined( __NetBSD__) && defined(_KERNEL)
64 #include <sys/device.h>
65 #endif
66
67 /*
68 * SPA locking
69 *
70 * There are four basic locks for managing spa_t structures:
71 *
72 * spa_namespace_lock (global mutex)
73 *
74 * This lock must be acquired to do any of the following:
75 *
76 * - Lookup a spa_t by name
77 * - Add or remove a spa_t from the namespace
78 * - Increase spa_refcount from non-zero
79 * - Check if spa_refcount is zero
80 * - Rename a spa_t
81 * - add/remove/attach/detach devices
82 * - Held for the duration of create/destroy/import/export
83 *
84 * It does not need to handle recursion. A create or destroy may
85 * reference objects (files or zvols) in other pools, but by
86 * definition they must have an existing reference, and will never need
87 * to lookup a spa_t by name.
88 *
89 * spa_refcount (per-spa refcount_t protected by mutex)
90 *
91 * This reference count keep track of any active users of the spa_t. The
92 * spa_t cannot be destroyed or freed while this is non-zero. Internally,
93 * the refcount is never really 'zero' - opening a pool implicitly keeps
94 * some references in the DMU. Internally we check against spa_minref, but
95 * present the image of a zero/non-zero value to consumers.
96 *
97 * spa_config_lock[] (per-spa array of rwlocks)
98 *
99 * This protects the spa_t from config changes, and must be held in
100 * the following circumstances:
101 *
102 * - RW_READER to perform I/O to the spa
103 * - RW_WRITER to change the vdev config
104 *
105 * The locking order is fairly straightforward:
106 *
107 * spa_namespace_lock -> spa_refcount
108 *
109 * The namespace lock must be acquired to increase the refcount from 0
110 * or to check if it is zero.
111 *
112 * spa_refcount -> spa_config_lock[]
113 *
114 * There must be at least one valid reference on the spa_t to acquire
115 * the config lock.
116 *
117 * spa_namespace_lock -> spa_config_lock[]
118 *
119 * The namespace lock must always be taken before the config lock.
120 *
121 *
122 * The spa_namespace_lock can be acquired directly and is globally visible.
123 *
124 * The namespace is manipulated using the following functions, all of which
125 * require the spa_namespace_lock to be held.
126 *
127 * spa_lookup() Lookup a spa_t by name.
128 *
129 * spa_add() Create a new spa_t in the namespace.
130 *
131 * spa_remove() Remove a spa_t from the namespace. This also
132 * frees up any memory associated with the spa_t.
133 *
134 * spa_next() Returns the next spa_t in the system, or the
135 * first if NULL is passed.
136 *
137 * spa_evict_all() Shutdown and remove all spa_t structures in
138 * the system.
139 *
140 * spa_guid_exists() Determine whether a pool/device guid exists.
141 *
142 * The spa_refcount is manipulated using the following functions:
143 *
144 * spa_open_ref() Adds a reference to the given spa_t. Must be
145 * called with spa_namespace_lock held if the
146 * refcount is currently zero.
147 *
148 * spa_close() Remove a reference from the spa_t. This will
149 * not free the spa_t or remove it from the
150 * namespace. No locking is required.
151 *
152 * spa_refcount_zero() Returns true if the refcount is currently
153 * zero. Must be called with spa_namespace_lock
154 * held.
155 *
156 * The spa_config_lock[] is an array of rwlocks, ordered as follows:
157 * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
158 * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
159 *
160 * To read the configuration, it suffices to hold one of these locks as reader.
161 * To modify the configuration, you must hold all locks as writer. To modify
162 * vdev state without altering the vdev tree's topology (e.g. online/offline),
163 * you must hold SCL_STATE and SCL_ZIO as writer.
164 *
165 * We use these distinct config locks to avoid recursive lock entry.
166 * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
167 * block allocations (SCL_ALLOC), which may require reading space maps
168 * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
169 *
170 * The spa config locks cannot be normal rwlocks because we need the
171 * ability to hand off ownership. For example, SCL_ZIO is acquired
172 * by the issuing thread and later released by an interrupt thread.
173 * They do, however, obey the usual write-wanted semantics to prevent
174 * writer (i.e. system administrator) starvation.
175 *
176 * The lock acquisition rules are as follows:
177 *
178 * SCL_CONFIG
179 * Protects changes to the vdev tree topology, such as vdev
180 * add/remove/attach/detach. Protects the dirty config list
181 * (spa_config_dirty_list) and the set of spares and l2arc devices.
182 *
183 * SCL_STATE
184 * Protects changes to pool state and vdev state, such as vdev
185 * online/offline/fault/degrade/clear. Protects the dirty state list
186 * (spa_state_dirty_list) and global pool state (spa_state).
187 *
188 * SCL_ALLOC
189 * Protects changes to metaslab groups and classes.
190 * Held as reader by metaslab_alloc() and metaslab_claim().
191 *
192 * SCL_ZIO
193 * Held by bp-level zios (those which have no io_vd upon entry)
194 * to prevent changes to the vdev tree. The bp-level zio implicitly
195 * protects all of its vdev child zios, which do not hold SCL_ZIO.
196 *
197 * SCL_FREE
198 * Protects changes to metaslab groups and classes.
199 * Held as reader by metaslab_free(). SCL_FREE is distinct from
200 * SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
201 * blocks in zio_done() while another i/o that holds either
202 * SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
203 *
204 * SCL_VDEV
205 * Held as reader to prevent changes to the vdev tree during trivial
206 * inquiries such as bp_get_dsize(). SCL_VDEV is distinct from the
207 * other locks, and lower than all of them, to ensure that it's safe
208 * to acquire regardless of caller context.
209 *
210 * In addition, the following rules apply:
211 *
212 * (a) spa_props_lock protects pool properties, spa_config and spa_config_list.
213 * The lock ordering is SCL_CONFIG > spa_props_lock.
214 *
215 * (b) I/O operations on leaf vdevs. For any zio operation that takes
216 * an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
217 * or zio_write_phys() -- the caller must ensure that the config cannot
218 * cannot change in the interim, and that the vdev cannot be reopened.
219 * SCL_STATE as reader suffices for both.
220 *
221 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
222 *
223 * spa_vdev_enter() Acquire the namespace lock and the config lock
224 * for writing.
225 *
226 * spa_vdev_exit() Release the config lock, wait for all I/O
227 * to complete, sync the updated configs to the
228 * cache, and release the namespace lock.
229 *
230 * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
231 * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
232 * locking is, always, based on spa_namespace_lock and spa_config_lock[].
233 *
234 * spa_rename() is also implemented within this file since it requires
235 * manipulation of the namespace.
236 */
237
238 static avl_tree_t spa_namespace_avl;
239 kmutex_t spa_namespace_lock;
240 static kcondvar_t spa_namespace_cv;
241 static int spa_active_count;
242 int spa_max_replication_override = SPA_DVAS_PER_BP;
243
244 static kmutex_t spa_spare_lock;
245 static avl_tree_t spa_spare_avl;
246 static kmutex_t spa_l2cache_lock;
247 static avl_tree_t spa_l2cache_avl;
248
249 kmem_cache_t *spa_buffer_pool;
250 int spa_mode_global;
251
252 #ifdef ZFS_DEBUG
253 /* Everything except dprintf and spa is on by default in debug builds */
254 int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_SPA);
255 #else
256 int zfs_flags = 0;
257 #endif
258
259 /*
260 * zfs_recover can be set to nonzero to attempt to recover from
261 * otherwise-fatal errors, typically caused by on-disk corruption. When
262 * set, calls to zfs_panic_recover() will turn into warning messages.
263 * This should only be used as a last resort, as it typically results
264 * in leaked space, or worse.
265 */
266 boolean_t zfs_recover = B_FALSE;
267
268 /*
269 * If destroy encounters an EIO while reading metadata (e.g. indirect
270 * blocks), space referenced by the missing metadata can not be freed.
271 * Normally this causes the background destroy to become "stalled", as
272 * it is unable to make forward progress. While in this stalled state,
273 * all remaining space to free from the error-encountering filesystem is
274 * "temporarily leaked". Set this flag to cause it to ignore the EIO,
275 * permanently leak the space from indirect blocks that can not be read,
276 * and continue to free everything else that it can.
277 *
278 * The default, "stalling" behavior is useful if the storage partially
279 * fails (i.e. some but not all i/os fail), and then later recovers. In
280 * this case, we will be able to continue pool operations while it is
281 * partially failed, and when it recovers, we can continue to free the
282 * space, with no leaks. However, note that this case is actually
283 * fairly rare.
284 *
285 * Typically pools either (a) fail completely (but perhaps temporarily,
286 * e.g. a top-level vdev going offline), or (b) have localized,
287 * permanent errors (e.g. disk returns the wrong data due to bit flip or
288 * firmware bug). In case (a), this setting does not matter because the
289 * pool will be suspended and the sync thread will not be able to make
290 * forward progress regardless. In case (b), because the error is
291 * permanent, the best we can do is leak the minimum amount of space,
292 * which is what setting this flag will do. Therefore, it is reasonable
293 * for this flag to normally be set, but we chose the more conservative
294 * approach of not setting it, so that there is no possibility of
295 * leaking space in the "partial temporary" failure case.
296 */
297 boolean_t zfs_free_leak_on_eio = B_FALSE;
298
299 /*
300 * Expiration time in milliseconds. This value has two meanings. First it is
301 * used to determine when the spa_deadman() logic should fire. By default the
302 * spa_deadman() will fire if spa_sync() has not completed in 1000 seconds.
303 * Secondly, the value determines if an I/O is considered "hung". Any I/O that
304 * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting
305 * in a system panic.
306 */
307 uint64_t zfs_deadman_synctime_ms = 1000000ULL;
308
309 /*
310 * Check time in milliseconds. This defines the frequency at which we check
311 * for hung I/O.
312 */
313 uint64_t zfs_deadman_checktime_ms = 5000ULL;
314
315 /*
316 * Default value of -1 for zfs_deadman_enabled is resolved in
317 * zfs_deadman_init()
318 */
319 int zfs_deadman_enabled = -1;
320
321 /*
322 * The worst case is single-sector max-parity RAID-Z blocks, in which
323 * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
324 * times the size; so just assume that. Add to this the fact that
325 * we can have up to 3 DVAs per bp, and one more factor of 2 because
326 * the block may be dittoed with up to 3 DVAs by ddt_sync(). All together,
327 * the worst case is:
328 * (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24
329 */
330 int spa_asize_inflation = 24;
331
332 #if defined(__FreeBSD__) && defined(_KERNEL)
333 SYSCTL_DECL(_vfs_zfs);
334 SYSCTL_INT(_vfs_zfs, OID_AUTO, recover, CTLFLAG_RWTUN, &zfs_recover, 0,
335 "Try to recover from otherwise-fatal errors.");
336
337 static int
sysctl_vfs_zfs_debug_flags(SYSCTL_HANDLER_ARGS)338 sysctl_vfs_zfs_debug_flags(SYSCTL_HANDLER_ARGS)
339 {
340 int err, val;
341
342 val = zfs_flags;
343 err = sysctl_handle_int(oidp, &val, 0, req);
344 if (err != 0 || req->newptr == NULL)
345 return (err);
346
347 /*
348 * ZFS_DEBUG_MODIFY must be enabled prior to boot so all
349 * arc buffers in the system have the necessary additional
350 * checksum data. However, it is safe to disable at any
351 * time.
352 */
353 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
354 val &= ~ZFS_DEBUG_MODIFY;
355 zfs_flags = val;
356
357 return (0);
358 }
359
360 SYSCTL_PROC(_vfs_zfs, OID_AUTO, debug_flags,
361 CTLTYPE_UINT | CTLFLAG_MPSAFE | CTLFLAG_RWTUN, 0, sizeof(int),
362 sysctl_vfs_zfs_debug_flags, "IU", "Debug flags for ZFS testing.");
363
364 SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, deadman_synctime_ms, CTLFLAG_RDTUN,
365 &zfs_deadman_synctime_ms, 0,
366 "Stalled ZFS I/O expiration time in milliseconds");
367 SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, deadman_checktime_ms, CTLFLAG_RDTUN,
368 &zfs_deadman_checktime_ms, 0,
369 "Period of checks for stalled ZFS I/O in milliseconds");
370 SYSCTL_INT(_vfs_zfs, OID_AUTO, deadman_enabled, CTLFLAG_RDTUN,
371 &zfs_deadman_enabled, 0, "Kernel panic on stalled ZFS I/O");
372 SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_asize_inflation, CTLFLAG_RWTUN,
373 &spa_asize_inflation, 0, "Worst case inflation factor for single sector writes");
374 #endif
375
376
377 #ifdef __FreeBSD__
378 #ifdef _KERNEL
379 static void
zfs_deadman_init(void)380 zfs_deadman_init(void)
381 {
382 /*
383 * If we are not i386 or amd64 or in a virtual machine,
384 * disable ZFS deadman thread by default
385 */
386 if (zfs_deadman_enabled == -1) {
387 #if defined(__amd64__) || defined(__i386__)
388 zfs_deadman_enabled = (vm_guest == VM_GUEST_NO) ? 1 : 0;
389 #else
390 zfs_deadman_enabled = 0;
391 #endif
392 }
393 }
394 #endif /* _KERNEL */
395 #endif /* __FreeBSD__ */
396
397 #ifdef __NetBSD__
398 #ifdef _KERNEL
399 static struct workqueue *spa_workqueue;
400
401 static void spa_deadman(void *arg);
402
403 static void
spa_deadman_wq(struct work * wk,void * arg)404 spa_deadman_wq(struct work *wk, void *arg)
405 {
406 spa_t *spa = container_of(wk, struct spa, spa_deadman_work);
407
408 spa_deadman(spa);
409 }
410
411 static void
zfs_deadman_init(void)412 zfs_deadman_init(void)
413 {
414 int error;
415
416 error = workqueue_create(&spa_workqueue, "spa_deadman",
417 spa_deadman_wq, NULL, PRI_NONE, IPL_NONE, WQ_MPSAFE);
418 VERIFY0(error);
419 }
420
421 static void
zfs_deadman_fini(void)422 zfs_deadman_fini(void)
423 {
424 workqueue_destroy(spa_workqueue);
425 spa_workqueue = NULL;
426 }
427 #else /* !_KERNEL */
428 #define zfs_deadman_init() /* nothing */
429 #define zfs_deadman_fini() /* nothing */
430 #endif /* !_KERNEL */
431 #endif /* __NetBSD__ */
432
433 /*
434 * Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space in
435 * the pool to be consumed. This ensures that we don't run the pool
436 * completely out of space, due to unaccounted changes (e.g. to the MOS).
437 * It also limits the worst-case time to allocate space. If we have
438 * less than this amount of free space, most ZPL operations (e.g. write,
439 * create) will return ENOSPC.
440 *
441 * Certain operations (e.g. file removal, most administrative actions) can
442 * use half the slop space. They will only return ENOSPC if less than half
443 * the slop space is free. Typically, once the pool has less than the slop
444 * space free, the user will use these operations to free up space in the pool.
445 * These are the operations that call dsl_pool_adjustedsize() with the netfree
446 * argument set to TRUE.
447 *
448 * A very restricted set of operations are always permitted, regardless of
449 * the amount of free space. These are the operations that call
450 * dsl_sync_task(ZFS_SPACE_CHECK_NONE), e.g. "zfs destroy". If these
451 * operations result in a net increase in the amount of space used,
452 * it is possible to run the pool completely out of space, causing it to
453 * be permanently read-only.
454 *
455 * Note that on very small pools, the slop space will be larger than
456 * 3.2%, in an effort to have it be at least spa_min_slop (128MB),
457 * but we never allow it to be more than half the pool size.
458 *
459 * See also the comments in zfs_space_check_t.
460 */
461 int spa_slop_shift = 5;
462 SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_slop_shift, CTLFLAG_RWTUN,
463 &spa_slop_shift, 0,
464 "Shift value of reserved space (1/(2^spa_slop_shift)).");
465 uint64_t spa_min_slop = 128 * 1024 * 1024;
466 SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, spa_min_slop, CTLFLAG_RWTUN,
467 &spa_min_slop, 0,
468 "Minimal value of reserved space");
469
470 /*
471 * ==========================================================================
472 * SPA config locking
473 * ==========================================================================
474 */
475 static void
spa_config_lock_init(spa_t * spa)476 spa_config_lock_init(spa_t *spa)
477 {
478 for (int i = 0; i < SCL_LOCKS; i++) {
479 spa_config_lock_t *scl = &spa->spa_config_lock[i];
480 mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
481 cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
482 refcount_create_untracked(&scl->scl_count);
483 scl->scl_writer = NULL;
484 scl->scl_write_wanted = 0;
485 }
486 }
487
488 static void
spa_config_lock_destroy(spa_t * spa)489 spa_config_lock_destroy(spa_t *spa)
490 {
491 for (int i = 0; i < SCL_LOCKS; i++) {
492 spa_config_lock_t *scl = &spa->spa_config_lock[i];
493 mutex_destroy(&scl->scl_lock);
494 cv_destroy(&scl->scl_cv);
495 refcount_destroy(&scl->scl_count);
496 ASSERT(scl->scl_writer == NULL);
497 ASSERT(scl->scl_write_wanted == 0);
498 }
499 }
500
501 int
spa_config_tryenter(spa_t * spa,int locks,void * tag,krw_t rw)502 spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw)
503 {
504 for (int i = 0; i < SCL_LOCKS; i++) {
505 spa_config_lock_t *scl = &spa->spa_config_lock[i];
506 if (!(locks & (1 << i)))
507 continue;
508 mutex_enter(&scl->scl_lock);
509 if (rw == RW_READER) {
510 if (scl->scl_writer || scl->scl_write_wanted) {
511 mutex_exit(&scl->scl_lock);
512 spa_config_exit(spa, locks & ((1 << i) - 1),
513 tag);
514 return (0);
515 }
516 } else {
517 ASSERT(scl->scl_writer != curthread);
518 if (!refcount_is_zero(&scl->scl_count)) {
519 mutex_exit(&scl->scl_lock);
520 spa_config_exit(spa, locks & ((1 << i) - 1),
521 tag);
522 return (0);
523 }
524 scl->scl_writer = curthread;
525 }
526 (void) refcount_add(&scl->scl_count, tag);
527 mutex_exit(&scl->scl_lock);
528 }
529 return (1);
530 }
531
532 void
spa_config_enter(spa_t * spa,int locks,void * tag,krw_t rw)533 spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw)
534 {
535 int wlocks_held = 0;
536
537 ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY);
538
539 for (int i = 0; i < SCL_LOCKS; i++) {
540 spa_config_lock_t *scl = &spa->spa_config_lock[i];
541 if (scl->scl_writer == curthread)
542 wlocks_held |= (1 << i);
543 if (!(locks & (1 << i)))
544 continue;
545 mutex_enter(&scl->scl_lock);
546 if (rw == RW_READER) {
547 while (scl->scl_writer || scl->scl_write_wanted) {
548 cv_wait(&scl->scl_cv, &scl->scl_lock);
549 }
550 } else {
551 ASSERT(scl->scl_writer != curthread);
552 while (!refcount_is_zero(&scl->scl_count)) {
553 scl->scl_write_wanted++;
554 cv_wait(&scl->scl_cv, &scl->scl_lock);
555 scl->scl_write_wanted--;
556 }
557 scl->scl_writer = curthread;
558 }
559 (void) refcount_add(&scl->scl_count, tag);
560 mutex_exit(&scl->scl_lock);
561 }
562 ASSERT(wlocks_held <= locks);
563 }
564
565 void
spa_config_exit(spa_t * spa,int locks,void * tag)566 spa_config_exit(spa_t *spa, int locks, void *tag)
567 {
568 for (int i = SCL_LOCKS - 1; i >= 0; i--) {
569 spa_config_lock_t *scl = &spa->spa_config_lock[i];
570 if (!(locks & (1 << i)))
571 continue;
572 mutex_enter(&scl->scl_lock);
573 ASSERT(!refcount_is_zero(&scl->scl_count));
574 if (refcount_remove(&scl->scl_count, tag) == 0) {
575 ASSERT(scl->scl_writer == NULL ||
576 scl->scl_writer == curthread);
577 scl->scl_writer = NULL; /* OK in either case */
578 cv_broadcast(&scl->scl_cv);
579 }
580 mutex_exit(&scl->scl_lock);
581 }
582 }
583
584 int
spa_config_held(spa_t * spa,int locks,krw_t rw)585 spa_config_held(spa_t *spa, int locks, krw_t rw)
586 {
587 int locks_held = 0;
588
589 for (int i = 0; i < SCL_LOCKS; i++) {
590 spa_config_lock_t *scl = &spa->spa_config_lock[i];
591 if (!(locks & (1 << i)))
592 continue;
593 if ((rw == RW_READER && !refcount_is_zero(&scl->scl_count)) ||
594 (rw == RW_WRITER && scl->scl_writer == curthread))
595 locks_held |= 1 << i;
596 }
597
598 return (locks_held);
599 }
600
601 /*
602 * ==========================================================================
603 * SPA namespace functions
604 * ==========================================================================
605 */
606
607 /*
608 * Lookup the named spa_t in the AVL tree. The spa_namespace_lock must be held.
609 * Returns NULL if no matching spa_t is found.
610 */
611 spa_t *
spa_lookup(const char * name)612 spa_lookup(const char *name)
613 {
614 static spa_t search; /* spa_t is large; don't allocate on stack */
615 spa_t *spa;
616 avl_index_t where;
617 char *cp;
618
619 ASSERT(MUTEX_HELD(&spa_namespace_lock));
620
621 (void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
622
623 /*
624 * If it's a full dataset name, figure out the pool name and
625 * just use that.
626 */
627 cp = strpbrk(search.spa_name, "/@#");
628 if (cp != NULL)
629 *cp = '\0';
630
631 spa = avl_find(&spa_namespace_avl, &search, &where);
632
633 return (spa);
634 }
635
636 /*
637 * Fires when spa_sync has not completed within zfs_deadman_synctime_ms.
638 * If the zfs_deadman_enabled flag is set then it inspects all vdev queues
639 * looking for potentially hung I/Os.
640 */
641 static void
spa_deadman(void * arg)642 spa_deadman(void *arg)
643 {
644 spa_t *spa = arg;
645
646 /*
647 * Disable the deadman timer if the pool is suspended.
648 */
649 if (spa_suspended(spa)) {
650 #ifdef illumos
651 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
652 #else
653 /* Nothing. just don't schedule any future callouts. */
654 #endif
655 return;
656 }
657
658 zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu",
659 (gethrtime() - spa->spa_sync_starttime) / NANOSEC,
660 ++spa->spa_deadman_calls);
661 if (zfs_deadman_enabled)
662 vdev_deadman(spa->spa_root_vdev);
663 #ifndef illumos
664 #ifdef _KERNEL
665 callout_schedule(&spa->spa_deadman_cycid,
666 hz * zfs_deadman_checktime_ms / MILLISEC);
667 #endif
668 #endif
669 }
670
671 #ifdef _KERNEL
672 static void
spa_deadman_timeout(void * arg)673 spa_deadman_timeout(void *arg)
674 {
675 spa_t *spa = arg;
676
677 #ifdef __FreeBSD__
678 taskqueue_enqueue(taskqueue_thread, &spa->spa_deadman_task);
679 #endif
680 #ifdef __NetBSD__
681 workqueue_enqueue(spa_workqueue, &spa->spa_deadman_work, NULL);
682 #endif
683 }
684 #endif /* _KERNEL */
685
686 /*
687 * Create an uninitialized spa_t with the given name. Requires
688 * spa_namespace_lock. The caller must ensure that the spa_t doesn't already
689 * exist by calling spa_lookup() first.
690 */
691 spa_t *
spa_add(const char * name,nvlist_t * config,const char * altroot)692 spa_add(const char *name, nvlist_t *config, const char *altroot)
693 {
694 spa_t *spa;
695 spa_config_dirent_t *dp;
696 #ifndef __FreeBSD__
697 cyc_handler_t hdlr;
698 cyc_time_t when;
699 #endif
700
701 ASSERT(MUTEX_HELD(&spa_namespace_lock));
702
703 spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
704
705 mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
706 mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
707 mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
708 mutex_init(&spa->spa_evicting_os_lock, NULL, MUTEX_DEFAULT, NULL);
709 mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
710 mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL);
711 mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
712 mutex_init(&spa->spa_cksum_tmpls_lock, NULL, MUTEX_DEFAULT, NULL);
713 mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
714 mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
715 mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL);
716 mutex_init(&spa->spa_alloc_lock, NULL, MUTEX_DEFAULT, NULL);
717
718 cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
719 cv_init(&spa->spa_evicting_os_cv, NULL, CV_DEFAULT, NULL);
720 cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL);
721 cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
722 cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
723
724 for (int t = 0; t < TXG_SIZE; t++)
725 bplist_create(&spa->spa_free_bplist[t]);
726
727 (void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
728 spa->spa_state = POOL_STATE_UNINITIALIZED;
729 spa->spa_freeze_txg = UINT64_MAX;
730 spa->spa_final_txg = UINT64_MAX;
731 spa->spa_load_max_txg = UINT64_MAX;
732 spa->spa_proc = &p0;
733 spa->spa_proc_state = SPA_PROC_NONE;
734
735 #ifndef __FreeBSD__
736 hdlr.cyh_func = spa_deadman;
737 hdlr.cyh_arg = spa;
738 hdlr.cyh_level = CY_LOW_LEVEL;
739 #endif
740
741 spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms);
742
743 #ifdef illumos
744 /*
745 * This determines how often we need to check for hung I/Os after
746 * the cyclic has already fired. Since checking for hung I/Os is
747 * an expensive operation we don't want to check too frequently.
748 * Instead wait for 5 seconds before checking again.
749 */
750 when.cyt_interval = MSEC2NSEC(zfs_deadman_checktime_ms);
751 when.cyt_when = CY_INFINITY;
752 mutex_enter(&cpu_lock);
753 spa->spa_deadman_cycid = cyclic_add(&hdlr, &when);
754 mutex_exit(&cpu_lock);
755 #endif
756 #ifdef __FreeBSD__
757 #ifdef _KERNEL
758 /*
759 * callout(9) does not provide a way to initialize a callout with
760 * a function and an argument, so we use callout_reset() to schedule
761 * the callout in the very distant future. Even if that event ever
762 * fires, it should be okayas we won't have any active zio-s.
763 * But normally spa_sync() will reschedule the callout with a proper
764 * timeout.
765 * callout(9) does not allow the callback function to sleep but
766 * vdev_deadman() needs to acquire vq_lock and illumos mutexes are
767 * emulated using sx(9). For this reason spa_deadman_timeout()
768 * will schedule spa_deadman() as task on a taskqueue that allows
769 * sleeping.
770 */
771 TASK_INIT(&spa->spa_deadman_task, 0, spa_deadman, spa);
772 callout_init(&spa->spa_deadman_cycid, 1);
773 callout_reset_sbt(&spa->spa_deadman_cycid, SBT_MAX, 0,
774 spa_deadman_timeout, spa, 0);
775 #endif
776 #endif
777 #ifdef __NetBSD__
778 #ifdef _KERNEL
779 callout_init(&spa->spa_deadman_cycid, 0);
780 callout_setfunc(&spa->spa_deadman_cycid, spa_deadman_timeout, spa);
781 #endif
782 #endif
783
784 refcount_create(&spa->spa_refcount);
785 spa_config_lock_init(spa);
786
787 avl_add(&spa_namespace_avl, spa);
788
789 /*
790 * Set the alternate root, if there is one.
791 */
792 if (altroot) {
793 spa->spa_root = spa_strdup(altroot);
794 spa_active_count++;
795 }
796
797 avl_create(&spa->spa_alloc_tree, zio_timestamp_compare,
798 sizeof (zio_t), offsetof(zio_t, io_alloc_node));
799
800 /*
801 * Every pool starts with the default cachefile
802 */
803 list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
804 offsetof(spa_config_dirent_t, scd_link));
805
806 dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
807 dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path);
808 list_insert_head(&spa->spa_config_list, dp);
809
810 VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME,
811 KM_SLEEP) == 0);
812
813 if (config != NULL) {
814 nvlist_t *features;
815
816 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ,
817 &features) == 0) {
818 VERIFY(nvlist_dup(features, &spa->spa_label_features,
819 0) == 0);
820 }
821
822 VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
823 }
824
825 if (spa->spa_label_features == NULL) {
826 VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME,
827 KM_SLEEP) == 0);
828 }
829
830 spa->spa_debug = ((zfs_flags & ZFS_DEBUG_SPA) != 0);
831
832 spa->spa_min_ashift = INT_MAX;
833 spa->spa_max_ashift = 0;
834
835 /*
836 * As a pool is being created, treat all features as disabled by
837 * setting SPA_FEATURE_DISABLED for all entries in the feature
838 * refcount cache.
839 */
840 for (int i = 0; i < SPA_FEATURES; i++) {
841 spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED;
842 }
843
844 return (spa);
845 }
846
847 /*
848 * Removes a spa_t from the namespace, freeing up any memory used. Requires
849 * spa_namespace_lock. This is called only after the spa_t has been closed and
850 * deactivated.
851 */
852 void
spa_remove(spa_t * spa)853 spa_remove(spa_t *spa)
854 {
855 spa_config_dirent_t *dp;
856
857 ASSERT(MUTEX_HELD(&spa_namespace_lock));
858 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
859 ASSERT3U(refcount_count(&spa->spa_refcount), ==, 0);
860
861 nvlist_free(spa->spa_config_splitting);
862
863 avl_remove(&spa_namespace_avl, spa);
864 cv_broadcast(&spa_namespace_cv);
865
866 if (spa->spa_root) {
867 spa_strfree(spa->spa_root);
868 spa_active_count--;
869 }
870
871 while ((dp = list_head(&spa->spa_config_list)) != NULL) {
872 list_remove(&spa->spa_config_list, dp);
873 if (dp->scd_path != NULL)
874 spa_strfree(dp->scd_path);
875 kmem_free(dp, sizeof (spa_config_dirent_t));
876 }
877
878 avl_destroy(&spa->spa_alloc_tree);
879 list_destroy(&spa->spa_config_list);
880
881 nvlist_free(spa->spa_label_features);
882 nvlist_free(spa->spa_load_info);
883 spa_config_set(spa, NULL);
884
885 #ifdef illumos
886 mutex_enter(&cpu_lock);
887 if (spa->spa_deadman_cycid != CYCLIC_NONE)
888 cyclic_remove(spa->spa_deadman_cycid);
889 mutex_exit(&cpu_lock);
890 spa->spa_deadman_cycid = CYCLIC_NONE;
891 #endif /* !illumos */
892 #ifdef __FreeBSD__
893 #ifdef _KERNEL
894 callout_drain(&spa->spa_deadman_cycid);
895 taskqueue_drain(taskqueue_thread, &spa->spa_deadman_task);
896 #endif
897 #endif
898 #ifdef __NetBSD__
899 #ifdef _KERNEL
900 callout_drain(&spa->spa_deadman_cycid);
901 #endif
902 #endif
903
904 refcount_destroy(&spa->spa_refcount);
905
906 spa_config_lock_destroy(spa);
907
908 for (int t = 0; t < TXG_SIZE; t++)
909 bplist_destroy(&spa->spa_free_bplist[t]);
910
911 zio_checksum_templates_free(spa);
912
913 cv_destroy(&spa->spa_async_cv);
914 cv_destroy(&spa->spa_evicting_os_cv);
915 cv_destroy(&spa->spa_proc_cv);
916 cv_destroy(&spa->spa_scrub_io_cv);
917 cv_destroy(&spa->spa_suspend_cv);
918
919 mutex_destroy(&spa->spa_alloc_lock);
920 mutex_destroy(&spa->spa_async_lock);
921 mutex_destroy(&spa->spa_errlist_lock);
922 mutex_destroy(&spa->spa_errlog_lock);
923 mutex_destroy(&spa->spa_evicting_os_lock);
924 mutex_destroy(&spa->spa_history_lock);
925 mutex_destroy(&spa->spa_proc_lock);
926 mutex_destroy(&spa->spa_props_lock);
927 mutex_destroy(&spa->spa_cksum_tmpls_lock);
928 mutex_destroy(&spa->spa_scrub_lock);
929 mutex_destroy(&spa->spa_suspend_lock);
930 mutex_destroy(&spa->spa_vdev_top_lock);
931
932 kmem_free(spa, sizeof (spa_t));
933 }
934
935 /*
936 * Given a pool, return the next pool in the namespace, or NULL if there is
937 * none. If 'prev' is NULL, return the first pool.
938 */
939 spa_t *
spa_next(spa_t * prev)940 spa_next(spa_t *prev)
941 {
942 ASSERT(MUTEX_HELD(&spa_namespace_lock));
943
944 if (prev)
945 return (AVL_NEXT(&spa_namespace_avl, prev));
946 else
947 return (avl_first(&spa_namespace_avl));
948 }
949
950 /*
951 * ==========================================================================
952 * SPA refcount functions
953 * ==========================================================================
954 */
955
956 /*
957 * Add a reference to the given spa_t. Must have at least one reference, or
958 * have the namespace lock held.
959 */
960 void
spa_open_ref(spa_t * spa,void * tag)961 spa_open_ref(spa_t *spa, void *tag)
962 {
963 ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
964 MUTEX_HELD(&spa_namespace_lock));
965 (void) refcount_add(&spa->spa_refcount, tag);
966 }
967
968 /*
969 * Remove a reference to the given spa_t. Must have at least one reference, or
970 * have the namespace lock held.
971 */
972 void
spa_close(spa_t * spa,void * tag)973 spa_close(spa_t *spa, void *tag)
974 {
975 ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref ||
976 MUTEX_HELD(&spa_namespace_lock));
977 (void) refcount_remove(&spa->spa_refcount, tag);
978 }
979
980 /*
981 * Remove a reference to the given spa_t held by a dsl dir that is
982 * being asynchronously released. Async releases occur from a taskq
983 * performing eviction of dsl datasets and dirs. The namespace lock
984 * isn't held and the hold by the object being evicted may contribute to
985 * spa_minref (e.g. dataset or directory released during pool export),
986 * so the asserts in spa_close() do not apply.
987 */
988 void
spa_async_close(spa_t * spa,void * tag)989 spa_async_close(spa_t *spa, void *tag)
990 {
991 (void) refcount_remove(&spa->spa_refcount, tag);
992 }
993
994 /*
995 * Check to see if the spa refcount is zero. Must be called with
996 * spa_namespace_lock held. We really compare against spa_minref, which is the
997 * number of references acquired when opening a pool
998 */
999 boolean_t
spa_refcount_zero(spa_t * spa)1000 spa_refcount_zero(spa_t *spa)
1001 {
1002 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1003
1004 return (refcount_count(&spa->spa_refcount) == spa->spa_minref);
1005 }
1006
1007 /*
1008 * ==========================================================================
1009 * SPA spare and l2cache tracking
1010 * ==========================================================================
1011 */
1012
1013 /*
1014 * Hot spares and cache devices are tracked using the same code below,
1015 * for 'auxiliary' devices.
1016 */
1017
1018 typedef struct spa_aux {
1019 uint64_t aux_guid;
1020 uint64_t aux_pool;
1021 avl_node_t aux_avl;
1022 int aux_count;
1023 } spa_aux_t;
1024
1025 static int
spa_aux_compare(const void * a,const void * b)1026 spa_aux_compare(const void *a, const void *b)
1027 {
1028 const spa_aux_t *sa = a;
1029 const spa_aux_t *sb = b;
1030
1031 if (sa->aux_guid < sb->aux_guid)
1032 return (-1);
1033 else if (sa->aux_guid > sb->aux_guid)
1034 return (1);
1035 else
1036 return (0);
1037 }
1038
1039 void
spa_aux_add(vdev_t * vd,avl_tree_t * avl)1040 spa_aux_add(vdev_t *vd, avl_tree_t *avl)
1041 {
1042 avl_index_t where;
1043 spa_aux_t search;
1044 spa_aux_t *aux;
1045
1046 search.aux_guid = vd->vdev_guid;
1047 if ((aux = avl_find(avl, &search, &where)) != NULL) {
1048 aux->aux_count++;
1049 } else {
1050 aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
1051 aux->aux_guid = vd->vdev_guid;
1052 aux->aux_count = 1;
1053 avl_insert(avl, aux, where);
1054 }
1055 }
1056
1057 void
spa_aux_remove(vdev_t * vd,avl_tree_t * avl)1058 spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
1059 {
1060 spa_aux_t search;
1061 spa_aux_t *aux;
1062 avl_index_t where;
1063
1064 search.aux_guid = vd->vdev_guid;
1065 aux = avl_find(avl, &search, &where);
1066
1067 ASSERT(aux != NULL);
1068
1069 if (--aux->aux_count == 0) {
1070 avl_remove(avl, aux);
1071 kmem_free(aux, sizeof (spa_aux_t));
1072 } else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
1073 aux->aux_pool = 0ULL;
1074 }
1075 }
1076
1077 boolean_t
spa_aux_exists(uint64_t guid,uint64_t * pool,int * refcnt,avl_tree_t * avl)1078 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
1079 {
1080 spa_aux_t search, *found;
1081
1082 search.aux_guid = guid;
1083 found = avl_find(avl, &search, NULL);
1084
1085 if (pool) {
1086 if (found)
1087 *pool = found->aux_pool;
1088 else
1089 *pool = 0ULL;
1090 }
1091
1092 if (refcnt) {
1093 if (found)
1094 *refcnt = found->aux_count;
1095 else
1096 *refcnt = 0;
1097 }
1098
1099 return (found != NULL);
1100 }
1101
1102 void
spa_aux_activate(vdev_t * vd,avl_tree_t * avl)1103 spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
1104 {
1105 spa_aux_t search, *found;
1106 avl_index_t where;
1107
1108 search.aux_guid = vd->vdev_guid;
1109 found = avl_find(avl, &search, &where);
1110 ASSERT(found != NULL);
1111 ASSERT(found->aux_pool == 0ULL);
1112
1113 found->aux_pool = spa_guid(vd->vdev_spa);
1114 }
1115
1116 /*
1117 * Spares are tracked globally due to the following constraints:
1118 *
1119 * - A spare may be part of multiple pools.
1120 * - A spare may be added to a pool even if it's actively in use within
1121 * another pool.
1122 * - A spare in use in any pool can only be the source of a replacement if
1123 * the target is a spare in the same pool.
1124 *
1125 * We keep track of all spares on the system through the use of a reference
1126 * counted AVL tree. When a vdev is added as a spare, or used as a replacement
1127 * spare, then we bump the reference count in the AVL tree. In addition, we set
1128 * the 'vdev_isspare' member to indicate that the device is a spare (active or
1129 * inactive). When a spare is made active (used to replace a device in the
1130 * pool), we also keep track of which pool its been made a part of.
1131 *
1132 * The 'spa_spare_lock' protects the AVL tree. These functions are normally
1133 * called under the spa_namespace lock as part of vdev reconfiguration. The
1134 * separate spare lock exists for the status query path, which does not need to
1135 * be completely consistent with respect to other vdev configuration changes.
1136 */
1137
1138 static int
spa_spare_compare(const void * a,const void * b)1139 spa_spare_compare(const void *a, const void *b)
1140 {
1141 return (spa_aux_compare(a, b));
1142 }
1143
1144 void
spa_spare_add(vdev_t * vd)1145 spa_spare_add(vdev_t *vd)
1146 {
1147 mutex_enter(&spa_spare_lock);
1148 ASSERT(!vd->vdev_isspare);
1149 spa_aux_add(vd, &spa_spare_avl);
1150 vd->vdev_isspare = B_TRUE;
1151 mutex_exit(&spa_spare_lock);
1152 }
1153
1154 void
spa_spare_remove(vdev_t * vd)1155 spa_spare_remove(vdev_t *vd)
1156 {
1157 mutex_enter(&spa_spare_lock);
1158 ASSERT(vd->vdev_isspare);
1159 spa_aux_remove(vd, &spa_spare_avl);
1160 vd->vdev_isspare = B_FALSE;
1161 mutex_exit(&spa_spare_lock);
1162 }
1163
1164 boolean_t
spa_spare_exists(uint64_t guid,uint64_t * pool,int * refcnt)1165 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
1166 {
1167 boolean_t found;
1168
1169 mutex_enter(&spa_spare_lock);
1170 found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
1171 mutex_exit(&spa_spare_lock);
1172
1173 return (found);
1174 }
1175
1176 void
spa_spare_activate(vdev_t * vd)1177 spa_spare_activate(vdev_t *vd)
1178 {
1179 mutex_enter(&spa_spare_lock);
1180 ASSERT(vd->vdev_isspare);
1181 spa_aux_activate(vd, &spa_spare_avl);
1182 mutex_exit(&spa_spare_lock);
1183 }
1184
1185 /*
1186 * Level 2 ARC devices are tracked globally for the same reasons as spares.
1187 * Cache devices currently only support one pool per cache device, and so
1188 * for these devices the aux reference count is currently unused beyond 1.
1189 */
1190
1191 static int
spa_l2cache_compare(const void * a,const void * b)1192 spa_l2cache_compare(const void *a, const void *b)
1193 {
1194 return (spa_aux_compare(a, b));
1195 }
1196
1197 void
spa_l2cache_add(vdev_t * vd)1198 spa_l2cache_add(vdev_t *vd)
1199 {
1200 mutex_enter(&spa_l2cache_lock);
1201 ASSERT(!vd->vdev_isl2cache);
1202 spa_aux_add(vd, &spa_l2cache_avl);
1203 vd->vdev_isl2cache = B_TRUE;
1204 mutex_exit(&spa_l2cache_lock);
1205 }
1206
1207 void
spa_l2cache_remove(vdev_t * vd)1208 spa_l2cache_remove(vdev_t *vd)
1209 {
1210 mutex_enter(&spa_l2cache_lock);
1211 ASSERT(vd->vdev_isl2cache);
1212 spa_aux_remove(vd, &spa_l2cache_avl);
1213 vd->vdev_isl2cache = B_FALSE;
1214 mutex_exit(&spa_l2cache_lock);
1215 }
1216
1217 boolean_t
spa_l2cache_exists(uint64_t guid,uint64_t * pool)1218 spa_l2cache_exists(uint64_t guid, uint64_t *pool)
1219 {
1220 boolean_t found;
1221
1222 mutex_enter(&spa_l2cache_lock);
1223 found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
1224 mutex_exit(&spa_l2cache_lock);
1225
1226 return (found);
1227 }
1228
1229 void
spa_l2cache_activate(vdev_t * vd)1230 spa_l2cache_activate(vdev_t *vd)
1231 {
1232 mutex_enter(&spa_l2cache_lock);
1233 ASSERT(vd->vdev_isl2cache);
1234 spa_aux_activate(vd, &spa_l2cache_avl);
1235 mutex_exit(&spa_l2cache_lock);
1236 }
1237
1238 /*
1239 * ==========================================================================
1240 * SPA vdev locking
1241 * ==========================================================================
1242 */
1243
1244 /*
1245 * Lock the given spa_t for the purpose of adding or removing a vdev.
1246 * Grabs the global spa_namespace_lock plus the spa config lock for writing.
1247 * It returns the next transaction group for the spa_t.
1248 */
1249 uint64_t
spa_vdev_enter(spa_t * spa)1250 spa_vdev_enter(spa_t *spa)
1251 {
1252 mutex_enter(&spa->spa_vdev_top_lock);
1253 mutex_enter(&spa_namespace_lock);
1254 return (spa_vdev_config_enter(spa));
1255 }
1256
1257 /*
1258 * Internal implementation for spa_vdev_enter(). Used when a vdev
1259 * operation requires multiple syncs (i.e. removing a device) while
1260 * keeping the spa_namespace_lock held.
1261 */
1262 uint64_t
spa_vdev_config_enter(spa_t * spa)1263 spa_vdev_config_enter(spa_t *spa)
1264 {
1265 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1266
1267 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1268
1269 return (spa_last_synced_txg(spa) + 1);
1270 }
1271
1272 /*
1273 * Used in combination with spa_vdev_config_enter() to allow the syncing
1274 * of multiple transactions without releasing the spa_namespace_lock.
1275 */
1276 void
spa_vdev_config_exit(spa_t * spa,vdev_t * vd,uint64_t txg,int error,char * tag)1277 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag)
1278 {
1279 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1280
1281 int config_changed = B_FALSE;
1282
1283 ASSERT(txg > spa_last_synced_txg(spa));
1284
1285 spa->spa_pending_vdev = NULL;
1286
1287 /*
1288 * Reassess the DTLs.
1289 */
1290 vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE);
1291
1292 if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
1293 config_changed = B_TRUE;
1294 spa->spa_config_generation++;
1295 }
1296
1297 /*
1298 * Verify the metaslab classes.
1299 */
1300 ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0);
1301 ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0);
1302
1303 spa_config_exit(spa, SCL_ALL, spa);
1304
1305 /*
1306 * Panic the system if the specified tag requires it. This
1307 * is useful for ensuring that configurations are updated
1308 * transactionally.
1309 */
1310 if (zio_injection_enabled)
1311 zio_handle_panic_injection(spa, tag, 0);
1312
1313 /*
1314 * Note: this txg_wait_synced() is important because it ensures
1315 * that there won't be more than one config change per txg.
1316 * This allows us to use the txg as the generation number.
1317 */
1318 if (error == 0)
1319 txg_wait_synced(spa->spa_dsl_pool, txg);
1320
1321 if (vd != NULL) {
1322 ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL);
1323 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1324 vdev_free(vd);
1325 spa_config_exit(spa, SCL_ALL, spa);
1326 }
1327
1328 /*
1329 * If the config changed, update the config cache.
1330 */
1331 if (config_changed)
1332 spa_config_sync(spa, B_FALSE, B_TRUE);
1333 }
1334
1335 /*
1336 * Unlock the spa_t after adding or removing a vdev. Besides undoing the
1337 * locking of spa_vdev_enter(), we also want make sure the transactions have
1338 * synced to disk, and then update the global configuration cache with the new
1339 * information.
1340 */
1341 int
spa_vdev_exit(spa_t * spa,vdev_t * vd,uint64_t txg,int error)1342 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
1343 {
1344 spa_vdev_config_exit(spa, vd, txg, error, FTAG);
1345 mutex_exit(&spa_namespace_lock);
1346 mutex_exit(&spa->spa_vdev_top_lock);
1347
1348 return (error);
1349 }
1350
1351 /*
1352 * Lock the given spa_t for the purpose of changing vdev state.
1353 */
1354 void
spa_vdev_state_enter(spa_t * spa,int oplocks)1355 spa_vdev_state_enter(spa_t *spa, int oplocks)
1356 {
1357 int locks = SCL_STATE_ALL | oplocks;
1358
1359 /*
1360 * Root pools may need to read of the underlying devfs filesystem
1361 * when opening up a vdev. Unfortunately if we're holding the
1362 * SCL_ZIO lock it will result in a deadlock when we try to issue
1363 * the read from the root filesystem. Instead we "prefetch"
1364 * the associated vnodes that we need prior to opening the
1365 * underlying devices and cache them so that we can prevent
1366 * any I/O when we are doing the actual open.
1367 */
1368 if (spa_is_root(spa)) {
1369 int low = locks & ~(SCL_ZIO - 1);
1370 int high = locks & ~low;
1371
1372 spa_config_enter(spa, high, spa, RW_WRITER);
1373 vdev_hold(spa->spa_root_vdev);
1374 spa_config_enter(spa, low, spa, RW_WRITER);
1375 } else {
1376 spa_config_enter(spa, locks, spa, RW_WRITER);
1377 }
1378 spa->spa_vdev_locks = locks;
1379 }
1380
1381 int
spa_vdev_state_exit(spa_t * spa,vdev_t * vd,int error)1382 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
1383 {
1384 boolean_t config_changed = B_FALSE;
1385
1386 if (vd != NULL || error == 0)
1387 vdev_dtl_reassess(vd ? vd->vdev_top : spa->spa_root_vdev,
1388 0, 0, B_FALSE);
1389
1390 if (vd != NULL) {
1391 vdev_state_dirty(vd->vdev_top);
1392 config_changed = B_TRUE;
1393 spa->spa_config_generation++;
1394 }
1395
1396 if (spa_is_root(spa))
1397 vdev_rele(spa->spa_root_vdev);
1398
1399 ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
1400 spa_config_exit(spa, spa->spa_vdev_locks, spa);
1401
1402 /*
1403 * If anything changed, wait for it to sync. This ensures that,
1404 * from the system administrator's perspective, zpool(1M) commands
1405 * are synchronous. This is important for things like zpool offline:
1406 * when the command completes, you expect no further I/O from ZFS.
1407 */
1408 if (vd != NULL)
1409 txg_wait_synced(spa->spa_dsl_pool, 0);
1410
1411 /*
1412 * If the config changed, update the config cache.
1413 */
1414 if (config_changed) {
1415 mutex_enter(&spa_namespace_lock);
1416 spa_config_sync(spa, B_FALSE, B_TRUE);
1417 mutex_exit(&spa_namespace_lock);
1418 }
1419
1420 return (error);
1421 }
1422
1423 /*
1424 * ==========================================================================
1425 * Miscellaneous functions
1426 * ==========================================================================
1427 */
1428
1429 void
spa_activate_mos_feature(spa_t * spa,const char * feature,dmu_tx_t * tx)1430 spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx)
1431 {
1432 if (!nvlist_exists(spa->spa_label_features, feature)) {
1433 fnvlist_add_boolean(spa->spa_label_features, feature);
1434 /*
1435 * When we are creating the pool (tx_txg==TXG_INITIAL), we can't
1436 * dirty the vdev config because lock SCL_CONFIG is not held.
1437 * Thankfully, in this case we don't need to dirty the config
1438 * because it will be written out anyway when we finish
1439 * creating the pool.
1440 */
1441 if (tx->tx_txg != TXG_INITIAL)
1442 vdev_config_dirty(spa->spa_root_vdev);
1443 }
1444 }
1445
1446 void
spa_deactivate_mos_feature(spa_t * spa,const char * feature)1447 spa_deactivate_mos_feature(spa_t *spa, const char *feature)
1448 {
1449 if (nvlist_remove_all(spa->spa_label_features, feature) == 0)
1450 vdev_config_dirty(spa->spa_root_vdev);
1451 }
1452
1453 /*
1454 * Rename a spa_t.
1455 */
1456 int
spa_rename(const char * name,const char * newname)1457 spa_rename(const char *name, const char *newname)
1458 {
1459 spa_t *spa;
1460 int err;
1461
1462 /*
1463 * Lookup the spa_t and grab the config lock for writing. We need to
1464 * actually open the pool so that we can sync out the necessary labels.
1465 * It's OK to call spa_open() with the namespace lock held because we
1466 * allow recursive calls for other reasons.
1467 */
1468 mutex_enter(&spa_namespace_lock);
1469 if ((err = spa_open(name, &spa, FTAG)) != 0) {
1470 mutex_exit(&spa_namespace_lock);
1471 return (err);
1472 }
1473
1474 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1475
1476 avl_remove(&spa_namespace_avl, spa);
1477 (void) strlcpy(spa->spa_name, newname, sizeof (spa->spa_name));
1478 avl_add(&spa_namespace_avl, spa);
1479
1480 /*
1481 * Sync all labels to disk with the new names by marking the root vdev
1482 * dirty and waiting for it to sync. It will pick up the new pool name
1483 * during the sync.
1484 */
1485 vdev_config_dirty(spa->spa_root_vdev);
1486
1487 spa_config_exit(spa, SCL_ALL, FTAG);
1488
1489 txg_wait_synced(spa->spa_dsl_pool, 0);
1490
1491 /*
1492 * Sync the updated config cache.
1493 */
1494 spa_config_sync(spa, B_FALSE, B_TRUE);
1495
1496 spa_close(spa, FTAG);
1497
1498 mutex_exit(&spa_namespace_lock);
1499
1500 return (0);
1501 }
1502
1503 /*
1504 * Return the spa_t associated with given pool_guid, if it exists. If
1505 * device_guid is non-zero, determine whether the pool exists *and* contains
1506 * a device with the specified device_guid.
1507 */
1508 spa_t *
spa_by_guid(uint64_t pool_guid,uint64_t device_guid)1509 spa_by_guid(uint64_t pool_guid, uint64_t device_guid)
1510 {
1511 spa_t *spa;
1512 avl_tree_t *t = &spa_namespace_avl;
1513
1514 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1515
1516 for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1517 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1518 continue;
1519 if (spa->spa_root_vdev == NULL)
1520 continue;
1521 if (spa_guid(spa) == pool_guid) {
1522 if (device_guid == 0)
1523 break;
1524
1525 if (vdev_lookup_by_guid(spa->spa_root_vdev,
1526 device_guid) != NULL)
1527 break;
1528
1529 /*
1530 * Check any devices we may be in the process of adding.
1531 */
1532 if (spa->spa_pending_vdev) {
1533 if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1534 device_guid) != NULL)
1535 break;
1536 }
1537 }
1538 }
1539
1540 return (spa);
1541 }
1542
1543 /*
1544 * Determine whether a pool with the given pool_guid exists.
1545 */
1546 boolean_t
spa_guid_exists(uint64_t pool_guid,uint64_t device_guid)1547 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
1548 {
1549 return (spa_by_guid(pool_guid, device_guid) != NULL);
1550 }
1551
1552 char *
spa_strdup(const char * s)1553 spa_strdup(const char *s)
1554 {
1555 size_t len;
1556 char *new;
1557
1558 len = strlen(s);
1559 new = kmem_alloc(len + 1, KM_SLEEP);
1560 bcopy(s, new, len);
1561 new[len] = '\0';
1562
1563 return (new);
1564 }
1565
1566 void
spa_strfree(char * s)1567 spa_strfree(char *s)
1568 {
1569 kmem_free(s, strlen(s) + 1);
1570 }
1571
1572 uint64_t
spa_get_random(uint64_t range)1573 spa_get_random(uint64_t range)
1574 {
1575 uint64_t r;
1576
1577 ASSERT(range != 0);
1578
1579 (void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));
1580
1581 return (r % range);
1582 }
1583
1584 uint64_t
spa_generate_guid(spa_t * spa)1585 spa_generate_guid(spa_t *spa)
1586 {
1587 uint64_t guid = spa_get_random(-1ULL);
1588
1589 if (spa != NULL) {
1590 while (guid == 0 || spa_guid_exists(spa_guid(spa), guid))
1591 guid = spa_get_random(-1ULL);
1592 } else {
1593 while (guid == 0 || spa_guid_exists(guid, 0))
1594 guid = spa_get_random(-1ULL);
1595 }
1596
1597 return (guid);
1598 }
1599
1600 void
snprintf_blkptr(char * buf,size_t buflen,const blkptr_t * bp)1601 snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp)
1602 {
1603 char type[256];
1604 char *checksum = NULL;
1605 char *compress = NULL;
1606
1607 if (bp != NULL) {
1608 if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) {
1609 dmu_object_byteswap_t bswap =
1610 DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
1611 (void) snprintf(type, sizeof (type), "bswap %s %s",
1612 DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ?
1613 "metadata" : "data",
1614 dmu_ot_byteswap[bswap].ob_name);
1615 } else {
1616 (void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name,
1617 sizeof (type));
1618 }
1619 if (!BP_IS_EMBEDDED(bp)) {
1620 checksum =
1621 zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
1622 }
1623 compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
1624 }
1625
1626 SNPRINTF_BLKPTR(snprintf, ' ', buf, buflen, bp, type, checksum,
1627 compress);
1628 }
1629
1630 void
spa_freeze(spa_t * spa)1631 spa_freeze(spa_t *spa)
1632 {
1633 uint64_t freeze_txg = 0;
1634
1635 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1636 if (spa->spa_freeze_txg == UINT64_MAX) {
1637 freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1638 spa->spa_freeze_txg = freeze_txg;
1639 }
1640 spa_config_exit(spa, SCL_ALL, FTAG);
1641 if (freeze_txg != 0)
1642 txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1643 }
1644
1645 void
zfs_panic_recover(const char * fmt,...)1646 zfs_panic_recover(const char *fmt, ...)
1647 {
1648 va_list adx;
1649
1650 va_start(adx, fmt);
1651 vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1652 va_end(adx);
1653 }
1654
1655 /*
1656 * This is a stripped-down version of strtoull, suitable only for converting
1657 * lowercase hexadecimal numbers that don't overflow.
1658 */
1659 uint64_t
zfs_strtonum(const char * str,char ** nptr)1660 zfs_strtonum(const char *str, char **nptr)
1661 {
1662 uint64_t val = 0;
1663 char c;
1664 int digit;
1665
1666 while ((c = *str) != '\0') {
1667 if (c >= '0' && c <= '9')
1668 digit = c - '0';
1669 else if (c >= 'a' && c <= 'f')
1670 digit = 10 + c - 'a';
1671 else
1672 break;
1673
1674 val *= 16;
1675 val += digit;
1676
1677 str++;
1678 }
1679
1680 if (nptr)
1681 *nptr = (char *)str;
1682
1683 return (val);
1684 }
1685
1686 /*
1687 * ==========================================================================
1688 * Accessor functions
1689 * ==========================================================================
1690 */
1691
1692 boolean_t
spa_shutting_down(spa_t * spa)1693 spa_shutting_down(spa_t *spa)
1694 {
1695 return (spa->spa_async_suspended);
1696 }
1697
1698 dsl_pool_t *
spa_get_dsl(spa_t * spa)1699 spa_get_dsl(spa_t *spa)
1700 {
1701 return (spa->spa_dsl_pool);
1702 }
1703
1704 boolean_t
spa_is_initializing(spa_t * spa)1705 spa_is_initializing(spa_t *spa)
1706 {
1707 return (spa->spa_is_initializing);
1708 }
1709
1710 blkptr_t *
spa_get_rootblkptr(spa_t * spa)1711 spa_get_rootblkptr(spa_t *spa)
1712 {
1713 return (&spa->spa_ubsync.ub_rootbp);
1714 }
1715
1716 void
spa_set_rootblkptr(spa_t * spa,const blkptr_t * bp)1717 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1718 {
1719 spa->spa_uberblock.ub_rootbp = *bp;
1720 }
1721
1722 void
spa_altroot(spa_t * spa,char * buf,size_t buflen)1723 spa_altroot(spa_t *spa, char *buf, size_t buflen)
1724 {
1725 if (spa->spa_root == NULL)
1726 buf[0] = '\0';
1727 else
1728 (void) strncpy(buf, spa->spa_root, buflen);
1729 }
1730
1731 int
spa_sync_pass(spa_t * spa)1732 spa_sync_pass(spa_t *spa)
1733 {
1734 return (spa->spa_sync_pass);
1735 }
1736
1737 char *
spa_name(spa_t * spa)1738 spa_name(spa_t *spa)
1739 {
1740 return (spa->spa_name);
1741 }
1742
1743 uint64_t
spa_guid(spa_t * spa)1744 spa_guid(spa_t *spa)
1745 {
1746 dsl_pool_t *dp = spa_get_dsl(spa);
1747 uint64_t guid;
1748
1749 /*
1750 * If we fail to parse the config during spa_load(), we can go through
1751 * the error path (which posts an ereport) and end up here with no root
1752 * vdev. We stash the original pool guid in 'spa_config_guid' to handle
1753 * this case.
1754 */
1755 if (spa->spa_root_vdev == NULL)
1756 return (spa->spa_config_guid);
1757
1758 guid = spa->spa_last_synced_guid != 0 ?
1759 spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid;
1760
1761 /*
1762 * Return the most recently synced out guid unless we're
1763 * in syncing context.
1764 */
1765 if (dp && dsl_pool_sync_context(dp))
1766 return (spa->spa_root_vdev->vdev_guid);
1767 else
1768 return (guid);
1769 }
1770
1771 uint64_t
spa_load_guid(spa_t * spa)1772 spa_load_guid(spa_t *spa)
1773 {
1774 /*
1775 * This is a GUID that exists solely as a reference for the
1776 * purposes of the arc. It is generated at load time, and
1777 * is never written to persistent storage.
1778 */
1779 return (spa->spa_load_guid);
1780 }
1781
1782 uint64_t
spa_last_synced_txg(spa_t * spa)1783 spa_last_synced_txg(spa_t *spa)
1784 {
1785 return (spa->spa_ubsync.ub_txg);
1786 }
1787
1788 uint64_t
spa_first_txg(spa_t * spa)1789 spa_first_txg(spa_t *spa)
1790 {
1791 return (spa->spa_first_txg);
1792 }
1793
1794 uint64_t
spa_syncing_txg(spa_t * spa)1795 spa_syncing_txg(spa_t *spa)
1796 {
1797 return (spa->spa_syncing_txg);
1798 }
1799
1800 pool_state_t
spa_state(spa_t * spa)1801 spa_state(spa_t *spa)
1802 {
1803 return (spa->spa_state);
1804 }
1805
1806 spa_load_state_t
spa_load_state(spa_t * spa)1807 spa_load_state(spa_t *spa)
1808 {
1809 return (spa->spa_load_state);
1810 }
1811
1812 uint64_t
spa_freeze_txg(spa_t * spa)1813 spa_freeze_txg(spa_t *spa)
1814 {
1815 return (spa->spa_freeze_txg);
1816 }
1817
1818 /* ARGSUSED */
1819 uint64_t
spa_get_asize(spa_t * spa,uint64_t lsize)1820 spa_get_asize(spa_t *spa, uint64_t lsize)
1821 {
1822 return (lsize * spa_asize_inflation);
1823 }
1824
1825 /*
1826 * Return the amount of slop space in bytes. It is 1/32 of the pool (3.2%),
1827 * or at least 128MB, unless that would cause it to be more than half the
1828 * pool size.
1829 *
1830 * See the comment above spa_slop_shift for details.
1831 */
1832 uint64_t
spa_get_slop_space(spa_t * spa)1833 spa_get_slop_space(spa_t *spa)
1834 {
1835 uint64_t space = spa_get_dspace(spa);
1836 return (MAX(space >> spa_slop_shift, MIN(space >> 1, spa_min_slop)));
1837 }
1838
1839 uint64_t
spa_get_dspace(spa_t * spa)1840 spa_get_dspace(spa_t *spa)
1841 {
1842 return (spa->spa_dspace);
1843 }
1844
1845 void
spa_update_dspace(spa_t * spa)1846 spa_update_dspace(spa_t *spa)
1847 {
1848 spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) +
1849 ddt_get_dedup_dspace(spa);
1850 }
1851
1852 /*
1853 * Return the failure mode that has been set to this pool. The default
1854 * behavior will be to block all I/Os when a complete failure occurs.
1855 */
1856 uint8_t
spa_get_failmode(spa_t * spa)1857 spa_get_failmode(spa_t *spa)
1858 {
1859 return (spa->spa_failmode);
1860 }
1861
1862 boolean_t
spa_suspended(spa_t * spa)1863 spa_suspended(spa_t *spa)
1864 {
1865 return (spa->spa_suspended);
1866 }
1867
1868 uint64_t
spa_version(spa_t * spa)1869 spa_version(spa_t *spa)
1870 {
1871 return (spa->spa_ubsync.ub_version);
1872 }
1873
1874 boolean_t
spa_deflate(spa_t * spa)1875 spa_deflate(spa_t *spa)
1876 {
1877 return (spa->spa_deflate);
1878 }
1879
1880 metaslab_class_t *
spa_normal_class(spa_t * spa)1881 spa_normal_class(spa_t *spa)
1882 {
1883 return (spa->spa_normal_class);
1884 }
1885
1886 metaslab_class_t *
spa_log_class(spa_t * spa)1887 spa_log_class(spa_t *spa)
1888 {
1889 return (spa->spa_log_class);
1890 }
1891
1892 void
spa_evicting_os_register(spa_t * spa,objset_t * os)1893 spa_evicting_os_register(spa_t *spa, objset_t *os)
1894 {
1895 mutex_enter(&spa->spa_evicting_os_lock);
1896 list_insert_head(&spa->spa_evicting_os_list, os);
1897 mutex_exit(&spa->spa_evicting_os_lock);
1898 }
1899
1900 void
spa_evicting_os_deregister(spa_t * spa,objset_t * os)1901 spa_evicting_os_deregister(spa_t *spa, objset_t *os)
1902 {
1903 mutex_enter(&spa->spa_evicting_os_lock);
1904 list_remove(&spa->spa_evicting_os_list, os);
1905 cv_broadcast(&spa->spa_evicting_os_cv);
1906 mutex_exit(&spa->spa_evicting_os_lock);
1907 }
1908
1909 void
spa_evicting_os_wait(spa_t * spa)1910 spa_evicting_os_wait(spa_t *spa)
1911 {
1912 mutex_enter(&spa->spa_evicting_os_lock);
1913 while (!list_is_empty(&spa->spa_evicting_os_list))
1914 cv_wait(&spa->spa_evicting_os_cv, &spa->spa_evicting_os_lock);
1915 mutex_exit(&spa->spa_evicting_os_lock);
1916
1917 dmu_buf_user_evict_wait();
1918 }
1919
1920 int
spa_max_replication(spa_t * spa)1921 spa_max_replication(spa_t *spa)
1922 {
1923 /*
1924 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
1925 * handle BPs with more than one DVA allocated. Set our max
1926 * replication level accordingly.
1927 */
1928 if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
1929 return (1);
1930 return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
1931 }
1932
1933 int
spa_prev_software_version(spa_t * spa)1934 spa_prev_software_version(spa_t *spa)
1935 {
1936 return (spa->spa_prev_software_version);
1937 }
1938
1939 uint64_t
spa_deadman_synctime(spa_t * spa)1940 spa_deadman_synctime(spa_t *spa)
1941 {
1942 return (spa->spa_deadman_synctime);
1943 }
1944
1945 uint64_t
dva_get_dsize_sync(spa_t * spa,const dva_t * dva)1946 dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
1947 {
1948 uint64_t asize = DVA_GET_ASIZE(dva);
1949 uint64_t dsize = asize;
1950
1951 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1952
1953 if (asize != 0 && spa->spa_deflate) {
1954 uint64_t vdev = DVA_GET_VDEV(dva);
1955 vdev_t *vd = vdev_lookup_top(spa, vdev);
1956 if (vd == NULL) {
1957 panic(
1958 "dva_get_dsize_sync(): bad DVA %llu:%llu",
1959 (u_longlong_t)vdev, (u_longlong_t)asize);
1960 }
1961 dsize = (asize >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio;
1962 }
1963
1964 return (dsize);
1965 }
1966
1967 uint64_t
bp_get_dsize_sync(spa_t * spa,const blkptr_t * bp)1968 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
1969 {
1970 uint64_t dsize = 0;
1971
1972 for (int d = 0; d < BP_GET_NDVAS(bp); d++)
1973 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1974
1975 return (dsize);
1976 }
1977
1978 uint64_t
bp_get_dsize(spa_t * spa,const blkptr_t * bp)1979 bp_get_dsize(spa_t *spa, const blkptr_t *bp)
1980 {
1981 uint64_t dsize = 0;
1982
1983 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1984
1985 for (int d = 0; d < BP_GET_NDVAS(bp); d++)
1986 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1987
1988 spa_config_exit(spa, SCL_VDEV, FTAG);
1989
1990 return (dsize);
1991 }
1992
1993 /*
1994 * ==========================================================================
1995 * Initialization and Termination
1996 * ==========================================================================
1997 */
1998
1999 static int
spa_name_compare(const void * a1,const void * a2)2000 spa_name_compare(const void *a1, const void *a2)
2001 {
2002 const spa_t *s1 = a1;
2003 const spa_t *s2 = a2;
2004 int s;
2005
2006 s = strcmp(s1->spa_name, s2->spa_name);
2007 if (s > 0)
2008 return (1);
2009 if (s < 0)
2010 return (-1);
2011 return (0);
2012 }
2013
2014 int
spa_busy(void)2015 spa_busy(void)
2016 {
2017 return (spa_active_count);
2018 }
2019
2020 void
spa_boot_init()2021 spa_boot_init()
2022 {
2023 spa_config_load();
2024 }
2025
2026 #ifdef __FreeBSD__
2027 #ifdef _KERNEL
2028 EVENTHANDLER_DEFINE(mountroot, spa_boot_init, NULL, 0);
2029 #endif
2030 #endif
2031
2032 void
spa_init(int mode)2033 spa_init(int mode)
2034 {
2035 mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
2036 mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
2037 mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
2038 cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
2039
2040 avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
2041 offsetof(spa_t, spa_avl));
2042
2043 avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
2044 offsetof(spa_aux_t, aux_avl));
2045
2046 avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
2047 offsetof(spa_aux_t, aux_avl));
2048
2049 spa_mode_global = mode;
2050
2051 #ifdef illumos
2052 #ifdef _KERNEL
2053 spa_arch_init();
2054 #else
2055 if (spa_mode_global != FREAD && dprintf_find_string("watch")) {
2056 arc_procfd = open("/proc/self/ctl", O_WRONLY);
2057 if (arc_procfd == -1) {
2058 perror("could not enable watchpoints: "
2059 "opening /proc/self/ctl failed: ");
2060 } else {
2061 arc_watch = B_TRUE;
2062 }
2063 }
2064 #endif
2065 #endif /* illumos */
2066 refcount_sysinit();
2067 unique_init();
2068 range_tree_init();
2069 metaslab_alloc_trace_init();
2070 zio_init();
2071 lz4_init();
2072 dmu_init();
2073 zil_init();
2074 vdev_cache_stat_init();
2075 zfs_prop_init();
2076 zpool_prop_init();
2077 zpool_feature_init();
2078 #if defined(__NetBSD__) && defined(_KERNEL)
2079 config_mountroot((device_t) 0, (void (*)(device_t)) spa_config_load);
2080 #else
2081 spa_config_load();
2082 #endif
2083 l2arc_start();
2084 #ifdef __FreeBSD__
2085 #ifdef _KERNEL
2086 zfs_deadman_init();
2087 #endif
2088 #endif /* __FreeBSD__ */
2089 #ifdef __NetBSD__
2090 zfs_deadman_init();
2091 #endif
2092 }
2093
2094 void
spa_fini(void)2095 spa_fini(void)
2096 {
2097 #ifdef __NetBSD__
2098 zfs_deadman_fini();
2099 #endif
2100 l2arc_stop();
2101
2102 spa_evict_all();
2103
2104 vdev_cache_stat_fini();
2105 zil_fini();
2106 dmu_fini();
2107 lz4_fini();
2108 zio_fini();
2109 metaslab_alloc_trace_fini();
2110 range_tree_fini();
2111 unique_fini();
2112 refcount_fini();
2113
2114 avl_destroy(&spa_namespace_avl);
2115 avl_destroy(&spa_spare_avl);
2116 avl_destroy(&spa_l2cache_avl);
2117
2118 cv_destroy(&spa_namespace_cv);
2119 mutex_destroy(&spa_namespace_lock);
2120 mutex_destroy(&spa_spare_lock);
2121 mutex_destroy(&spa_l2cache_lock);
2122 }
2123
2124 /*
2125 * Return whether this pool has slogs. No locking needed.
2126 * It's not a problem if the wrong answer is returned as it's only for
2127 * performance and not correctness
2128 */
2129 boolean_t
spa_has_slogs(spa_t * spa)2130 spa_has_slogs(spa_t *spa)
2131 {
2132 return (spa->spa_log_class->mc_rotor != NULL);
2133 }
2134
2135 spa_log_state_t
spa_get_log_state(spa_t * spa)2136 spa_get_log_state(spa_t *spa)
2137 {
2138 return (spa->spa_log_state);
2139 }
2140
2141 void
spa_set_log_state(spa_t * spa,spa_log_state_t state)2142 spa_set_log_state(spa_t *spa, spa_log_state_t state)
2143 {
2144 spa->spa_log_state = state;
2145 }
2146
2147 boolean_t
spa_is_root(spa_t * spa)2148 spa_is_root(spa_t *spa)
2149 {
2150 return (spa->spa_is_root);
2151 }
2152
2153 boolean_t
spa_writeable(spa_t * spa)2154 spa_writeable(spa_t *spa)
2155 {
2156 return (!!(spa->spa_mode & FWRITE));
2157 }
2158
2159 /*
2160 * Returns true if there is a pending sync task in any of the current
2161 * syncing txg, the current quiescing txg, or the current open txg.
2162 */
2163 boolean_t
spa_has_pending_synctask(spa_t * spa)2164 spa_has_pending_synctask(spa_t *spa)
2165 {
2166 return (!txg_all_lists_empty(&spa->spa_dsl_pool->dp_sync_tasks));
2167 }
2168
2169 int
spa_mode(spa_t * spa)2170 spa_mode(spa_t *spa)
2171 {
2172 return (spa->spa_mode);
2173 }
2174
2175 uint64_t
spa_bootfs(spa_t * spa)2176 spa_bootfs(spa_t *spa)
2177 {
2178 return (spa->spa_bootfs);
2179 }
2180
2181 uint64_t
spa_delegation(spa_t * spa)2182 spa_delegation(spa_t *spa)
2183 {
2184 return (spa->spa_delegation);
2185 }
2186
2187 objset_t *
spa_meta_objset(spa_t * spa)2188 spa_meta_objset(spa_t *spa)
2189 {
2190 return (spa->spa_meta_objset);
2191 }
2192
2193 enum zio_checksum
spa_dedup_checksum(spa_t * spa)2194 spa_dedup_checksum(spa_t *spa)
2195 {
2196 return (spa->spa_dedup_checksum);
2197 }
2198
2199 /*
2200 * Reset pool scan stat per scan pass (or reboot).
2201 */
2202 void
spa_scan_stat_init(spa_t * spa)2203 spa_scan_stat_init(spa_t *spa)
2204 {
2205 /* data not stored on disk */
2206 spa->spa_scan_pass_start = gethrestime_sec();
2207 spa->spa_scan_pass_exam = 0;
2208 vdev_scan_stat_init(spa->spa_root_vdev);
2209 }
2210
2211 /*
2212 * Get scan stats for zpool status reports
2213 */
2214 int
spa_scan_get_stats(spa_t * spa,pool_scan_stat_t * ps)2215 spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps)
2216 {
2217 dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL;
2218
2219 if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE)
2220 return (SET_ERROR(ENOENT));
2221 bzero(ps, sizeof (pool_scan_stat_t));
2222
2223 /* data stored on disk */
2224 ps->pss_func = scn->scn_phys.scn_func;
2225 ps->pss_start_time = scn->scn_phys.scn_start_time;
2226 ps->pss_end_time = scn->scn_phys.scn_end_time;
2227 ps->pss_to_examine = scn->scn_phys.scn_to_examine;
2228 ps->pss_examined = scn->scn_phys.scn_examined;
2229 ps->pss_to_process = scn->scn_phys.scn_to_process;
2230 ps->pss_processed = scn->scn_phys.scn_processed;
2231 ps->pss_errors = scn->scn_phys.scn_errors;
2232 ps->pss_state = scn->scn_phys.scn_state;
2233
2234 /* data not stored on disk */
2235 ps->pss_pass_start = spa->spa_scan_pass_start;
2236 ps->pss_pass_exam = spa->spa_scan_pass_exam;
2237
2238 return (0);
2239 }
2240
2241 boolean_t
spa_debug_enabled(spa_t * spa)2242 spa_debug_enabled(spa_t *spa)
2243 {
2244 return (spa->spa_debug);
2245 }
2246
2247 int
spa_maxblocksize(spa_t * spa)2248 spa_maxblocksize(spa_t *spa)
2249 {
2250 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS))
2251 return (SPA_MAXBLOCKSIZE);
2252 else
2253 return (SPA_OLD_MAXBLOCKSIZE);
2254 }
2255