1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
24 * Copyright (c) 2014 Integros [integros.com]
25 */
26
27 /* Portions Copyright 2010 Robert Milkowski */
28
29 #include <sys/zfs_context.h>
30 #include <sys/spa.h>
31 #include <sys/spa_impl.h>
32 #include <sys/dmu.h>
33 #include <sys/zap.h>
34 #include <sys/arc.h>
35 #include <sys/stat.h>
36 #include <sys/resource.h>
37 #include <sys/zil.h>
38 #include <sys/zil_impl.h>
39 #include <sys/dsl_dataset.h>
40 #include <sys/vdev_impl.h>
41 #include <sys/dmu_tx.h>
42 #include <sys/dsl_pool.h>
43 #include <sys/abd.h>
44
45 /*
46 * The ZFS Intent Log (ZIL) saves "transaction records" (itxs) of system
47 * calls that change the file system. Each itx has enough information to
48 * be able to replay them after a system crash, power loss, or
49 * equivalent failure mode. These are stored in memory until either:
50 *
51 * 1. they are committed to the pool by the DMU transaction group
52 * (txg), at which point they can be discarded; or
53 * 2. they are committed to the on-disk ZIL for the dataset being
54 * modified (e.g. due to an fsync, O_DSYNC, or other synchronous
55 * requirement).
56 *
57 * In the event of a crash or power loss, the itxs contained by each
58 * dataset's on-disk ZIL will be replayed when that dataset is first
59 * instantianted (e.g. if the dataset is a normal fileystem, when it is
60 * first mounted).
61 *
62 * As hinted at above, there is one ZIL per dataset (both the in-memory
63 * representation, and the on-disk representation). The on-disk format
64 * consists of 3 parts:
65 *
66 * - a single, per-dataset, ZIL header; which points to a chain of
67 * - zero or more ZIL blocks; each of which contains
68 * - zero or more ZIL records
69 *
70 * A ZIL record holds the information necessary to replay a single
71 * system call transaction. A ZIL block can hold many ZIL records, and
72 * the blocks are chained together, similarly to a singly linked list.
73 *
74 * Each ZIL block contains a block pointer (blkptr_t) to the next ZIL
75 * block in the chain, and the ZIL header points to the first block in
76 * the chain.
77 *
78 * Note, there is not a fixed place in the pool to hold these ZIL
79 * blocks; they are dynamically allocated and freed as needed from the
80 * blocks available on the pool, though they can be preferentially
81 * allocated from a dedicated "log" vdev.
82 */
83
84 /*
85 * This controls the amount of time that a ZIL block (lwb) will remain
86 * "open" when it isn't "full", and it has a thread waiting for it to be
87 * committed to stable storage. Please refer to the zil_commit_waiter()
88 * function (and the comments within it) for more details.
89 */
90 int zfs_commit_timeout_pct = 5;
91
92 /*
93 * Disable intent logging replay. This global ZIL switch affects all pools.
94 */
95 int zil_replay_disable = 0;
96
97 /*
98 * Disable the DKIOCFLUSHWRITECACHE commands that are normally sent to
99 * the disk(s) by the ZIL after an LWB write has completed. Setting this
100 * will cause ZIL corruption on power loss if a volatile out-of-order
101 * write cache is enabled.
102 */
103 boolean_t zil_nocacheflush = B_FALSE;
104
105 /*
106 * Limit SLOG write size per commit executed with synchronous priority.
107 * Any writes above that will be executed with lower (asynchronous) priority
108 * to limit potential SLOG device abuse by single active ZIL writer.
109 */
110 uint64_t zil_slog_bulk = 768 * 1024;
111
112 static kmem_cache_t *zil_lwb_cache;
113 static kmem_cache_t *zil_zcw_cache;
114
115 static void zil_async_to_sync(zilog_t *zilog, uint64_t foid);
116
117 #define LWB_EMPTY(lwb) ((BP_GET_LSIZE(&lwb->lwb_blk) - \
118 sizeof (zil_chain_t)) == (lwb->lwb_sz - lwb->lwb_nused))
119
120 static int
zil_bp_compare(const void * x1,const void * x2)121 zil_bp_compare(const void *x1, const void *x2)
122 {
123 const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva;
124 const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva;
125
126 int cmp = TREE_CMP(DVA_GET_VDEV(dva1), DVA_GET_VDEV(dva2));
127 if (likely(cmp))
128 return (cmp);
129
130 return (TREE_CMP(DVA_GET_OFFSET(dva1), DVA_GET_OFFSET(dva2)));
131 }
132
133 static void
zil_bp_tree_init(zilog_t * zilog)134 zil_bp_tree_init(zilog_t *zilog)
135 {
136 avl_create(&zilog->zl_bp_tree, zil_bp_compare,
137 sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node));
138 }
139
140 static void
zil_bp_tree_fini(zilog_t * zilog)141 zil_bp_tree_fini(zilog_t *zilog)
142 {
143 avl_tree_t *t = &zilog->zl_bp_tree;
144 zil_bp_node_t *zn;
145 void *cookie = NULL;
146
147 while ((zn = avl_destroy_nodes(t, &cookie)) != NULL)
148 kmem_free(zn, sizeof (zil_bp_node_t));
149
150 avl_destroy(t);
151 }
152
153 int
zil_bp_tree_add(zilog_t * zilog,const blkptr_t * bp)154 zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp)
155 {
156 avl_tree_t *t = &zilog->zl_bp_tree;
157 const dva_t *dva;
158 zil_bp_node_t *zn;
159 avl_index_t where;
160
161 if (BP_IS_EMBEDDED(bp))
162 return (0);
163
164 dva = BP_IDENTITY(bp);
165
166 if (avl_find(t, dva, &where) != NULL)
167 return (SET_ERROR(EEXIST));
168
169 zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP);
170 zn->zn_dva = *dva;
171 avl_insert(t, zn, where);
172
173 return (0);
174 }
175
176 static zil_header_t *
zil_header_in_syncing_context(zilog_t * zilog)177 zil_header_in_syncing_context(zilog_t *zilog)
178 {
179 return ((zil_header_t *)zilog->zl_header);
180 }
181
182 static void
zil_init_log_chain(zilog_t * zilog,blkptr_t * bp)183 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp)
184 {
185 zio_cksum_t *zc = &bp->blk_cksum;
186
187 zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL);
188 zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL);
189 zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os);
190 zc->zc_word[ZIL_ZC_SEQ] = 1ULL;
191 }
192
193 /*
194 * Read a log block and make sure it's valid.
195 */
196 static int
zil_read_log_block(zilog_t * zilog,boolean_t decrypt,const blkptr_t * bp,blkptr_t * nbp,void * dst,char ** end)197 zil_read_log_block(zilog_t *zilog, boolean_t decrypt, const blkptr_t *bp,
198 blkptr_t *nbp, void *dst, char **end)
199 {
200 enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
201 arc_flags_t aflags = ARC_FLAG_WAIT;
202 arc_buf_t *abuf = NULL;
203 zbookmark_phys_t zb;
204 int error;
205
206 if (zilog->zl_header->zh_claim_txg == 0)
207 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
208
209 if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
210 zio_flags |= ZIO_FLAG_SPECULATIVE;
211
212 if (!decrypt)
213 zio_flags |= ZIO_FLAG_RAW;
214
215 SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET],
216 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
217
218 error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func,
219 &abuf, ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
220
221 if (error == 0) {
222 zio_cksum_t cksum = bp->blk_cksum;
223
224 /*
225 * Validate the checksummed log block.
226 *
227 * Sequence numbers should be... sequential. The checksum
228 * verifier for the next block should be bp's checksum plus 1.
229 *
230 * Also check the log chain linkage and size used.
231 */
232 cksum.zc_word[ZIL_ZC_SEQ]++;
233
234 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
235 zil_chain_t *zilc = abuf->b_data;
236 char *lr = (char *)(zilc + 1);
237 uint64_t len = zilc->zc_nused - sizeof (zil_chain_t);
238
239 if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
240 sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) {
241 error = SET_ERROR(ECKSUM);
242 } else {
243 ASSERT3U(len, <=, SPA_OLD_MAXBLOCKSIZE);
244 bcopy(lr, dst, len);
245 *end = (char *)dst + len;
246 *nbp = zilc->zc_next_blk;
247 }
248 } else {
249 char *lr = abuf->b_data;
250 uint64_t size = BP_GET_LSIZE(bp);
251 zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1;
252
253 if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
254 sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) ||
255 (zilc->zc_nused > (size - sizeof (*zilc)))) {
256 error = SET_ERROR(ECKSUM);
257 } else {
258 ASSERT3U(zilc->zc_nused, <=,
259 SPA_OLD_MAXBLOCKSIZE);
260 bcopy(lr, dst, zilc->zc_nused);
261 *end = (char *)dst + zilc->zc_nused;
262 *nbp = zilc->zc_next_blk;
263 }
264 }
265
266 arc_buf_destroy(abuf, &abuf);
267 }
268
269 return (error);
270 }
271
272 /*
273 * Read a TX_WRITE log data block.
274 */
275 static int
zil_read_log_data(zilog_t * zilog,const lr_write_t * lr,void * wbuf)276 zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf)
277 {
278 enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
279 const blkptr_t *bp = &lr->lr_blkptr;
280 arc_flags_t aflags = ARC_FLAG_WAIT;
281 arc_buf_t *abuf = NULL;
282 zbookmark_phys_t zb;
283 int error;
284
285 if (BP_IS_HOLE(bp)) {
286 if (wbuf != NULL)
287 bzero(wbuf, MAX(BP_GET_LSIZE(bp), lr->lr_length));
288 return (0);
289 }
290
291 if (zilog->zl_header->zh_claim_txg == 0)
292 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
293
294 /*
295 * If we are not using the resulting data, we are just checking that
296 * it hasn't been corrupted so we don't need to waste CPU time
297 * decompressing and decrypting it.
298 */
299 if (wbuf == NULL)
300 zio_flags |= ZIO_FLAG_RAW;
301
302 SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid,
303 ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp));
304
305 error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
306 ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
307
308 if (error == 0) {
309 if (wbuf != NULL)
310 bcopy(abuf->b_data, wbuf, arc_buf_size(abuf));
311 arc_buf_destroy(abuf, &abuf);
312 }
313
314 return (error);
315 }
316
317 /*
318 * Parse the intent log, and call parse_func for each valid record within.
319 */
320 int
zil_parse(zilog_t * zilog,zil_parse_blk_func_t * parse_blk_func,zil_parse_lr_func_t * parse_lr_func,void * arg,uint64_t txg,boolean_t decrypt)321 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func,
322 zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg,
323 boolean_t decrypt)
324 {
325 const zil_header_t *zh = zilog->zl_header;
326 boolean_t claimed = !!zh->zh_claim_txg;
327 uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX;
328 uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX;
329 uint64_t max_blk_seq = 0;
330 uint64_t max_lr_seq = 0;
331 uint64_t blk_count = 0;
332 uint64_t lr_count = 0;
333 blkptr_t blk, next_blk;
334 char *lrbuf, *lrp;
335 int error = 0;
336
337 /*
338 * Old logs didn't record the maximum zh_claim_lr_seq.
339 */
340 if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
341 claim_lr_seq = UINT64_MAX;
342
343 /*
344 * Starting at the block pointed to by zh_log we read the log chain.
345 * For each block in the chain we strongly check that block to
346 * ensure its validity. We stop when an invalid block is found.
347 * For each block pointer in the chain we call parse_blk_func().
348 * For each record in each valid block we call parse_lr_func().
349 * If the log has been claimed, stop if we encounter a sequence
350 * number greater than the highest claimed sequence number.
351 */
352 lrbuf = zio_buf_alloc(SPA_OLD_MAXBLOCKSIZE);
353 zil_bp_tree_init(zilog);
354
355 for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) {
356 uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
357 int reclen;
358 char *end;
359
360 if (blk_seq > claim_blk_seq)
361 break;
362
363 error = parse_blk_func(zilog, &blk, arg, txg);
364 if (error != 0)
365 break;
366 ASSERT3U(max_blk_seq, <, blk_seq);
367 max_blk_seq = blk_seq;
368 blk_count++;
369
370 if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq)
371 break;
372
373 error = zil_read_log_block(zilog, decrypt, &blk, &next_blk,
374 lrbuf, &end);
375 if (error != 0)
376 break;
377
378 for (lrp = lrbuf; lrp < end; lrp += reclen) {
379 lr_t *lr = (lr_t *)lrp;
380 reclen = lr->lrc_reclen;
381 ASSERT3U(reclen, >=, sizeof (lr_t));
382 if (lr->lrc_seq > claim_lr_seq)
383 goto done;
384
385 error = parse_lr_func(zilog, lr, arg, txg);
386 if (error != 0)
387 goto done;
388 ASSERT3U(max_lr_seq, <, lr->lrc_seq);
389 max_lr_seq = lr->lrc_seq;
390 lr_count++;
391 }
392 }
393 done:
394 zilog->zl_parse_error = error;
395 zilog->zl_parse_blk_seq = max_blk_seq;
396 zilog->zl_parse_lr_seq = max_lr_seq;
397 zilog->zl_parse_blk_count = blk_count;
398 zilog->zl_parse_lr_count = lr_count;
399
400 ASSERT(!claimed || !(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID) ||
401 (max_blk_seq == claim_blk_seq && max_lr_seq == claim_lr_seq) ||
402 (decrypt && error == EIO));
403
404 zil_bp_tree_fini(zilog);
405 zio_buf_free(lrbuf, SPA_OLD_MAXBLOCKSIZE);
406
407 return (error);
408 }
409
410 /* ARGSUSED */
411 static int
zil_clear_log_block(zilog_t * zilog,blkptr_t * bp,void * tx,uint64_t first_txg)412 zil_clear_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg)
413 {
414 ASSERT(!BP_IS_HOLE(bp));
415
416 /*
417 * As we call this function from the context of a rewind to a
418 * checkpoint, each ZIL block whose txg is later than the txg
419 * that we rewind to is invalid. Thus, we return -1 so
420 * zil_parse() doesn't attempt to read it.
421 */
422 if (bp->blk_birth >= first_txg)
423 return (-1);
424
425 if (zil_bp_tree_add(zilog, bp) != 0)
426 return (0);
427
428 zio_free(zilog->zl_spa, first_txg, bp);
429 return (0);
430 }
431
432 /* ARGSUSED */
433 static int
zil_noop_log_record(zilog_t * zilog,lr_t * lrc,void * tx,uint64_t first_txg)434 zil_noop_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg)
435 {
436 return (0);
437 }
438
439 static int
zil_claim_log_block(zilog_t * zilog,blkptr_t * bp,void * tx,uint64_t first_txg)440 zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg)
441 {
442 /*
443 * Claim log block if not already committed and not already claimed.
444 * If tx == NULL, just verify that the block is claimable.
445 */
446 if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg ||
447 zil_bp_tree_add(zilog, bp) != 0)
448 return (0);
449
450 return (zio_wait(zio_claim(NULL, zilog->zl_spa,
451 tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL,
452 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB)));
453 }
454
455 static int
zil_claim_log_record(zilog_t * zilog,lr_t * lrc,void * tx,uint64_t first_txg)456 zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg)
457 {
458 lr_write_t *lr = (lr_write_t *)lrc;
459 int error;
460
461 if (lrc->lrc_txtype != TX_WRITE)
462 return (0);
463
464 /*
465 * If the block is not readable, don't claim it. This can happen
466 * in normal operation when a log block is written to disk before
467 * some of the dmu_sync() blocks it points to. In this case, the
468 * transaction cannot have been committed to anyone (we would have
469 * waited for all writes to be stable first), so it is semantically
470 * correct to declare this the end of the log.
471 */
472 if (lr->lr_blkptr.blk_birth >= first_txg) {
473 error = zil_read_log_data(zilog, lr, NULL);
474 if (error != 0)
475 return (error);
476 }
477
478 return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg));
479 }
480
481 /* ARGSUSED */
482 static int
zil_free_log_block(zilog_t * zilog,blkptr_t * bp,void * tx,uint64_t claim_txg)483 zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg)
484 {
485 zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
486
487 return (0);
488 }
489
490 static int
zil_free_log_record(zilog_t * zilog,lr_t * lrc,void * tx,uint64_t claim_txg)491 zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg)
492 {
493 lr_write_t *lr = (lr_write_t *)lrc;
494 blkptr_t *bp = &lr->lr_blkptr;
495
496 /*
497 * If we previously claimed it, we need to free it.
498 */
499 if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE &&
500 bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 &&
501 !BP_IS_HOLE(bp))
502 zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
503
504 return (0);
505 }
506
507 static int
zil_lwb_vdev_compare(const void * x1,const void * x2)508 zil_lwb_vdev_compare(const void *x1, const void *x2)
509 {
510 const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev;
511 const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev;
512
513 return (TREE_CMP(v1, v2));
514 }
515
516 static lwb_t *
zil_alloc_lwb(zilog_t * zilog,blkptr_t * bp,boolean_t slog,uint64_t txg)517 zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, boolean_t slog, uint64_t txg)
518 {
519 lwb_t *lwb;
520
521 lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
522 lwb->lwb_zilog = zilog;
523 lwb->lwb_blk = *bp;
524 lwb->lwb_slog = slog;
525 lwb->lwb_state = LWB_STATE_CLOSED;
526 lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp));
527 lwb->lwb_max_txg = txg;
528 lwb->lwb_write_zio = NULL;
529 lwb->lwb_root_zio = NULL;
530 lwb->lwb_tx = NULL;
531 lwb->lwb_issued_timestamp = 0;
532 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
533 lwb->lwb_nused = sizeof (zil_chain_t);
534 lwb->lwb_sz = BP_GET_LSIZE(bp);
535 } else {
536 lwb->lwb_nused = 0;
537 lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t);
538 }
539
540 mutex_enter(&zilog->zl_lock);
541 list_insert_tail(&zilog->zl_lwb_list, lwb);
542 mutex_exit(&zilog->zl_lock);
543
544 ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock));
545 ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
546 VERIFY(list_is_empty(&lwb->lwb_waiters));
547
548 return (lwb);
549 }
550
551 static void
zil_free_lwb(zilog_t * zilog,lwb_t * lwb)552 zil_free_lwb(zilog_t *zilog, lwb_t *lwb)
553 {
554 ASSERT(MUTEX_HELD(&zilog->zl_lock));
555 ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock));
556 VERIFY(list_is_empty(&lwb->lwb_waiters));
557 ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
558 ASSERT3P(lwb->lwb_write_zio, ==, NULL);
559 ASSERT3P(lwb->lwb_root_zio, ==, NULL);
560 ASSERT3U(lwb->lwb_max_txg, <=, spa_syncing_txg(zilog->zl_spa));
561 ASSERT(lwb->lwb_state == LWB_STATE_CLOSED ||
562 lwb->lwb_state == LWB_STATE_FLUSH_DONE);
563
564 /*
565 * Clear the zilog's field to indicate this lwb is no longer
566 * valid, and prevent use-after-free errors.
567 */
568 if (zilog->zl_last_lwb_opened == lwb)
569 zilog->zl_last_lwb_opened = NULL;
570
571 kmem_cache_free(zil_lwb_cache, lwb);
572 }
573
574 /*
575 * Called when we create in-memory log transactions so that we know
576 * to cleanup the itxs at the end of spa_sync().
577 */
578 void
zilog_dirty(zilog_t * zilog,uint64_t txg)579 zilog_dirty(zilog_t *zilog, uint64_t txg)
580 {
581 dsl_pool_t *dp = zilog->zl_dmu_pool;
582 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
583
584 ASSERT(spa_writeable(zilog->zl_spa));
585
586 if (ds->ds_is_snapshot)
587 panic("dirtying snapshot!");
588
589 if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) {
590 /* up the hold count until we can be written out */
591 dmu_buf_add_ref(ds->ds_dbuf, zilog);
592
593 zilog->zl_dirty_max_txg = MAX(txg, zilog->zl_dirty_max_txg);
594 }
595 }
596
597 /*
598 * Determine if the zil is dirty in the specified txg. Callers wanting to
599 * ensure that the dirty state does not change must hold the itxg_lock for
600 * the specified txg. Holding the lock will ensure that the zil cannot be
601 * dirtied (zil_itx_assign) or cleaned (zil_clean) while we check its current
602 * state.
603 */
604 boolean_t
zilog_is_dirty_in_txg(zilog_t * zilog,uint64_t txg)605 zilog_is_dirty_in_txg(zilog_t *zilog, uint64_t txg)
606 {
607 dsl_pool_t *dp = zilog->zl_dmu_pool;
608
609 if (txg_list_member(&dp->dp_dirty_zilogs, zilog, txg & TXG_MASK))
610 return (B_TRUE);
611 return (B_FALSE);
612 }
613
614 /*
615 * Determine if the zil is dirty. The zil is considered dirty if it has
616 * any pending itx records that have not been cleaned by zil_clean().
617 */
618 boolean_t
zilog_is_dirty(zilog_t * zilog)619 zilog_is_dirty(zilog_t *zilog)
620 {
621 dsl_pool_t *dp = zilog->zl_dmu_pool;
622
623 for (int t = 0; t < TXG_SIZE; t++) {
624 if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t))
625 return (B_TRUE);
626 }
627 return (B_FALSE);
628 }
629
630 /*
631 * Create an on-disk intent log.
632 */
633 static lwb_t *
zil_create(zilog_t * zilog)634 zil_create(zilog_t *zilog)
635 {
636 const zil_header_t *zh = zilog->zl_header;
637 lwb_t *lwb = NULL;
638 uint64_t txg = 0;
639 dmu_tx_t *tx = NULL;
640 blkptr_t blk;
641 int error = 0;
642 boolean_t slog = FALSE;
643
644 /*
645 * Wait for any previous destroy to complete.
646 */
647 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
648
649 ASSERT(zh->zh_claim_txg == 0);
650 ASSERT(zh->zh_replay_seq == 0);
651
652 blk = zh->zh_log;
653
654 /*
655 * Allocate an initial log block if:
656 * - there isn't one already
657 * - the existing block is the wrong endianess
658 */
659 if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) {
660 tx = dmu_tx_create(zilog->zl_os);
661 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
662 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
663 txg = dmu_tx_get_txg(tx);
664
665 if (!BP_IS_HOLE(&blk)) {
666 zio_free(zilog->zl_spa, txg, &blk);
667 BP_ZERO(&blk);
668 }
669
670 error = zio_alloc_zil(zilog->zl_spa, zilog->zl_os, txg, &blk,
671 NULL, ZIL_MIN_BLKSZ, &slog);
672
673 if (error == 0)
674 zil_init_log_chain(zilog, &blk);
675 }
676
677 /*
678 * Allocate a log write block (lwb) for the first log block.
679 */
680 if (error == 0)
681 lwb = zil_alloc_lwb(zilog, &blk, slog, txg);
682
683 /*
684 * If we just allocated the first log block, commit our transaction
685 * and wait for zil_sync() to stuff the block poiner into zh_log.
686 * (zh is part of the MOS, so we cannot modify it in open context.)
687 */
688 if (tx != NULL) {
689 dmu_tx_commit(tx);
690 txg_wait_synced(zilog->zl_dmu_pool, txg);
691 }
692
693 ASSERT(bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0);
694
695 return (lwb);
696 }
697
698 /*
699 * In one tx, free all log blocks and clear the log header. If keep_first
700 * is set, then we're replaying a log with no content. We want to keep the
701 * first block, however, so that the first synchronous transaction doesn't
702 * require a txg_wait_synced() in zil_create(). We don't need to
703 * txg_wait_synced() here either when keep_first is set, because both
704 * zil_create() and zil_destroy() will wait for any in-progress destroys
705 * to complete.
706 */
707 void
zil_destroy(zilog_t * zilog,boolean_t keep_first)708 zil_destroy(zilog_t *zilog, boolean_t keep_first)
709 {
710 const zil_header_t *zh = zilog->zl_header;
711 lwb_t *lwb;
712 dmu_tx_t *tx;
713 uint64_t txg;
714
715 /*
716 * Wait for any previous destroy to complete.
717 */
718 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
719
720 zilog->zl_old_header = *zh; /* debugging aid */
721
722 if (BP_IS_HOLE(&zh->zh_log))
723 return;
724
725 tx = dmu_tx_create(zilog->zl_os);
726 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
727 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
728 txg = dmu_tx_get_txg(tx);
729
730 mutex_enter(&zilog->zl_lock);
731
732 ASSERT3U(zilog->zl_destroy_txg, <, txg);
733 zilog->zl_destroy_txg = txg;
734 zilog->zl_keep_first = keep_first;
735
736 if (!list_is_empty(&zilog->zl_lwb_list)) {
737 ASSERT(zh->zh_claim_txg == 0);
738 VERIFY(!keep_first);
739 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
740 list_remove(&zilog->zl_lwb_list, lwb);
741 if (lwb->lwb_buf != NULL)
742 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
743 zio_free(zilog->zl_spa, txg, &lwb->lwb_blk);
744 zil_free_lwb(zilog, lwb);
745 }
746 } else if (!keep_first) {
747 zil_destroy_sync(zilog, tx);
748 }
749 mutex_exit(&zilog->zl_lock);
750
751 dmu_tx_commit(tx);
752 }
753
754 void
zil_destroy_sync(zilog_t * zilog,dmu_tx_t * tx)755 zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx)
756 {
757 ASSERT(list_is_empty(&zilog->zl_lwb_list));
758 (void) zil_parse(zilog, zil_free_log_block,
759 zil_free_log_record, tx, zilog->zl_header->zh_claim_txg, B_FALSE);
760 }
761
762 int
zil_claim(dsl_pool_t * dp,dsl_dataset_t * ds,void * txarg)763 zil_claim(dsl_pool_t *dp, dsl_dataset_t *ds, void *txarg)
764 {
765 dmu_tx_t *tx = txarg;
766 zilog_t *zilog;
767 uint64_t first_txg;
768 zil_header_t *zh;
769 objset_t *os;
770 int error;
771
772 error = dmu_objset_own_obj(dp, ds->ds_object,
773 DMU_OST_ANY, B_FALSE, B_FALSE, FTAG, &os);
774 if (error != 0) {
775 /*
776 * EBUSY indicates that the objset is inconsistent, in which
777 * case it can not have a ZIL.
778 */
779 if (error != EBUSY) {
780 cmn_err(CE_WARN, "can't open objset for %llu, error %u",
781 (unsigned long long)ds->ds_object, error);
782 }
783 return (0);
784 }
785
786 zilog = dmu_objset_zil(os);
787 zh = zil_header_in_syncing_context(zilog);
788 ASSERT3U(tx->tx_txg, ==, spa_first_txg(zilog->zl_spa));
789 first_txg = spa_min_claim_txg(zilog->zl_spa);
790
791 /*
792 * If the spa_log_state is not set to be cleared, check whether
793 * the current uberblock is a checkpoint one and if the current
794 * header has been claimed before moving on.
795 *
796 * If the current uberblock is a checkpointed uberblock then
797 * one of the following scenarios took place:
798 *
799 * 1] We are currently rewinding to the checkpoint of the pool.
800 * 2] We crashed in the middle of a checkpoint rewind but we
801 * did manage to write the checkpointed uberblock to the
802 * vdev labels, so when we tried to import the pool again
803 * the checkpointed uberblock was selected from the import
804 * procedure.
805 *
806 * In both cases we want to zero out all the ZIL blocks, except
807 * the ones that have been claimed at the time of the checkpoint
808 * (their zh_claim_txg != 0). The reason is that these blocks
809 * may be corrupted since we may have reused their locations on
810 * disk after we took the checkpoint.
811 *
812 * We could try to set spa_log_state to SPA_LOG_CLEAR earlier
813 * when we first figure out whether the current uberblock is
814 * checkpointed or not. Unfortunately, that would discard all
815 * the logs, including the ones that are claimed, and we would
816 * leak space.
817 */
818 if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR ||
819 (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 &&
820 zh->zh_claim_txg == 0)) {
821 if (!BP_IS_HOLE(&zh->zh_log)) {
822 (void) zil_parse(zilog, zil_clear_log_block,
823 zil_noop_log_record, tx, first_txg, B_FALSE);
824 }
825 BP_ZERO(&zh->zh_log);
826 if (os->os_encrypted)
827 os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE;
828 dsl_dataset_dirty(dmu_objset_ds(os), tx);
829 dmu_objset_disown(os, B_FALSE, FTAG);
830 return (0);
831 }
832
833 /*
834 * If we are not rewinding and opening the pool normally, then
835 * the min_claim_txg should be equal to the first txg of the pool.
836 */
837 ASSERT3U(first_txg, ==, spa_first_txg(zilog->zl_spa));
838
839 /*
840 * Claim all log blocks if we haven't already done so, and remember
841 * the highest claimed sequence number. This ensures that if we can
842 * read only part of the log now (e.g. due to a missing device),
843 * but we can read the entire log later, we will not try to replay
844 * or destroy beyond the last block we successfully claimed.
845 */
846 ASSERT3U(zh->zh_claim_txg, <=, first_txg);
847 if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) {
848 (void) zil_parse(zilog, zil_claim_log_block,
849 zil_claim_log_record, tx, first_txg, B_FALSE);
850 zh->zh_claim_txg = first_txg;
851 zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq;
852 zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq;
853 if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1)
854 zh->zh_flags |= ZIL_REPLAY_NEEDED;
855 zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID;
856 if (os->os_encrypted)
857 os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE;
858 dsl_dataset_dirty(dmu_objset_ds(os), tx);
859 }
860
861 ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1));
862 dmu_objset_disown(os, B_FALSE, FTAG);
863 return (0);
864 }
865
866 /*
867 * Check the log by walking the log chain.
868 * Checksum errors are ok as they indicate the end of the chain.
869 * Any other error (no device or read failure) returns an error.
870 */
871 /* ARGSUSED */
872 int
zil_check_log_chain(dsl_pool_t * dp,dsl_dataset_t * ds,void * tx)873 zil_check_log_chain(dsl_pool_t *dp, dsl_dataset_t *ds, void *tx)
874 {
875 zilog_t *zilog;
876 objset_t *os;
877 blkptr_t *bp;
878 int error;
879
880 ASSERT(tx == NULL);
881
882 error = dmu_objset_from_ds(ds, &os);
883 if (error != 0) {
884 cmn_err(CE_WARN, "can't open objset %llu, error %d",
885 (unsigned long long)ds->ds_object, error);
886 return (0);
887 }
888
889 zilog = dmu_objset_zil(os);
890 bp = (blkptr_t *)&zilog->zl_header->zh_log;
891
892 if (!BP_IS_HOLE(bp)) {
893 vdev_t *vd;
894 boolean_t valid = B_TRUE;
895
896 /*
897 * Check the first block and determine if it's on a log device
898 * which may have been removed or faulted prior to loading this
899 * pool. If so, there's no point in checking the rest of the
900 * log as its content should have already been synced to the
901 * pool.
902 */
903 spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER);
904 vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0]));
905 if (vd->vdev_islog && vdev_is_dead(vd))
906 valid = vdev_log_state_valid(vd);
907 spa_config_exit(os->os_spa, SCL_STATE, FTAG);
908
909 if (!valid)
910 return (0);
911
912 /*
913 * Check whether the current uberblock is checkpointed (e.g.
914 * we are rewinding) and whether the current header has been
915 * claimed or not. If it hasn't then skip verifying it. We
916 * do this because its ZIL blocks may be part of the pool's
917 * state before the rewind, which is no longer valid.
918 */
919 zil_header_t *zh = zil_header_in_syncing_context(zilog);
920 if (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 &&
921 zh->zh_claim_txg == 0)
922 return (0);
923 }
924
925 /*
926 * Because tx == NULL, zil_claim_log_block() will not actually claim
927 * any blocks, but just determine whether it is possible to do so.
928 * In addition to checking the log chain, zil_claim_log_block()
929 * will invoke zio_claim() with a done func of spa_claim_notify(),
930 * which will update spa_max_claim_txg. See spa_load() for details.
931 */
932 error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx,
933 zilog->zl_header->zh_claim_txg ? -1ULL :
934 spa_min_claim_txg(os->os_spa), B_FALSE);
935
936 return ((error == ECKSUM || error == ENOENT) ? 0 : error);
937 }
938
939 /*
940 * When an itx is "skipped", this function is used to properly mark the
941 * waiter as "done, and signal any thread(s) waiting on it. An itx can
942 * be skipped (and not committed to an lwb) for a variety of reasons,
943 * one of them being that the itx was committed via spa_sync(), prior to
944 * it being committed to an lwb; this can happen if a thread calling
945 * zil_commit() is racing with spa_sync().
946 */
947 static void
zil_commit_waiter_skip(zil_commit_waiter_t * zcw)948 zil_commit_waiter_skip(zil_commit_waiter_t *zcw)
949 {
950 mutex_enter(&zcw->zcw_lock);
951 ASSERT3B(zcw->zcw_done, ==, B_FALSE);
952 zcw->zcw_done = B_TRUE;
953 cv_broadcast(&zcw->zcw_cv);
954 mutex_exit(&zcw->zcw_lock);
955 }
956
957 /*
958 * This function is used when the given waiter is to be linked into an
959 * lwb's "lwb_waiter" list; i.e. when the itx is committed to the lwb.
960 * At this point, the waiter will no longer be referenced by the itx,
961 * and instead, will be referenced by the lwb.
962 */
963 static void
zil_commit_waiter_link_lwb(zil_commit_waiter_t * zcw,lwb_t * lwb)964 zil_commit_waiter_link_lwb(zil_commit_waiter_t *zcw, lwb_t *lwb)
965 {
966 /*
967 * The lwb_waiters field of the lwb is protected by the zilog's
968 * zl_lock, thus it must be held when calling this function.
969 */
970 ASSERT(MUTEX_HELD(&lwb->lwb_zilog->zl_lock));
971
972 mutex_enter(&zcw->zcw_lock);
973 ASSERT(!list_link_active(&zcw->zcw_node));
974 ASSERT3P(zcw->zcw_lwb, ==, NULL);
975 ASSERT3P(lwb, !=, NULL);
976 ASSERT(lwb->lwb_state == LWB_STATE_OPENED ||
977 lwb->lwb_state == LWB_STATE_ISSUED ||
978 lwb->lwb_state == LWB_STATE_WRITE_DONE);
979
980 list_insert_tail(&lwb->lwb_waiters, zcw);
981 zcw->zcw_lwb = lwb;
982 mutex_exit(&zcw->zcw_lock);
983 }
984
985 /*
986 * This function is used when zio_alloc_zil() fails to allocate a ZIL
987 * block, and the given waiter must be linked to the "nolwb waiters"
988 * list inside of zil_process_commit_list().
989 */
990 static void
zil_commit_waiter_link_nolwb(zil_commit_waiter_t * zcw,list_t * nolwb)991 zil_commit_waiter_link_nolwb(zil_commit_waiter_t *zcw, list_t *nolwb)
992 {
993 mutex_enter(&zcw->zcw_lock);
994 ASSERT(!list_link_active(&zcw->zcw_node));
995 ASSERT3P(zcw->zcw_lwb, ==, NULL);
996 list_insert_tail(nolwb, zcw);
997 mutex_exit(&zcw->zcw_lock);
998 }
999
1000 void
zil_lwb_add_block(lwb_t * lwb,const blkptr_t * bp)1001 zil_lwb_add_block(lwb_t *lwb, const blkptr_t *bp)
1002 {
1003 avl_tree_t *t = &lwb->lwb_vdev_tree;
1004 avl_index_t where;
1005 zil_vdev_node_t *zv, zvsearch;
1006 int ndvas = BP_GET_NDVAS(bp);
1007 int i;
1008
1009 if (zil_nocacheflush)
1010 return;
1011
1012 mutex_enter(&lwb->lwb_vdev_lock);
1013 for (i = 0; i < ndvas; i++) {
1014 zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
1015 if (avl_find(t, &zvsearch, &where) == NULL) {
1016 zv = kmem_alloc(sizeof (*zv), KM_SLEEP);
1017 zv->zv_vdev = zvsearch.zv_vdev;
1018 avl_insert(t, zv, where);
1019 }
1020 }
1021 mutex_exit(&lwb->lwb_vdev_lock);
1022 }
1023
1024 static void
zil_lwb_flush_defer(lwb_t * lwb,lwb_t * nlwb)1025 zil_lwb_flush_defer(lwb_t *lwb, lwb_t *nlwb)
1026 {
1027 avl_tree_t *src = &lwb->lwb_vdev_tree;
1028 avl_tree_t *dst = &nlwb->lwb_vdev_tree;
1029 void *cookie = NULL;
1030 zil_vdev_node_t *zv;
1031
1032 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE);
1033 ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
1034 ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
1035
1036 /*
1037 * While 'lwb' is at a point in its lifetime where lwb_vdev_tree does
1038 * not need the protection of lwb_vdev_lock (it will only be modified
1039 * while holding zilog->zl_lock) as its writes and those of its
1040 * children have all completed. The younger 'nlwb' may be waiting on
1041 * future writes to additional vdevs.
1042 */
1043 mutex_enter(&nlwb->lwb_vdev_lock);
1044 /*
1045 * Tear down the 'lwb' vdev tree, ensuring that entries which do not
1046 * exist in 'nlwb' are moved to it, freeing any would-be duplicates.
1047 */
1048 while ((zv = avl_destroy_nodes(src, &cookie)) != NULL) {
1049 avl_index_t where;
1050
1051 if (avl_find(dst, zv, &where) == NULL) {
1052 avl_insert(dst, zv, where);
1053 } else {
1054 kmem_free(zv, sizeof (*zv));
1055 }
1056 }
1057 mutex_exit(&nlwb->lwb_vdev_lock);
1058 }
1059
1060 void
zil_lwb_add_txg(lwb_t * lwb,uint64_t txg)1061 zil_lwb_add_txg(lwb_t *lwb, uint64_t txg)
1062 {
1063 lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg);
1064 }
1065
1066 /*
1067 * This function is a called after all vdevs associated with a given lwb
1068 * write have completed their DKIOCFLUSHWRITECACHE command; or as soon
1069 * as the lwb write completes, if "zil_nocacheflush" is set. Further,
1070 * all "previous" lwb's will have completed before this function is
1071 * called; i.e. this function is called for all previous lwbs before
1072 * it's called for "this" lwb (enforced via zio the dependencies
1073 * configured in zil_lwb_set_zio_dependency()).
1074 *
1075 * The intention is for this function to be called as soon as the
1076 * contents of an lwb are considered "stable" on disk, and will survive
1077 * any sudden loss of power. At this point, any threads waiting for the
1078 * lwb to reach this state are signalled, and the "waiter" structures
1079 * are marked "done".
1080 */
1081 static void
zil_lwb_flush_vdevs_done(zio_t * zio)1082 zil_lwb_flush_vdevs_done(zio_t *zio)
1083 {
1084 lwb_t *lwb = zio->io_private;
1085 zilog_t *zilog = lwb->lwb_zilog;
1086 dmu_tx_t *tx = lwb->lwb_tx;
1087 zil_commit_waiter_t *zcw;
1088
1089 spa_config_exit(zilog->zl_spa, SCL_STATE, lwb);
1090
1091 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
1092
1093 mutex_enter(&zilog->zl_lock);
1094
1095 /*
1096 * Ensure the lwb buffer pointer is cleared before releasing the
1097 * txg. If we have had an allocation failure and the txg is
1098 * waiting to sync then we want zil_sync() to remove the lwb so
1099 * that it's not picked up as the next new one in
1100 * zil_process_commit_list(). zil_sync() will only remove the
1101 * lwb if lwb_buf is null.
1102 */
1103 lwb->lwb_buf = NULL;
1104 lwb->lwb_tx = NULL;
1105
1106 ASSERT3U(lwb->lwb_issued_timestamp, >, 0);
1107 zilog->zl_last_lwb_latency = gethrtime() - lwb->lwb_issued_timestamp;
1108
1109 lwb->lwb_root_zio = NULL;
1110
1111 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE);
1112 lwb->lwb_state = LWB_STATE_FLUSH_DONE;
1113
1114 if (zilog->zl_last_lwb_opened == lwb) {
1115 /*
1116 * Remember the highest committed log sequence number
1117 * for ztest. We only update this value when all the log
1118 * writes succeeded, because ztest wants to ASSERT that
1119 * it got the whole log chain.
1120 */
1121 zilog->zl_commit_lr_seq = zilog->zl_lr_seq;
1122 }
1123
1124 while ((zcw = list_head(&lwb->lwb_waiters)) != NULL) {
1125 mutex_enter(&zcw->zcw_lock);
1126
1127 ASSERT(list_link_active(&zcw->zcw_node));
1128 list_remove(&lwb->lwb_waiters, zcw);
1129
1130 ASSERT3P(zcw->zcw_lwb, ==, lwb);
1131 zcw->zcw_lwb = NULL;
1132
1133 zcw->zcw_zio_error = zio->io_error;
1134
1135 ASSERT3B(zcw->zcw_done, ==, B_FALSE);
1136 zcw->zcw_done = B_TRUE;
1137 cv_broadcast(&zcw->zcw_cv);
1138
1139 mutex_exit(&zcw->zcw_lock);
1140 }
1141
1142 mutex_exit(&zilog->zl_lock);
1143
1144 /*
1145 * Now that we've written this log block, we have a stable pointer
1146 * to the next block in the chain, so it's OK to let the txg in
1147 * which we allocated the next block sync.
1148 */
1149 dmu_tx_commit(tx);
1150 }
1151
1152 /*
1153 * This is called when an lwb's write zio completes. The callback's
1154 * purpose is to issue the DKIOCFLUSHWRITECACHE commands for the vdevs
1155 * in the lwb's lwb_vdev_tree. The tree will contain the vdevs involved
1156 * in writing out this specific lwb's data, and in the case that cache
1157 * flushes have been deferred, vdevs involved in writing the data for
1158 * previous lwbs. The writes corresponding to all the vdevs in the
1159 * lwb_vdev_tree will have completed by the time this is called, due to
1160 * the zio dependencies configured in zil_lwb_set_zio_dependency(),
1161 * which takes deferred flushes into account. The lwb will be "done"
1162 * once zil_lwb_flush_vdevs_done() is called, which occurs in the zio
1163 * completion callback for the lwb's root zio.
1164 */
1165 static void
zil_lwb_write_done(zio_t * zio)1166 zil_lwb_write_done(zio_t *zio)
1167 {
1168 lwb_t *lwb = zio->io_private;
1169 spa_t *spa = zio->io_spa;
1170 zilog_t *zilog = lwb->lwb_zilog;
1171 avl_tree_t *t = &lwb->lwb_vdev_tree;
1172 void *cookie = NULL;
1173 zil_vdev_node_t *zv;
1174 lwb_t *nlwb;
1175
1176 ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), !=, 0);
1177
1178 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1179 ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG);
1180 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
1181 ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER);
1182 ASSERT(!BP_IS_GANG(zio->io_bp));
1183 ASSERT(!BP_IS_HOLE(zio->io_bp));
1184 ASSERT(BP_GET_FILL(zio->io_bp) == 0);
1185
1186 abd_put(zio->io_abd);
1187
1188 mutex_enter(&zilog->zl_lock);
1189 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_ISSUED);
1190 lwb->lwb_state = LWB_STATE_WRITE_DONE;
1191 lwb->lwb_write_zio = NULL;
1192 nlwb = list_next(&zilog->zl_lwb_list, lwb);
1193 mutex_exit(&zilog->zl_lock);
1194
1195 if (avl_numnodes(t) == 0)
1196 return;
1197
1198 /*
1199 * If there was an IO error, we're not going to call zio_flush()
1200 * on these vdevs, so we simply empty the tree and free the
1201 * nodes. We avoid calling zio_flush() since there isn't any
1202 * good reason for doing so, after the lwb block failed to be
1203 * written out.
1204 */
1205 if (zio->io_error != 0) {
1206 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL)
1207 kmem_free(zv, sizeof (*zv));
1208 return;
1209 }
1210
1211 /*
1212 * If this lwb does not have any threads waiting for it to
1213 * complete, we want to defer issuing the DKIOCFLUSHWRITECACHE
1214 * command to the vdevs written to by "this" lwb, and instead
1215 * rely on the "next" lwb to handle the DKIOCFLUSHWRITECACHE
1216 * command for those vdevs. Thus, we merge the vdev tree of
1217 * "this" lwb with the vdev tree of the "next" lwb in the list,
1218 * and assume the "next" lwb will handle flushing the vdevs (or
1219 * deferring the flush(s) again).
1220 *
1221 * This is a useful performance optimization, especially for
1222 * workloads with lots of async write activity and few sync
1223 * write and/or fsync activity, as it has the potential to
1224 * coalesce multiple flush commands to a vdev into one.
1225 */
1226 if (list_head(&lwb->lwb_waiters) == NULL && nlwb != NULL) {
1227 zil_lwb_flush_defer(lwb, nlwb);
1228 ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
1229 return;
1230 }
1231
1232 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) {
1233 vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev);
1234 if (vd != NULL)
1235 zio_flush(lwb->lwb_root_zio, vd);
1236 kmem_free(zv, sizeof (*zv));
1237 }
1238 }
1239
1240 static void
zil_lwb_set_zio_dependency(zilog_t * zilog,lwb_t * lwb)1241 zil_lwb_set_zio_dependency(zilog_t *zilog, lwb_t *lwb)
1242 {
1243 lwb_t *last_lwb_opened = zilog->zl_last_lwb_opened;
1244
1245 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1246 ASSERT(MUTEX_HELD(&zilog->zl_lock));
1247
1248 /*
1249 * The zilog's "zl_last_lwb_opened" field is used to build the
1250 * lwb/zio dependency chain, which is used to preserve the
1251 * ordering of lwb completions that is required by the semantics
1252 * of the ZIL. Each new lwb zio becomes a parent of the
1253 * "previous" lwb zio, such that the new lwb's zio cannot
1254 * complete until the "previous" lwb's zio completes.
1255 *
1256 * This is required by the semantics of zil_commit(); the commit
1257 * waiters attached to the lwbs will be woken in the lwb zio's
1258 * completion callback, so this zio dependency graph ensures the
1259 * waiters are woken in the correct order (the same order the
1260 * lwbs were created).
1261 */
1262 if (last_lwb_opened != NULL &&
1263 last_lwb_opened->lwb_state != LWB_STATE_FLUSH_DONE) {
1264 ASSERT(last_lwb_opened->lwb_state == LWB_STATE_OPENED ||
1265 last_lwb_opened->lwb_state == LWB_STATE_ISSUED ||
1266 last_lwb_opened->lwb_state == LWB_STATE_WRITE_DONE);
1267
1268 ASSERT3P(last_lwb_opened->lwb_root_zio, !=, NULL);
1269 zio_add_child(lwb->lwb_root_zio,
1270 last_lwb_opened->lwb_root_zio);
1271
1272 /*
1273 * If the previous lwb's write hasn't already completed,
1274 * we also want to order the completion of the lwb write
1275 * zios (above, we only order the completion of the lwb
1276 * root zios). This is required because of how we can
1277 * defer the DKIOCFLUSHWRITECACHE commands for each lwb.
1278 *
1279 * When the DKIOCFLUSHWRITECACHE commands are deferred,
1280 * the previous lwb will rely on this lwb to flush the
1281 * vdevs written to by that previous lwb. Thus, we need
1282 * to ensure this lwb doesn't issue the flush until
1283 * after the previous lwb's write completes. We ensure
1284 * this ordering by setting the zio parent/child
1285 * relationship here.
1286 *
1287 * Without this relationship on the lwb's write zio,
1288 * it's possible for this lwb's write to complete prior
1289 * to the previous lwb's write completing; and thus, the
1290 * vdevs for the previous lwb would be flushed prior to
1291 * that lwb's data being written to those vdevs (the
1292 * vdevs are flushed in the lwb write zio's completion
1293 * handler, zil_lwb_write_done()).
1294 */
1295 if (last_lwb_opened->lwb_state != LWB_STATE_WRITE_DONE) {
1296 ASSERT(last_lwb_opened->lwb_state == LWB_STATE_OPENED ||
1297 last_lwb_opened->lwb_state == LWB_STATE_ISSUED);
1298
1299 ASSERT3P(last_lwb_opened->lwb_write_zio, !=, NULL);
1300 zio_add_child(lwb->lwb_write_zio,
1301 last_lwb_opened->lwb_write_zio);
1302 }
1303 }
1304 }
1305
1306
1307 /*
1308 * This function's purpose is to "open" an lwb such that it is ready to
1309 * accept new itxs being committed to it. To do this, the lwb's zio
1310 * structures are created, and linked to the lwb. This function is
1311 * idempotent; if the passed in lwb has already been opened, this
1312 * function is essentially a no-op.
1313 */
1314 static void
zil_lwb_write_open(zilog_t * zilog,lwb_t * lwb)1315 zil_lwb_write_open(zilog_t *zilog, lwb_t *lwb)
1316 {
1317 zbookmark_phys_t zb;
1318 zio_priority_t prio;
1319
1320 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1321 ASSERT3P(lwb, !=, NULL);
1322 EQUIV(lwb->lwb_root_zio == NULL, lwb->lwb_state == LWB_STATE_CLOSED);
1323 EQUIV(lwb->lwb_root_zio != NULL, lwb->lwb_state == LWB_STATE_OPENED);
1324
1325 SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1326 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL,
1327 lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]);
1328
1329 if (lwb->lwb_root_zio == NULL) {
1330 abd_t *lwb_abd = abd_get_from_buf(lwb->lwb_buf,
1331 BP_GET_LSIZE(&lwb->lwb_blk));
1332
1333 if (!lwb->lwb_slog || zilog->zl_cur_used <= zil_slog_bulk)
1334 prio = ZIO_PRIORITY_SYNC_WRITE;
1335 else
1336 prio = ZIO_PRIORITY_ASYNC_WRITE;
1337
1338 lwb->lwb_root_zio = zio_root(zilog->zl_spa,
1339 zil_lwb_flush_vdevs_done, lwb, ZIO_FLAG_CANFAIL);
1340 ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1341
1342 lwb->lwb_write_zio = zio_rewrite(lwb->lwb_root_zio,
1343 zilog->zl_spa, 0, &lwb->lwb_blk, lwb_abd,
1344 BP_GET_LSIZE(&lwb->lwb_blk), zil_lwb_write_done, lwb,
1345 prio, ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE, &zb);
1346 ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1347
1348 lwb->lwb_state = LWB_STATE_OPENED;
1349
1350 mutex_enter(&zilog->zl_lock);
1351 zil_lwb_set_zio_dependency(zilog, lwb);
1352 zilog->zl_last_lwb_opened = lwb;
1353 mutex_exit(&zilog->zl_lock);
1354 }
1355
1356 ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1357 ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1358 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
1359 }
1360
1361 /*
1362 * Define a limited set of intent log block sizes.
1363 *
1364 * These must be a multiple of 4KB. Note only the amount used (again
1365 * aligned to 4KB) actually gets written. However, we can't always just
1366 * allocate SPA_OLD_MAXBLOCKSIZE as the slog space could be exhausted.
1367 */
1368 uint64_t zil_block_buckets[] = {
1369 4096, /* non TX_WRITE */
1370 8192+4096, /* data base */
1371 32*1024 + 4096, /* NFS writes */
1372 UINT64_MAX
1373 };
1374
1375 /*
1376 * Start a log block write and advance to the next log block.
1377 * Calls are serialized.
1378 */
1379 static lwb_t *
zil_lwb_write_issue(zilog_t * zilog,lwb_t * lwb)1380 zil_lwb_write_issue(zilog_t *zilog, lwb_t *lwb)
1381 {
1382 lwb_t *nlwb = NULL;
1383 zil_chain_t *zilc;
1384 spa_t *spa = zilog->zl_spa;
1385 blkptr_t *bp;
1386 dmu_tx_t *tx;
1387 uint64_t txg;
1388 uint64_t zil_blksz, wsz;
1389 int i, error;
1390 boolean_t slog;
1391
1392 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1393 ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1394 ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1395 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
1396
1397 if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1398 zilc = (zil_chain_t *)lwb->lwb_buf;
1399 bp = &zilc->zc_next_blk;
1400 } else {
1401 zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz);
1402 bp = &zilc->zc_next_blk;
1403 }
1404
1405 ASSERT(lwb->lwb_nused <= lwb->lwb_sz);
1406
1407 /*
1408 * Allocate the next block and save its address in this block
1409 * before writing it in order to establish the log chain.
1410 * Note that if the allocation of nlwb synced before we wrote
1411 * the block that points at it (lwb), we'd leak it if we crashed.
1412 * Therefore, we don't do dmu_tx_commit() until zil_lwb_write_done().
1413 * We dirty the dataset to ensure that zil_sync() will be called
1414 * to clean up in the event of allocation failure or I/O failure.
1415 */
1416
1417 tx = dmu_tx_create(zilog->zl_os);
1418
1419 /*
1420 * Since we are not going to create any new dirty data, and we
1421 * can even help with clearing the existing dirty data, we
1422 * should not be subject to the dirty data based delays. We
1423 * use TXG_NOTHROTTLE to bypass the delay mechanism.
1424 */
1425 VERIFY0(dmu_tx_assign(tx, TXG_WAIT | TXG_NOTHROTTLE));
1426
1427 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
1428 txg = dmu_tx_get_txg(tx);
1429
1430 lwb->lwb_tx = tx;
1431
1432 /*
1433 * Log blocks are pre-allocated. Here we select the size of the next
1434 * block, based on size used in the last block.
1435 * - first find the smallest bucket that will fit the block from a
1436 * limited set of block sizes. This is because it's faster to write
1437 * blocks allocated from the same metaslab as they are adjacent or
1438 * close.
1439 * - next find the maximum from the new suggested size and an array of
1440 * previous sizes. This lessens a picket fence effect of wrongly
1441 * guesssing the size if we have a stream of say 2k, 64k, 2k, 64k
1442 * requests.
1443 *
1444 * Note we only write what is used, but we can't just allocate
1445 * the maximum block size because we can exhaust the available
1446 * pool log space.
1447 */
1448 zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t);
1449 for (i = 0; zil_blksz > zil_block_buckets[i]; i++)
1450 continue;
1451 zil_blksz = zil_block_buckets[i];
1452 if (zil_blksz == UINT64_MAX)
1453 zil_blksz = SPA_OLD_MAXBLOCKSIZE;
1454 zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz;
1455 for (i = 0; i < ZIL_PREV_BLKS; i++)
1456 zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]);
1457 zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1);
1458
1459 BP_ZERO(bp);
1460
1461 /* pass the old blkptr in order to spread log blocks across devs */
1462 error = zio_alloc_zil(spa, zilog->zl_os, txg, bp, &lwb->lwb_blk,
1463 zil_blksz, &slog);
1464
1465 if (error == 0) {
1466 ASSERT3U(bp->blk_birth, ==, txg);
1467 bp->blk_cksum = lwb->lwb_blk.blk_cksum;
1468 bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++;
1469
1470 /*
1471 * Allocate a new log write block (lwb).
1472 */
1473 nlwb = zil_alloc_lwb(zilog, bp, slog, txg);
1474 }
1475
1476 if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1477 /* For Slim ZIL only write what is used. */
1478 wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t);
1479 ASSERT3U(wsz, <=, lwb->lwb_sz);
1480 zio_shrink(lwb->lwb_write_zio, wsz);
1481
1482 } else {
1483 wsz = lwb->lwb_sz;
1484 }
1485
1486 zilc->zc_pad = 0;
1487 zilc->zc_nused = lwb->lwb_nused;
1488 zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum;
1489
1490 /*
1491 * clear unused data for security
1492 */
1493 bzero(lwb->lwb_buf + lwb->lwb_nused, wsz - lwb->lwb_nused);
1494
1495 spa_config_enter(zilog->zl_spa, SCL_STATE, lwb, RW_READER);
1496
1497 zil_lwb_add_block(lwb, &lwb->lwb_blk);
1498 lwb->lwb_issued_timestamp = gethrtime();
1499 lwb->lwb_state = LWB_STATE_ISSUED;
1500
1501 zio_nowait(lwb->lwb_root_zio);
1502 zio_nowait(lwb->lwb_write_zio);
1503
1504 /*
1505 * If there was an allocation failure then nlwb will be null which
1506 * forces a txg_wait_synced().
1507 */
1508 return (nlwb);
1509 }
1510
1511 static lwb_t *
zil_lwb_commit(zilog_t * zilog,itx_t * itx,lwb_t * lwb)1512 zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb)
1513 {
1514 lr_t *lrcb, *lrc;
1515 lr_write_t *lrwb, *lrw;
1516 char *lr_buf;
1517 uint64_t dlen, dnow, lwb_sp, reclen, txg;
1518
1519 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1520 ASSERT3P(lwb, !=, NULL);
1521 ASSERT3P(lwb->lwb_buf, !=, NULL);
1522
1523 zil_lwb_write_open(zilog, lwb);
1524
1525 lrc = &itx->itx_lr;
1526 lrw = (lr_write_t *)lrc;
1527
1528 /*
1529 * A commit itx doesn't represent any on-disk state; instead
1530 * it's simply used as a place holder on the commit list, and
1531 * provides a mechanism for attaching a "commit waiter" onto the
1532 * correct lwb (such that the waiter can be signalled upon
1533 * completion of that lwb). Thus, we don't process this itx's
1534 * log record if it's a commit itx (these itx's don't have log
1535 * records), and instead link the itx's waiter onto the lwb's
1536 * list of waiters.
1537 *
1538 * For more details, see the comment above zil_commit().
1539 */
1540 if (lrc->lrc_txtype == TX_COMMIT) {
1541 mutex_enter(&zilog->zl_lock);
1542 zil_commit_waiter_link_lwb(itx->itx_private, lwb);
1543 itx->itx_private = NULL;
1544 mutex_exit(&zilog->zl_lock);
1545 return (lwb);
1546 }
1547
1548 if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) {
1549 dlen = P2ROUNDUP_TYPED(
1550 lrw->lr_length, sizeof (uint64_t), uint64_t);
1551 } else {
1552 dlen = 0;
1553 }
1554 reclen = lrc->lrc_reclen;
1555 zilog->zl_cur_used += (reclen + dlen);
1556 txg = lrc->lrc_txg;
1557
1558 ASSERT3U(zilog->zl_cur_used, <, UINT64_MAX - (reclen + dlen));
1559
1560 cont:
1561 /*
1562 * If this record won't fit in the current log block, start a new one.
1563 * For WR_NEED_COPY optimize layout for minimal number of chunks.
1564 */
1565 lwb_sp = lwb->lwb_sz - lwb->lwb_nused;
1566 if (reclen > lwb_sp || (reclen + dlen > lwb_sp &&
1567 lwb_sp < ZIL_MAX_WASTE_SPACE && (dlen % ZIL_MAX_LOG_DATA == 0 ||
1568 lwb_sp < reclen + dlen % ZIL_MAX_LOG_DATA))) {
1569 lwb = zil_lwb_write_issue(zilog, lwb);
1570 if (lwb == NULL)
1571 return (NULL);
1572 zil_lwb_write_open(zilog, lwb);
1573 ASSERT(LWB_EMPTY(lwb));
1574 lwb_sp = lwb->lwb_sz - lwb->lwb_nused;
1575 ASSERT3U(reclen + MIN(dlen, sizeof (uint64_t)), <=, lwb_sp);
1576 }
1577
1578 dnow = MIN(dlen, lwb_sp - reclen);
1579 lr_buf = lwb->lwb_buf + lwb->lwb_nused;
1580 bcopy(lrc, lr_buf, reclen);
1581 lrcb = (lr_t *)lr_buf; /* Like lrc, but inside lwb. */
1582 lrwb = (lr_write_t *)lrcb; /* Like lrw, but inside lwb. */
1583
1584 /*
1585 * If it's a write, fetch the data or get its blkptr as appropriate.
1586 */
1587 if (lrc->lrc_txtype == TX_WRITE) {
1588 if (txg > spa_freeze_txg(zilog->zl_spa))
1589 txg_wait_synced(zilog->zl_dmu_pool, txg);
1590 if (itx->itx_wr_state != WR_COPIED) {
1591 char *dbuf;
1592 int error;
1593
1594 if (itx->itx_wr_state == WR_NEED_COPY) {
1595 dbuf = lr_buf + reclen;
1596 lrcb->lrc_reclen += dnow;
1597 if (lrwb->lr_length > dnow)
1598 lrwb->lr_length = dnow;
1599 lrw->lr_offset += dnow;
1600 lrw->lr_length -= dnow;
1601 } else {
1602 ASSERT(itx->itx_wr_state == WR_INDIRECT);
1603 dbuf = NULL;
1604 }
1605
1606 /*
1607 * We pass in the "lwb_write_zio" rather than
1608 * "lwb_root_zio" so that the "lwb_write_zio"
1609 * becomes the parent of any zio's created by
1610 * the "zl_get_data" callback. The vdevs are
1611 * flushed after the "lwb_write_zio" completes,
1612 * so we want to make sure that completion
1613 * callback waits for these additional zio's,
1614 * such that the vdevs used by those zio's will
1615 * be included in the lwb's vdev tree, and those
1616 * vdevs will be properly flushed. If we passed
1617 * in "lwb_root_zio" here, then these additional
1618 * vdevs may not be flushed; e.g. if these zio's
1619 * completed after "lwb_write_zio" completed.
1620 */
1621 error = zilog->zl_get_data(itx->itx_private,
1622 lrwb, dbuf, lwb, lwb->lwb_write_zio);
1623
1624 if (error == EIO) {
1625 txg_wait_synced(zilog->zl_dmu_pool, txg);
1626 return (lwb);
1627 }
1628 if (error != 0) {
1629 ASSERT(error == ENOENT || error == EEXIST ||
1630 error == EALREADY);
1631 return (lwb);
1632 }
1633 }
1634 }
1635
1636 /*
1637 * We're actually making an entry, so update lrc_seq to be the
1638 * log record sequence number. Note that this is generally not
1639 * equal to the itx sequence number because not all transactions
1640 * are synchronous, and sometimes spa_sync() gets there first.
1641 */
1642 lrcb->lrc_seq = ++zilog->zl_lr_seq;
1643 lwb->lwb_nused += reclen + dnow;
1644
1645 zil_lwb_add_txg(lwb, txg);
1646
1647 ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz);
1648 ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)));
1649
1650 dlen -= dnow;
1651 if (dlen > 0) {
1652 zilog->zl_cur_used += reclen;
1653 goto cont;
1654 }
1655
1656 return (lwb);
1657 }
1658
1659 itx_t *
zil_itx_create(uint64_t txtype,size_t lrsize)1660 zil_itx_create(uint64_t txtype, size_t lrsize)
1661 {
1662 itx_t *itx;
1663
1664 lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t);
1665
1666 itx = kmem_alloc(offsetof(itx_t, itx_lr) + lrsize, KM_SLEEP);
1667 itx->itx_lr.lrc_txtype = txtype;
1668 itx->itx_lr.lrc_reclen = lrsize;
1669 itx->itx_lr.lrc_seq = 0; /* defensive */
1670 itx->itx_sync = B_TRUE; /* default is synchronous */
1671
1672 return (itx);
1673 }
1674
1675 void
zil_itx_destroy(itx_t * itx)1676 zil_itx_destroy(itx_t *itx)
1677 {
1678 kmem_free(itx, offsetof(itx_t, itx_lr) + itx->itx_lr.lrc_reclen);
1679 }
1680
1681 /*
1682 * Free up the sync and async itxs. The itxs_t has already been detached
1683 * so no locks are needed.
1684 */
1685 static void
zil_itxg_clean(itxs_t * itxs)1686 zil_itxg_clean(itxs_t *itxs)
1687 {
1688 itx_t *itx;
1689 list_t *list;
1690 avl_tree_t *t;
1691 void *cookie;
1692 itx_async_node_t *ian;
1693
1694 list = &itxs->i_sync_list;
1695 while ((itx = list_head(list)) != NULL) {
1696 /*
1697 * In the general case, commit itxs will not be found
1698 * here, as they'll be committed to an lwb via
1699 * zil_lwb_commit(), and free'd in that function. Having
1700 * said that, it is still possible for commit itxs to be
1701 * found here, due to the following race:
1702 *
1703 * - a thread calls zil_commit() which assigns the
1704 * commit itx to a per-txg i_sync_list
1705 * - zil_itxg_clean() is called (e.g. via spa_sync())
1706 * while the waiter is still on the i_sync_list
1707 *
1708 * There's nothing to prevent syncing the txg while the
1709 * waiter is on the i_sync_list. This normally doesn't
1710 * happen because spa_sync() is slower than zil_commit(),
1711 * but if zil_commit() calls txg_wait_synced() (e.g.
1712 * because zil_create() or zil_commit_writer_stall() is
1713 * called) we will hit this case.
1714 */
1715 if (itx->itx_lr.lrc_txtype == TX_COMMIT)
1716 zil_commit_waiter_skip(itx->itx_private);
1717
1718 list_remove(list, itx);
1719 zil_itx_destroy(itx);
1720 }
1721
1722 cookie = NULL;
1723 t = &itxs->i_async_tree;
1724 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1725 list = &ian->ia_list;
1726 while ((itx = list_head(list)) != NULL) {
1727 list_remove(list, itx);
1728 /* commit itxs should never be on the async lists. */
1729 ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
1730 zil_itx_destroy(itx);
1731 }
1732 list_destroy(list);
1733 kmem_free(ian, sizeof (itx_async_node_t));
1734 }
1735 avl_destroy(t);
1736
1737 kmem_free(itxs, sizeof (itxs_t));
1738 }
1739
1740 static int
zil_aitx_compare(const void * x1,const void * x2)1741 zil_aitx_compare(const void *x1, const void *x2)
1742 {
1743 const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid;
1744 const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid;
1745
1746 return (TREE_CMP(o1, o2));
1747 }
1748
1749 /*
1750 * Remove all async itx with the given oid.
1751 */
1752 void
zil_remove_async(zilog_t * zilog,uint64_t oid)1753 zil_remove_async(zilog_t *zilog, uint64_t oid)
1754 {
1755 uint64_t otxg, txg;
1756 itx_async_node_t *ian;
1757 avl_tree_t *t;
1758 avl_index_t where;
1759 list_t clean_list;
1760 itx_t *itx;
1761
1762 ASSERT(oid != 0);
1763 list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node));
1764
1765 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1766 otxg = ZILTEST_TXG;
1767 else
1768 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1769
1770 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1771 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1772
1773 mutex_enter(&itxg->itxg_lock);
1774 if (itxg->itxg_txg != txg) {
1775 mutex_exit(&itxg->itxg_lock);
1776 continue;
1777 }
1778
1779 /*
1780 * Locate the object node and append its list.
1781 */
1782 t = &itxg->itxg_itxs->i_async_tree;
1783 ian = avl_find(t, &oid, &where);
1784 if (ian != NULL)
1785 list_move_tail(&clean_list, &ian->ia_list);
1786 mutex_exit(&itxg->itxg_lock);
1787 }
1788 while ((itx = list_head(&clean_list)) != NULL) {
1789 list_remove(&clean_list, itx);
1790 /* commit itxs should never be on the async lists. */
1791 ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
1792 zil_itx_destroy(itx);
1793 }
1794 list_destroy(&clean_list);
1795 }
1796
1797 void
zil_itx_assign(zilog_t * zilog,itx_t * itx,dmu_tx_t * tx)1798 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx)
1799 {
1800 uint64_t txg;
1801 itxg_t *itxg;
1802 itxs_t *itxs, *clean = NULL;
1803
1804 /*
1805 * Ensure the data of a renamed file is committed before the rename.
1806 */
1807 if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME)
1808 zil_async_to_sync(zilog, itx->itx_oid);
1809
1810 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX)
1811 txg = ZILTEST_TXG;
1812 else
1813 txg = dmu_tx_get_txg(tx);
1814
1815 itxg = &zilog->zl_itxg[txg & TXG_MASK];
1816 mutex_enter(&itxg->itxg_lock);
1817 itxs = itxg->itxg_itxs;
1818 if (itxg->itxg_txg != txg) {
1819 if (itxs != NULL) {
1820 /*
1821 * The zil_clean callback hasn't got around to cleaning
1822 * this itxg. Save the itxs for release below.
1823 * This should be rare.
1824 */
1825 zfs_dbgmsg("zil_itx_assign: missed itx cleanup for "
1826 "txg %llu", itxg->itxg_txg);
1827 clean = itxg->itxg_itxs;
1828 }
1829 itxg->itxg_txg = txg;
1830 itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t), KM_SLEEP);
1831
1832 list_create(&itxs->i_sync_list, sizeof (itx_t),
1833 offsetof(itx_t, itx_node));
1834 avl_create(&itxs->i_async_tree, zil_aitx_compare,
1835 sizeof (itx_async_node_t),
1836 offsetof(itx_async_node_t, ia_node));
1837 }
1838 if (itx->itx_sync) {
1839 list_insert_tail(&itxs->i_sync_list, itx);
1840 } else {
1841 avl_tree_t *t = &itxs->i_async_tree;
1842 uint64_t foid =
1843 LR_FOID_GET_OBJ(((lr_ooo_t *)&itx->itx_lr)->lr_foid);
1844 itx_async_node_t *ian;
1845 avl_index_t where;
1846
1847 ian = avl_find(t, &foid, &where);
1848 if (ian == NULL) {
1849 ian = kmem_alloc(sizeof (itx_async_node_t), KM_SLEEP);
1850 list_create(&ian->ia_list, sizeof (itx_t),
1851 offsetof(itx_t, itx_node));
1852 ian->ia_foid = foid;
1853 avl_insert(t, ian, where);
1854 }
1855 list_insert_tail(&ian->ia_list, itx);
1856 }
1857
1858 itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx);
1859
1860 /*
1861 * We don't want to dirty the ZIL using ZILTEST_TXG, because
1862 * zil_clean() will never be called using ZILTEST_TXG. Thus, we
1863 * need to be careful to always dirty the ZIL using the "real"
1864 * TXG (not itxg_txg) even when the SPA is frozen.
1865 */
1866 zilog_dirty(zilog, dmu_tx_get_txg(tx));
1867 mutex_exit(&itxg->itxg_lock);
1868
1869 /* Release the old itxs now we've dropped the lock */
1870 if (clean != NULL)
1871 zil_itxg_clean(clean);
1872 }
1873
1874 /*
1875 * If there are any in-memory intent log transactions which have now been
1876 * synced then start up a taskq to free them. We should only do this after we
1877 * have written out the uberblocks (i.e. txg has been comitted) so that
1878 * don't inadvertently clean out in-memory log records that would be required
1879 * by zil_commit().
1880 */
1881 void
zil_clean(zilog_t * zilog,uint64_t synced_txg)1882 zil_clean(zilog_t *zilog, uint64_t synced_txg)
1883 {
1884 itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK];
1885 itxs_t *clean_me;
1886
1887 ASSERT3U(synced_txg, <, ZILTEST_TXG);
1888
1889 mutex_enter(&itxg->itxg_lock);
1890 if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) {
1891 mutex_exit(&itxg->itxg_lock);
1892 return;
1893 }
1894 ASSERT3U(itxg->itxg_txg, <=, synced_txg);
1895 ASSERT3U(itxg->itxg_txg, !=, 0);
1896 clean_me = itxg->itxg_itxs;
1897 itxg->itxg_itxs = NULL;
1898 itxg->itxg_txg = 0;
1899 mutex_exit(&itxg->itxg_lock);
1900 /*
1901 * Preferably start a task queue to free up the old itxs but
1902 * if taskq_dispatch can't allocate resources to do that then
1903 * free it in-line. This should be rare. Note, using TQ_SLEEP
1904 * created a bad performance problem.
1905 */
1906 ASSERT3P(zilog->zl_dmu_pool, !=, NULL);
1907 ASSERT3P(zilog->zl_dmu_pool->dp_zil_clean_taskq, !=, NULL);
1908 if (taskq_dispatch(zilog->zl_dmu_pool->dp_zil_clean_taskq,
1909 (void (*)(void *))zil_itxg_clean, clean_me, TQ_NOSLEEP) ==
1910 TASKQID_INVALID)
1911 zil_itxg_clean(clean_me);
1912 }
1913
1914 /*
1915 * This function will traverse the queue of itxs that need to be
1916 * committed, and move them onto the ZIL's zl_itx_commit_list.
1917 */
1918 static void
zil_get_commit_list(zilog_t * zilog)1919 zil_get_commit_list(zilog_t *zilog)
1920 {
1921 uint64_t otxg, txg;
1922 list_t *commit_list = &zilog->zl_itx_commit_list;
1923
1924 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1925
1926 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1927 otxg = ZILTEST_TXG;
1928 else
1929 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1930
1931 /*
1932 * This is inherently racy, since there is nothing to prevent
1933 * the last synced txg from changing. That's okay since we'll
1934 * only commit things in the future.
1935 */
1936 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1937 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1938
1939 mutex_enter(&itxg->itxg_lock);
1940 if (itxg->itxg_txg != txg) {
1941 mutex_exit(&itxg->itxg_lock);
1942 continue;
1943 }
1944
1945 /*
1946 * If we're adding itx records to the zl_itx_commit_list,
1947 * then the zil better be dirty in this "txg". We can assert
1948 * that here since we're holding the itxg_lock which will
1949 * prevent spa_sync from cleaning it. Once we add the itxs
1950 * to the zl_itx_commit_list we must commit it to disk even
1951 * if it's unnecessary (i.e. the txg was synced).
1952 */
1953 ASSERT(zilog_is_dirty_in_txg(zilog, txg) ||
1954 spa_freeze_txg(zilog->zl_spa) != UINT64_MAX);
1955 list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list);
1956
1957 mutex_exit(&itxg->itxg_lock);
1958 }
1959 }
1960
1961 /*
1962 * Move the async itxs for a specified object to commit into sync lists.
1963 */
1964 static void
zil_async_to_sync(zilog_t * zilog,uint64_t foid)1965 zil_async_to_sync(zilog_t *zilog, uint64_t foid)
1966 {
1967 uint64_t otxg, txg;
1968 itx_async_node_t *ian;
1969 avl_tree_t *t;
1970 avl_index_t where;
1971
1972 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1973 otxg = ZILTEST_TXG;
1974 else
1975 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1976
1977 /*
1978 * This is inherently racy, since there is nothing to prevent
1979 * the last synced txg from changing.
1980 */
1981 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1982 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1983
1984 mutex_enter(&itxg->itxg_lock);
1985 if (itxg->itxg_txg != txg) {
1986 mutex_exit(&itxg->itxg_lock);
1987 continue;
1988 }
1989
1990 /*
1991 * If a foid is specified then find that node and append its
1992 * list. Otherwise walk the tree appending all the lists
1993 * to the sync list. We add to the end rather than the
1994 * beginning to ensure the create has happened.
1995 */
1996 t = &itxg->itxg_itxs->i_async_tree;
1997 if (foid != 0) {
1998 ian = avl_find(t, &foid, &where);
1999 if (ian != NULL) {
2000 list_move_tail(&itxg->itxg_itxs->i_sync_list,
2001 &ian->ia_list);
2002 }
2003 } else {
2004 void *cookie = NULL;
2005
2006 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
2007 list_move_tail(&itxg->itxg_itxs->i_sync_list,
2008 &ian->ia_list);
2009 list_destroy(&ian->ia_list);
2010 kmem_free(ian, sizeof (itx_async_node_t));
2011 }
2012 }
2013 mutex_exit(&itxg->itxg_lock);
2014 }
2015 }
2016
2017 /*
2018 * This function will prune commit itxs that are at the head of the
2019 * commit list (it won't prune past the first non-commit itx), and
2020 * either: a) attach them to the last lwb that's still pending
2021 * completion, or b) skip them altogether.
2022 *
2023 * This is used as a performance optimization to prevent commit itxs
2024 * from generating new lwbs when it's unnecessary to do so.
2025 */
2026 static void
zil_prune_commit_list(zilog_t * zilog)2027 zil_prune_commit_list(zilog_t *zilog)
2028 {
2029 itx_t *itx;
2030
2031 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2032
2033 while (itx = list_head(&zilog->zl_itx_commit_list)) {
2034 lr_t *lrc = &itx->itx_lr;
2035 if (lrc->lrc_txtype != TX_COMMIT)
2036 break;
2037
2038 mutex_enter(&zilog->zl_lock);
2039
2040 lwb_t *last_lwb = zilog->zl_last_lwb_opened;
2041 if (last_lwb == NULL ||
2042 last_lwb->lwb_state == LWB_STATE_FLUSH_DONE) {
2043 /*
2044 * All of the itxs this waiter was waiting on
2045 * must have already completed (or there were
2046 * never any itx's for it to wait on), so it's
2047 * safe to skip this waiter and mark it done.
2048 */
2049 zil_commit_waiter_skip(itx->itx_private);
2050 } else {
2051 zil_commit_waiter_link_lwb(itx->itx_private, last_lwb);
2052 itx->itx_private = NULL;
2053 }
2054
2055 mutex_exit(&zilog->zl_lock);
2056
2057 list_remove(&zilog->zl_itx_commit_list, itx);
2058 zil_itx_destroy(itx);
2059 }
2060
2061 IMPLY(itx != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT);
2062 }
2063
2064 static void
zil_commit_writer_stall(zilog_t * zilog)2065 zil_commit_writer_stall(zilog_t *zilog)
2066 {
2067 /*
2068 * When zio_alloc_zil() fails to allocate the next lwb block on
2069 * disk, we must call txg_wait_synced() to ensure all of the
2070 * lwbs in the zilog's zl_lwb_list are synced and then freed (in
2071 * zil_sync()), such that any subsequent ZIL writer (i.e. a call
2072 * to zil_process_commit_list()) will have to call zil_create(),
2073 * and start a new ZIL chain.
2074 *
2075 * Since zil_alloc_zil() failed, the lwb that was previously
2076 * issued does not have a pointer to the "next" lwb on disk.
2077 * Thus, if another ZIL writer thread was to allocate the "next"
2078 * on-disk lwb, that block could be leaked in the event of a
2079 * crash (because the previous lwb on-disk would not point to
2080 * it).
2081 *
2082 * We must hold the zilog's zl_issuer_lock while we do this, to
2083 * ensure no new threads enter zil_process_commit_list() until
2084 * all lwb's in the zl_lwb_list have been synced and freed
2085 * (which is achieved via the txg_wait_synced() call).
2086 */
2087 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2088 txg_wait_synced(zilog->zl_dmu_pool, 0);
2089 ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL);
2090 }
2091
2092 /*
2093 * This function will traverse the commit list, creating new lwbs as
2094 * needed, and committing the itxs from the commit list to these newly
2095 * created lwbs. Additionally, as a new lwb is created, the previous
2096 * lwb will be issued to the zio layer to be written to disk.
2097 */
2098 static void
zil_process_commit_list(zilog_t * zilog)2099 zil_process_commit_list(zilog_t *zilog)
2100 {
2101 spa_t *spa = zilog->zl_spa;
2102 list_t nolwb_waiters;
2103 lwb_t *lwb;
2104 itx_t *itx;
2105
2106 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2107
2108 /*
2109 * Return if there's nothing to commit before we dirty the fs by
2110 * calling zil_create().
2111 */
2112 if (list_head(&zilog->zl_itx_commit_list) == NULL)
2113 return;
2114
2115 list_create(&nolwb_waiters, sizeof (zil_commit_waiter_t),
2116 offsetof(zil_commit_waiter_t, zcw_node));
2117
2118 lwb = list_tail(&zilog->zl_lwb_list);
2119 if (lwb == NULL) {
2120 lwb = zil_create(zilog);
2121 } else {
2122 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
2123 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
2124 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
2125 }
2126
2127 while (itx = list_head(&zilog->zl_itx_commit_list)) {
2128 lr_t *lrc = &itx->itx_lr;
2129 uint64_t txg = lrc->lrc_txg;
2130
2131 ASSERT3U(txg, !=, 0);
2132
2133 if (lrc->lrc_txtype == TX_COMMIT) {
2134 DTRACE_PROBE2(zil__process__commit__itx,
2135 zilog_t *, zilog, itx_t *, itx);
2136 } else {
2137 DTRACE_PROBE2(zil__process__normal__itx,
2138 zilog_t *, zilog, itx_t *, itx);
2139 }
2140
2141 boolean_t synced = txg <= spa_last_synced_txg(spa);
2142 boolean_t frozen = txg > spa_freeze_txg(spa);
2143
2144 /*
2145 * If the txg of this itx has already been synced out, then
2146 * we don't need to commit this itx to an lwb. This is
2147 * because the data of this itx will have already been
2148 * written to the main pool. This is inherently racy, and
2149 * it's still ok to commit an itx whose txg has already
2150 * been synced; this will result in a write that's
2151 * unnecessary, but will do no harm.
2152 *
2153 * With that said, we always want to commit TX_COMMIT itxs
2154 * to an lwb, regardless of whether or not that itx's txg
2155 * has been synced out. We do this to ensure any OPENED lwb
2156 * will always have at least one zil_commit_waiter_t linked
2157 * to the lwb.
2158 *
2159 * As a counter-example, if we skipped TX_COMMIT itx's
2160 * whose txg had already been synced, the following
2161 * situation could occur if we happened to be racing with
2162 * spa_sync:
2163 *
2164 * 1. we commit a non-TX_COMMIT itx to an lwb, where the
2165 * itx's txg is 10 and the last synced txg is 9.
2166 * 2. spa_sync finishes syncing out txg 10.
2167 * 3. we move to the next itx in the list, it's a TX_COMMIT
2168 * whose txg is 10, so we skip it rather than committing
2169 * it to the lwb used in (1).
2170 *
2171 * If the itx that is skipped in (3) is the last TX_COMMIT
2172 * itx in the commit list, than it's possible for the lwb
2173 * used in (1) to remain in the OPENED state indefinitely.
2174 *
2175 * To prevent the above scenario from occuring, ensuring
2176 * that once an lwb is OPENED it will transition to ISSUED
2177 * and eventually DONE, we always commit TX_COMMIT itx's to
2178 * an lwb here, even if that itx's txg has already been
2179 * synced.
2180 *
2181 * Finally, if the pool is frozen, we _always_ commit the
2182 * itx. The point of freezing the pool is to prevent data
2183 * from being written to the main pool via spa_sync, and
2184 * instead rely solely on the ZIL to persistently store the
2185 * data; i.e. when the pool is frozen, the last synced txg
2186 * value can't be trusted.
2187 */
2188 if (frozen || !synced || lrc->lrc_txtype == TX_COMMIT) {
2189 if (lwb != NULL) {
2190 lwb = zil_lwb_commit(zilog, itx, lwb);
2191 } else if (lrc->lrc_txtype == TX_COMMIT) {
2192 ASSERT3P(lwb, ==, NULL);
2193 zil_commit_waiter_link_nolwb(
2194 itx->itx_private, &nolwb_waiters);
2195 }
2196 }
2197
2198 list_remove(&zilog->zl_itx_commit_list, itx);
2199 zil_itx_destroy(itx);
2200 }
2201
2202 if (lwb == NULL) {
2203 /*
2204 * This indicates zio_alloc_zil() failed to allocate the
2205 * "next" lwb on-disk. When this happens, we must stall
2206 * the ZIL write pipeline; see the comment within
2207 * zil_commit_writer_stall() for more details.
2208 */
2209 zil_commit_writer_stall(zilog);
2210
2211 /*
2212 * Additionally, we have to signal and mark the "nolwb"
2213 * waiters as "done" here, since without an lwb, we
2214 * can't do this via zil_lwb_flush_vdevs_done() like
2215 * normal.
2216 */
2217 zil_commit_waiter_t *zcw;
2218 while (zcw = list_head(&nolwb_waiters)) {
2219 zil_commit_waiter_skip(zcw);
2220 list_remove(&nolwb_waiters, zcw);
2221 }
2222 } else {
2223 ASSERT(list_is_empty(&nolwb_waiters));
2224 ASSERT3P(lwb, !=, NULL);
2225 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
2226 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
2227 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
2228
2229 /*
2230 * At this point, the ZIL block pointed at by the "lwb"
2231 * variable is in one of the following states: "closed"
2232 * or "open".
2233 *
2234 * If its "closed", then no itxs have been committed to
2235 * it, so there's no point in issuing its zio (i.e.
2236 * it's "empty").
2237 *
2238 * If its "open" state, then it contains one or more
2239 * itxs that eventually need to be committed to stable
2240 * storage. In this case we intentionally do not issue
2241 * the lwb's zio to disk yet, and instead rely on one of
2242 * the following two mechanisms for issuing the zio:
2243 *
2244 * 1. Ideally, there will be more ZIL activity occuring
2245 * on the system, such that this function will be
2246 * immediately called again (not necessarily by the same
2247 * thread) and this lwb's zio will be issued via
2248 * zil_lwb_commit(). This way, the lwb is guaranteed to
2249 * be "full" when it is issued to disk, and we'll make
2250 * use of the lwb's size the best we can.
2251 *
2252 * 2. If there isn't sufficient ZIL activity occuring on
2253 * the system, such that this lwb's zio isn't issued via
2254 * zil_lwb_commit(), zil_commit_waiter() will issue the
2255 * lwb's zio. If this occurs, the lwb is not guaranteed
2256 * to be "full" by the time its zio is issued, and means
2257 * the size of the lwb was "too large" given the amount
2258 * of ZIL activity occuring on the system at that time.
2259 *
2260 * We do this for a couple of reasons:
2261 *
2262 * 1. To try and reduce the number of IOPs needed to
2263 * write the same number of itxs. If an lwb has space
2264 * available in it's buffer for more itxs, and more itxs
2265 * will be committed relatively soon (relative to the
2266 * latency of performing a write), then it's beneficial
2267 * to wait for these "next" itxs. This way, more itxs
2268 * can be committed to stable storage with fewer writes.
2269 *
2270 * 2. To try and use the largest lwb block size that the
2271 * incoming rate of itxs can support. Again, this is to
2272 * try and pack as many itxs into as few lwbs as
2273 * possible, without significantly impacting the latency
2274 * of each individual itx.
2275 */
2276 }
2277 }
2278
2279 /*
2280 * This function is responsible for ensuring the passed in commit waiter
2281 * (and associated commit itx) is committed to an lwb. If the waiter is
2282 * not already committed to an lwb, all itxs in the zilog's queue of
2283 * itxs will be processed. The assumption is the passed in waiter's
2284 * commit itx will found in the queue just like the other non-commit
2285 * itxs, such that when the entire queue is processed, the waiter will
2286 * have been commited to an lwb.
2287 *
2288 * The lwb associated with the passed in waiter is not guaranteed to
2289 * have been issued by the time this function completes. If the lwb is
2290 * not issued, we rely on future calls to zil_commit_writer() to issue
2291 * the lwb, or the timeout mechanism found in zil_commit_waiter().
2292 */
2293 static void
zil_commit_writer(zilog_t * zilog,zil_commit_waiter_t * zcw)2294 zil_commit_writer(zilog_t *zilog, zil_commit_waiter_t *zcw)
2295 {
2296 ASSERT(!MUTEX_HELD(&zilog->zl_lock));
2297 ASSERT(spa_writeable(zilog->zl_spa));
2298
2299 mutex_enter(&zilog->zl_issuer_lock);
2300
2301 if (zcw->zcw_lwb != NULL || zcw->zcw_done) {
2302 /*
2303 * It's possible that, while we were waiting to acquire
2304 * the "zl_issuer_lock", another thread committed this
2305 * waiter to an lwb. If that occurs, we bail out early,
2306 * without processing any of the zilog's queue of itxs.
2307 *
2308 * On certain workloads and system configurations, the
2309 * "zl_issuer_lock" can become highly contended. In an
2310 * attempt to reduce this contention, we immediately drop
2311 * the lock if the waiter has already been processed.
2312 *
2313 * We've measured this optimization to reduce CPU spent
2314 * contending on this lock by up to 5%, using a system
2315 * with 32 CPUs, low latency storage (~50 usec writes),
2316 * and 1024 threads performing sync writes.
2317 */
2318 goto out;
2319 }
2320
2321 zil_get_commit_list(zilog);
2322 zil_prune_commit_list(zilog);
2323 zil_process_commit_list(zilog);
2324
2325 out:
2326 mutex_exit(&zilog->zl_issuer_lock);
2327 }
2328
2329 static void
zil_commit_waiter_timeout(zilog_t * zilog,zil_commit_waiter_t * zcw)2330 zil_commit_waiter_timeout(zilog_t *zilog, zil_commit_waiter_t *zcw)
2331 {
2332 ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
2333 ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2334 ASSERT3B(zcw->zcw_done, ==, B_FALSE);
2335
2336 lwb_t *lwb = zcw->zcw_lwb;
2337 ASSERT3P(lwb, !=, NULL);
2338 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_CLOSED);
2339
2340 /*
2341 * If the lwb has already been issued by another thread, we can
2342 * immediately return since there's no work to be done (the
2343 * point of this function is to issue the lwb). Additionally, we
2344 * do this prior to acquiring the zl_issuer_lock, to avoid
2345 * acquiring it when it's not necessary to do so.
2346 */
2347 if (lwb->lwb_state == LWB_STATE_ISSUED ||
2348 lwb->lwb_state == LWB_STATE_WRITE_DONE ||
2349 lwb->lwb_state == LWB_STATE_FLUSH_DONE)
2350 return;
2351
2352 /*
2353 * In order to call zil_lwb_write_issue() we must hold the
2354 * zilog's "zl_issuer_lock". We can't simply acquire that lock,
2355 * since we're already holding the commit waiter's "zcw_lock",
2356 * and those two locks are aquired in the opposite order
2357 * elsewhere.
2358 */
2359 mutex_exit(&zcw->zcw_lock);
2360 mutex_enter(&zilog->zl_issuer_lock);
2361 mutex_enter(&zcw->zcw_lock);
2362
2363 /*
2364 * Since we just dropped and re-acquired the commit waiter's
2365 * lock, we have to re-check to see if the waiter was marked
2366 * "done" during that process. If the waiter was marked "done",
2367 * the "lwb" pointer is no longer valid (it can be free'd after
2368 * the waiter is marked "done"), so without this check we could
2369 * wind up with a use-after-free error below.
2370 */
2371 if (zcw->zcw_done)
2372 goto out;
2373
2374 ASSERT3P(lwb, ==, zcw->zcw_lwb);
2375
2376 /*
2377 * We've already checked this above, but since we hadn't acquired
2378 * the zilog's zl_issuer_lock, we have to perform this check a
2379 * second time while holding the lock.
2380 *
2381 * We don't need to hold the zl_lock since the lwb cannot transition
2382 * from OPENED to ISSUED while we hold the zl_issuer_lock. The lwb
2383 * _can_ transition from ISSUED to DONE, but it's OK to race with
2384 * that transition since we treat the lwb the same, whether it's in
2385 * the ISSUED or DONE states.
2386 *
2387 * The important thing, is we treat the lwb differently depending on
2388 * if it's ISSUED or OPENED, and block any other threads that might
2389 * attempt to issue this lwb. For that reason we hold the
2390 * zl_issuer_lock when checking the lwb_state; we must not call
2391 * zil_lwb_write_issue() if the lwb had already been issued.
2392 *
2393 * See the comment above the lwb_state_t structure definition for
2394 * more details on the lwb states, and locking requirements.
2395 */
2396 if (lwb->lwb_state == LWB_STATE_ISSUED ||
2397 lwb->lwb_state == LWB_STATE_WRITE_DONE ||
2398 lwb->lwb_state == LWB_STATE_FLUSH_DONE)
2399 goto out;
2400
2401 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
2402
2403 /*
2404 * As described in the comments above zil_commit_waiter() and
2405 * zil_process_commit_list(), we need to issue this lwb's zio
2406 * since we've reached the commit waiter's timeout and it still
2407 * hasn't been issued.
2408 */
2409 lwb_t *nlwb = zil_lwb_write_issue(zilog, lwb);
2410
2411 IMPLY(nlwb != NULL, lwb->lwb_state != LWB_STATE_OPENED);
2412
2413 /*
2414 * Since the lwb's zio hadn't been issued by the time this thread
2415 * reached its timeout, we reset the zilog's "zl_cur_used" field
2416 * to influence the zil block size selection algorithm.
2417 *
2418 * By having to issue the lwb's zio here, it means the size of the
2419 * lwb was too large, given the incoming throughput of itxs. By
2420 * setting "zl_cur_used" to zero, we communicate this fact to the
2421 * block size selection algorithm, so it can take this informaiton
2422 * into account, and potentially select a smaller size for the
2423 * next lwb block that is allocated.
2424 */
2425 zilog->zl_cur_used = 0;
2426
2427 if (nlwb == NULL) {
2428 /*
2429 * When zil_lwb_write_issue() returns NULL, this
2430 * indicates zio_alloc_zil() failed to allocate the
2431 * "next" lwb on-disk. When this occurs, the ZIL write
2432 * pipeline must be stalled; see the comment within the
2433 * zil_commit_writer_stall() function for more details.
2434 *
2435 * We must drop the commit waiter's lock prior to
2436 * calling zil_commit_writer_stall() or else we can wind
2437 * up with the following deadlock:
2438 *
2439 * - This thread is waiting for the txg to sync while
2440 * holding the waiter's lock; txg_wait_synced() is
2441 * used within txg_commit_writer_stall().
2442 *
2443 * - The txg can't sync because it is waiting for this
2444 * lwb's zio callback to call dmu_tx_commit().
2445 *
2446 * - The lwb's zio callback can't call dmu_tx_commit()
2447 * because it's blocked trying to acquire the waiter's
2448 * lock, which occurs prior to calling dmu_tx_commit()
2449 */
2450 mutex_exit(&zcw->zcw_lock);
2451 zil_commit_writer_stall(zilog);
2452 mutex_enter(&zcw->zcw_lock);
2453 }
2454
2455 out:
2456 mutex_exit(&zilog->zl_issuer_lock);
2457 ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2458 }
2459
2460 /*
2461 * This function is responsible for performing the following two tasks:
2462 *
2463 * 1. its primary responsibility is to block until the given "commit
2464 * waiter" is considered "done".
2465 *
2466 * 2. its secondary responsibility is to issue the zio for the lwb that
2467 * the given "commit waiter" is waiting on, if this function has
2468 * waited "long enough" and the lwb is still in the "open" state.
2469 *
2470 * Given a sufficient amount of itxs being generated and written using
2471 * the ZIL, the lwb's zio will be issued via the zil_lwb_commit()
2472 * function. If this does not occur, this secondary responsibility will
2473 * ensure the lwb is issued even if there is not other synchronous
2474 * activity on the system.
2475 *
2476 * For more details, see zil_process_commit_list(); more specifically,
2477 * the comment at the bottom of that function.
2478 */
2479 static void
zil_commit_waiter(zilog_t * zilog,zil_commit_waiter_t * zcw)2480 zil_commit_waiter(zilog_t *zilog, zil_commit_waiter_t *zcw)
2481 {
2482 ASSERT(!MUTEX_HELD(&zilog->zl_lock));
2483 ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
2484 ASSERT(spa_writeable(zilog->zl_spa));
2485
2486 mutex_enter(&zcw->zcw_lock);
2487
2488 /*
2489 * The timeout is scaled based on the lwb latency to avoid
2490 * significantly impacting the latency of each individual itx.
2491 * For more details, see the comment at the bottom of the
2492 * zil_process_commit_list() function.
2493 */
2494 int pct = MAX(zfs_commit_timeout_pct, 1);
2495 hrtime_t sleep = (zilog->zl_last_lwb_latency * pct) / 100;
2496 hrtime_t wakeup = gethrtime() + sleep;
2497 boolean_t timedout = B_FALSE;
2498
2499 while (!zcw->zcw_done) {
2500 ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2501
2502 lwb_t *lwb = zcw->zcw_lwb;
2503
2504 /*
2505 * Usually, the waiter will have a non-NULL lwb field here,
2506 * but it's possible for it to be NULL as a result of
2507 * zil_commit() racing with spa_sync().
2508 *
2509 * When zil_clean() is called, it's possible for the itxg
2510 * list (which may be cleaned via a taskq) to contain
2511 * commit itxs. When this occurs, the commit waiters linked
2512 * off of these commit itxs will not be committed to an
2513 * lwb. Additionally, these commit waiters will not be
2514 * marked done until zil_commit_waiter_skip() is called via
2515 * zil_itxg_clean().
2516 *
2517 * Thus, it's possible for this commit waiter (i.e. the
2518 * "zcw" variable) to be found in this "in between" state;
2519 * where it's "zcw_lwb" field is NULL, and it hasn't yet
2520 * been skipped, so it's "zcw_done" field is still B_FALSE.
2521 */
2522 IMPLY(lwb != NULL, lwb->lwb_state != LWB_STATE_CLOSED);
2523
2524 if (lwb != NULL && lwb->lwb_state == LWB_STATE_OPENED) {
2525 ASSERT3B(timedout, ==, B_FALSE);
2526
2527 /*
2528 * If the lwb hasn't been issued yet, then we
2529 * need to wait with a timeout, in case this
2530 * function needs to issue the lwb after the
2531 * timeout is reached; responsibility (2) from
2532 * the comment above this function.
2533 */
2534 clock_t timeleft = cv_timedwait_hires(&zcw->zcw_cv,
2535 &zcw->zcw_lock, wakeup, USEC2NSEC(1),
2536 CALLOUT_FLAG_ABSOLUTE);
2537
2538 if (timeleft >= 0 || zcw->zcw_done)
2539 continue;
2540
2541 timedout = B_TRUE;
2542 zil_commit_waiter_timeout(zilog, zcw);
2543
2544 if (!zcw->zcw_done) {
2545 /*
2546 * If the commit waiter has already been
2547 * marked "done", it's possible for the
2548 * waiter's lwb structure to have already
2549 * been freed. Thus, we can only reliably
2550 * make these assertions if the waiter
2551 * isn't done.
2552 */
2553 ASSERT3P(lwb, ==, zcw->zcw_lwb);
2554 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_OPENED);
2555 }
2556 } else {
2557 /*
2558 * If the lwb isn't open, then it must have already
2559 * been issued. In that case, there's no need to
2560 * use a timeout when waiting for the lwb to
2561 * complete.
2562 *
2563 * Additionally, if the lwb is NULL, the waiter
2564 * will soon be signalled and marked done via
2565 * zil_clean() and zil_itxg_clean(), so no timeout
2566 * is required.
2567 */
2568
2569 IMPLY(lwb != NULL,
2570 lwb->lwb_state == LWB_STATE_ISSUED ||
2571 lwb->lwb_state == LWB_STATE_WRITE_DONE ||
2572 lwb->lwb_state == LWB_STATE_FLUSH_DONE);
2573 cv_wait(&zcw->zcw_cv, &zcw->zcw_lock);
2574 }
2575 }
2576
2577 mutex_exit(&zcw->zcw_lock);
2578 }
2579
2580 static zil_commit_waiter_t *
zil_alloc_commit_waiter()2581 zil_alloc_commit_waiter()
2582 {
2583 zil_commit_waiter_t *zcw = kmem_cache_alloc(zil_zcw_cache, KM_SLEEP);
2584
2585 cv_init(&zcw->zcw_cv, NULL, CV_DEFAULT, NULL);
2586 mutex_init(&zcw->zcw_lock, NULL, MUTEX_DEFAULT, NULL);
2587 list_link_init(&zcw->zcw_node);
2588 zcw->zcw_lwb = NULL;
2589 zcw->zcw_done = B_FALSE;
2590 zcw->zcw_zio_error = 0;
2591
2592 return (zcw);
2593 }
2594
2595 static void
zil_free_commit_waiter(zil_commit_waiter_t * zcw)2596 zil_free_commit_waiter(zil_commit_waiter_t *zcw)
2597 {
2598 ASSERT(!list_link_active(&zcw->zcw_node));
2599 ASSERT3P(zcw->zcw_lwb, ==, NULL);
2600 ASSERT3B(zcw->zcw_done, ==, B_TRUE);
2601 mutex_destroy(&zcw->zcw_lock);
2602 cv_destroy(&zcw->zcw_cv);
2603 kmem_cache_free(zil_zcw_cache, zcw);
2604 }
2605
2606 /*
2607 * This function is used to create a TX_COMMIT itx and assign it. This
2608 * way, it will be linked into the ZIL's list of synchronous itxs, and
2609 * then later committed to an lwb (or skipped) when
2610 * zil_process_commit_list() is called.
2611 */
2612 static void
zil_commit_itx_assign(zilog_t * zilog,zil_commit_waiter_t * zcw)2613 zil_commit_itx_assign(zilog_t *zilog, zil_commit_waiter_t *zcw)
2614 {
2615 dmu_tx_t *tx = dmu_tx_create(zilog->zl_os);
2616 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
2617
2618 itx_t *itx = zil_itx_create(TX_COMMIT, sizeof (lr_t));
2619 itx->itx_sync = B_TRUE;
2620 itx->itx_private = zcw;
2621
2622 zil_itx_assign(zilog, itx, tx);
2623
2624 dmu_tx_commit(tx);
2625 }
2626
2627 /*
2628 * Commit ZFS Intent Log transactions (itxs) to stable storage.
2629 *
2630 * When writing ZIL transactions to the on-disk representation of the
2631 * ZIL, the itxs are committed to a Log Write Block (lwb). Multiple
2632 * itxs can be committed to a single lwb. Once a lwb is written and
2633 * committed to stable storage (i.e. the lwb is written, and vdevs have
2634 * been flushed), each itx that was committed to that lwb is also
2635 * considered to be committed to stable storage.
2636 *
2637 * When an itx is committed to an lwb, the log record (lr_t) contained
2638 * by the itx is copied into the lwb's zio buffer, and once this buffer
2639 * is written to disk, it becomes an on-disk ZIL block.
2640 *
2641 * As itxs are generated, they're inserted into the ZIL's queue of
2642 * uncommitted itxs. The semantics of zil_commit() are such that it will
2643 * block until all itxs that were in the queue when it was called, are
2644 * committed to stable storage.
2645 *
2646 * If "foid" is zero, this means all "synchronous" and "asynchronous"
2647 * itxs, for all objects in the dataset, will be committed to stable
2648 * storage prior to zil_commit() returning. If "foid" is non-zero, all
2649 * "synchronous" itxs for all objects, but only "asynchronous" itxs
2650 * that correspond to the foid passed in, will be committed to stable
2651 * storage prior to zil_commit() returning.
2652 *
2653 * Generally speaking, when zil_commit() is called, the consumer doesn't
2654 * actually care about _all_ of the uncommitted itxs. Instead, they're
2655 * simply trying to waiting for a specific itx to be committed to disk,
2656 * but the interface(s) for interacting with the ZIL don't allow such
2657 * fine-grained communication. A better interface would allow a consumer
2658 * to create and assign an itx, and then pass a reference to this itx to
2659 * zil_commit(); such that zil_commit() would return as soon as that
2660 * specific itx was committed to disk (instead of waiting for _all_
2661 * itxs to be committed).
2662 *
2663 * When a thread calls zil_commit() a special "commit itx" will be
2664 * generated, along with a corresponding "waiter" for this commit itx.
2665 * zil_commit() will wait on this waiter's CV, such that when the waiter
2666 * is marked done, and signalled, zil_commit() will return.
2667 *
2668 * This commit itx is inserted into the queue of uncommitted itxs. This
2669 * provides an easy mechanism for determining which itxs were in the
2670 * queue prior to zil_commit() having been called, and which itxs were
2671 * added after zil_commit() was called.
2672 *
2673 * The commit it is special; it doesn't have any on-disk representation.
2674 * When a commit itx is "committed" to an lwb, the waiter associated
2675 * with it is linked onto the lwb's list of waiters. Then, when that lwb
2676 * completes, each waiter on the lwb's list is marked done and signalled
2677 * -- allowing the thread waiting on the waiter to return from zil_commit().
2678 *
2679 * It's important to point out a few critical factors that allow us
2680 * to make use of the commit itxs, commit waiters, per-lwb lists of
2681 * commit waiters, and zio completion callbacks like we're doing:
2682 *
2683 * 1. The list of waiters for each lwb is traversed, and each commit
2684 * waiter is marked "done" and signalled, in the zio completion
2685 * callback of the lwb's zio[*].
2686 *
2687 * * Actually, the waiters are signalled in the zio completion
2688 * callback of the root zio for the DKIOCFLUSHWRITECACHE commands
2689 * that are sent to the vdevs upon completion of the lwb zio.
2690 *
2691 * 2. When the itxs are inserted into the ZIL's queue of uncommitted
2692 * itxs, the order in which they are inserted is preserved[*]; as
2693 * itxs are added to the queue, they are added to the tail of
2694 * in-memory linked lists.
2695 *
2696 * When committing the itxs to lwbs (to be written to disk), they
2697 * are committed in the same order in which the itxs were added to
2698 * the uncommitted queue's linked list(s); i.e. the linked list of
2699 * itxs to commit is traversed from head to tail, and each itx is
2700 * committed to an lwb in that order.
2701 *
2702 * * To clarify:
2703 *
2704 * - the order of "sync" itxs is preserved w.r.t. other
2705 * "sync" itxs, regardless of the corresponding objects.
2706 * - the order of "async" itxs is preserved w.r.t. other
2707 * "async" itxs corresponding to the same object.
2708 * - the order of "async" itxs is *not* preserved w.r.t. other
2709 * "async" itxs corresponding to different objects.
2710 * - the order of "sync" itxs w.r.t. "async" itxs (or vice
2711 * versa) is *not* preserved, even for itxs that correspond
2712 * to the same object.
2713 *
2714 * For more details, see: zil_itx_assign(), zil_async_to_sync(),
2715 * zil_get_commit_list(), and zil_process_commit_list().
2716 *
2717 * 3. The lwbs represent a linked list of blocks on disk. Thus, any
2718 * lwb cannot be considered committed to stable storage, until its
2719 * "previous" lwb is also committed to stable storage. This fact,
2720 * coupled with the fact described above, means that itxs are
2721 * committed in (roughly) the order in which they were generated.
2722 * This is essential because itxs are dependent on prior itxs.
2723 * Thus, we *must not* deem an itx as being committed to stable
2724 * storage, until *all* prior itxs have also been committed to
2725 * stable storage.
2726 *
2727 * To enforce this ordering of lwb zio's, while still leveraging as
2728 * much of the underlying storage performance as possible, we rely
2729 * on two fundamental concepts:
2730 *
2731 * 1. The creation and issuance of lwb zio's is protected by
2732 * the zilog's "zl_issuer_lock", which ensures only a single
2733 * thread is creating and/or issuing lwb's at a time
2734 * 2. The "previous" lwb is a child of the "current" lwb
2735 * (leveraging the zio parent-child depenency graph)
2736 *
2737 * By relying on this parent-child zio relationship, we can have
2738 * many lwb zio's concurrently issued to the underlying storage,
2739 * but the order in which they complete will be the same order in
2740 * which they were created.
2741 */
2742 void
zil_commit(zilog_t * zilog,uint64_t foid)2743 zil_commit(zilog_t *zilog, uint64_t foid)
2744 {
2745 /*
2746 * We should never attempt to call zil_commit on a snapshot for
2747 * a couple of reasons:
2748 *
2749 * 1. A snapshot may never be modified, thus it cannot have any
2750 * in-flight itxs that would have modified the dataset.
2751 *
2752 * 2. By design, when zil_commit() is called, a commit itx will
2753 * be assigned to this zilog; as a result, the zilog will be
2754 * dirtied. We must not dirty the zilog of a snapshot; there's
2755 * checks in the code that enforce this invariant, and will
2756 * cause a panic if it's not upheld.
2757 */
2758 ASSERT3B(dmu_objset_is_snapshot(zilog->zl_os), ==, B_FALSE);
2759
2760 if (zilog->zl_sync == ZFS_SYNC_DISABLED)
2761 return;
2762
2763 if (!spa_writeable(zilog->zl_spa)) {
2764 /*
2765 * If the SPA is not writable, there should never be any
2766 * pending itxs waiting to be committed to disk. If that
2767 * weren't true, we'd skip writing those itxs out, and
2768 * would break the sematics of zil_commit(); thus, we're
2769 * verifying that truth before we return to the caller.
2770 */
2771 ASSERT(list_is_empty(&zilog->zl_lwb_list));
2772 ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
2773 for (int i = 0; i < TXG_SIZE; i++)
2774 ASSERT3P(zilog->zl_itxg[i].itxg_itxs, ==, NULL);
2775 return;
2776 }
2777
2778 /*
2779 * If the ZIL is suspended, we don't want to dirty it by calling
2780 * zil_commit_itx_assign() below, nor can we write out
2781 * lwbs like would be done in zil_commit_write(). Thus, we
2782 * simply rely on txg_wait_synced() to maintain the necessary
2783 * semantics, and avoid calling those functions altogether.
2784 */
2785 if (zilog->zl_suspend > 0) {
2786 txg_wait_synced(zilog->zl_dmu_pool, 0);
2787 return;
2788 }
2789
2790 zil_commit_impl(zilog, foid);
2791 }
2792
2793 void
zil_commit_impl(zilog_t * zilog,uint64_t foid)2794 zil_commit_impl(zilog_t *zilog, uint64_t foid)
2795 {
2796 /*
2797 * Move the "async" itxs for the specified foid to the "sync"
2798 * queues, such that they will be later committed (or skipped)
2799 * to an lwb when zil_process_commit_list() is called.
2800 *
2801 * Since these "async" itxs must be committed prior to this
2802 * call to zil_commit returning, we must perform this operation
2803 * before we call zil_commit_itx_assign().
2804 */
2805 zil_async_to_sync(zilog, foid);
2806
2807 /*
2808 * We allocate a new "waiter" structure which will initially be
2809 * linked to the commit itx using the itx's "itx_private" field.
2810 * Since the commit itx doesn't represent any on-disk state,
2811 * when it's committed to an lwb, rather than copying the its
2812 * lr_t into the lwb's buffer, the commit itx's "waiter" will be
2813 * added to the lwb's list of waiters. Then, when the lwb is
2814 * committed to stable storage, each waiter in the lwb's list of
2815 * waiters will be marked "done", and signalled.
2816 *
2817 * We must create the waiter and assign the commit itx prior to
2818 * calling zil_commit_writer(), or else our specific commit itx
2819 * is not guaranteed to be committed to an lwb prior to calling
2820 * zil_commit_waiter().
2821 */
2822 zil_commit_waiter_t *zcw = zil_alloc_commit_waiter();
2823 zil_commit_itx_assign(zilog, zcw);
2824
2825 zil_commit_writer(zilog, zcw);
2826 zil_commit_waiter(zilog, zcw);
2827
2828 if (zcw->zcw_zio_error != 0) {
2829 /*
2830 * If there was an error writing out the ZIL blocks that
2831 * this thread is waiting on, then we fallback to
2832 * relying on spa_sync() to write out the data this
2833 * thread is waiting on. Obviously this has performance
2834 * implications, but the expectation is for this to be
2835 * an exceptional case, and shouldn't occur often.
2836 */
2837 DTRACE_PROBE2(zil__commit__io__error,
2838 zilog_t *, zilog, zil_commit_waiter_t *, zcw);
2839 txg_wait_synced(zilog->zl_dmu_pool, 0);
2840 }
2841
2842 zil_free_commit_waiter(zcw);
2843 }
2844
2845 /*
2846 * Called in syncing context to free committed log blocks and update log header.
2847 */
2848 void
zil_sync(zilog_t * zilog,dmu_tx_t * tx)2849 zil_sync(zilog_t *zilog, dmu_tx_t *tx)
2850 {
2851 zil_header_t *zh = zil_header_in_syncing_context(zilog);
2852 uint64_t txg = dmu_tx_get_txg(tx);
2853 spa_t *spa = zilog->zl_spa;
2854 uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK];
2855 lwb_t *lwb;
2856
2857 /*
2858 * We don't zero out zl_destroy_txg, so make sure we don't try
2859 * to destroy it twice.
2860 */
2861 if (spa_sync_pass(spa) != 1)
2862 return;
2863
2864 mutex_enter(&zilog->zl_lock);
2865
2866 ASSERT(zilog->zl_stop_sync == 0);
2867
2868 if (*replayed_seq != 0) {
2869 ASSERT(zh->zh_replay_seq < *replayed_seq);
2870 zh->zh_replay_seq = *replayed_seq;
2871 *replayed_seq = 0;
2872 }
2873
2874 if (zilog->zl_destroy_txg == txg) {
2875 blkptr_t blk = zh->zh_log;
2876
2877 ASSERT(list_head(&zilog->zl_lwb_list) == NULL);
2878
2879 bzero(zh, sizeof (zil_header_t));
2880 bzero(zilog->zl_replayed_seq, sizeof (zilog->zl_replayed_seq));
2881
2882 if (zilog->zl_keep_first) {
2883 /*
2884 * If this block was part of log chain that couldn't
2885 * be claimed because a device was missing during
2886 * zil_claim(), but that device later returns,
2887 * then this block could erroneously appear valid.
2888 * To guard against this, assign a new GUID to the new
2889 * log chain so it doesn't matter what blk points to.
2890 */
2891 zil_init_log_chain(zilog, &blk);
2892 zh->zh_log = blk;
2893 }
2894 }
2895
2896 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
2897 zh->zh_log = lwb->lwb_blk;
2898 if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg)
2899 break;
2900 list_remove(&zilog->zl_lwb_list, lwb);
2901 zio_free(spa, txg, &lwb->lwb_blk);
2902 zil_free_lwb(zilog, lwb);
2903
2904 /*
2905 * If we don't have anything left in the lwb list then
2906 * we've had an allocation failure and we need to zero
2907 * out the zil_header blkptr so that we don't end
2908 * up freeing the same block twice.
2909 */
2910 if (list_head(&zilog->zl_lwb_list) == NULL)
2911 BP_ZERO(&zh->zh_log);
2912 }
2913 mutex_exit(&zilog->zl_lock);
2914 }
2915
2916 /* ARGSUSED */
2917 static int
zil_lwb_cons(void * vbuf,void * unused,int kmflag)2918 zil_lwb_cons(void *vbuf, void *unused, int kmflag)
2919 {
2920 lwb_t *lwb = vbuf;
2921 list_create(&lwb->lwb_waiters, sizeof (zil_commit_waiter_t),
2922 offsetof(zil_commit_waiter_t, zcw_node));
2923 avl_create(&lwb->lwb_vdev_tree, zil_lwb_vdev_compare,
2924 sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node));
2925 mutex_init(&lwb->lwb_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
2926 return (0);
2927 }
2928
2929 /* ARGSUSED */
2930 static void
zil_lwb_dest(void * vbuf,void * unused)2931 zil_lwb_dest(void *vbuf, void *unused)
2932 {
2933 lwb_t *lwb = vbuf;
2934 mutex_destroy(&lwb->lwb_vdev_lock);
2935 avl_destroy(&lwb->lwb_vdev_tree);
2936 list_destroy(&lwb->lwb_waiters);
2937 }
2938
2939 void
zil_init(void)2940 zil_init(void)
2941 {
2942 zil_lwb_cache = kmem_cache_create("zil_lwb_cache",
2943 sizeof (lwb_t), 0, zil_lwb_cons, zil_lwb_dest, NULL, NULL, NULL, 0);
2944
2945 zil_zcw_cache = kmem_cache_create("zil_zcw_cache",
2946 sizeof (zil_commit_waiter_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
2947 }
2948
2949 void
zil_fini(void)2950 zil_fini(void)
2951 {
2952 kmem_cache_destroy(zil_zcw_cache);
2953 kmem_cache_destroy(zil_lwb_cache);
2954 }
2955
2956 void
zil_set_sync(zilog_t * zilog,uint64_t sync)2957 zil_set_sync(zilog_t *zilog, uint64_t sync)
2958 {
2959 zilog->zl_sync = sync;
2960 }
2961
2962 void
zil_set_logbias(zilog_t * zilog,uint64_t logbias)2963 zil_set_logbias(zilog_t *zilog, uint64_t logbias)
2964 {
2965 zilog->zl_logbias = logbias;
2966 }
2967
2968 zilog_t *
zil_alloc(objset_t * os,zil_header_t * zh_phys)2969 zil_alloc(objset_t *os, zil_header_t *zh_phys)
2970 {
2971 zilog_t *zilog;
2972
2973 zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP);
2974
2975 zilog->zl_header = zh_phys;
2976 zilog->zl_os = os;
2977 zilog->zl_spa = dmu_objset_spa(os);
2978 zilog->zl_dmu_pool = dmu_objset_pool(os);
2979 zilog->zl_destroy_txg = TXG_INITIAL - 1;
2980 zilog->zl_logbias = dmu_objset_logbias(os);
2981 zilog->zl_sync = dmu_objset_syncprop(os);
2982 zilog->zl_dirty_max_txg = 0;
2983 zilog->zl_last_lwb_opened = NULL;
2984 zilog->zl_last_lwb_latency = 0;
2985
2986 mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL);
2987 mutex_init(&zilog->zl_issuer_lock, NULL, MUTEX_DEFAULT, NULL);
2988
2989 for (int i = 0; i < TXG_SIZE; i++) {
2990 mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL,
2991 MUTEX_DEFAULT, NULL);
2992 }
2993
2994 list_create(&zilog->zl_lwb_list, sizeof (lwb_t),
2995 offsetof(lwb_t, lwb_node));
2996
2997 list_create(&zilog->zl_itx_commit_list, sizeof (itx_t),
2998 offsetof(itx_t, itx_node));
2999
3000 cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL);
3001
3002 return (zilog);
3003 }
3004
3005 void
zil_free(zilog_t * zilog)3006 zil_free(zilog_t *zilog)
3007 {
3008 zilog->zl_stop_sync = 1;
3009
3010 ASSERT0(zilog->zl_suspend);
3011 ASSERT0(zilog->zl_suspending);
3012
3013 ASSERT(list_is_empty(&zilog->zl_lwb_list));
3014 list_destroy(&zilog->zl_lwb_list);
3015
3016 ASSERT(list_is_empty(&zilog->zl_itx_commit_list));
3017 list_destroy(&zilog->zl_itx_commit_list);
3018
3019 for (int i = 0; i < TXG_SIZE; i++) {
3020 /*
3021 * It's possible for an itx to be generated that doesn't dirty
3022 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean()
3023 * callback to remove the entry. We remove those here.
3024 *
3025 * Also free up the ziltest itxs.
3026 */
3027 if (zilog->zl_itxg[i].itxg_itxs)
3028 zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs);
3029 mutex_destroy(&zilog->zl_itxg[i].itxg_lock);
3030 }
3031
3032 mutex_destroy(&zilog->zl_issuer_lock);
3033 mutex_destroy(&zilog->zl_lock);
3034
3035 cv_destroy(&zilog->zl_cv_suspend);
3036
3037 kmem_free(zilog, sizeof (zilog_t));
3038 }
3039
3040 /*
3041 * Open an intent log.
3042 */
3043 zilog_t *
zil_open(objset_t * os,zil_get_data_t * get_data)3044 zil_open(objset_t *os, zil_get_data_t *get_data)
3045 {
3046 zilog_t *zilog = dmu_objset_zil(os);
3047
3048 ASSERT3P(zilog->zl_get_data, ==, NULL);
3049 ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
3050 ASSERT(list_is_empty(&zilog->zl_lwb_list));
3051
3052 zilog->zl_get_data = get_data;
3053
3054 return (zilog);
3055 }
3056
3057 /*
3058 * Close an intent log.
3059 */
3060 void
zil_close(zilog_t * zilog)3061 zil_close(zilog_t *zilog)
3062 {
3063 lwb_t *lwb;
3064 uint64_t txg;
3065
3066 if (!dmu_objset_is_snapshot(zilog->zl_os)) {
3067 zil_commit(zilog, 0);
3068 } else {
3069 ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL);
3070 ASSERT0(zilog->zl_dirty_max_txg);
3071 ASSERT3B(zilog_is_dirty(zilog), ==, B_FALSE);
3072 }
3073
3074 mutex_enter(&zilog->zl_lock);
3075 lwb = list_tail(&zilog->zl_lwb_list);
3076 if (lwb == NULL)
3077 txg = zilog->zl_dirty_max_txg;
3078 else
3079 txg = MAX(zilog->zl_dirty_max_txg, lwb->lwb_max_txg);
3080 mutex_exit(&zilog->zl_lock);
3081
3082 /*
3083 * We need to use txg_wait_synced() to wait long enough for the
3084 * ZIL to be clean, and to wait for all pending lwbs to be
3085 * written out.
3086 */
3087 if (txg != 0)
3088 txg_wait_synced(zilog->zl_dmu_pool, txg);
3089
3090 if (zilog_is_dirty(zilog))
3091 zfs_dbgmsg("zil (%p) is dirty, txg %llu", zilog, txg);
3092 if (txg < spa_freeze_txg(zilog->zl_spa))
3093 VERIFY(!zilog_is_dirty(zilog));
3094
3095 zilog->zl_get_data = NULL;
3096
3097 /*
3098 * We should have only one lwb left on the list; remove it now.
3099 */
3100 mutex_enter(&zilog->zl_lock);
3101 lwb = list_head(&zilog->zl_lwb_list);
3102 if (lwb != NULL) {
3103 ASSERT3P(lwb, ==, list_tail(&zilog->zl_lwb_list));
3104 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
3105 list_remove(&zilog->zl_lwb_list, lwb);
3106 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
3107 zil_free_lwb(zilog, lwb);
3108 }
3109 mutex_exit(&zilog->zl_lock);
3110 }
3111
3112 static char *suspend_tag = "zil suspending";
3113
3114 /*
3115 * Suspend an intent log. While in suspended mode, we still honor
3116 * synchronous semantics, but we rely on txg_wait_synced() to do it.
3117 * On old version pools, we suspend the log briefly when taking a
3118 * snapshot so that it will have an empty intent log.
3119 *
3120 * Long holds are not really intended to be used the way we do here --
3121 * held for such a short time. A concurrent caller of dsl_dataset_long_held()
3122 * could fail. Therefore we take pains to only put a long hold if it is
3123 * actually necessary. Fortunately, it will only be necessary if the
3124 * objset is currently mounted (or the ZVOL equivalent). In that case it
3125 * will already have a long hold, so we are not really making things any worse.
3126 *
3127 * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or
3128 * zvol_state_t), and use their mechanism to prevent their hold from being
3129 * dropped (e.g. VFS_HOLD()). However, that would be even more pain for
3130 * very little gain.
3131 *
3132 * if cookiep == NULL, this does both the suspend & resume.
3133 * Otherwise, it returns with the dataset "long held", and the cookie
3134 * should be passed into zil_resume().
3135 */
3136 int
zil_suspend(const char * osname,void ** cookiep)3137 zil_suspend(const char *osname, void **cookiep)
3138 {
3139 objset_t *os;
3140 zilog_t *zilog;
3141 const zil_header_t *zh;
3142 int error;
3143
3144 error = dmu_objset_hold(osname, suspend_tag, &os);
3145 if (error != 0)
3146 return (error);
3147 zilog = dmu_objset_zil(os);
3148
3149 mutex_enter(&zilog->zl_lock);
3150 zh = zilog->zl_header;
3151
3152 if (zh->zh_flags & ZIL_REPLAY_NEEDED) { /* unplayed log */
3153 mutex_exit(&zilog->zl_lock);
3154 dmu_objset_rele(os, suspend_tag);
3155 return (SET_ERROR(EBUSY));
3156 }
3157
3158 /*
3159 * Don't put a long hold in the cases where we can avoid it. This
3160 * is when there is no cookie so we are doing a suspend & resume
3161 * (i.e. called from zil_vdev_offline()), and there's nothing to do
3162 * for the suspend because it's already suspended, or there's no ZIL.
3163 */
3164 if (cookiep == NULL && !zilog->zl_suspending &&
3165 (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) {
3166 mutex_exit(&zilog->zl_lock);
3167 dmu_objset_rele(os, suspend_tag);
3168 return (0);
3169 }
3170
3171 dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag);
3172 dsl_pool_rele(dmu_objset_pool(os), suspend_tag);
3173
3174 zilog->zl_suspend++;
3175
3176 if (zilog->zl_suspend > 1) {
3177 /*
3178 * Someone else is already suspending it.
3179 * Just wait for them to finish.
3180 */
3181
3182 while (zilog->zl_suspending)
3183 cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock);
3184 mutex_exit(&zilog->zl_lock);
3185
3186 if (cookiep == NULL)
3187 zil_resume(os);
3188 else
3189 *cookiep = os;
3190 return (0);
3191 }
3192
3193 /*
3194 * If there is no pointer to an on-disk block, this ZIL must not
3195 * be active (e.g. filesystem not mounted), so there's nothing
3196 * to clean up.
3197 */
3198 if (BP_IS_HOLE(&zh->zh_log)) {
3199 ASSERT(cookiep != NULL); /* fast path already handled */
3200
3201 *cookiep = os;
3202 mutex_exit(&zilog->zl_lock);
3203 return (0);
3204 }
3205
3206 /*
3207 * The ZIL has work to do. Ensure that the associated encryption
3208 * key will remain mapped while we are committing the log by
3209 * grabbing a reference to it. If the key isn't loaded we have no
3210 * choice but to return an error until the wrapping key is loaded.
3211 */
3212 if (os->os_encrypted &&
3213 dsl_dataset_create_key_mapping(dmu_objset_ds(os)) != 0) {
3214 zilog->zl_suspend--;
3215 mutex_exit(&zilog->zl_lock);
3216 dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
3217 dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
3218 return (SET_ERROR(EBUSY));
3219 }
3220
3221 zilog->zl_suspending = B_TRUE;
3222 mutex_exit(&zilog->zl_lock);
3223
3224 /*
3225 * We need to use zil_commit_impl to ensure we wait for all
3226 * LWB_STATE_OPENED and LWB_STATE_ISSUED lwb's to be committed
3227 * to disk before proceeding. If we used zil_commit instead, it
3228 * would just call txg_wait_synced(), because zl_suspend is set.
3229 * txg_wait_synced() doesn't wait for these lwb's to be
3230 * LWB_STATE_FLUSH_DONE before returning.
3231 */
3232 zil_commit_impl(zilog, 0);
3233
3234 /*
3235 * Now that we've ensured all lwb's are LWB_STATE_DONE,
3236 * txg_wait_synced() will be called from within zil_destroy(),
3237 * which will ensure the data from the zilog has migrated to the
3238 * main pool before it returns.
3239 */
3240 txg_wait_synced(zilog->zl_dmu_pool, 0);
3241
3242 zil_destroy(zilog, B_FALSE);
3243
3244 mutex_enter(&zilog->zl_lock);
3245 zilog->zl_suspending = B_FALSE;
3246 cv_broadcast(&zilog->zl_cv_suspend);
3247 mutex_exit(&zilog->zl_lock);
3248
3249 if (os->os_encrypted)
3250 dsl_dataset_remove_key_mapping(dmu_objset_ds(os));
3251
3252 if (cookiep == NULL)
3253 zil_resume(os);
3254 else
3255 *cookiep = os;
3256 return (0);
3257 }
3258
3259 void
zil_resume(void * cookie)3260 zil_resume(void *cookie)
3261 {
3262 objset_t *os = cookie;
3263 zilog_t *zilog = dmu_objset_zil(os);
3264
3265 mutex_enter(&zilog->zl_lock);
3266 ASSERT(zilog->zl_suspend != 0);
3267 zilog->zl_suspend--;
3268 mutex_exit(&zilog->zl_lock);
3269 dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
3270 dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
3271 }
3272
3273 typedef struct zil_replay_arg {
3274 zil_replay_func_t **zr_replay;
3275 void *zr_arg;
3276 boolean_t zr_byteswap;
3277 char *zr_lr;
3278 } zil_replay_arg_t;
3279
3280 static int
zil_replay_error(zilog_t * zilog,lr_t * lr,int error)3281 zil_replay_error(zilog_t *zilog, lr_t *lr, int error)
3282 {
3283 char name[ZFS_MAX_DATASET_NAME_LEN];
3284
3285 zilog->zl_replaying_seq--; /* didn't actually replay this one */
3286
3287 dmu_objset_name(zilog->zl_os, name);
3288
3289 cmn_err(CE_WARN, "ZFS replay transaction error %d, "
3290 "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name,
3291 (u_longlong_t)lr->lrc_seq,
3292 (u_longlong_t)(lr->lrc_txtype & ~TX_CI),
3293 (lr->lrc_txtype & TX_CI) ? "CI" : "");
3294
3295 return (error);
3296 }
3297
3298 static int
zil_replay_log_record(zilog_t * zilog,lr_t * lr,void * zra,uint64_t claim_txg)3299 zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg)
3300 {
3301 zil_replay_arg_t *zr = zra;
3302 const zil_header_t *zh = zilog->zl_header;
3303 uint64_t reclen = lr->lrc_reclen;
3304 uint64_t txtype = lr->lrc_txtype;
3305 int error = 0;
3306
3307 zilog->zl_replaying_seq = lr->lrc_seq;
3308
3309 if (lr->lrc_seq <= zh->zh_replay_seq) /* already replayed */
3310 return (0);
3311
3312 if (lr->lrc_txg < claim_txg) /* already committed */
3313 return (0);
3314
3315 /* Strip case-insensitive bit, still present in log record */
3316 txtype &= ~TX_CI;
3317
3318 if (txtype == 0 || txtype >= TX_MAX_TYPE)
3319 return (zil_replay_error(zilog, lr, EINVAL));
3320
3321 /*
3322 * If this record type can be logged out of order, the object
3323 * (lr_foid) may no longer exist. That's legitimate, not an error.
3324 */
3325 if (TX_OOO(txtype)) {
3326 error = dmu_object_info(zilog->zl_os,
3327 LR_FOID_GET_OBJ(((lr_ooo_t *)lr)->lr_foid), NULL);
3328 if (error == ENOENT || error == EEXIST)
3329 return (0);
3330 }
3331
3332 /*
3333 * Make a copy of the data so we can revise and extend it.
3334 */
3335 bcopy(lr, zr->zr_lr, reclen);
3336
3337 /*
3338 * If this is a TX_WRITE with a blkptr, suck in the data.
3339 */
3340 if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) {
3341 error = zil_read_log_data(zilog, (lr_write_t *)lr,
3342 zr->zr_lr + reclen);
3343 if (error != 0)
3344 return (zil_replay_error(zilog, lr, error));
3345 }
3346
3347 /*
3348 * The log block containing this lr may have been byteswapped
3349 * so that we can easily examine common fields like lrc_txtype.
3350 * However, the log is a mix of different record types, and only the
3351 * replay vectors know how to byteswap their records. Therefore, if
3352 * the lr was byteswapped, undo it before invoking the replay vector.
3353 */
3354 if (zr->zr_byteswap)
3355 byteswap_uint64_array(zr->zr_lr, reclen);
3356
3357 /*
3358 * We must now do two things atomically: replay this log record,
3359 * and update the log header sequence number to reflect the fact that
3360 * we did so. At the end of each replay function the sequence number
3361 * is updated if we are in replay mode.
3362 */
3363 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap);
3364 if (error != 0) {
3365 /*
3366 * The DMU's dnode layer doesn't see removes until the txg
3367 * commits, so a subsequent claim can spuriously fail with
3368 * EEXIST. So if we receive any error we try syncing out
3369 * any removes then retry the transaction. Note that we
3370 * specify B_FALSE for byteswap now, so we don't do it twice.
3371 */
3372 txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0);
3373 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE);
3374 if (error != 0)
3375 return (zil_replay_error(zilog, lr, error));
3376 }
3377 return (0);
3378 }
3379
3380 /* ARGSUSED */
3381 static int
zil_incr_blks(zilog_t * zilog,blkptr_t * bp,void * arg,uint64_t claim_txg)3382 zil_incr_blks(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg)
3383 {
3384 zilog->zl_replay_blks++;
3385
3386 return (0);
3387 }
3388
3389 /*
3390 * If this dataset has a non-empty intent log, replay it and destroy it.
3391 */
3392 void
zil_replay(objset_t * os,void * arg,zil_replay_func_t * replay_func[TX_MAX_TYPE])3393 zil_replay(objset_t *os, void *arg, zil_replay_func_t *replay_func[TX_MAX_TYPE])
3394 {
3395 zilog_t *zilog = dmu_objset_zil(os);
3396 const zil_header_t *zh = zilog->zl_header;
3397 zil_replay_arg_t zr;
3398
3399 if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) {
3400 zil_destroy(zilog, B_TRUE);
3401 return;
3402 }
3403
3404 zr.zr_replay = replay_func;
3405 zr.zr_arg = arg;
3406 zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log);
3407 zr.zr_lr = kmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP);
3408
3409 /*
3410 * Wait for in-progress removes to sync before starting replay.
3411 */
3412 txg_wait_synced(zilog->zl_dmu_pool, 0);
3413
3414 zilog->zl_replay = B_TRUE;
3415 zilog->zl_replay_time = ddi_get_lbolt();
3416 ASSERT(zilog->zl_replay_blks == 0);
3417 (void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr,
3418 zh->zh_claim_txg, B_TRUE);
3419 kmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE);
3420
3421 zil_destroy(zilog, B_FALSE);
3422 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
3423 zilog->zl_replay = B_FALSE;
3424 }
3425
3426 boolean_t
zil_replaying(zilog_t * zilog,dmu_tx_t * tx)3427 zil_replaying(zilog_t *zilog, dmu_tx_t *tx)
3428 {
3429 if (zilog->zl_sync == ZFS_SYNC_DISABLED)
3430 return (B_TRUE);
3431
3432 if (zilog->zl_replay) {
3433 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
3434 zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] =
3435 zilog->zl_replaying_seq;
3436 return (B_TRUE);
3437 }
3438
3439 return (B_FALSE);
3440 }
3441
3442 /* ARGSUSED */
3443 int
zil_reset(const char * osname,void * arg)3444 zil_reset(const char *osname, void *arg)
3445 {
3446 int error;
3447
3448 error = zil_suspend(osname, NULL);
3449 if (error != 0)
3450 return (SET_ERROR(EEXIST));
3451 return (0);
3452 }
3453