1 //===- AMDGPUDisassembler.cpp - Disassembler for AMDGPU ISA ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //===----------------------------------------------------------------------===//
10 //
11 /// \file
12 ///
13 /// This file contains definition for AMDGPU ISA disassembler
14 //
15 //===----------------------------------------------------------------------===//
16
17 // ToDo: What to do with instruction suffixes (v_mov_b32 vs v_mov_b32_e32)?
18
19 #include "Disassembler/AMDGPUDisassembler.h"
20 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
21 #include "SIDefines.h"
22 #include "SIRegisterInfo.h"
23 #include "TargetInfo/AMDGPUTargetInfo.h"
24 #include "Utils/AMDGPUBaseInfo.h"
25 #include "llvm-c/DisassemblerTypes.h"
26 #include "llvm/BinaryFormat/ELF.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCContext.h"
29 #include "llvm/MC/MCDecoderOps.h"
30 #include "llvm/MC/MCExpr.h"
31 #include "llvm/MC/MCInstrDesc.h"
32 #include "llvm/MC/MCRegisterInfo.h"
33 #include "llvm/MC/MCSubtargetInfo.h"
34 #include "llvm/MC/TargetRegistry.h"
35 #include "llvm/Support/AMDHSAKernelDescriptor.h"
36
37 using namespace llvm;
38
39 #define DEBUG_TYPE "amdgpu-disassembler"
40
41 #define SGPR_MAX \
42 (isGFX10Plus() ? AMDGPU::EncValues::SGPR_MAX_GFX10 \
43 : AMDGPU::EncValues::SGPR_MAX_SI)
44
45 using DecodeStatus = llvm::MCDisassembler::DecodeStatus;
46
AMDGPUDisassembler(const MCSubtargetInfo & STI,MCContext & Ctx,MCInstrInfo const * MCII)47 AMDGPUDisassembler::AMDGPUDisassembler(const MCSubtargetInfo &STI,
48 MCContext &Ctx,
49 MCInstrInfo const *MCII) :
50 MCDisassembler(STI, Ctx), MCII(MCII), MRI(*Ctx.getRegisterInfo()),
51 TargetMaxInstBytes(Ctx.getAsmInfo()->getMaxInstLength(&STI)) {
52
53 // ToDo: AMDGPUDisassembler supports only VI ISA.
54 if (!STI.getFeatureBits()[AMDGPU::FeatureGCN3Encoding] && !isGFX10Plus())
55 report_fatal_error("Disassembly not yet supported for subtarget");
56 }
57
58 inline static MCDisassembler::DecodeStatus
addOperand(MCInst & Inst,const MCOperand & Opnd)59 addOperand(MCInst &Inst, const MCOperand& Opnd) {
60 Inst.addOperand(Opnd);
61 return Opnd.isValid() ?
62 MCDisassembler::Success :
63 MCDisassembler::Fail;
64 }
65
insertNamedMCOperand(MCInst & MI,const MCOperand & Op,uint16_t NameIdx)66 static int insertNamedMCOperand(MCInst &MI, const MCOperand &Op,
67 uint16_t NameIdx) {
68 int OpIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), NameIdx);
69 if (OpIdx != -1) {
70 auto I = MI.begin();
71 std::advance(I, OpIdx);
72 MI.insert(I, Op);
73 }
74 return OpIdx;
75 }
76
decodeSoppBrTarget(MCInst & Inst,unsigned Imm,uint64_t Addr,const MCDisassembler * Decoder)77 static DecodeStatus decodeSoppBrTarget(MCInst &Inst, unsigned Imm,
78 uint64_t Addr,
79 const MCDisassembler *Decoder) {
80 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
81
82 // Our branches take a simm16, but we need two extra bits to account for the
83 // factor of 4.
84 APInt SignedOffset(18, Imm * 4, true);
85 int64_t Offset = (SignedOffset.sext(64) + 4 + Addr).getSExtValue();
86
87 if (DAsm->tryAddingSymbolicOperand(Inst, Offset, Addr, true, 2, 2, 0))
88 return MCDisassembler::Success;
89 return addOperand(Inst, MCOperand::createImm(Imm));
90 }
91
decodeSMEMOffset(MCInst & Inst,unsigned Imm,uint64_t Addr,const MCDisassembler * Decoder)92 static DecodeStatus decodeSMEMOffset(MCInst &Inst, unsigned Imm, uint64_t Addr,
93 const MCDisassembler *Decoder) {
94 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
95 int64_t Offset;
96 if (DAsm->isVI()) { // VI supports 20-bit unsigned offsets.
97 Offset = Imm & 0xFFFFF;
98 } else { // GFX9+ supports 21-bit signed offsets.
99 Offset = SignExtend64<21>(Imm);
100 }
101 return addOperand(Inst, MCOperand::createImm(Offset));
102 }
103
decodeBoolReg(MCInst & Inst,unsigned Val,uint64_t Addr,const MCDisassembler * Decoder)104 static DecodeStatus decodeBoolReg(MCInst &Inst, unsigned Val, uint64_t Addr,
105 const MCDisassembler *Decoder) {
106 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
107 return addOperand(Inst, DAsm->decodeBoolReg(Val));
108 }
109
110 #define DECODE_OPERAND(StaticDecoderName, DecoderName) \
111 static DecodeStatus StaticDecoderName(MCInst &Inst, unsigned Imm, \
112 uint64_t /*Addr*/, \
113 const MCDisassembler *Decoder) { \
114 auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); \
115 return addOperand(Inst, DAsm->DecoderName(Imm)); \
116 }
117
118 #define DECODE_OPERAND_REG(RegClass) \
119 DECODE_OPERAND(Decode##RegClass##RegisterClass, decodeOperand_##RegClass)
120
121 DECODE_OPERAND_REG(VGPR_32)
DECODE_OPERAND_REG(VGPR_32_Lo128)122 DECODE_OPERAND_REG(VGPR_32_Lo128)
123 DECODE_OPERAND_REG(VRegOrLds_32)
124 DECODE_OPERAND_REG(VS_32)
125 DECODE_OPERAND_REG(VS_64)
126 DECODE_OPERAND_REG(VS_128)
127
128 DECODE_OPERAND_REG(VReg_64)
129 DECODE_OPERAND_REG(VReg_96)
130 DECODE_OPERAND_REG(VReg_128)
131 DECODE_OPERAND_REG(VReg_256)
132 DECODE_OPERAND_REG(VReg_288)
133 DECODE_OPERAND_REG(VReg_352)
134 DECODE_OPERAND_REG(VReg_384)
135 DECODE_OPERAND_REG(VReg_512)
136 DECODE_OPERAND_REG(VReg_1024)
137
138 DECODE_OPERAND_REG(SReg_32)
139 DECODE_OPERAND_REG(SReg_32_XM0_XEXEC)
140 DECODE_OPERAND_REG(SReg_32_XEXEC_HI)
141 DECODE_OPERAND_REG(SRegOrLds_32)
142 DECODE_OPERAND_REG(SReg_64)
143 DECODE_OPERAND_REG(SReg_64_XEXEC)
144 DECODE_OPERAND_REG(SReg_128)
145 DECODE_OPERAND_REG(SReg_256)
146 DECODE_OPERAND_REG(SReg_512)
147
148 DECODE_OPERAND_REG(AGPR_32)
149 DECODE_OPERAND_REG(AReg_64)
150 DECODE_OPERAND_REG(AReg_128)
151 DECODE_OPERAND_REG(AReg_256)
152 DECODE_OPERAND_REG(AReg_512)
153 DECODE_OPERAND_REG(AReg_1024)
154 DECODE_OPERAND_REG(AV_32)
155 DECODE_OPERAND_REG(AV_64)
156 DECODE_OPERAND_REG(AV_128)
157 DECODE_OPERAND_REG(AVDst_128)
158 DECODE_OPERAND_REG(AVDst_512)
159
160 static DecodeStatus decodeOperand_VSrc16(MCInst &Inst, unsigned Imm,
161 uint64_t Addr,
162 const MCDisassembler *Decoder) {
163 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
164 return addOperand(Inst, DAsm->decodeOperand_VSrc16(Imm));
165 }
166
decodeOperand_VSrcV216(MCInst & Inst,unsigned Imm,uint64_t Addr,const MCDisassembler * Decoder)167 static DecodeStatus decodeOperand_VSrcV216(MCInst &Inst, unsigned Imm,
168 uint64_t Addr,
169 const MCDisassembler *Decoder) {
170 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
171 return addOperand(Inst, DAsm->decodeOperand_VSrcV216(Imm));
172 }
173
decodeOperand_VSrcV232(MCInst & Inst,unsigned Imm,uint64_t Addr,const MCDisassembler * Decoder)174 static DecodeStatus decodeOperand_VSrcV232(MCInst &Inst, unsigned Imm,
175 uint64_t Addr,
176 const MCDisassembler *Decoder) {
177 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
178 return addOperand(Inst, DAsm->decodeOperand_VSrcV232(Imm));
179 }
180
decodeOperand_VS_16(MCInst & Inst,unsigned Imm,uint64_t Addr,const MCDisassembler * Decoder)181 static DecodeStatus decodeOperand_VS_16(MCInst &Inst, unsigned Imm,
182 uint64_t Addr,
183 const MCDisassembler *Decoder) {
184 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
185 return addOperand(Inst, DAsm->decodeOperand_VSrc16(Imm));
186 }
187
decodeOperand_VS_32(MCInst & Inst,unsigned Imm,uint64_t Addr,const MCDisassembler * Decoder)188 static DecodeStatus decodeOperand_VS_32(MCInst &Inst, unsigned Imm,
189 uint64_t Addr,
190 const MCDisassembler *Decoder) {
191 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
192 return addOperand(Inst, DAsm->decodeOperand_VS_32(Imm));
193 }
194
decodeOperand_AReg_64(MCInst & Inst,unsigned Imm,uint64_t Addr,const MCDisassembler * Decoder)195 static DecodeStatus decodeOperand_AReg_64(MCInst &Inst, unsigned Imm,
196 uint64_t Addr,
197 const MCDisassembler *Decoder) {
198 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
199 return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW64, Imm | 512));
200 }
201
decodeOperand_AReg_128(MCInst & Inst,unsigned Imm,uint64_t Addr,const MCDisassembler * Decoder)202 static DecodeStatus decodeOperand_AReg_128(MCInst &Inst, unsigned Imm,
203 uint64_t Addr,
204 const MCDisassembler *Decoder) {
205 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
206 return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW128, Imm | 512));
207 }
208
decodeOperand_AReg_256(MCInst & Inst,unsigned Imm,uint64_t Addr,const MCDisassembler * Decoder)209 static DecodeStatus decodeOperand_AReg_256(MCInst &Inst, unsigned Imm,
210 uint64_t Addr,
211 const MCDisassembler *Decoder) {
212 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
213 return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW256, Imm | 512));
214 }
215
decodeOperand_AReg_512(MCInst & Inst,unsigned Imm,uint64_t Addr,const MCDisassembler * Decoder)216 static DecodeStatus decodeOperand_AReg_512(MCInst &Inst, unsigned Imm,
217 uint64_t Addr,
218 const MCDisassembler *Decoder) {
219 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
220 return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW512, Imm | 512));
221 }
222
decodeOperand_AReg_1024(MCInst & Inst,unsigned Imm,uint64_t Addr,const MCDisassembler * Decoder)223 static DecodeStatus decodeOperand_AReg_1024(MCInst &Inst, unsigned Imm,
224 uint64_t Addr,
225 const MCDisassembler *Decoder) {
226 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
227 return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW1024, Imm | 512));
228 }
229
decodeOperand_VReg_64(MCInst & Inst,unsigned Imm,uint64_t Addr,const MCDisassembler * Decoder)230 static DecodeStatus decodeOperand_VReg_64(MCInst &Inst, unsigned Imm,
231 uint64_t Addr,
232 const MCDisassembler *Decoder) {
233 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
234 return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW64, Imm));
235 }
236
decodeOperand_VReg_128(MCInst & Inst,unsigned Imm,uint64_t Addr,const MCDisassembler * Decoder)237 static DecodeStatus decodeOperand_VReg_128(MCInst &Inst, unsigned Imm,
238 uint64_t Addr,
239 const MCDisassembler *Decoder) {
240 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
241 return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW128, Imm));
242 }
243
decodeOperand_VReg_256(MCInst & Inst,unsigned Imm,uint64_t Addr,const MCDisassembler * Decoder)244 static DecodeStatus decodeOperand_VReg_256(MCInst &Inst, unsigned Imm,
245 uint64_t Addr,
246 const MCDisassembler *Decoder) {
247 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
248 return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW256, Imm));
249 }
250
decodeOperand_VReg_512(MCInst & Inst,unsigned Imm,uint64_t Addr,const MCDisassembler * Decoder)251 static DecodeStatus decodeOperand_VReg_512(MCInst &Inst, unsigned Imm,
252 uint64_t Addr,
253 const MCDisassembler *Decoder) {
254 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
255 return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW512, Imm));
256 }
257
decodeOperand_VReg_1024(MCInst & Inst,unsigned Imm,uint64_t Addr,const MCDisassembler * Decoder)258 static DecodeStatus decodeOperand_VReg_1024(MCInst &Inst, unsigned Imm,
259 uint64_t Addr,
260 const MCDisassembler *Decoder) {
261 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
262 return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW1024, Imm));
263 }
264
decodeOperand_f32kimm(MCInst & Inst,unsigned Imm,uint64_t Addr,const MCDisassembler * Decoder)265 static DecodeStatus decodeOperand_f32kimm(MCInst &Inst, unsigned Imm,
266 uint64_t Addr,
267 const MCDisassembler *Decoder) {
268 const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
269 return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm));
270 }
271
decodeOperand_f16kimm(MCInst & Inst,unsigned Imm,uint64_t Addr,const MCDisassembler * Decoder)272 static DecodeStatus decodeOperand_f16kimm(MCInst &Inst, unsigned Imm,
273 uint64_t Addr,
274 const MCDisassembler *Decoder) {
275 const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
276 return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm));
277 }
278
279 static DecodeStatus
decodeOperand_VS_16_Deferred(MCInst & Inst,unsigned Imm,uint64_t Addr,const MCDisassembler * Decoder)280 decodeOperand_VS_16_Deferred(MCInst &Inst, unsigned Imm, uint64_t Addr,
281 const MCDisassembler *Decoder) {
282 const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
283 return addOperand(
284 Inst, DAsm->decodeSrcOp(llvm::AMDGPUDisassembler::OPW16, Imm, true));
285 }
286
287 static DecodeStatus
decodeOperand_VS_32_Deferred(MCInst & Inst,unsigned Imm,uint64_t Addr,const MCDisassembler * Decoder)288 decodeOperand_VS_32_Deferred(MCInst &Inst, unsigned Imm, uint64_t Addr,
289 const MCDisassembler *Decoder) {
290 const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
291 return addOperand(
292 Inst, DAsm->decodeSrcOp(llvm::AMDGPUDisassembler::OPW32, Imm, true));
293 }
294
decodeOperandVOPDDstY(MCInst & Inst,unsigned Val,uint64_t Addr,const void * Decoder)295 static DecodeStatus decodeOperandVOPDDstY(MCInst &Inst, unsigned Val,
296 uint64_t Addr, const void *Decoder) {
297 const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
298 return addOperand(Inst, DAsm->decodeVOPDDstYOp(Inst, Val));
299 }
300
IsAGPROperand(const MCInst & Inst,int OpIdx,const MCRegisterInfo * MRI)301 static bool IsAGPROperand(const MCInst &Inst, int OpIdx,
302 const MCRegisterInfo *MRI) {
303 if (OpIdx < 0)
304 return false;
305
306 const MCOperand &Op = Inst.getOperand(OpIdx);
307 if (!Op.isReg())
308 return false;
309
310 unsigned Sub = MRI->getSubReg(Op.getReg(), AMDGPU::sub0);
311 auto Reg = Sub ? Sub : Op.getReg();
312 return Reg >= AMDGPU::AGPR0 && Reg <= AMDGPU::AGPR255;
313 }
314
decodeOperand_AVLdSt_Any(MCInst & Inst,unsigned Imm,AMDGPUDisassembler::OpWidthTy Opw,const MCDisassembler * Decoder)315 static DecodeStatus decodeOperand_AVLdSt_Any(MCInst &Inst, unsigned Imm,
316 AMDGPUDisassembler::OpWidthTy Opw,
317 const MCDisassembler *Decoder) {
318 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
319 if (!DAsm->isGFX90A()) {
320 Imm &= 511;
321 } else {
322 // If atomic has both vdata and vdst their register classes are tied.
323 // The bit is decoded along with the vdst, first operand. We need to
324 // change register class to AGPR if vdst was AGPR.
325 // If a DS instruction has both data0 and data1 their register classes
326 // are also tied.
327 unsigned Opc = Inst.getOpcode();
328 uint64_t TSFlags = DAsm->getMCII()->get(Opc).TSFlags;
329 uint16_t DataNameIdx = (TSFlags & SIInstrFlags::DS) ? AMDGPU::OpName::data0
330 : AMDGPU::OpName::vdata;
331 const MCRegisterInfo *MRI = DAsm->getContext().getRegisterInfo();
332 int DataIdx = AMDGPU::getNamedOperandIdx(Opc, DataNameIdx);
333 if ((int)Inst.getNumOperands() == DataIdx) {
334 int DstIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst);
335 if (IsAGPROperand(Inst, DstIdx, MRI))
336 Imm |= 512;
337 }
338
339 if (TSFlags & SIInstrFlags::DS) {
340 int Data2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data1);
341 if ((int)Inst.getNumOperands() == Data2Idx &&
342 IsAGPROperand(Inst, DataIdx, MRI))
343 Imm |= 512;
344 }
345 }
346 return addOperand(Inst, DAsm->decodeSrcOp(Opw, Imm | 256));
347 }
348
349 static DecodeStatus
DecodeAVLdSt_32RegisterClass(MCInst & Inst,unsigned Imm,uint64_t Addr,const MCDisassembler * Decoder)350 DecodeAVLdSt_32RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
351 const MCDisassembler *Decoder) {
352 return decodeOperand_AVLdSt_Any(Inst, Imm,
353 AMDGPUDisassembler::OPW32, Decoder);
354 }
355
356 static DecodeStatus
DecodeAVLdSt_64RegisterClass(MCInst & Inst,unsigned Imm,uint64_t Addr,const MCDisassembler * Decoder)357 DecodeAVLdSt_64RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
358 const MCDisassembler *Decoder) {
359 return decodeOperand_AVLdSt_Any(Inst, Imm,
360 AMDGPUDisassembler::OPW64, Decoder);
361 }
362
363 static DecodeStatus
DecodeAVLdSt_96RegisterClass(MCInst & Inst,unsigned Imm,uint64_t Addr,const MCDisassembler * Decoder)364 DecodeAVLdSt_96RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
365 const MCDisassembler *Decoder) {
366 return decodeOperand_AVLdSt_Any(Inst, Imm,
367 AMDGPUDisassembler::OPW96, Decoder);
368 }
369
370 static DecodeStatus
DecodeAVLdSt_128RegisterClass(MCInst & Inst,unsigned Imm,uint64_t Addr,const MCDisassembler * Decoder)371 DecodeAVLdSt_128RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
372 const MCDisassembler *Decoder) {
373 return decodeOperand_AVLdSt_Any(Inst, Imm,
374 AMDGPUDisassembler::OPW128, Decoder);
375 }
376
377 static DecodeStatus
DecodeAVLdSt_160RegisterClass(MCInst & Inst,unsigned Imm,uint64_t Addr,const MCDisassembler * Decoder)378 DecodeAVLdSt_160RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
379 const MCDisassembler *Decoder) {
380 return decodeOperand_AVLdSt_Any(Inst, Imm, AMDGPUDisassembler::OPW160,
381 Decoder);
382 }
383
decodeOperand_SReg_32(MCInst & Inst,unsigned Imm,uint64_t Addr,const MCDisassembler * Decoder)384 static DecodeStatus decodeOperand_SReg_32(MCInst &Inst, unsigned Imm,
385 uint64_t Addr,
386 const MCDisassembler *Decoder) {
387 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
388 return addOperand(Inst, DAsm->decodeOperand_SReg_32(Imm));
389 }
390
391 #define DECODE_SDWA(DecName) \
392 DECODE_OPERAND(decodeSDWA##DecName, decodeSDWA##DecName)
393
394 DECODE_SDWA(Src32)
DECODE_SDWA(Src16)395 DECODE_SDWA(Src16)
396 DECODE_SDWA(VopcDst)
397
398 #include "AMDGPUGenDisassemblerTables.inc"
399
400 //===----------------------------------------------------------------------===//
401 //
402 //===----------------------------------------------------------------------===//
403
404 template <typename T> static inline T eatBytes(ArrayRef<uint8_t>& Bytes) {
405 assert(Bytes.size() >= sizeof(T));
406 const auto Res = support::endian::read<T, support::endianness::little>(Bytes.data());
407 Bytes = Bytes.slice(sizeof(T));
408 return Res;
409 }
410
eat12Bytes(ArrayRef<uint8_t> & Bytes)411 static inline DecoderUInt128 eat12Bytes(ArrayRef<uint8_t> &Bytes) {
412 assert(Bytes.size() >= 12);
413 uint64_t Lo = support::endian::read<uint64_t, support::endianness::little>(
414 Bytes.data());
415 Bytes = Bytes.slice(8);
416 uint64_t Hi = support::endian::read<uint32_t, support::endianness::little>(
417 Bytes.data());
418 Bytes = Bytes.slice(4);
419 return DecoderUInt128(Lo, Hi);
420 }
421
422 // The disassembler is greedy, so we need to check FI operand value to
423 // not parse a dpp if the correct literal is not set. For dpp16 the
424 // autogenerated decoder checks the dpp literal
isValidDPP8(const MCInst & MI)425 static bool isValidDPP8(const MCInst &MI) {
426 using namespace llvm::AMDGPU::DPP;
427 int FiIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::fi);
428 assert(FiIdx != -1);
429 if ((unsigned)FiIdx >= MI.getNumOperands())
430 return false;
431 unsigned Fi = MI.getOperand(FiIdx).getImm();
432 return Fi == DPP8_FI_0 || Fi == DPP8_FI_1;
433 }
434
getInstruction(MCInst & MI,uint64_t & Size,ArrayRef<uint8_t> Bytes_,uint64_t Address,raw_ostream & CS) const435 DecodeStatus AMDGPUDisassembler::getInstruction(MCInst &MI, uint64_t &Size,
436 ArrayRef<uint8_t> Bytes_,
437 uint64_t Address,
438 raw_ostream &CS) const {
439 CommentStream = &CS;
440 bool IsSDWA = false;
441
442 unsigned MaxInstBytesNum = std::min((size_t)TargetMaxInstBytes, Bytes_.size());
443 Bytes = Bytes_.slice(0, MaxInstBytesNum);
444
445 DecodeStatus Res = MCDisassembler::Fail;
446 do {
447 // ToDo: better to switch encoding length using some bit predicate
448 // but it is unknown yet, so try all we can
449
450 // Try to decode DPP and SDWA first to solve conflict with VOP1 and VOP2
451 // encodings
452 if (isGFX11Plus() && Bytes.size() >= 12 ) {
453 DecoderUInt128 DecW = eat12Bytes(Bytes);
454 Res = tryDecodeInst(DecoderTableDPP8GFX1196, MI, DecW,
455 Address);
456 if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
457 break;
458 MI = MCInst(); // clear
459 Res = tryDecodeInst(DecoderTableDPPGFX1196, MI, DecW,
460 Address);
461 if (Res) {
462 if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3P)
463 convertVOP3PDPPInst(MI);
464 else if (AMDGPU::isVOPC64DPP(MI.getOpcode()))
465 convertVOPCDPPInst(MI); // Special VOP3 case
466 else {
467 assert(MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3);
468 convertVOP3DPPInst(MI); // Regular VOP3 case
469 }
470 break;
471 }
472 Res = tryDecodeInst(DecoderTableGFX1196, MI, DecW, Address);
473 if (Res)
474 break;
475 }
476 // Reinitialize Bytes
477 Bytes = Bytes_.slice(0, MaxInstBytesNum);
478
479 if (Bytes.size() >= 8) {
480 const uint64_t QW = eatBytes<uint64_t>(Bytes);
481
482 if (STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding]) {
483 Res = tryDecodeInst(DecoderTableGFX10_B64, MI, QW, Address);
484 if (Res) {
485 if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dpp8)
486 == -1)
487 break;
488 if (convertDPP8Inst(MI) == MCDisassembler::Success)
489 break;
490 MI = MCInst(); // clear
491 }
492 }
493
494 Res = tryDecodeInst(DecoderTableDPP864, MI, QW, Address);
495 if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
496 break;
497 MI = MCInst(); // clear
498
499 Res = tryDecodeInst(DecoderTableDPP8GFX1164, MI, QW, Address);
500 if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
501 break;
502 MI = MCInst(); // clear
503
504 Res = tryDecodeInst(DecoderTableDPP64, MI, QW, Address);
505 if (Res) break;
506
507 Res = tryDecodeInst(DecoderTableDPPGFX1164, MI, QW, Address);
508 if (Res) {
509 if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOPC)
510 convertVOPCDPPInst(MI);
511 break;
512 }
513
514 Res = tryDecodeInst(DecoderTableSDWA64, MI, QW, Address);
515 if (Res) { IsSDWA = true; break; }
516
517 Res = tryDecodeInst(DecoderTableSDWA964, MI, QW, Address);
518 if (Res) { IsSDWA = true; break; }
519
520 Res = tryDecodeInst(DecoderTableSDWA1064, MI, QW, Address);
521 if (Res) { IsSDWA = true; break; }
522
523 if (STI.getFeatureBits()[AMDGPU::FeatureUnpackedD16VMem]) {
524 Res = tryDecodeInst(DecoderTableGFX80_UNPACKED64, MI, QW, Address);
525 if (Res)
526 break;
527 }
528
529 // Some GFX9 subtargets repurposed the v_mad_mix_f32, v_mad_mixlo_f16 and
530 // v_mad_mixhi_f16 for FMA variants. Try to decode using this special
531 // table first so we print the correct name.
532 if (STI.getFeatureBits()[AMDGPU::FeatureFmaMixInsts]) {
533 Res = tryDecodeInst(DecoderTableGFX9_DL64, MI, QW, Address);
534 if (Res)
535 break;
536 }
537 }
538
539 // Reinitialize Bytes as DPP64 could have eaten too much
540 Bytes = Bytes_.slice(0, MaxInstBytesNum);
541
542 // Try decode 32-bit instruction
543 if (Bytes.size() < 4) break;
544 const uint32_t DW = eatBytes<uint32_t>(Bytes);
545 Res = tryDecodeInst(DecoderTableGFX832, MI, DW, Address);
546 if (Res) break;
547
548 Res = tryDecodeInst(DecoderTableAMDGPU32, MI, DW, Address);
549 if (Res) break;
550
551 Res = tryDecodeInst(DecoderTableGFX932, MI, DW, Address);
552 if (Res) break;
553
554 if (STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts]) {
555 Res = tryDecodeInst(DecoderTableGFX90A32, MI, DW, Address);
556 if (Res)
557 break;
558 }
559
560 if (STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding]) {
561 Res = tryDecodeInst(DecoderTableGFX10_B32, MI, DW, Address);
562 if (Res) break;
563 }
564
565 Res = tryDecodeInst(DecoderTableGFX1032, MI, DW, Address);
566 if (Res) break;
567
568 Res = tryDecodeInst(DecoderTableGFX1132, MI, DW, Address);
569 if (Res) break;
570
571 if (Bytes.size() < 4) break;
572 const uint64_t QW = ((uint64_t)eatBytes<uint32_t>(Bytes) << 32) | DW;
573
574 if (STI.getFeatureBits()[AMDGPU::FeatureGFX940Insts]) {
575 Res = tryDecodeInst(DecoderTableGFX94064, MI, QW, Address);
576 if (Res)
577 break;
578 }
579
580 if (STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts]) {
581 Res = tryDecodeInst(DecoderTableGFX90A64, MI, QW, Address);
582 if (Res)
583 break;
584 }
585
586 Res = tryDecodeInst(DecoderTableGFX864, MI, QW, Address);
587 if (Res) break;
588
589 Res = tryDecodeInst(DecoderTableAMDGPU64, MI, QW, Address);
590 if (Res) break;
591
592 Res = tryDecodeInst(DecoderTableGFX964, MI, QW, Address);
593 if (Res) break;
594
595 Res = tryDecodeInst(DecoderTableGFX1064, MI, QW, Address);
596 if (Res) break;
597
598 Res = tryDecodeInst(DecoderTableGFX1164, MI, QW, Address);
599 if (Res)
600 break;
601
602 Res = tryDecodeInst(DecoderTableWMMAGFX1164, MI, QW, Address);
603 } while (false);
604
605 if (Res && AMDGPU::isMAC(MI.getOpcode())) {
606 // Insert dummy unused src2_modifiers.
607 insertNamedMCOperand(MI, MCOperand::createImm(0),
608 AMDGPU::OpName::src2_modifiers);
609 }
610
611 if (Res && (MCII->get(MI.getOpcode()).TSFlags &
612 (SIInstrFlags::MUBUF | SIInstrFlags::FLAT | SIInstrFlags::SMRD))) {
613 int CPolPos = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
614 AMDGPU::OpName::cpol);
615 if (CPolPos != -1) {
616 unsigned CPol =
617 (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::IsAtomicRet) ?
618 AMDGPU::CPol::GLC : 0;
619 if (MI.getNumOperands() <= (unsigned)CPolPos) {
620 insertNamedMCOperand(MI, MCOperand::createImm(CPol),
621 AMDGPU::OpName::cpol);
622 } else if (CPol) {
623 MI.getOperand(CPolPos).setImm(MI.getOperand(CPolPos).getImm() | CPol);
624 }
625 }
626 }
627
628 if (Res && (MCII->get(MI.getOpcode()).TSFlags &
629 (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF)) &&
630 (STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts])) {
631 // GFX90A lost TFE, its place is occupied by ACC.
632 int TFEOpIdx =
633 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::tfe);
634 if (TFEOpIdx != -1) {
635 auto TFEIter = MI.begin();
636 std::advance(TFEIter, TFEOpIdx);
637 MI.insert(TFEIter, MCOperand::createImm(0));
638 }
639 }
640
641 if (Res && (MCII->get(MI.getOpcode()).TSFlags &
642 (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF))) {
643 int SWZOpIdx =
644 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::swz);
645 if (SWZOpIdx != -1) {
646 auto SWZIter = MI.begin();
647 std::advance(SWZIter, SWZOpIdx);
648 MI.insert(SWZIter, MCOperand::createImm(0));
649 }
650 }
651
652 if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::MIMG)) {
653 int VAddr0Idx =
654 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
655 int RsrcIdx =
656 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::srsrc);
657 unsigned NSAArgs = RsrcIdx - VAddr0Idx - 1;
658 if (VAddr0Idx >= 0 && NSAArgs > 0) {
659 unsigned NSAWords = (NSAArgs + 3) / 4;
660 if (Bytes.size() < 4 * NSAWords) {
661 Res = MCDisassembler::Fail;
662 } else {
663 for (unsigned i = 0; i < NSAArgs; ++i) {
664 const unsigned VAddrIdx = VAddr0Idx + 1 + i;
665 auto VAddrRCID =
666 MCII->get(MI.getOpcode()).operands()[VAddrIdx].RegClass;
667 MI.insert(MI.begin() + VAddrIdx,
668 createRegOperand(VAddrRCID, Bytes[i]));
669 }
670 Bytes = Bytes.slice(4 * NSAWords);
671 }
672 }
673
674 if (Res)
675 Res = convertMIMGInst(MI);
676 }
677
678 if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::EXP))
679 Res = convertEXPInst(MI);
680
681 if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VINTERP))
682 Res = convertVINTERPInst(MI);
683
684 if (Res && IsSDWA)
685 Res = convertSDWAInst(MI);
686
687 int VDstIn_Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
688 AMDGPU::OpName::vdst_in);
689 if (VDstIn_Idx != -1) {
690 int Tied = MCII->get(MI.getOpcode()).getOperandConstraint(VDstIn_Idx,
691 MCOI::OperandConstraint::TIED_TO);
692 if (Tied != -1 && (MI.getNumOperands() <= (unsigned)VDstIn_Idx ||
693 !MI.getOperand(VDstIn_Idx).isReg() ||
694 MI.getOperand(VDstIn_Idx).getReg() != MI.getOperand(Tied).getReg())) {
695 if (MI.getNumOperands() > (unsigned)VDstIn_Idx)
696 MI.erase(&MI.getOperand(VDstIn_Idx));
697 insertNamedMCOperand(MI,
698 MCOperand::createReg(MI.getOperand(Tied).getReg()),
699 AMDGPU::OpName::vdst_in);
700 }
701 }
702
703 int ImmLitIdx =
704 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::imm);
705 bool IsSOPK = MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::SOPK;
706 if (Res && ImmLitIdx != -1 && !IsSOPK)
707 Res = convertFMAanyK(MI, ImmLitIdx);
708
709 // if the opcode was not recognized we'll assume a Size of 4 bytes
710 // (unless there are fewer bytes left)
711 Size = Res ? (MaxInstBytesNum - Bytes.size())
712 : std::min((size_t)4, Bytes_.size());
713 return Res;
714 }
715
convertEXPInst(MCInst & MI) const716 DecodeStatus AMDGPUDisassembler::convertEXPInst(MCInst &MI) const {
717 if (STI.getFeatureBits()[AMDGPU::FeatureGFX11]) {
718 // The MCInst still has these fields even though they are no longer encoded
719 // in the GFX11 instruction.
720 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vm);
721 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::compr);
722 }
723 return MCDisassembler::Success;
724 }
725
convertVINTERPInst(MCInst & MI) const726 DecodeStatus AMDGPUDisassembler::convertVINTERPInst(MCInst &MI) const {
727 if (MI.getOpcode() == AMDGPU::V_INTERP_P10_F16_F32_inreg_gfx11 ||
728 MI.getOpcode() == AMDGPU::V_INTERP_P10_RTZ_F16_F32_inreg_gfx11 ||
729 MI.getOpcode() == AMDGPU::V_INTERP_P2_F16_F32_inreg_gfx11 ||
730 MI.getOpcode() == AMDGPU::V_INTERP_P2_RTZ_F16_F32_inreg_gfx11) {
731 // The MCInst has this field that is not directly encoded in the
732 // instruction.
733 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::op_sel);
734 }
735 return MCDisassembler::Success;
736 }
737
convertSDWAInst(MCInst & MI) const738 DecodeStatus AMDGPUDisassembler::convertSDWAInst(MCInst &MI) const {
739 if (STI.getFeatureBits()[AMDGPU::FeatureGFX9] ||
740 STI.getFeatureBits()[AMDGPU::FeatureGFX10]) {
741 if (AMDGPU::hasNamedOperand(MI.getOpcode(), AMDGPU::OpName::sdst))
742 // VOPC - insert clamp
743 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::clamp);
744 } else if (STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]) {
745 int SDst = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst);
746 if (SDst != -1) {
747 // VOPC - insert VCC register as sdst
748 insertNamedMCOperand(MI, createRegOperand(AMDGPU::VCC),
749 AMDGPU::OpName::sdst);
750 } else {
751 // VOP1/2 - insert omod if present in instruction
752 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::omod);
753 }
754 }
755 return MCDisassembler::Success;
756 }
757
758 struct VOPModifiers {
759 unsigned OpSel = 0;
760 unsigned OpSelHi = 0;
761 unsigned NegLo = 0;
762 unsigned NegHi = 0;
763 };
764
765 // Reconstruct values of VOP3/VOP3P operands such as op_sel.
766 // Note that these values do not affect disassembler output,
767 // so this is only necessary for consistency with src_modifiers.
collectVOPModifiers(const MCInst & MI,bool IsVOP3P=false)768 static VOPModifiers collectVOPModifiers(const MCInst &MI,
769 bool IsVOP3P = false) {
770 VOPModifiers Modifiers;
771 unsigned Opc = MI.getOpcode();
772 const int ModOps[] = {AMDGPU::OpName::src0_modifiers,
773 AMDGPU::OpName::src1_modifiers,
774 AMDGPU::OpName::src2_modifiers};
775 for (int J = 0; J < 3; ++J) {
776 int OpIdx = AMDGPU::getNamedOperandIdx(Opc, ModOps[J]);
777 if (OpIdx == -1)
778 continue;
779
780 unsigned Val = MI.getOperand(OpIdx).getImm();
781
782 Modifiers.OpSel |= !!(Val & SISrcMods::OP_SEL_0) << J;
783 if (IsVOP3P) {
784 Modifiers.OpSelHi |= !!(Val & SISrcMods::OP_SEL_1) << J;
785 Modifiers.NegLo |= !!(Val & SISrcMods::NEG) << J;
786 Modifiers.NegHi |= !!(Val & SISrcMods::NEG_HI) << J;
787 } else if (J == 0) {
788 Modifiers.OpSel |= !!(Val & SISrcMods::DST_OP_SEL) << 3;
789 }
790 }
791
792 return Modifiers;
793 }
794
795 // MAC opcodes have special old and src2 operands.
796 // src2 is tied to dst, while old is not tied (but assumed to be).
isMacDPP(MCInst & MI) const797 bool AMDGPUDisassembler::isMacDPP(MCInst &MI) const {
798 constexpr int DST_IDX = 0;
799 auto Opcode = MI.getOpcode();
800 const auto &Desc = MCII->get(Opcode);
801 auto OldIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::old);
802
803 if (OldIdx != -1 && Desc.getOperandConstraint(
804 OldIdx, MCOI::OperandConstraint::TIED_TO) == -1) {
805 assert(AMDGPU::hasNamedOperand(Opcode, AMDGPU::OpName::src2));
806 assert(Desc.getOperandConstraint(
807 AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2),
808 MCOI::OperandConstraint::TIED_TO) == DST_IDX);
809 (void)DST_IDX;
810 return true;
811 }
812
813 return false;
814 }
815
816 // Create dummy old operand and insert dummy unused src2_modifiers
convertMacDPPInst(MCInst & MI) const817 void AMDGPUDisassembler::convertMacDPPInst(MCInst &MI) const {
818 assert(MI.getNumOperands() + 1 < MCII->get(MI.getOpcode()).getNumOperands());
819 insertNamedMCOperand(MI, MCOperand::createReg(0), AMDGPU::OpName::old);
820 insertNamedMCOperand(MI, MCOperand::createImm(0),
821 AMDGPU::OpName::src2_modifiers);
822 }
823
824 // We must check FI == literal to reject not genuine dpp8 insts, and we must
825 // first add optional MI operands to check FI
convertDPP8Inst(MCInst & MI) const826 DecodeStatus AMDGPUDisassembler::convertDPP8Inst(MCInst &MI) const {
827 unsigned Opc = MI.getOpcode();
828 if (MCII->get(Opc).TSFlags & SIInstrFlags::VOP3P) {
829 convertVOP3PDPPInst(MI);
830 } else if ((MCII->get(Opc).TSFlags & SIInstrFlags::VOPC) ||
831 AMDGPU::isVOPC64DPP(Opc)) {
832 convertVOPCDPPInst(MI);
833 } else {
834 if (isMacDPP(MI))
835 convertMacDPPInst(MI);
836
837 unsigned DescNumOps = MCII->get(Opc).getNumOperands();
838 if (MI.getNumOperands() < DescNumOps &&
839 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) {
840 auto Mods = collectVOPModifiers(MI);
841 insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
842 AMDGPU::OpName::op_sel);
843 } else {
844 // Insert dummy unused src modifiers.
845 if (MI.getNumOperands() < DescNumOps &&
846 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src0_modifiers))
847 insertNamedMCOperand(MI, MCOperand::createImm(0),
848 AMDGPU::OpName::src0_modifiers);
849
850 if (MI.getNumOperands() < DescNumOps &&
851 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src1_modifiers))
852 insertNamedMCOperand(MI, MCOperand::createImm(0),
853 AMDGPU::OpName::src1_modifiers);
854 }
855 }
856 return isValidDPP8(MI) ? MCDisassembler::Success : MCDisassembler::SoftFail;
857 }
858
convertVOP3DPPInst(MCInst & MI) const859 DecodeStatus AMDGPUDisassembler::convertVOP3DPPInst(MCInst &MI) const {
860 if (isMacDPP(MI))
861 convertMacDPPInst(MI);
862
863 unsigned Opc = MI.getOpcode();
864 unsigned DescNumOps = MCII->get(Opc).getNumOperands();
865 if (MI.getNumOperands() < DescNumOps &&
866 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) {
867 auto Mods = collectVOPModifiers(MI);
868 insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
869 AMDGPU::OpName::op_sel);
870 }
871 return MCDisassembler::Success;
872 }
873
874 // Note that before gfx10, the MIMG encoding provided no information about
875 // VADDR size. Consequently, decoded instructions always show address as if it
876 // has 1 dword, which could be not really so.
convertMIMGInst(MCInst & MI) const877 DecodeStatus AMDGPUDisassembler::convertMIMGInst(MCInst &MI) const {
878
879 int VDstIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
880 AMDGPU::OpName::vdst);
881
882 int VDataIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
883 AMDGPU::OpName::vdata);
884 int VAddr0Idx =
885 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
886 int DMaskIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
887 AMDGPU::OpName::dmask);
888
889 int TFEIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
890 AMDGPU::OpName::tfe);
891 int D16Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
892 AMDGPU::OpName::d16);
893
894 const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(MI.getOpcode());
895 const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
896 AMDGPU::getMIMGBaseOpcodeInfo(Info->BaseOpcode);
897
898 assert(VDataIdx != -1);
899 if (BaseOpcode->BVH) {
900 // Add A16 operand for intersect_ray instructions
901 if (AMDGPU::hasNamedOperand(MI.getOpcode(), AMDGPU::OpName::a16))
902 addOperand(MI, MCOperand::createImm(1));
903 return MCDisassembler::Success;
904 }
905
906 bool IsAtomic = (VDstIdx != -1);
907 bool IsGather4 = MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::Gather4;
908 bool IsNSA = false;
909 unsigned AddrSize = Info->VAddrDwords;
910
911 if (isGFX10Plus()) {
912 unsigned DimIdx =
913 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dim);
914 int A16Idx =
915 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::a16);
916 const AMDGPU::MIMGDimInfo *Dim =
917 AMDGPU::getMIMGDimInfoByEncoding(MI.getOperand(DimIdx).getImm());
918 const bool IsA16 = (A16Idx != -1 && MI.getOperand(A16Idx).getImm());
919
920 AddrSize =
921 AMDGPU::getAddrSizeMIMGOp(BaseOpcode, Dim, IsA16, AMDGPU::hasG16(STI));
922
923 IsNSA = Info->MIMGEncoding == AMDGPU::MIMGEncGfx10NSA ||
924 Info->MIMGEncoding == AMDGPU::MIMGEncGfx11NSA;
925 if (!IsNSA) {
926 if (AddrSize > 12)
927 AddrSize = 16;
928 } else {
929 if (AddrSize > Info->VAddrDwords) {
930 // The NSA encoding does not contain enough operands for the combination
931 // of base opcode / dimension. Should this be an error?
932 return MCDisassembler::Success;
933 }
934 }
935 }
936
937 unsigned DMask = MI.getOperand(DMaskIdx).getImm() & 0xf;
938 unsigned DstSize = IsGather4 ? 4 : std::max(llvm::popcount(DMask), 1);
939
940 bool D16 = D16Idx >= 0 && MI.getOperand(D16Idx).getImm();
941 if (D16 && AMDGPU::hasPackedD16(STI)) {
942 DstSize = (DstSize + 1) / 2;
943 }
944
945 if (TFEIdx != -1 && MI.getOperand(TFEIdx).getImm())
946 DstSize += 1;
947
948 if (DstSize == Info->VDataDwords && AddrSize == Info->VAddrDwords)
949 return MCDisassembler::Success;
950
951 int NewOpcode =
952 AMDGPU::getMIMGOpcode(Info->BaseOpcode, Info->MIMGEncoding, DstSize, AddrSize);
953 if (NewOpcode == -1)
954 return MCDisassembler::Success;
955
956 // Widen the register to the correct number of enabled channels.
957 unsigned NewVdata = AMDGPU::NoRegister;
958 if (DstSize != Info->VDataDwords) {
959 auto DataRCID = MCII->get(NewOpcode).operands()[VDataIdx].RegClass;
960
961 // Get first subregister of VData
962 unsigned Vdata0 = MI.getOperand(VDataIdx).getReg();
963 unsigned VdataSub0 = MRI.getSubReg(Vdata0, AMDGPU::sub0);
964 Vdata0 = (VdataSub0 != 0)? VdataSub0 : Vdata0;
965
966 NewVdata = MRI.getMatchingSuperReg(Vdata0, AMDGPU::sub0,
967 &MRI.getRegClass(DataRCID));
968 if (NewVdata == AMDGPU::NoRegister) {
969 // It's possible to encode this such that the low register + enabled
970 // components exceeds the register count.
971 return MCDisassembler::Success;
972 }
973 }
974
975 // If not using NSA on GFX10+, widen address register to correct size.
976 unsigned NewVAddr0 = AMDGPU::NoRegister;
977 if (isGFX10Plus() && !IsNSA && AddrSize != Info->VAddrDwords) {
978 unsigned VAddr0 = MI.getOperand(VAddr0Idx).getReg();
979 unsigned VAddrSub0 = MRI.getSubReg(VAddr0, AMDGPU::sub0);
980 VAddr0 = (VAddrSub0 != 0) ? VAddrSub0 : VAddr0;
981
982 auto AddrRCID = MCII->get(NewOpcode).operands()[VAddr0Idx].RegClass;
983 NewVAddr0 = MRI.getMatchingSuperReg(VAddr0, AMDGPU::sub0,
984 &MRI.getRegClass(AddrRCID));
985 if (NewVAddr0 == AMDGPU::NoRegister)
986 return MCDisassembler::Success;
987 }
988
989 MI.setOpcode(NewOpcode);
990
991 if (NewVdata != AMDGPU::NoRegister) {
992 MI.getOperand(VDataIdx) = MCOperand::createReg(NewVdata);
993
994 if (IsAtomic) {
995 // Atomic operations have an additional operand (a copy of data)
996 MI.getOperand(VDstIdx) = MCOperand::createReg(NewVdata);
997 }
998 }
999
1000 if (NewVAddr0 != AMDGPU::NoRegister) {
1001 MI.getOperand(VAddr0Idx) = MCOperand::createReg(NewVAddr0);
1002 } else if (IsNSA) {
1003 assert(AddrSize <= Info->VAddrDwords);
1004 MI.erase(MI.begin() + VAddr0Idx + AddrSize,
1005 MI.begin() + VAddr0Idx + Info->VAddrDwords);
1006 }
1007
1008 return MCDisassembler::Success;
1009 }
1010
1011 // Opsel and neg bits are used in src_modifiers and standalone operands. Autogen
1012 // decoder only adds to src_modifiers, so manually add the bits to the other
1013 // operands.
convertVOP3PDPPInst(MCInst & MI) const1014 DecodeStatus AMDGPUDisassembler::convertVOP3PDPPInst(MCInst &MI) const {
1015 unsigned Opc = MI.getOpcode();
1016 unsigned DescNumOps = MCII->get(Opc).getNumOperands();
1017 auto Mods = collectVOPModifiers(MI, true);
1018
1019 if (MI.getNumOperands() < DescNumOps &&
1020 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::vdst_in))
1021 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vdst_in);
1022
1023 if (MI.getNumOperands() < DescNumOps &&
1024 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel))
1025 insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
1026 AMDGPU::OpName::op_sel);
1027 if (MI.getNumOperands() < DescNumOps &&
1028 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel_hi))
1029 insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSelHi),
1030 AMDGPU::OpName::op_sel_hi);
1031 if (MI.getNumOperands() < DescNumOps &&
1032 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::neg_lo))
1033 insertNamedMCOperand(MI, MCOperand::createImm(Mods.NegLo),
1034 AMDGPU::OpName::neg_lo);
1035 if (MI.getNumOperands() < DescNumOps &&
1036 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::neg_hi))
1037 insertNamedMCOperand(MI, MCOperand::createImm(Mods.NegHi),
1038 AMDGPU::OpName::neg_hi);
1039
1040 return MCDisassembler::Success;
1041 }
1042
1043 // Create dummy old operand and insert optional operands
convertVOPCDPPInst(MCInst & MI) const1044 DecodeStatus AMDGPUDisassembler::convertVOPCDPPInst(MCInst &MI) const {
1045 unsigned Opc = MI.getOpcode();
1046 unsigned DescNumOps = MCII->get(Opc).getNumOperands();
1047
1048 if (MI.getNumOperands() < DescNumOps &&
1049 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::old))
1050 insertNamedMCOperand(MI, MCOperand::createReg(0), AMDGPU::OpName::old);
1051
1052 if (MI.getNumOperands() < DescNumOps &&
1053 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src0_modifiers))
1054 insertNamedMCOperand(MI, MCOperand::createImm(0),
1055 AMDGPU::OpName::src0_modifiers);
1056
1057 if (MI.getNumOperands() < DescNumOps &&
1058 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src1_modifiers))
1059 insertNamedMCOperand(MI, MCOperand::createImm(0),
1060 AMDGPU::OpName::src1_modifiers);
1061 return MCDisassembler::Success;
1062 }
1063
convertFMAanyK(MCInst & MI,int ImmLitIdx) const1064 DecodeStatus AMDGPUDisassembler::convertFMAanyK(MCInst &MI,
1065 int ImmLitIdx) const {
1066 assert(HasLiteral && "Should have decoded a literal");
1067 const MCInstrDesc &Desc = MCII->get(MI.getOpcode());
1068 unsigned DescNumOps = Desc.getNumOperands();
1069 insertNamedMCOperand(MI, MCOperand::createImm(Literal),
1070 AMDGPU::OpName::immDeferred);
1071 assert(DescNumOps == MI.getNumOperands());
1072 for (unsigned I = 0; I < DescNumOps; ++I) {
1073 auto &Op = MI.getOperand(I);
1074 auto OpType = Desc.operands()[I].OperandType;
1075 bool IsDeferredOp = (OpType == AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED ||
1076 OpType == AMDGPU::OPERAND_REG_IMM_FP16_DEFERRED);
1077 if (Op.isImm() && Op.getImm() == AMDGPU::EncValues::LITERAL_CONST &&
1078 IsDeferredOp)
1079 Op.setImm(Literal);
1080 }
1081 return MCDisassembler::Success;
1082 }
1083
getRegClassName(unsigned RegClassID) const1084 const char* AMDGPUDisassembler::getRegClassName(unsigned RegClassID) const {
1085 return getContext().getRegisterInfo()->
1086 getRegClassName(&AMDGPUMCRegisterClasses[RegClassID]);
1087 }
1088
1089 inline
errOperand(unsigned V,const Twine & ErrMsg) const1090 MCOperand AMDGPUDisassembler::errOperand(unsigned V,
1091 const Twine& ErrMsg) const {
1092 *CommentStream << "Error: " + ErrMsg;
1093
1094 // ToDo: add support for error operands to MCInst.h
1095 // return MCOperand::createError(V);
1096 return MCOperand();
1097 }
1098
1099 inline
createRegOperand(unsigned int RegId) const1100 MCOperand AMDGPUDisassembler::createRegOperand(unsigned int RegId) const {
1101 return MCOperand::createReg(AMDGPU::getMCReg(RegId, STI));
1102 }
1103
1104 inline
createRegOperand(unsigned RegClassID,unsigned Val) const1105 MCOperand AMDGPUDisassembler::createRegOperand(unsigned RegClassID,
1106 unsigned Val) const {
1107 const auto& RegCl = AMDGPUMCRegisterClasses[RegClassID];
1108 if (Val >= RegCl.getNumRegs())
1109 return errOperand(Val, Twine(getRegClassName(RegClassID)) +
1110 ": unknown register " + Twine(Val));
1111 return createRegOperand(RegCl.getRegister(Val));
1112 }
1113
1114 inline
createSRegOperand(unsigned SRegClassID,unsigned Val) const1115 MCOperand AMDGPUDisassembler::createSRegOperand(unsigned SRegClassID,
1116 unsigned Val) const {
1117 // ToDo: SI/CI have 104 SGPRs, VI - 102
1118 // Valery: here we accepting as much as we can, let assembler sort it out
1119 int shift = 0;
1120 switch (SRegClassID) {
1121 case AMDGPU::SGPR_32RegClassID:
1122 case AMDGPU::TTMP_32RegClassID:
1123 break;
1124 case AMDGPU::SGPR_64RegClassID:
1125 case AMDGPU::TTMP_64RegClassID:
1126 shift = 1;
1127 break;
1128 case AMDGPU::SGPR_128RegClassID:
1129 case AMDGPU::TTMP_128RegClassID:
1130 // ToDo: unclear if s[100:104] is available on VI. Can we use VCC as SGPR in
1131 // this bundle?
1132 case AMDGPU::SGPR_256RegClassID:
1133 case AMDGPU::TTMP_256RegClassID:
1134 // ToDo: unclear if s[96:104] is available on VI. Can we use VCC as SGPR in
1135 // this bundle?
1136 case AMDGPU::SGPR_288RegClassID:
1137 case AMDGPU::TTMP_288RegClassID:
1138 case AMDGPU::SGPR_320RegClassID:
1139 case AMDGPU::TTMP_320RegClassID:
1140 case AMDGPU::SGPR_352RegClassID:
1141 case AMDGPU::TTMP_352RegClassID:
1142 case AMDGPU::SGPR_384RegClassID:
1143 case AMDGPU::TTMP_384RegClassID:
1144 case AMDGPU::SGPR_512RegClassID:
1145 case AMDGPU::TTMP_512RegClassID:
1146 shift = 2;
1147 break;
1148 // ToDo: unclear if s[88:104] is available on VI. Can we use VCC as SGPR in
1149 // this bundle?
1150 default:
1151 llvm_unreachable("unhandled register class");
1152 }
1153
1154 if (Val % (1 << shift)) {
1155 *CommentStream << "Warning: " << getRegClassName(SRegClassID)
1156 << ": scalar reg isn't aligned " << Val;
1157 }
1158
1159 return createRegOperand(SRegClassID, Val >> shift);
1160 }
1161
decodeOperand_VS_32(unsigned Val) const1162 MCOperand AMDGPUDisassembler::decodeOperand_VS_32(unsigned Val) const {
1163 return decodeSrcOp(OPW32, Val);
1164 }
1165
decodeOperand_VS_64(unsigned Val) const1166 MCOperand AMDGPUDisassembler::decodeOperand_VS_64(unsigned Val) const {
1167 return decodeSrcOp(OPW64, Val);
1168 }
1169
decodeOperand_VS_128(unsigned Val) const1170 MCOperand AMDGPUDisassembler::decodeOperand_VS_128(unsigned Val) const {
1171 return decodeSrcOp(OPW128, Val);
1172 }
1173
decodeOperand_VSrc16(unsigned Val) const1174 MCOperand AMDGPUDisassembler::decodeOperand_VSrc16(unsigned Val) const {
1175 return decodeSrcOp(OPW16, Val);
1176 }
1177
decodeOperand_VSrcV216(unsigned Val) const1178 MCOperand AMDGPUDisassembler::decodeOperand_VSrcV216(unsigned Val) const {
1179 return decodeSrcOp(OPWV216, Val);
1180 }
1181
decodeOperand_VSrcV232(unsigned Val) const1182 MCOperand AMDGPUDisassembler::decodeOperand_VSrcV232(unsigned Val) const {
1183 return decodeSrcOp(OPWV232, Val);
1184 }
1185
decodeOperand_VGPR_32_Lo128(unsigned Val) const1186 MCOperand AMDGPUDisassembler::decodeOperand_VGPR_32_Lo128(unsigned Val) const {
1187 return createRegOperand(AMDGPU::VGPR_32_Lo128RegClassID, Val);
1188 }
1189
decodeOperand_VGPR_32(unsigned Val) const1190 MCOperand AMDGPUDisassembler::decodeOperand_VGPR_32(unsigned Val) const {
1191 // Some instructions have operand restrictions beyond what the encoding
1192 // allows. Some ordinarily VSrc_32 operands are VGPR_32, so clear the extra
1193 // high bit.
1194 Val &= 255;
1195
1196 return createRegOperand(AMDGPU::VGPR_32RegClassID, Val);
1197 }
1198
decodeOperand_VRegOrLds_32(unsigned Val) const1199 MCOperand AMDGPUDisassembler::decodeOperand_VRegOrLds_32(unsigned Val) const {
1200 return decodeSrcOp(OPW32, Val);
1201 }
1202
decodeOperand_AGPR_32(unsigned Val) const1203 MCOperand AMDGPUDisassembler::decodeOperand_AGPR_32(unsigned Val) const {
1204 return createRegOperand(AMDGPU::AGPR_32RegClassID, Val & 255);
1205 }
1206
decodeOperand_AReg_64(unsigned Val) const1207 MCOperand AMDGPUDisassembler::decodeOperand_AReg_64(unsigned Val) const {
1208 return createRegOperand(AMDGPU::AReg_64RegClassID, Val & 255);
1209 }
1210
decodeOperand_AReg_128(unsigned Val) const1211 MCOperand AMDGPUDisassembler::decodeOperand_AReg_128(unsigned Val) const {
1212 return createRegOperand(AMDGPU::AReg_128RegClassID, Val & 255);
1213 }
1214
decodeOperand_AReg_256(unsigned Val) const1215 MCOperand AMDGPUDisassembler::decodeOperand_AReg_256(unsigned Val) const {
1216 return createRegOperand(AMDGPU::AReg_256RegClassID, Val & 255);
1217 }
1218
decodeOperand_AReg_288(unsigned Val) const1219 MCOperand AMDGPUDisassembler::decodeOperand_AReg_288(unsigned Val) const {
1220 return createRegOperand(AMDGPU::AReg_288RegClassID, Val & 255);
1221 }
1222
decodeOperand_AReg_320(unsigned Val) const1223 MCOperand AMDGPUDisassembler::decodeOperand_AReg_320(unsigned Val) const {
1224 return createRegOperand(AMDGPU::AReg_320RegClassID, Val & 255);
1225 }
1226
decodeOperand_AReg_352(unsigned Val) const1227 MCOperand AMDGPUDisassembler::decodeOperand_AReg_352(unsigned Val) const {
1228 return createRegOperand(AMDGPU::AReg_352RegClassID, Val & 255);
1229 }
1230
decodeOperand_AReg_384(unsigned Val) const1231 MCOperand AMDGPUDisassembler::decodeOperand_AReg_384(unsigned Val) const {
1232 return createRegOperand(AMDGPU::AReg_384RegClassID, Val & 255);
1233 }
1234
1235
decodeOperand_AReg_512(unsigned Val) const1236 MCOperand AMDGPUDisassembler::decodeOperand_AReg_512(unsigned Val) const {
1237 return createRegOperand(AMDGPU::AReg_512RegClassID, Val & 255);
1238 }
1239
decodeOperand_AReg_1024(unsigned Val) const1240 MCOperand AMDGPUDisassembler::decodeOperand_AReg_1024(unsigned Val) const {
1241 return createRegOperand(AMDGPU::AReg_1024RegClassID, Val & 255);
1242 }
1243
decodeOperand_AV_32(unsigned Val) const1244 MCOperand AMDGPUDisassembler::decodeOperand_AV_32(unsigned Val) const {
1245 return decodeSrcOp(OPW32, Val);
1246 }
1247
decodeOperand_AV_64(unsigned Val) const1248 MCOperand AMDGPUDisassembler::decodeOperand_AV_64(unsigned Val) const {
1249 return decodeSrcOp(OPW64, Val);
1250 }
1251
decodeOperand_AV_128(unsigned Val) const1252 MCOperand AMDGPUDisassembler::decodeOperand_AV_128(unsigned Val) const {
1253 return decodeSrcOp(OPW128, Val);
1254 }
1255
decodeOperand_AVDst_128(unsigned Val) const1256 MCOperand AMDGPUDisassembler::decodeOperand_AVDst_128(unsigned Val) const {
1257 using namespace AMDGPU::EncValues;
1258 assert((Val & IS_VGPR) == 0); // Val{8} is not encoded but assumed to be 1.
1259 return decodeSrcOp(OPW128, Val | IS_VGPR);
1260 }
1261
decodeOperand_AVDst_512(unsigned Val) const1262 MCOperand AMDGPUDisassembler::decodeOperand_AVDst_512(unsigned Val) const {
1263 using namespace AMDGPU::EncValues;
1264 assert((Val & IS_VGPR) == 0); // Val{8} is not encoded but assumed to be 1.
1265 return decodeSrcOp(OPW512, Val | IS_VGPR);
1266 }
1267
decodeOperand_VReg_64(unsigned Val) const1268 MCOperand AMDGPUDisassembler::decodeOperand_VReg_64(unsigned Val) const {
1269 return createRegOperand(AMDGPU::VReg_64RegClassID, Val);
1270 }
1271
decodeOperand_VReg_96(unsigned Val) const1272 MCOperand AMDGPUDisassembler::decodeOperand_VReg_96(unsigned Val) const {
1273 return createRegOperand(AMDGPU::VReg_96RegClassID, Val);
1274 }
1275
decodeOperand_VReg_128(unsigned Val) const1276 MCOperand AMDGPUDisassembler::decodeOperand_VReg_128(unsigned Val) const {
1277 return createRegOperand(AMDGPU::VReg_128RegClassID, Val);
1278 }
1279
decodeOperand_VReg_256(unsigned Val) const1280 MCOperand AMDGPUDisassembler::decodeOperand_VReg_256(unsigned Val) const {
1281 return createRegOperand(AMDGPU::VReg_256RegClassID, Val);
1282 }
1283
decodeOperand_VReg_288(unsigned Val) const1284 MCOperand AMDGPUDisassembler::decodeOperand_VReg_288(unsigned Val) const {
1285 return createRegOperand(AMDGPU::VReg_288RegClassID, Val);
1286 }
1287
decodeOperand_VReg_320(unsigned Val) const1288 MCOperand AMDGPUDisassembler::decodeOperand_VReg_320(unsigned Val) const {
1289 return createRegOperand(AMDGPU::VReg_320RegClassID, Val);
1290 }
1291
decodeOperand_VReg_352(unsigned Val) const1292 MCOperand AMDGPUDisassembler::decodeOperand_VReg_352(unsigned Val) const {
1293 return createRegOperand(AMDGPU::VReg_352RegClassID, Val);
1294 }
1295
decodeOperand_VReg_384(unsigned Val) const1296 MCOperand AMDGPUDisassembler::decodeOperand_VReg_384(unsigned Val) const {
1297 return createRegOperand(AMDGPU::VReg_384RegClassID, Val);
1298 }
1299
decodeOperand_VReg_512(unsigned Val) const1300 MCOperand AMDGPUDisassembler::decodeOperand_VReg_512(unsigned Val) const {
1301 return createRegOperand(AMDGPU::VReg_512RegClassID, Val);
1302 }
1303
decodeOperand_VReg_1024(unsigned Val) const1304 MCOperand AMDGPUDisassembler::decodeOperand_VReg_1024(unsigned Val) const {
1305 return createRegOperand(AMDGPU::VReg_1024RegClassID, Val);
1306 }
1307
decodeOperand_SReg_32(unsigned Val) const1308 MCOperand AMDGPUDisassembler::decodeOperand_SReg_32(unsigned Val) const {
1309 // table-gen generated disassembler doesn't care about operand types
1310 // leaving only registry class so SSrc_32 operand turns into SReg_32
1311 // and therefore we accept immediates and literals here as well
1312 return decodeSrcOp(OPW32, Val);
1313 }
1314
decodeOperand_SReg_32_XM0_XEXEC(unsigned Val) const1315 MCOperand AMDGPUDisassembler::decodeOperand_SReg_32_XM0_XEXEC(
1316 unsigned Val) const {
1317 // SReg_32_XM0 is SReg_32 without M0 or EXEC_LO/EXEC_HI
1318 return decodeOperand_SReg_32(Val);
1319 }
1320
decodeOperand_SReg_32_XEXEC_HI(unsigned Val) const1321 MCOperand AMDGPUDisassembler::decodeOperand_SReg_32_XEXEC_HI(
1322 unsigned Val) const {
1323 // SReg_32_XM0 is SReg_32 without EXEC_HI
1324 return decodeOperand_SReg_32(Val);
1325 }
1326
decodeOperand_SRegOrLds_32(unsigned Val) const1327 MCOperand AMDGPUDisassembler::decodeOperand_SRegOrLds_32(unsigned Val) const {
1328 // table-gen generated disassembler doesn't care about operand types
1329 // leaving only registry class so SSrc_32 operand turns into SReg_32
1330 // and therefore we accept immediates and literals here as well
1331 return decodeSrcOp(OPW32, Val);
1332 }
1333
decodeOperand_SReg_64(unsigned Val) const1334 MCOperand AMDGPUDisassembler::decodeOperand_SReg_64(unsigned Val) const {
1335 return decodeSrcOp(OPW64, Val);
1336 }
1337
decodeOperand_SReg_64_XEXEC(unsigned Val) const1338 MCOperand AMDGPUDisassembler::decodeOperand_SReg_64_XEXEC(unsigned Val) const {
1339 return decodeSrcOp(OPW64, Val);
1340 }
1341
decodeOperand_SReg_128(unsigned Val) const1342 MCOperand AMDGPUDisassembler::decodeOperand_SReg_128(unsigned Val) const {
1343 return decodeSrcOp(OPW128, Val);
1344 }
1345
decodeOperand_SReg_256(unsigned Val) const1346 MCOperand AMDGPUDisassembler::decodeOperand_SReg_256(unsigned Val) const {
1347 return decodeDstOp(OPW256, Val);
1348 }
1349
decodeOperand_SReg_288(unsigned Val) const1350 MCOperand AMDGPUDisassembler::decodeOperand_SReg_288(unsigned Val) const {
1351 return decodeDstOp(OPW288, Val);
1352 }
1353
decodeOperand_SReg_320(unsigned Val) const1354 MCOperand AMDGPUDisassembler::decodeOperand_SReg_320(unsigned Val) const {
1355 return decodeDstOp(OPW320, Val);
1356 }
1357
decodeOperand_SReg_352(unsigned Val) const1358 MCOperand AMDGPUDisassembler::decodeOperand_SReg_352(unsigned Val) const {
1359 return decodeDstOp(OPW352, Val);
1360 }
1361
decodeOperand_SReg_384(unsigned Val) const1362 MCOperand AMDGPUDisassembler::decodeOperand_SReg_384(unsigned Val) const {
1363 return decodeDstOp(OPW384, Val);
1364 }
1365
decodeOperand_SReg_512(unsigned Val) const1366 MCOperand AMDGPUDisassembler::decodeOperand_SReg_512(unsigned Val) const {
1367 return decodeDstOp(OPW512, Val);
1368 }
1369
1370 // Decode Literals for insts which always have a literal in the encoding
1371 MCOperand
decodeMandatoryLiteralConstant(unsigned Val) const1372 AMDGPUDisassembler::decodeMandatoryLiteralConstant(unsigned Val) const {
1373 if (HasLiteral) {
1374 assert(
1375 AMDGPU::hasVOPD(STI) &&
1376 "Should only decode multiple kimm with VOPD, check VSrc operand types");
1377 if (Literal != Val)
1378 return errOperand(Val, "More than one unique literal is illegal");
1379 }
1380 HasLiteral = true;
1381 Literal = Val;
1382 return MCOperand::createImm(Literal);
1383 }
1384
decodeLiteralConstant() const1385 MCOperand AMDGPUDisassembler::decodeLiteralConstant() const {
1386 // For now all literal constants are supposed to be unsigned integer
1387 // ToDo: deal with signed/unsigned 64-bit integer constants
1388 // ToDo: deal with float/double constants
1389 if (!HasLiteral) {
1390 if (Bytes.size() < 4) {
1391 return errOperand(0, "cannot read literal, inst bytes left " +
1392 Twine(Bytes.size()));
1393 }
1394 HasLiteral = true;
1395 Literal = eatBytes<uint32_t>(Bytes);
1396 }
1397 return MCOperand::createImm(Literal);
1398 }
1399
decodeIntImmed(unsigned Imm)1400 MCOperand AMDGPUDisassembler::decodeIntImmed(unsigned Imm) {
1401 using namespace AMDGPU::EncValues;
1402
1403 assert(Imm >= INLINE_INTEGER_C_MIN && Imm <= INLINE_INTEGER_C_MAX);
1404 return MCOperand::createImm((Imm <= INLINE_INTEGER_C_POSITIVE_MAX) ?
1405 (static_cast<int64_t>(Imm) - INLINE_INTEGER_C_MIN) :
1406 (INLINE_INTEGER_C_POSITIVE_MAX - static_cast<int64_t>(Imm)));
1407 // Cast prevents negative overflow.
1408 }
1409
getInlineImmVal32(unsigned Imm)1410 static int64_t getInlineImmVal32(unsigned Imm) {
1411 switch (Imm) {
1412 case 240:
1413 return FloatToBits(0.5f);
1414 case 241:
1415 return FloatToBits(-0.5f);
1416 case 242:
1417 return FloatToBits(1.0f);
1418 case 243:
1419 return FloatToBits(-1.0f);
1420 case 244:
1421 return FloatToBits(2.0f);
1422 case 245:
1423 return FloatToBits(-2.0f);
1424 case 246:
1425 return FloatToBits(4.0f);
1426 case 247:
1427 return FloatToBits(-4.0f);
1428 case 248: // 1 / (2 * PI)
1429 return 0x3e22f983;
1430 default:
1431 llvm_unreachable("invalid fp inline imm");
1432 }
1433 }
1434
getInlineImmVal64(unsigned Imm)1435 static int64_t getInlineImmVal64(unsigned Imm) {
1436 switch (Imm) {
1437 case 240:
1438 return DoubleToBits(0.5);
1439 case 241:
1440 return DoubleToBits(-0.5);
1441 case 242:
1442 return DoubleToBits(1.0);
1443 case 243:
1444 return DoubleToBits(-1.0);
1445 case 244:
1446 return DoubleToBits(2.0);
1447 case 245:
1448 return DoubleToBits(-2.0);
1449 case 246:
1450 return DoubleToBits(4.0);
1451 case 247:
1452 return DoubleToBits(-4.0);
1453 case 248: // 1 / (2 * PI)
1454 return 0x3fc45f306dc9c882;
1455 default:
1456 llvm_unreachable("invalid fp inline imm");
1457 }
1458 }
1459
getInlineImmVal16(unsigned Imm)1460 static int64_t getInlineImmVal16(unsigned Imm) {
1461 switch (Imm) {
1462 case 240:
1463 return 0x3800;
1464 case 241:
1465 return 0xB800;
1466 case 242:
1467 return 0x3C00;
1468 case 243:
1469 return 0xBC00;
1470 case 244:
1471 return 0x4000;
1472 case 245:
1473 return 0xC000;
1474 case 246:
1475 return 0x4400;
1476 case 247:
1477 return 0xC400;
1478 case 248: // 1 / (2 * PI)
1479 return 0x3118;
1480 default:
1481 llvm_unreachable("invalid fp inline imm");
1482 }
1483 }
1484
decodeFPImmed(OpWidthTy Width,unsigned Imm)1485 MCOperand AMDGPUDisassembler::decodeFPImmed(OpWidthTy Width, unsigned Imm) {
1486 assert(Imm >= AMDGPU::EncValues::INLINE_FLOATING_C_MIN
1487 && Imm <= AMDGPU::EncValues::INLINE_FLOATING_C_MAX);
1488
1489 // ToDo: case 248: 1/(2*PI) - is allowed only on VI
1490 switch (Width) {
1491 case OPW32:
1492 case OPW128: // splat constants
1493 case OPW512:
1494 case OPW1024:
1495 case OPWV232:
1496 return MCOperand::createImm(getInlineImmVal32(Imm));
1497 case OPW64:
1498 case OPW256:
1499 return MCOperand::createImm(getInlineImmVal64(Imm));
1500 case OPW16:
1501 case OPWV216:
1502 return MCOperand::createImm(getInlineImmVal16(Imm));
1503 default:
1504 llvm_unreachable("implement me");
1505 }
1506 }
1507
getVgprClassId(const OpWidthTy Width) const1508 unsigned AMDGPUDisassembler::getVgprClassId(const OpWidthTy Width) const {
1509 using namespace AMDGPU;
1510
1511 assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1512 switch (Width) {
1513 default: // fall
1514 case OPW32:
1515 case OPW16:
1516 case OPWV216:
1517 return VGPR_32RegClassID;
1518 case OPW64:
1519 case OPWV232: return VReg_64RegClassID;
1520 case OPW96: return VReg_96RegClassID;
1521 case OPW128: return VReg_128RegClassID;
1522 case OPW160: return VReg_160RegClassID;
1523 case OPW256: return VReg_256RegClassID;
1524 case OPW288: return VReg_288RegClassID;
1525 case OPW320: return VReg_320RegClassID;
1526 case OPW352: return VReg_352RegClassID;
1527 case OPW384: return VReg_384RegClassID;
1528 case OPW512: return VReg_512RegClassID;
1529 case OPW1024: return VReg_1024RegClassID;
1530 }
1531 }
1532
getAgprClassId(const OpWidthTy Width) const1533 unsigned AMDGPUDisassembler::getAgprClassId(const OpWidthTy Width) const {
1534 using namespace AMDGPU;
1535
1536 assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1537 switch (Width) {
1538 default: // fall
1539 case OPW32:
1540 case OPW16:
1541 case OPWV216:
1542 return AGPR_32RegClassID;
1543 case OPW64:
1544 case OPWV232: return AReg_64RegClassID;
1545 case OPW96: return AReg_96RegClassID;
1546 case OPW128: return AReg_128RegClassID;
1547 case OPW160: return AReg_160RegClassID;
1548 case OPW256: return AReg_256RegClassID;
1549 case OPW288: return AReg_288RegClassID;
1550 case OPW320: return AReg_320RegClassID;
1551 case OPW352: return AReg_352RegClassID;
1552 case OPW384: return AReg_384RegClassID;
1553 case OPW512: return AReg_512RegClassID;
1554 case OPW1024: return AReg_1024RegClassID;
1555 }
1556 }
1557
1558
getSgprClassId(const OpWidthTy Width) const1559 unsigned AMDGPUDisassembler::getSgprClassId(const OpWidthTy Width) const {
1560 using namespace AMDGPU;
1561
1562 assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1563 switch (Width) {
1564 default: // fall
1565 case OPW32:
1566 case OPW16:
1567 case OPWV216:
1568 return SGPR_32RegClassID;
1569 case OPW64:
1570 case OPWV232: return SGPR_64RegClassID;
1571 case OPW96: return SGPR_96RegClassID;
1572 case OPW128: return SGPR_128RegClassID;
1573 case OPW160: return SGPR_160RegClassID;
1574 case OPW256: return SGPR_256RegClassID;
1575 case OPW288: return SGPR_288RegClassID;
1576 case OPW320: return SGPR_320RegClassID;
1577 case OPW352: return SGPR_352RegClassID;
1578 case OPW384: return SGPR_384RegClassID;
1579 case OPW512: return SGPR_512RegClassID;
1580 }
1581 }
1582
getTtmpClassId(const OpWidthTy Width) const1583 unsigned AMDGPUDisassembler::getTtmpClassId(const OpWidthTy Width) const {
1584 using namespace AMDGPU;
1585
1586 assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1587 switch (Width) {
1588 default: // fall
1589 case OPW32:
1590 case OPW16:
1591 case OPWV216:
1592 return TTMP_32RegClassID;
1593 case OPW64:
1594 case OPWV232: return TTMP_64RegClassID;
1595 case OPW128: return TTMP_128RegClassID;
1596 case OPW256: return TTMP_256RegClassID;
1597 case OPW288: return TTMP_288RegClassID;
1598 case OPW320: return TTMP_320RegClassID;
1599 case OPW352: return TTMP_352RegClassID;
1600 case OPW384: return TTMP_384RegClassID;
1601 case OPW512: return TTMP_512RegClassID;
1602 }
1603 }
1604
getTTmpIdx(unsigned Val) const1605 int AMDGPUDisassembler::getTTmpIdx(unsigned Val) const {
1606 using namespace AMDGPU::EncValues;
1607
1608 unsigned TTmpMin = isGFX9Plus() ? TTMP_GFX9PLUS_MIN : TTMP_VI_MIN;
1609 unsigned TTmpMax = isGFX9Plus() ? TTMP_GFX9PLUS_MAX : TTMP_VI_MAX;
1610
1611 return (TTmpMin <= Val && Val <= TTmpMax)? Val - TTmpMin : -1;
1612 }
1613
decodeSrcOp(const OpWidthTy Width,unsigned Val,bool MandatoryLiteral) const1614 MCOperand AMDGPUDisassembler::decodeSrcOp(const OpWidthTy Width, unsigned Val,
1615 bool MandatoryLiteral) const {
1616 using namespace AMDGPU::EncValues;
1617
1618 assert(Val < 1024); // enum10
1619
1620 bool IsAGPR = Val & 512;
1621 Val &= 511;
1622
1623 if (VGPR_MIN <= Val && Val <= VGPR_MAX) {
1624 return createRegOperand(IsAGPR ? getAgprClassId(Width)
1625 : getVgprClassId(Width), Val - VGPR_MIN);
1626 }
1627 if (Val <= SGPR_MAX) {
1628 // "SGPR_MIN <= Val" is always true and causes compilation warning.
1629 static_assert(SGPR_MIN == 0);
1630 return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN);
1631 }
1632
1633 int TTmpIdx = getTTmpIdx(Val);
1634 if (TTmpIdx >= 0) {
1635 return createSRegOperand(getTtmpClassId(Width), TTmpIdx);
1636 }
1637
1638 if (INLINE_INTEGER_C_MIN <= Val && Val <= INLINE_INTEGER_C_MAX)
1639 return decodeIntImmed(Val);
1640
1641 if (INLINE_FLOATING_C_MIN <= Val && Val <= INLINE_FLOATING_C_MAX)
1642 return decodeFPImmed(Width, Val);
1643
1644 if (Val == LITERAL_CONST) {
1645 if (MandatoryLiteral)
1646 // Keep a sentinel value for deferred setting
1647 return MCOperand::createImm(LITERAL_CONST);
1648 else
1649 return decodeLiteralConstant();
1650 }
1651
1652 switch (Width) {
1653 case OPW32:
1654 case OPW16:
1655 case OPWV216:
1656 return decodeSpecialReg32(Val);
1657 case OPW64:
1658 case OPWV232:
1659 return decodeSpecialReg64(Val);
1660 default:
1661 llvm_unreachable("unexpected immediate type");
1662 }
1663 }
1664
decodeDstOp(const OpWidthTy Width,unsigned Val) const1665 MCOperand AMDGPUDisassembler::decodeDstOp(const OpWidthTy Width, unsigned Val) const {
1666 using namespace AMDGPU::EncValues;
1667
1668 assert(Val < 128);
1669 assert(Width == OPW256 || Width == OPW512);
1670
1671 if (Val <= SGPR_MAX) {
1672 // "SGPR_MIN <= Val" is always true and causes compilation warning.
1673 static_assert(SGPR_MIN == 0);
1674 return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN);
1675 }
1676
1677 int TTmpIdx = getTTmpIdx(Val);
1678 if (TTmpIdx >= 0) {
1679 return createSRegOperand(getTtmpClassId(Width), TTmpIdx);
1680 }
1681
1682 llvm_unreachable("unknown dst register");
1683 }
1684
1685 // Bit 0 of DstY isn't stored in the instruction, because it's always the
1686 // opposite of bit 0 of DstX.
decodeVOPDDstYOp(MCInst & Inst,unsigned Val) const1687 MCOperand AMDGPUDisassembler::decodeVOPDDstYOp(MCInst &Inst,
1688 unsigned Val) const {
1689 int VDstXInd =
1690 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::vdstX);
1691 assert(VDstXInd != -1);
1692 assert(Inst.getOperand(VDstXInd).isReg());
1693 unsigned XDstReg = MRI.getEncodingValue(Inst.getOperand(VDstXInd).getReg());
1694 Val |= ~XDstReg & 1;
1695 auto Width = llvm::AMDGPUDisassembler::OPW32;
1696 return createRegOperand(getVgprClassId(Width), Val);
1697 }
1698
decodeSpecialReg32(unsigned Val) const1699 MCOperand AMDGPUDisassembler::decodeSpecialReg32(unsigned Val) const {
1700 using namespace AMDGPU;
1701
1702 switch (Val) {
1703 // clang-format off
1704 case 102: return createRegOperand(FLAT_SCR_LO);
1705 case 103: return createRegOperand(FLAT_SCR_HI);
1706 case 104: return createRegOperand(XNACK_MASK_LO);
1707 case 105: return createRegOperand(XNACK_MASK_HI);
1708 case 106: return createRegOperand(VCC_LO);
1709 case 107: return createRegOperand(VCC_HI);
1710 case 108: return createRegOperand(TBA_LO);
1711 case 109: return createRegOperand(TBA_HI);
1712 case 110: return createRegOperand(TMA_LO);
1713 case 111: return createRegOperand(TMA_HI);
1714 case 124:
1715 return isGFX11Plus() ? createRegOperand(SGPR_NULL) : createRegOperand(M0);
1716 case 125:
1717 return isGFX11Plus() ? createRegOperand(M0) : createRegOperand(SGPR_NULL);
1718 case 126: return createRegOperand(EXEC_LO);
1719 case 127: return createRegOperand(EXEC_HI);
1720 case 235: return createRegOperand(SRC_SHARED_BASE_LO);
1721 case 236: return createRegOperand(SRC_SHARED_LIMIT_LO);
1722 case 237: return createRegOperand(SRC_PRIVATE_BASE_LO);
1723 case 238: return createRegOperand(SRC_PRIVATE_LIMIT_LO);
1724 case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
1725 case 251: return createRegOperand(SRC_VCCZ);
1726 case 252: return createRegOperand(SRC_EXECZ);
1727 case 253: return createRegOperand(SRC_SCC);
1728 case 254: return createRegOperand(LDS_DIRECT);
1729 default: break;
1730 // clang-format on
1731 }
1732 return errOperand(Val, "unknown operand encoding " + Twine(Val));
1733 }
1734
decodeSpecialReg64(unsigned Val) const1735 MCOperand AMDGPUDisassembler::decodeSpecialReg64(unsigned Val) const {
1736 using namespace AMDGPU;
1737
1738 switch (Val) {
1739 case 102: return createRegOperand(FLAT_SCR);
1740 case 104: return createRegOperand(XNACK_MASK);
1741 case 106: return createRegOperand(VCC);
1742 case 108: return createRegOperand(TBA);
1743 case 110: return createRegOperand(TMA);
1744 case 124:
1745 if (isGFX11Plus())
1746 return createRegOperand(SGPR_NULL);
1747 break;
1748 case 125:
1749 if (!isGFX11Plus())
1750 return createRegOperand(SGPR_NULL);
1751 break;
1752 case 126: return createRegOperand(EXEC);
1753 case 235: return createRegOperand(SRC_SHARED_BASE);
1754 case 236: return createRegOperand(SRC_SHARED_LIMIT);
1755 case 237: return createRegOperand(SRC_PRIVATE_BASE);
1756 case 238: return createRegOperand(SRC_PRIVATE_LIMIT);
1757 case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
1758 case 251: return createRegOperand(SRC_VCCZ);
1759 case 252: return createRegOperand(SRC_EXECZ);
1760 case 253: return createRegOperand(SRC_SCC);
1761 default: break;
1762 }
1763 return errOperand(Val, "unknown operand encoding " + Twine(Val));
1764 }
1765
decodeSDWASrc(const OpWidthTy Width,const unsigned Val) const1766 MCOperand AMDGPUDisassembler::decodeSDWASrc(const OpWidthTy Width,
1767 const unsigned Val) const {
1768 using namespace AMDGPU::SDWA;
1769 using namespace AMDGPU::EncValues;
1770
1771 if (STI.getFeatureBits()[AMDGPU::FeatureGFX9] ||
1772 STI.getFeatureBits()[AMDGPU::FeatureGFX10]) {
1773 // XXX: cast to int is needed to avoid stupid warning:
1774 // compare with unsigned is always true
1775 if (int(SDWA9EncValues::SRC_VGPR_MIN) <= int(Val) &&
1776 Val <= SDWA9EncValues::SRC_VGPR_MAX) {
1777 return createRegOperand(getVgprClassId(Width),
1778 Val - SDWA9EncValues::SRC_VGPR_MIN);
1779 }
1780 if (SDWA9EncValues::SRC_SGPR_MIN <= Val &&
1781 Val <= (isGFX10Plus() ? SDWA9EncValues::SRC_SGPR_MAX_GFX10
1782 : SDWA9EncValues::SRC_SGPR_MAX_SI)) {
1783 return createSRegOperand(getSgprClassId(Width),
1784 Val - SDWA9EncValues::SRC_SGPR_MIN);
1785 }
1786 if (SDWA9EncValues::SRC_TTMP_MIN <= Val &&
1787 Val <= SDWA9EncValues::SRC_TTMP_MAX) {
1788 return createSRegOperand(getTtmpClassId(Width),
1789 Val - SDWA9EncValues::SRC_TTMP_MIN);
1790 }
1791
1792 const unsigned SVal = Val - SDWA9EncValues::SRC_SGPR_MIN;
1793
1794 if (INLINE_INTEGER_C_MIN <= SVal && SVal <= INLINE_INTEGER_C_MAX)
1795 return decodeIntImmed(SVal);
1796
1797 if (INLINE_FLOATING_C_MIN <= SVal && SVal <= INLINE_FLOATING_C_MAX)
1798 return decodeFPImmed(Width, SVal);
1799
1800 return decodeSpecialReg32(SVal);
1801 } else if (STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]) {
1802 return createRegOperand(getVgprClassId(Width), Val);
1803 }
1804 llvm_unreachable("unsupported target");
1805 }
1806
decodeSDWASrc16(unsigned Val) const1807 MCOperand AMDGPUDisassembler::decodeSDWASrc16(unsigned Val) const {
1808 return decodeSDWASrc(OPW16, Val);
1809 }
1810
decodeSDWASrc32(unsigned Val) const1811 MCOperand AMDGPUDisassembler::decodeSDWASrc32(unsigned Val) const {
1812 return decodeSDWASrc(OPW32, Val);
1813 }
1814
decodeSDWAVopcDst(unsigned Val) const1815 MCOperand AMDGPUDisassembler::decodeSDWAVopcDst(unsigned Val) const {
1816 using namespace AMDGPU::SDWA;
1817
1818 assert((STI.getFeatureBits()[AMDGPU::FeatureGFX9] ||
1819 STI.getFeatureBits()[AMDGPU::FeatureGFX10]) &&
1820 "SDWAVopcDst should be present only on GFX9+");
1821
1822 bool IsWave64 = STI.getFeatureBits()[AMDGPU::FeatureWavefrontSize64];
1823
1824 if (Val & SDWA9EncValues::VOPC_DST_VCC_MASK) {
1825 Val &= SDWA9EncValues::VOPC_DST_SGPR_MASK;
1826
1827 int TTmpIdx = getTTmpIdx(Val);
1828 if (TTmpIdx >= 0) {
1829 auto TTmpClsId = getTtmpClassId(IsWave64 ? OPW64 : OPW32);
1830 return createSRegOperand(TTmpClsId, TTmpIdx);
1831 } else if (Val > SGPR_MAX) {
1832 return IsWave64 ? decodeSpecialReg64(Val)
1833 : decodeSpecialReg32(Val);
1834 } else {
1835 return createSRegOperand(getSgprClassId(IsWave64 ? OPW64 : OPW32), Val);
1836 }
1837 } else {
1838 return createRegOperand(IsWave64 ? AMDGPU::VCC : AMDGPU::VCC_LO);
1839 }
1840 }
1841
decodeBoolReg(unsigned Val) const1842 MCOperand AMDGPUDisassembler::decodeBoolReg(unsigned Val) const {
1843 return STI.getFeatureBits()[AMDGPU::FeatureWavefrontSize64] ?
1844 decodeOperand_SReg_64(Val) : decodeOperand_SReg_32(Val);
1845 }
1846
isVI() const1847 bool AMDGPUDisassembler::isVI() const {
1848 return STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands];
1849 }
1850
isGFX9() const1851 bool AMDGPUDisassembler::isGFX9() const { return AMDGPU::isGFX9(STI); }
1852
isGFX90A() const1853 bool AMDGPUDisassembler::isGFX90A() const {
1854 return STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts];
1855 }
1856
isGFX9Plus() const1857 bool AMDGPUDisassembler::isGFX9Plus() const { return AMDGPU::isGFX9Plus(STI); }
1858
isGFX10() const1859 bool AMDGPUDisassembler::isGFX10() const { return AMDGPU::isGFX10(STI); }
1860
isGFX10Plus() const1861 bool AMDGPUDisassembler::isGFX10Plus() const {
1862 return AMDGPU::isGFX10Plus(STI);
1863 }
1864
isGFX11() const1865 bool AMDGPUDisassembler::isGFX11() const {
1866 return STI.getFeatureBits()[AMDGPU::FeatureGFX11];
1867 }
1868
isGFX11Plus() const1869 bool AMDGPUDisassembler::isGFX11Plus() const {
1870 return AMDGPU::isGFX11Plus(STI);
1871 }
1872
1873
hasArchitectedFlatScratch() const1874 bool AMDGPUDisassembler::hasArchitectedFlatScratch() const {
1875 return STI.getFeatureBits()[AMDGPU::FeatureArchitectedFlatScratch];
1876 }
1877
1878 //===----------------------------------------------------------------------===//
1879 // AMDGPU specific symbol handling
1880 //===----------------------------------------------------------------------===//
1881 #define PRINT_DIRECTIVE(DIRECTIVE, MASK) \
1882 do { \
1883 KdStream << Indent << DIRECTIVE " " \
1884 << ((FourByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n'; \
1885 } while (0)
1886
1887 // NOLINTNEXTLINE(readability-identifier-naming)
decodeCOMPUTE_PGM_RSRC1(uint32_t FourByteBuffer,raw_string_ostream & KdStream) const1888 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC1(
1889 uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1890 using namespace amdhsa;
1891 StringRef Indent = "\t";
1892
1893 // We cannot accurately backward compute #VGPRs used from
1894 // GRANULATED_WORKITEM_VGPR_COUNT. But we are concerned with getting the same
1895 // value of GRANULATED_WORKITEM_VGPR_COUNT in the reassembled binary. So we
1896 // simply calculate the inverse of what the assembler does.
1897
1898 uint32_t GranulatedWorkitemVGPRCount =
1899 (FourByteBuffer & COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT) >>
1900 COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT_SHIFT;
1901
1902 uint32_t NextFreeVGPR = (GranulatedWorkitemVGPRCount + 1) *
1903 AMDGPU::IsaInfo::getVGPREncodingGranule(&STI);
1904
1905 KdStream << Indent << ".amdhsa_next_free_vgpr " << NextFreeVGPR << '\n';
1906
1907 // We cannot backward compute values used to calculate
1908 // GRANULATED_WAVEFRONT_SGPR_COUNT. Hence the original values for following
1909 // directives can't be computed:
1910 // .amdhsa_reserve_vcc
1911 // .amdhsa_reserve_flat_scratch
1912 // .amdhsa_reserve_xnack_mask
1913 // They take their respective default values if not specified in the assembly.
1914 //
1915 // GRANULATED_WAVEFRONT_SGPR_COUNT
1916 // = f(NEXT_FREE_SGPR + VCC + FLAT_SCRATCH + XNACK_MASK)
1917 //
1918 // We compute the inverse as though all directives apart from NEXT_FREE_SGPR
1919 // are set to 0. So while disassembling we consider that:
1920 //
1921 // GRANULATED_WAVEFRONT_SGPR_COUNT
1922 // = f(NEXT_FREE_SGPR + 0 + 0 + 0)
1923 //
1924 // The disassembler cannot recover the original values of those 3 directives.
1925
1926 uint32_t GranulatedWavefrontSGPRCount =
1927 (FourByteBuffer & COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT) >>
1928 COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT_SHIFT;
1929
1930 if (isGFX10Plus() && GranulatedWavefrontSGPRCount)
1931 return MCDisassembler::Fail;
1932
1933 uint32_t NextFreeSGPR = (GranulatedWavefrontSGPRCount + 1) *
1934 AMDGPU::IsaInfo::getSGPREncodingGranule(&STI);
1935
1936 KdStream << Indent << ".amdhsa_reserve_vcc " << 0 << '\n';
1937 if (!hasArchitectedFlatScratch())
1938 KdStream << Indent << ".amdhsa_reserve_flat_scratch " << 0 << '\n';
1939 KdStream << Indent << ".amdhsa_reserve_xnack_mask " << 0 << '\n';
1940 KdStream << Indent << ".amdhsa_next_free_sgpr " << NextFreeSGPR << "\n";
1941
1942 if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIORITY)
1943 return MCDisassembler::Fail;
1944
1945 PRINT_DIRECTIVE(".amdhsa_float_round_mode_32",
1946 COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_32);
1947 PRINT_DIRECTIVE(".amdhsa_float_round_mode_16_64",
1948 COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_16_64);
1949 PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_32",
1950 COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_32);
1951 PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_16_64",
1952 COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64);
1953
1954 if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIV)
1955 return MCDisassembler::Fail;
1956
1957 PRINT_DIRECTIVE(".amdhsa_dx10_clamp", COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP);
1958
1959 if (FourByteBuffer & COMPUTE_PGM_RSRC1_DEBUG_MODE)
1960 return MCDisassembler::Fail;
1961
1962 PRINT_DIRECTIVE(".amdhsa_ieee_mode", COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE);
1963
1964 if (FourByteBuffer & COMPUTE_PGM_RSRC1_BULKY)
1965 return MCDisassembler::Fail;
1966
1967 if (FourByteBuffer & COMPUTE_PGM_RSRC1_CDBG_USER)
1968 return MCDisassembler::Fail;
1969
1970 PRINT_DIRECTIVE(".amdhsa_fp16_overflow", COMPUTE_PGM_RSRC1_FP16_OVFL);
1971
1972 if (FourByteBuffer & COMPUTE_PGM_RSRC1_RESERVED0)
1973 return MCDisassembler::Fail;
1974
1975 if (isGFX10Plus()) {
1976 PRINT_DIRECTIVE(".amdhsa_workgroup_processor_mode",
1977 COMPUTE_PGM_RSRC1_WGP_MODE);
1978 PRINT_DIRECTIVE(".amdhsa_memory_ordered", COMPUTE_PGM_RSRC1_MEM_ORDERED);
1979 PRINT_DIRECTIVE(".amdhsa_forward_progress", COMPUTE_PGM_RSRC1_FWD_PROGRESS);
1980 }
1981 return MCDisassembler::Success;
1982 }
1983
1984 // NOLINTNEXTLINE(readability-identifier-naming)
decodeCOMPUTE_PGM_RSRC2(uint32_t FourByteBuffer,raw_string_ostream & KdStream) const1985 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC2(
1986 uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1987 using namespace amdhsa;
1988 StringRef Indent = "\t";
1989 if (hasArchitectedFlatScratch())
1990 PRINT_DIRECTIVE(".amdhsa_enable_private_segment",
1991 COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
1992 else
1993 PRINT_DIRECTIVE(".amdhsa_system_sgpr_private_segment_wavefront_offset",
1994 COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
1995 PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_x",
1996 COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X);
1997 PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_y",
1998 COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Y);
1999 PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_z",
2000 COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Z);
2001 PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_info",
2002 COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_INFO);
2003 PRINT_DIRECTIVE(".amdhsa_system_vgpr_workitem_id",
2004 COMPUTE_PGM_RSRC2_ENABLE_VGPR_WORKITEM_ID);
2005
2006 if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_ADDRESS_WATCH)
2007 return MCDisassembler::Fail;
2008
2009 if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_MEMORY)
2010 return MCDisassembler::Fail;
2011
2012 if (FourByteBuffer & COMPUTE_PGM_RSRC2_GRANULATED_LDS_SIZE)
2013 return MCDisassembler::Fail;
2014
2015 PRINT_DIRECTIVE(
2016 ".amdhsa_exception_fp_ieee_invalid_op",
2017 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INVALID_OPERATION);
2018 PRINT_DIRECTIVE(".amdhsa_exception_fp_denorm_src",
2019 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_FP_DENORMAL_SOURCE);
2020 PRINT_DIRECTIVE(
2021 ".amdhsa_exception_fp_ieee_div_zero",
2022 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_DIVISION_BY_ZERO);
2023 PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_overflow",
2024 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_OVERFLOW);
2025 PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_underflow",
2026 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_UNDERFLOW);
2027 PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_inexact",
2028 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INEXACT);
2029 PRINT_DIRECTIVE(".amdhsa_exception_int_div_zero",
2030 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_INT_DIVIDE_BY_ZERO);
2031
2032 if (FourByteBuffer & COMPUTE_PGM_RSRC2_RESERVED0)
2033 return MCDisassembler::Fail;
2034
2035 return MCDisassembler::Success;
2036 }
2037
2038 #undef PRINT_DIRECTIVE
2039
2040 MCDisassembler::DecodeStatus
decodeKernelDescriptorDirective(DataExtractor::Cursor & Cursor,ArrayRef<uint8_t> Bytes,raw_string_ostream & KdStream) const2041 AMDGPUDisassembler::decodeKernelDescriptorDirective(
2042 DataExtractor::Cursor &Cursor, ArrayRef<uint8_t> Bytes,
2043 raw_string_ostream &KdStream) const {
2044 #define PRINT_DIRECTIVE(DIRECTIVE, MASK) \
2045 do { \
2046 KdStream << Indent << DIRECTIVE " " \
2047 << ((TwoByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n'; \
2048 } while (0)
2049
2050 uint16_t TwoByteBuffer = 0;
2051 uint32_t FourByteBuffer = 0;
2052
2053 StringRef ReservedBytes;
2054 StringRef Indent = "\t";
2055
2056 assert(Bytes.size() == 64);
2057 DataExtractor DE(Bytes, /*IsLittleEndian=*/true, /*AddressSize=*/8);
2058
2059 switch (Cursor.tell()) {
2060 case amdhsa::GROUP_SEGMENT_FIXED_SIZE_OFFSET:
2061 FourByteBuffer = DE.getU32(Cursor);
2062 KdStream << Indent << ".amdhsa_group_segment_fixed_size " << FourByteBuffer
2063 << '\n';
2064 return MCDisassembler::Success;
2065
2066 case amdhsa::PRIVATE_SEGMENT_FIXED_SIZE_OFFSET:
2067 FourByteBuffer = DE.getU32(Cursor);
2068 KdStream << Indent << ".amdhsa_private_segment_fixed_size "
2069 << FourByteBuffer << '\n';
2070 return MCDisassembler::Success;
2071
2072 case amdhsa::KERNARG_SIZE_OFFSET:
2073 FourByteBuffer = DE.getU32(Cursor);
2074 KdStream << Indent << ".amdhsa_kernarg_size "
2075 << FourByteBuffer << '\n';
2076 return MCDisassembler::Success;
2077
2078 case amdhsa::RESERVED0_OFFSET:
2079 // 4 reserved bytes, must be 0.
2080 ReservedBytes = DE.getBytes(Cursor, 4);
2081 for (int I = 0; I < 4; ++I) {
2082 if (ReservedBytes[I] != 0) {
2083 return MCDisassembler::Fail;
2084 }
2085 }
2086 return MCDisassembler::Success;
2087
2088 case amdhsa::KERNEL_CODE_ENTRY_BYTE_OFFSET_OFFSET:
2089 // KERNEL_CODE_ENTRY_BYTE_OFFSET
2090 // So far no directive controls this for Code Object V3, so simply skip for
2091 // disassembly.
2092 DE.skip(Cursor, 8);
2093 return MCDisassembler::Success;
2094
2095 case amdhsa::RESERVED1_OFFSET:
2096 // 20 reserved bytes, must be 0.
2097 ReservedBytes = DE.getBytes(Cursor, 20);
2098 for (int I = 0; I < 20; ++I) {
2099 if (ReservedBytes[I] != 0) {
2100 return MCDisassembler::Fail;
2101 }
2102 }
2103 return MCDisassembler::Success;
2104
2105 case amdhsa::COMPUTE_PGM_RSRC3_OFFSET:
2106 // COMPUTE_PGM_RSRC3
2107 // - Only set for GFX10, GFX6-9 have this to be 0.
2108 // - Currently no directives directly control this.
2109 FourByteBuffer = DE.getU32(Cursor);
2110 if (!isGFX10Plus() && FourByteBuffer) {
2111 return MCDisassembler::Fail;
2112 }
2113 return MCDisassembler::Success;
2114
2115 case amdhsa::COMPUTE_PGM_RSRC1_OFFSET:
2116 FourByteBuffer = DE.getU32(Cursor);
2117 if (decodeCOMPUTE_PGM_RSRC1(FourByteBuffer, KdStream) ==
2118 MCDisassembler::Fail) {
2119 return MCDisassembler::Fail;
2120 }
2121 return MCDisassembler::Success;
2122
2123 case amdhsa::COMPUTE_PGM_RSRC2_OFFSET:
2124 FourByteBuffer = DE.getU32(Cursor);
2125 if (decodeCOMPUTE_PGM_RSRC2(FourByteBuffer, KdStream) ==
2126 MCDisassembler::Fail) {
2127 return MCDisassembler::Fail;
2128 }
2129 return MCDisassembler::Success;
2130
2131 case amdhsa::KERNEL_CODE_PROPERTIES_OFFSET:
2132 using namespace amdhsa;
2133 TwoByteBuffer = DE.getU16(Cursor);
2134
2135 if (!hasArchitectedFlatScratch())
2136 PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_buffer",
2137 KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER);
2138 PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_ptr",
2139 KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR);
2140 PRINT_DIRECTIVE(".amdhsa_user_sgpr_queue_ptr",
2141 KERNEL_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR);
2142 PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_segment_ptr",
2143 KERNEL_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR);
2144 PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_id",
2145 KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID);
2146 if (!hasArchitectedFlatScratch())
2147 PRINT_DIRECTIVE(".amdhsa_user_sgpr_flat_scratch_init",
2148 KERNEL_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT);
2149 PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_size",
2150 KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE);
2151
2152 if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED0)
2153 return MCDisassembler::Fail;
2154
2155 // Reserved for GFX9
2156 if (isGFX9() &&
2157 (TwoByteBuffer & KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32)) {
2158 return MCDisassembler::Fail;
2159 } else if (isGFX10Plus()) {
2160 PRINT_DIRECTIVE(".amdhsa_wavefront_size32",
2161 KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32);
2162 }
2163
2164 if (AMDGPU::getAmdhsaCodeObjectVersion() >= 5)
2165 PRINT_DIRECTIVE(".amdhsa_uses_dynamic_stack",
2166 KERNEL_CODE_PROPERTY_USES_DYNAMIC_STACK);
2167
2168 if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED1)
2169 return MCDisassembler::Fail;
2170
2171 return MCDisassembler::Success;
2172
2173 case amdhsa::RESERVED2_OFFSET:
2174 // 6 bytes from here are reserved, must be 0.
2175 ReservedBytes = DE.getBytes(Cursor, 6);
2176 for (int I = 0; I < 6; ++I) {
2177 if (ReservedBytes[I] != 0)
2178 return MCDisassembler::Fail;
2179 }
2180 return MCDisassembler::Success;
2181
2182 default:
2183 llvm_unreachable("Unhandled index. Case statements cover everything.");
2184 return MCDisassembler::Fail;
2185 }
2186 #undef PRINT_DIRECTIVE
2187 }
2188
decodeKernelDescriptor(StringRef KdName,ArrayRef<uint8_t> Bytes,uint64_t KdAddress) const2189 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeKernelDescriptor(
2190 StringRef KdName, ArrayRef<uint8_t> Bytes, uint64_t KdAddress) const {
2191 // CP microcode requires the kernel descriptor to be 64 aligned.
2192 if (Bytes.size() != 64 || KdAddress % 64 != 0)
2193 return MCDisassembler::Fail;
2194
2195 std::string Kd;
2196 raw_string_ostream KdStream(Kd);
2197 KdStream << ".amdhsa_kernel " << KdName << '\n';
2198
2199 DataExtractor::Cursor C(0);
2200 while (C && C.tell() < Bytes.size()) {
2201 MCDisassembler::DecodeStatus Status =
2202 decodeKernelDescriptorDirective(C, Bytes, KdStream);
2203
2204 cantFail(C.takeError());
2205
2206 if (Status == MCDisassembler::Fail)
2207 return MCDisassembler::Fail;
2208 }
2209 KdStream << ".end_amdhsa_kernel\n";
2210 outs() << KdStream.str();
2211 return MCDisassembler::Success;
2212 }
2213
2214 std::optional<MCDisassembler::DecodeStatus>
onSymbolStart(SymbolInfoTy & Symbol,uint64_t & Size,ArrayRef<uint8_t> Bytes,uint64_t Address,raw_ostream & CStream) const2215 AMDGPUDisassembler::onSymbolStart(SymbolInfoTy &Symbol, uint64_t &Size,
2216 ArrayRef<uint8_t> Bytes, uint64_t Address,
2217 raw_ostream &CStream) const {
2218 // Right now only kernel descriptor needs to be handled.
2219 // We ignore all other symbols for target specific handling.
2220 // TODO:
2221 // Fix the spurious symbol issue for AMDGPU kernels. Exists for both Code
2222 // Object V2 and V3 when symbols are marked protected.
2223
2224 // amd_kernel_code_t for Code Object V2.
2225 if (Symbol.Type == ELF::STT_AMDGPU_HSA_KERNEL) {
2226 Size = 256;
2227 return MCDisassembler::Fail;
2228 }
2229
2230 // Code Object V3 kernel descriptors.
2231 StringRef Name = Symbol.Name;
2232 if (Symbol.Type == ELF::STT_OBJECT && Name.endswith(StringRef(".kd"))) {
2233 Size = 64; // Size = 64 regardless of success or failure.
2234 return decodeKernelDescriptor(Name.drop_back(3), Bytes, Address);
2235 }
2236 return std::nullopt;
2237 }
2238
2239 //===----------------------------------------------------------------------===//
2240 // AMDGPUSymbolizer
2241 //===----------------------------------------------------------------------===//
2242
2243 // Try to find symbol name for specified label
tryAddingSymbolicOperand(MCInst & Inst,raw_ostream &,int64_t Value,uint64_t,bool IsBranch,uint64_t,uint64_t,uint64_t)2244 bool AMDGPUSymbolizer::tryAddingSymbolicOperand(
2245 MCInst &Inst, raw_ostream & /*cStream*/, int64_t Value,
2246 uint64_t /*Address*/, bool IsBranch, uint64_t /*Offset*/,
2247 uint64_t /*OpSize*/, uint64_t /*InstSize*/) {
2248
2249 if (!IsBranch) {
2250 return false;
2251 }
2252
2253 auto *Symbols = static_cast<SectionSymbolsTy *>(DisInfo);
2254 if (!Symbols)
2255 return false;
2256
2257 auto Result = llvm::find_if(*Symbols, [Value](const SymbolInfoTy &Val) {
2258 return Val.Addr == static_cast<uint64_t>(Value) &&
2259 Val.Type == ELF::STT_NOTYPE;
2260 });
2261 if (Result != Symbols->end()) {
2262 auto *Sym = Ctx.getOrCreateSymbol(Result->Name);
2263 const auto *Add = MCSymbolRefExpr::create(Sym, Ctx);
2264 Inst.addOperand(MCOperand::createExpr(Add));
2265 return true;
2266 }
2267 // Add to list of referenced addresses, so caller can synthesize a label.
2268 ReferencedAddresses.push_back(static_cast<uint64_t>(Value));
2269 return false;
2270 }
2271
tryAddingPcLoadReferenceComment(raw_ostream & cStream,int64_t Value,uint64_t Address)2272 void AMDGPUSymbolizer::tryAddingPcLoadReferenceComment(raw_ostream &cStream,
2273 int64_t Value,
2274 uint64_t Address) {
2275 llvm_unreachable("unimplemented");
2276 }
2277
2278 //===----------------------------------------------------------------------===//
2279 // Initialization
2280 //===----------------------------------------------------------------------===//
2281
createAMDGPUSymbolizer(const Triple &,LLVMOpInfoCallback,LLVMSymbolLookupCallback,void * DisInfo,MCContext * Ctx,std::unique_ptr<MCRelocationInfo> && RelInfo)2282 static MCSymbolizer *createAMDGPUSymbolizer(const Triple &/*TT*/,
2283 LLVMOpInfoCallback /*GetOpInfo*/,
2284 LLVMSymbolLookupCallback /*SymbolLookUp*/,
2285 void *DisInfo,
2286 MCContext *Ctx,
2287 std::unique_ptr<MCRelocationInfo> &&RelInfo) {
2288 return new AMDGPUSymbolizer(*Ctx, std::move(RelInfo), DisInfo);
2289 }
2290
createAMDGPUDisassembler(const Target & T,const MCSubtargetInfo & STI,MCContext & Ctx)2291 static MCDisassembler *createAMDGPUDisassembler(const Target &T,
2292 const MCSubtargetInfo &STI,
2293 MCContext &Ctx) {
2294 return new AMDGPUDisassembler(STI, Ctx, T.createMCInstrInfo());
2295 }
2296
LLVMInitializeAMDGPUDisassembler()2297 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUDisassembler() {
2298 TargetRegistry::RegisterMCDisassembler(getTheGCNTarget(),
2299 createAMDGPUDisassembler);
2300 TargetRegistry::RegisterMCSymbolizer(getTheGCNTarget(),
2301 createAMDGPUSymbolizer);
2302 }
2303