1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Bitcode writer implementation.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "llvm/Bitcode/BitcodeWriter.h"
14 #include "ValueEnumerator.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallString.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringMap.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/ADT/Triple.h"
27 #include "llvm/Bitcode/BitcodeCommon.h"
28 #include "llvm/Bitcode/BitcodeReader.h"
29 #include "llvm/Bitcode/LLVMBitCodes.h"
30 #include "llvm/Bitstream/BitCodes.h"
31 #include "llvm/Bitstream/BitstreamWriter.h"
32 #include "llvm/Config/llvm-config.h"
33 #include "llvm/IR/Attributes.h"
34 #include "llvm/IR/BasicBlock.h"
35 #include "llvm/IR/Comdat.h"
36 #include "llvm/IR/Constant.h"
37 #include "llvm/IR/Constants.h"
38 #include "llvm/IR/DebugInfoMetadata.h"
39 #include "llvm/IR/DebugLoc.h"
40 #include "llvm/IR/DerivedTypes.h"
41 #include "llvm/IR/Function.h"
42 #include "llvm/IR/GlobalAlias.h"
43 #include "llvm/IR/GlobalIFunc.h"
44 #include "llvm/IR/GlobalObject.h"
45 #include "llvm/IR/GlobalValue.h"
46 #include "llvm/IR/GlobalVariable.h"
47 #include "llvm/IR/InlineAsm.h"
48 #include "llvm/IR/InstrTypes.h"
49 #include "llvm/IR/Instruction.h"
50 #include "llvm/IR/Instructions.h"
51 #include "llvm/IR/LLVMContext.h"
52 #include "llvm/IR/Metadata.h"
53 #include "llvm/IR/Module.h"
54 #include "llvm/IR/ModuleSummaryIndex.h"
55 #include "llvm/IR/Operator.h"
56 #include "llvm/IR/Type.h"
57 #include "llvm/IR/UseListOrder.h"
58 #include "llvm/IR/Value.h"
59 #include "llvm/IR/ValueSymbolTable.h"
60 #include "llvm/MC/StringTableBuilder.h"
61 #include "llvm/MC/TargetRegistry.h"
62 #include "llvm/Object/IRSymtab.h"
63 #include "llvm/Support/AtomicOrdering.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Endian.h"
67 #include "llvm/Support/Error.h"
68 #include "llvm/Support/ErrorHandling.h"
69 #include "llvm/Support/MathExtras.h"
70 #include "llvm/Support/SHA1.h"
71 #include "llvm/Support/raw_ostream.h"
72 #include <algorithm>
73 #include <cassert>
74 #include <cstddef>
75 #include <cstdint>
76 #include <iterator>
77 #include <map>
78 #include <memory>
79 #include <optional>
80 #include <string>
81 #include <utility>
82 #include <vector>
83
84 using namespace llvm;
85
86 static cl::opt<unsigned>
87 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25),
88 cl::desc("Number of metadatas above which we emit an index "
89 "to enable lazy-loading"));
90 static cl::opt<uint32_t> FlushThreshold(
91 "bitcode-flush-threshold", cl::Hidden, cl::init(512),
92 cl::desc("The threshold (unit M) for flushing LLVM bitcode."));
93
94 static cl::opt<bool> WriteRelBFToSummary(
95 "write-relbf-to-summary", cl::Hidden, cl::init(false),
96 cl::desc("Write relative block frequency to function summary "));
97
98 namespace llvm {
99 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold;
100 }
101
102 namespace {
103
104 /// These are manifest constants used by the bitcode writer. They do not need to
105 /// be kept in sync with the reader, but need to be consistent within this file.
106 enum {
107 // VALUE_SYMTAB_BLOCK abbrev id's.
108 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
109 VST_ENTRY_7_ABBREV,
110 VST_ENTRY_6_ABBREV,
111 VST_BBENTRY_6_ABBREV,
112
113 // CONSTANTS_BLOCK abbrev id's.
114 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
115 CONSTANTS_INTEGER_ABBREV,
116 CONSTANTS_CE_CAST_Abbrev,
117 CONSTANTS_NULL_Abbrev,
118
119 // FUNCTION_BLOCK abbrev id's.
120 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
121 FUNCTION_INST_UNOP_ABBREV,
122 FUNCTION_INST_UNOP_FLAGS_ABBREV,
123 FUNCTION_INST_BINOP_ABBREV,
124 FUNCTION_INST_BINOP_FLAGS_ABBREV,
125 FUNCTION_INST_CAST_ABBREV,
126 FUNCTION_INST_RET_VOID_ABBREV,
127 FUNCTION_INST_RET_VAL_ABBREV,
128 FUNCTION_INST_UNREACHABLE_ABBREV,
129 FUNCTION_INST_GEP_ABBREV,
130 };
131
132 /// Abstract class to manage the bitcode writing, subclassed for each bitcode
133 /// file type.
134 class BitcodeWriterBase {
135 protected:
136 /// The stream created and owned by the client.
137 BitstreamWriter &Stream;
138
139 StringTableBuilder &StrtabBuilder;
140
141 public:
142 /// Constructs a BitcodeWriterBase object that writes to the provided
143 /// \p Stream.
BitcodeWriterBase(BitstreamWriter & Stream,StringTableBuilder & StrtabBuilder)144 BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder)
145 : Stream(Stream), StrtabBuilder(StrtabBuilder) {}
146
147 protected:
148 void writeModuleVersion();
149 };
150
writeModuleVersion()151 void BitcodeWriterBase::writeModuleVersion() {
152 // VERSION: [version#]
153 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2});
154 }
155
156 /// Base class to manage the module bitcode writing, currently subclassed for
157 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter.
158 class ModuleBitcodeWriterBase : public BitcodeWriterBase {
159 protected:
160 /// The Module to write to bitcode.
161 const Module &M;
162
163 /// Enumerates ids for all values in the module.
164 ValueEnumerator VE;
165
166 /// Optional per-module index to write for ThinLTO.
167 const ModuleSummaryIndex *Index;
168
169 /// Map that holds the correspondence between GUIDs in the summary index,
170 /// that came from indirect call profiles, and a value id generated by this
171 /// class to use in the VST and summary block records.
172 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
173
174 /// Tracks the last value id recorded in the GUIDToValueMap.
175 unsigned GlobalValueId;
176
177 /// Saves the offset of the VSTOffset record that must eventually be
178 /// backpatched with the offset of the actual VST.
179 uint64_t VSTOffsetPlaceholder = 0;
180
181 public:
182 /// Constructs a ModuleBitcodeWriterBase object for the given Module,
183 /// writing to the provided \p Buffer.
ModuleBitcodeWriterBase(const Module & M,StringTableBuilder & StrtabBuilder,BitstreamWriter & Stream,bool ShouldPreserveUseListOrder,const ModuleSummaryIndex * Index)184 ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder,
185 BitstreamWriter &Stream,
186 bool ShouldPreserveUseListOrder,
187 const ModuleSummaryIndex *Index)
188 : BitcodeWriterBase(Stream, StrtabBuilder), M(M),
189 VE(M, ShouldPreserveUseListOrder), Index(Index) {
190 // Assign ValueIds to any callee values in the index that came from
191 // indirect call profiles and were recorded as a GUID not a Value*
192 // (which would have been assigned an ID by the ValueEnumerator).
193 // The starting ValueId is just after the number of values in the
194 // ValueEnumerator, so that they can be emitted in the VST.
195 GlobalValueId = VE.getValues().size();
196 if (!Index)
197 return;
198 for (const auto &GUIDSummaryLists : *Index)
199 // Examine all summaries for this GUID.
200 for (auto &Summary : GUIDSummaryLists.second.SummaryList)
201 if (auto FS = dyn_cast<FunctionSummary>(Summary.get()))
202 // For each call in the function summary, see if the call
203 // is to a GUID (which means it is for an indirect call,
204 // otherwise we would have a Value for it). If so, synthesize
205 // a value id.
206 for (auto &CallEdge : FS->calls())
207 if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue())
208 assignValueId(CallEdge.first.getGUID());
209 }
210
211 protected:
212 void writePerModuleGlobalValueSummary();
213
214 private:
215 void writePerModuleFunctionSummaryRecord(
216 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary,
217 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev,
218 unsigned CallsiteAbbrev, unsigned AllocAbbrev, const Function &F);
219 void writeModuleLevelReferences(const GlobalVariable &V,
220 SmallVector<uint64_t, 64> &NameVals,
221 unsigned FSModRefsAbbrev,
222 unsigned FSModVTableRefsAbbrev);
223
assignValueId(GlobalValue::GUID ValGUID)224 void assignValueId(GlobalValue::GUID ValGUID) {
225 GUIDToValueIdMap[ValGUID] = ++GlobalValueId;
226 }
227
getValueId(GlobalValue::GUID ValGUID)228 unsigned getValueId(GlobalValue::GUID ValGUID) {
229 const auto &VMI = GUIDToValueIdMap.find(ValGUID);
230 // Expect that any GUID value had a value Id assigned by an
231 // earlier call to assignValueId.
232 assert(VMI != GUIDToValueIdMap.end() &&
233 "GUID does not have assigned value Id");
234 return VMI->second;
235 }
236
237 // Helper to get the valueId for the type of value recorded in VI.
getValueId(ValueInfo VI)238 unsigned getValueId(ValueInfo VI) {
239 if (!VI.haveGVs() || !VI.getValue())
240 return getValueId(VI.getGUID());
241 return VE.getValueID(VI.getValue());
242 }
243
valueIds()244 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
245 };
246
247 /// Class to manage the bitcode writing for a module.
248 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase {
249 /// Pointer to the buffer allocated by caller for bitcode writing.
250 const SmallVectorImpl<char> &Buffer;
251
252 /// True if a module hash record should be written.
253 bool GenerateHash;
254
255 /// If non-null, when GenerateHash is true, the resulting hash is written
256 /// into ModHash.
257 ModuleHash *ModHash;
258
259 SHA1 Hasher;
260
261 /// The start bit of the identification block.
262 uint64_t BitcodeStartBit;
263
264 public:
265 /// Constructs a ModuleBitcodeWriter object for the given Module,
266 /// writing to the provided \p Buffer.
ModuleBitcodeWriter(const Module & M,SmallVectorImpl<char> & Buffer,StringTableBuilder & StrtabBuilder,BitstreamWriter & Stream,bool ShouldPreserveUseListOrder,const ModuleSummaryIndex * Index,bool GenerateHash,ModuleHash * ModHash=nullptr)267 ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer,
268 StringTableBuilder &StrtabBuilder,
269 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder,
270 const ModuleSummaryIndex *Index, bool GenerateHash,
271 ModuleHash *ModHash = nullptr)
272 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream,
273 ShouldPreserveUseListOrder, Index),
274 Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash),
275 BitcodeStartBit(Stream.GetCurrentBitNo()) {}
276
277 /// Emit the current module to the bitstream.
278 void write();
279
280 private:
bitcodeStartBit()281 uint64_t bitcodeStartBit() { return BitcodeStartBit; }
282
283 size_t addToStrtab(StringRef Str);
284
285 void writeAttributeGroupTable();
286 void writeAttributeTable();
287 void writeTypeTable();
288 void writeComdats();
289 void writeValueSymbolTableForwardDecl();
290 void writeModuleInfo();
291 void writeValueAsMetadata(const ValueAsMetadata *MD,
292 SmallVectorImpl<uint64_t> &Record);
293 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record,
294 unsigned Abbrev);
295 unsigned createDILocationAbbrev();
296 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record,
297 unsigned &Abbrev);
298 unsigned createGenericDINodeAbbrev();
299 void writeGenericDINode(const GenericDINode *N,
300 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev);
301 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record,
302 unsigned Abbrev);
303 void writeDIGenericSubrange(const DIGenericSubrange *N,
304 SmallVectorImpl<uint64_t> &Record,
305 unsigned Abbrev);
306 void writeDIEnumerator(const DIEnumerator *N,
307 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
308 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record,
309 unsigned Abbrev);
310 void writeDIStringType(const DIStringType *N,
311 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
312 void writeDIDerivedType(const DIDerivedType *N,
313 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
314 void writeDICompositeType(const DICompositeType *N,
315 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
316 void writeDISubroutineType(const DISubroutineType *N,
317 SmallVectorImpl<uint64_t> &Record,
318 unsigned Abbrev);
319 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record,
320 unsigned Abbrev);
321 void writeDICompileUnit(const DICompileUnit *N,
322 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
323 void writeDISubprogram(const DISubprogram *N,
324 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
325 void writeDILexicalBlock(const DILexicalBlock *N,
326 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
327 void writeDILexicalBlockFile(const DILexicalBlockFile *N,
328 SmallVectorImpl<uint64_t> &Record,
329 unsigned Abbrev);
330 void writeDICommonBlock(const DICommonBlock *N,
331 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
332 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record,
333 unsigned Abbrev);
334 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record,
335 unsigned Abbrev);
336 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record,
337 unsigned Abbrev);
338 void writeDIArgList(const DIArgList *N, SmallVectorImpl<uint64_t> &Record,
339 unsigned Abbrev);
340 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record,
341 unsigned Abbrev);
342 void writeDIAssignID(const DIAssignID *N, SmallVectorImpl<uint64_t> &Record,
343 unsigned Abbrev);
344 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N,
345 SmallVectorImpl<uint64_t> &Record,
346 unsigned Abbrev);
347 void writeDITemplateValueParameter(const DITemplateValueParameter *N,
348 SmallVectorImpl<uint64_t> &Record,
349 unsigned Abbrev);
350 void writeDIGlobalVariable(const DIGlobalVariable *N,
351 SmallVectorImpl<uint64_t> &Record,
352 unsigned Abbrev);
353 void writeDILocalVariable(const DILocalVariable *N,
354 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
355 void writeDILabel(const DILabel *N,
356 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
357 void writeDIExpression(const DIExpression *N,
358 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
359 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N,
360 SmallVectorImpl<uint64_t> &Record,
361 unsigned Abbrev);
362 void writeDIObjCProperty(const DIObjCProperty *N,
363 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
364 void writeDIImportedEntity(const DIImportedEntity *N,
365 SmallVectorImpl<uint64_t> &Record,
366 unsigned Abbrev);
367 unsigned createNamedMetadataAbbrev();
368 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record);
369 unsigned createMetadataStringsAbbrev();
370 void writeMetadataStrings(ArrayRef<const Metadata *> Strings,
371 SmallVectorImpl<uint64_t> &Record);
372 void writeMetadataRecords(ArrayRef<const Metadata *> MDs,
373 SmallVectorImpl<uint64_t> &Record,
374 std::vector<unsigned> *MDAbbrevs = nullptr,
375 std::vector<uint64_t> *IndexPos = nullptr);
376 void writeModuleMetadata();
377 void writeFunctionMetadata(const Function &F);
378 void writeFunctionMetadataAttachment(const Function &F);
379 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record,
380 const GlobalObject &GO);
381 void writeModuleMetadataKinds();
382 void writeOperandBundleTags();
383 void writeSyncScopeNames();
384 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal);
385 void writeModuleConstants();
386 bool pushValueAndType(const Value *V, unsigned InstID,
387 SmallVectorImpl<unsigned> &Vals);
388 void writeOperandBundles(const CallBase &CB, unsigned InstID);
389 void pushValue(const Value *V, unsigned InstID,
390 SmallVectorImpl<unsigned> &Vals);
391 void pushValueSigned(const Value *V, unsigned InstID,
392 SmallVectorImpl<uint64_t> &Vals);
393 void writeInstruction(const Instruction &I, unsigned InstID,
394 SmallVectorImpl<unsigned> &Vals);
395 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST);
396 void writeGlobalValueSymbolTable(
397 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex);
398 void writeUseList(UseListOrder &&Order);
399 void writeUseListBlock(const Function *F);
400 void
401 writeFunction(const Function &F,
402 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex);
403 void writeBlockInfo();
404 void writeModuleHash(size_t BlockStartPos);
405
getEncodedSyncScopeID(SyncScope::ID SSID)406 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) {
407 return unsigned(SSID);
408 }
409
getEncodedAlign(MaybeAlign Alignment)410 unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); }
411 };
412
413 /// Class to manage the bitcode writing for a combined index.
414 class IndexBitcodeWriter : public BitcodeWriterBase {
415 /// The combined index to write to bitcode.
416 const ModuleSummaryIndex &Index;
417
418 /// When writing a subset of the index for distributed backends, client
419 /// provides a map of modules to the corresponding GUIDs/summaries to write.
420 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex;
421
422 /// Map that holds the correspondence between the GUID used in the combined
423 /// index and a value id generated by this class to use in references.
424 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
425
426 // The sorted stack id indices actually used in the summary entries being
427 // written, which will be a subset of those in the full index in the case of
428 // distributed indexes.
429 std::vector<unsigned> StackIdIndices;
430
431 /// Tracks the last value id recorded in the GUIDToValueMap.
432 unsigned GlobalValueId = 0;
433
434 public:
435 /// Constructs a IndexBitcodeWriter object for the given combined index,
436 /// writing to the provided \p Buffer. When writing a subset of the index
437 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map.
IndexBitcodeWriter(BitstreamWriter & Stream,StringTableBuilder & StrtabBuilder,const ModuleSummaryIndex & Index,const std::map<std::string,GVSummaryMapTy> * ModuleToSummariesForIndex=nullptr)438 IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder,
439 const ModuleSummaryIndex &Index,
440 const std::map<std::string, GVSummaryMapTy>
441 *ModuleToSummariesForIndex = nullptr)
442 : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index),
443 ModuleToSummariesForIndex(ModuleToSummariesForIndex) {
444 // Assign unique value ids to all summaries to be written, for use
445 // in writing out the call graph edges. Save the mapping from GUID
446 // to the new global value id to use when writing those edges, which
447 // are currently saved in the index in terms of GUID.
448 forEachSummary([&](GVInfo I, bool IsAliasee) {
449 GUIDToValueIdMap[I.first] = ++GlobalValueId;
450 if (IsAliasee)
451 return;
452 auto *FS = dyn_cast<FunctionSummary>(I.second);
453 if (!FS)
454 return;
455 // Record all stack id indices actually used in the summary entries being
456 // written, so that we can compact them in the case of distributed ThinLTO
457 // indexes.
458 for (auto &CI : FS->callsites())
459 for (auto Idx : CI.StackIdIndices)
460 StackIdIndices.push_back(Idx);
461 for (auto &AI : FS->allocs())
462 for (auto &MIB : AI.MIBs)
463 for (auto Idx : MIB.StackIdIndices)
464 StackIdIndices.push_back(Idx);
465 });
466 llvm::sort(StackIdIndices);
467 StackIdIndices.erase(
468 std::unique(StackIdIndices.begin(), StackIdIndices.end()),
469 StackIdIndices.end());
470 }
471
472 /// The below iterator returns the GUID and associated summary.
473 using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>;
474
475 /// Calls the callback for each value GUID and summary to be written to
476 /// bitcode. This hides the details of whether they are being pulled from the
477 /// entire index or just those in a provided ModuleToSummariesForIndex map.
478 template<typename Functor>
forEachSummary(Functor Callback)479 void forEachSummary(Functor Callback) {
480 if (ModuleToSummariesForIndex) {
481 for (auto &M : *ModuleToSummariesForIndex)
482 for (auto &Summary : M.second) {
483 Callback(Summary, false);
484 // Ensure aliasee is handled, e.g. for assigning a valueId,
485 // even if we are not importing the aliasee directly (the
486 // imported alias will contain a copy of aliasee).
487 if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond()))
488 Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true);
489 }
490 } else {
491 for (auto &Summaries : Index)
492 for (auto &Summary : Summaries.second.SummaryList)
493 Callback({Summaries.first, Summary.get()}, false);
494 }
495 }
496
497 /// Calls the callback for each entry in the modulePaths StringMap that
498 /// should be written to the module path string table. This hides the details
499 /// of whether they are being pulled from the entire index or just those in a
500 /// provided ModuleToSummariesForIndex map.
forEachModule(Functor Callback)501 template <typename Functor> void forEachModule(Functor Callback) {
502 if (ModuleToSummariesForIndex) {
503 for (const auto &M : *ModuleToSummariesForIndex) {
504 const auto &MPI = Index.modulePaths().find(M.first);
505 if (MPI == Index.modulePaths().end()) {
506 // This should only happen if the bitcode file was empty, in which
507 // case we shouldn't be importing (the ModuleToSummariesForIndex
508 // would only include the module we are writing and index for).
509 assert(ModuleToSummariesForIndex->size() == 1);
510 continue;
511 }
512 Callback(*MPI);
513 }
514 } else {
515 for (const auto &MPSE : Index.modulePaths())
516 Callback(MPSE);
517 }
518 }
519
520 /// Main entry point for writing a combined index to bitcode.
521 void write();
522
523 private:
524 void writeModStrings();
525 void writeCombinedGlobalValueSummary();
526
getValueId(GlobalValue::GUID ValGUID)527 std::optional<unsigned> getValueId(GlobalValue::GUID ValGUID) {
528 auto VMI = GUIDToValueIdMap.find(ValGUID);
529 if (VMI == GUIDToValueIdMap.end())
530 return std::nullopt;
531 return VMI->second;
532 }
533
valueIds()534 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
535 };
536
537 } // end anonymous namespace
538
getEncodedCastOpcode(unsigned Opcode)539 static unsigned getEncodedCastOpcode(unsigned Opcode) {
540 switch (Opcode) {
541 default: llvm_unreachable("Unknown cast instruction!");
542 case Instruction::Trunc : return bitc::CAST_TRUNC;
543 case Instruction::ZExt : return bitc::CAST_ZEXT;
544 case Instruction::SExt : return bitc::CAST_SEXT;
545 case Instruction::FPToUI : return bitc::CAST_FPTOUI;
546 case Instruction::FPToSI : return bitc::CAST_FPTOSI;
547 case Instruction::UIToFP : return bitc::CAST_UITOFP;
548 case Instruction::SIToFP : return bitc::CAST_SITOFP;
549 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
550 case Instruction::FPExt : return bitc::CAST_FPEXT;
551 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
552 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
553 case Instruction::BitCast : return bitc::CAST_BITCAST;
554 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST;
555 }
556 }
557
getEncodedUnaryOpcode(unsigned Opcode)558 static unsigned getEncodedUnaryOpcode(unsigned Opcode) {
559 switch (Opcode) {
560 default: llvm_unreachable("Unknown binary instruction!");
561 case Instruction::FNeg: return bitc::UNOP_FNEG;
562 }
563 }
564
getEncodedBinaryOpcode(unsigned Opcode)565 static unsigned getEncodedBinaryOpcode(unsigned Opcode) {
566 switch (Opcode) {
567 default: llvm_unreachable("Unknown binary instruction!");
568 case Instruction::Add:
569 case Instruction::FAdd: return bitc::BINOP_ADD;
570 case Instruction::Sub:
571 case Instruction::FSub: return bitc::BINOP_SUB;
572 case Instruction::Mul:
573 case Instruction::FMul: return bitc::BINOP_MUL;
574 case Instruction::UDiv: return bitc::BINOP_UDIV;
575 case Instruction::FDiv:
576 case Instruction::SDiv: return bitc::BINOP_SDIV;
577 case Instruction::URem: return bitc::BINOP_UREM;
578 case Instruction::FRem:
579 case Instruction::SRem: return bitc::BINOP_SREM;
580 case Instruction::Shl: return bitc::BINOP_SHL;
581 case Instruction::LShr: return bitc::BINOP_LSHR;
582 case Instruction::AShr: return bitc::BINOP_ASHR;
583 case Instruction::And: return bitc::BINOP_AND;
584 case Instruction::Or: return bitc::BINOP_OR;
585 case Instruction::Xor: return bitc::BINOP_XOR;
586 }
587 }
588
getEncodedRMWOperation(AtomicRMWInst::BinOp Op)589 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
590 switch (Op) {
591 default: llvm_unreachable("Unknown RMW operation!");
592 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG;
593 case AtomicRMWInst::Add: return bitc::RMW_ADD;
594 case AtomicRMWInst::Sub: return bitc::RMW_SUB;
595 case AtomicRMWInst::And: return bitc::RMW_AND;
596 case AtomicRMWInst::Nand: return bitc::RMW_NAND;
597 case AtomicRMWInst::Or: return bitc::RMW_OR;
598 case AtomicRMWInst::Xor: return bitc::RMW_XOR;
599 case AtomicRMWInst::Max: return bitc::RMW_MAX;
600 case AtomicRMWInst::Min: return bitc::RMW_MIN;
601 case AtomicRMWInst::UMax: return bitc::RMW_UMAX;
602 case AtomicRMWInst::UMin: return bitc::RMW_UMIN;
603 case AtomicRMWInst::FAdd: return bitc::RMW_FADD;
604 case AtomicRMWInst::FSub: return bitc::RMW_FSUB;
605 case AtomicRMWInst::FMax: return bitc::RMW_FMAX;
606 case AtomicRMWInst::FMin: return bitc::RMW_FMIN;
607 case AtomicRMWInst::UIncWrap:
608 return bitc::RMW_UINC_WRAP;
609 case AtomicRMWInst::UDecWrap:
610 return bitc::RMW_UDEC_WRAP;
611 }
612 }
613
getEncodedOrdering(AtomicOrdering Ordering)614 static unsigned getEncodedOrdering(AtomicOrdering Ordering) {
615 switch (Ordering) {
616 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC;
617 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED;
618 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC;
619 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE;
620 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE;
621 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL;
622 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST;
623 }
624 llvm_unreachable("Invalid ordering");
625 }
626
writeStringRecord(BitstreamWriter & Stream,unsigned Code,StringRef Str,unsigned AbbrevToUse)627 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code,
628 StringRef Str, unsigned AbbrevToUse) {
629 SmallVector<unsigned, 64> Vals;
630
631 // Code: [strchar x N]
632 for (char C : Str) {
633 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(C))
634 AbbrevToUse = 0;
635 Vals.push_back(C);
636 }
637
638 // Emit the finished record.
639 Stream.EmitRecord(Code, Vals, AbbrevToUse);
640 }
641
getAttrKindEncoding(Attribute::AttrKind Kind)642 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) {
643 switch (Kind) {
644 case Attribute::Alignment:
645 return bitc::ATTR_KIND_ALIGNMENT;
646 case Attribute::AllocAlign:
647 return bitc::ATTR_KIND_ALLOC_ALIGN;
648 case Attribute::AllocSize:
649 return bitc::ATTR_KIND_ALLOC_SIZE;
650 case Attribute::AlwaysInline:
651 return bitc::ATTR_KIND_ALWAYS_INLINE;
652 case Attribute::Builtin:
653 return bitc::ATTR_KIND_BUILTIN;
654 case Attribute::ByVal:
655 return bitc::ATTR_KIND_BY_VAL;
656 case Attribute::Convergent:
657 return bitc::ATTR_KIND_CONVERGENT;
658 case Attribute::InAlloca:
659 return bitc::ATTR_KIND_IN_ALLOCA;
660 case Attribute::Cold:
661 return bitc::ATTR_KIND_COLD;
662 case Attribute::DisableSanitizerInstrumentation:
663 return bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION;
664 case Attribute::FnRetThunkExtern:
665 return bitc::ATTR_KIND_FNRETTHUNK_EXTERN;
666 case Attribute::Hot:
667 return bitc::ATTR_KIND_HOT;
668 case Attribute::ElementType:
669 return bitc::ATTR_KIND_ELEMENTTYPE;
670 case Attribute::InlineHint:
671 return bitc::ATTR_KIND_INLINE_HINT;
672 case Attribute::InReg:
673 return bitc::ATTR_KIND_IN_REG;
674 case Attribute::JumpTable:
675 return bitc::ATTR_KIND_JUMP_TABLE;
676 case Attribute::MinSize:
677 return bitc::ATTR_KIND_MIN_SIZE;
678 case Attribute::AllocatedPointer:
679 return bitc::ATTR_KIND_ALLOCATED_POINTER;
680 case Attribute::AllocKind:
681 return bitc::ATTR_KIND_ALLOC_KIND;
682 case Attribute::Memory:
683 return bitc::ATTR_KIND_MEMORY;
684 case Attribute::Naked:
685 return bitc::ATTR_KIND_NAKED;
686 case Attribute::Nest:
687 return bitc::ATTR_KIND_NEST;
688 case Attribute::NoAlias:
689 return bitc::ATTR_KIND_NO_ALIAS;
690 case Attribute::NoBuiltin:
691 return bitc::ATTR_KIND_NO_BUILTIN;
692 case Attribute::NoCallback:
693 return bitc::ATTR_KIND_NO_CALLBACK;
694 case Attribute::NoCapture:
695 return bitc::ATTR_KIND_NO_CAPTURE;
696 case Attribute::NoDuplicate:
697 return bitc::ATTR_KIND_NO_DUPLICATE;
698 case Attribute::NoFree:
699 return bitc::ATTR_KIND_NOFREE;
700 case Attribute::NoImplicitFloat:
701 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT;
702 case Attribute::NoInline:
703 return bitc::ATTR_KIND_NO_INLINE;
704 case Attribute::NoRecurse:
705 return bitc::ATTR_KIND_NO_RECURSE;
706 case Attribute::NoMerge:
707 return bitc::ATTR_KIND_NO_MERGE;
708 case Attribute::NonLazyBind:
709 return bitc::ATTR_KIND_NON_LAZY_BIND;
710 case Attribute::NonNull:
711 return bitc::ATTR_KIND_NON_NULL;
712 case Attribute::Dereferenceable:
713 return bitc::ATTR_KIND_DEREFERENCEABLE;
714 case Attribute::DereferenceableOrNull:
715 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL;
716 case Attribute::NoRedZone:
717 return bitc::ATTR_KIND_NO_RED_ZONE;
718 case Attribute::NoReturn:
719 return bitc::ATTR_KIND_NO_RETURN;
720 case Attribute::NoSync:
721 return bitc::ATTR_KIND_NOSYNC;
722 case Attribute::NoCfCheck:
723 return bitc::ATTR_KIND_NOCF_CHECK;
724 case Attribute::NoProfile:
725 return bitc::ATTR_KIND_NO_PROFILE;
726 case Attribute::SkipProfile:
727 return bitc::ATTR_KIND_SKIP_PROFILE;
728 case Attribute::NoUnwind:
729 return bitc::ATTR_KIND_NO_UNWIND;
730 case Attribute::NoSanitizeBounds:
731 return bitc::ATTR_KIND_NO_SANITIZE_BOUNDS;
732 case Attribute::NoSanitizeCoverage:
733 return bitc::ATTR_KIND_NO_SANITIZE_COVERAGE;
734 case Attribute::NullPointerIsValid:
735 return bitc::ATTR_KIND_NULL_POINTER_IS_VALID;
736 case Attribute::OptForFuzzing:
737 return bitc::ATTR_KIND_OPT_FOR_FUZZING;
738 case Attribute::OptimizeForSize:
739 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE;
740 case Attribute::OptimizeNone:
741 return bitc::ATTR_KIND_OPTIMIZE_NONE;
742 case Attribute::ReadNone:
743 return bitc::ATTR_KIND_READ_NONE;
744 case Attribute::ReadOnly:
745 return bitc::ATTR_KIND_READ_ONLY;
746 case Attribute::Returned:
747 return bitc::ATTR_KIND_RETURNED;
748 case Attribute::ReturnsTwice:
749 return bitc::ATTR_KIND_RETURNS_TWICE;
750 case Attribute::SExt:
751 return bitc::ATTR_KIND_S_EXT;
752 case Attribute::Speculatable:
753 return bitc::ATTR_KIND_SPECULATABLE;
754 case Attribute::StackAlignment:
755 return bitc::ATTR_KIND_STACK_ALIGNMENT;
756 case Attribute::StackProtect:
757 return bitc::ATTR_KIND_STACK_PROTECT;
758 case Attribute::StackProtectReq:
759 return bitc::ATTR_KIND_STACK_PROTECT_REQ;
760 case Attribute::StackProtectStrong:
761 return bitc::ATTR_KIND_STACK_PROTECT_STRONG;
762 case Attribute::SafeStack:
763 return bitc::ATTR_KIND_SAFESTACK;
764 case Attribute::ShadowCallStack:
765 return bitc::ATTR_KIND_SHADOWCALLSTACK;
766 case Attribute::StrictFP:
767 return bitc::ATTR_KIND_STRICT_FP;
768 case Attribute::StructRet:
769 return bitc::ATTR_KIND_STRUCT_RET;
770 case Attribute::SanitizeAddress:
771 return bitc::ATTR_KIND_SANITIZE_ADDRESS;
772 case Attribute::SanitizeHWAddress:
773 return bitc::ATTR_KIND_SANITIZE_HWADDRESS;
774 case Attribute::SanitizeThread:
775 return bitc::ATTR_KIND_SANITIZE_THREAD;
776 case Attribute::SanitizeMemory:
777 return bitc::ATTR_KIND_SANITIZE_MEMORY;
778 case Attribute::SpeculativeLoadHardening:
779 return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING;
780 case Attribute::SwiftError:
781 return bitc::ATTR_KIND_SWIFT_ERROR;
782 case Attribute::SwiftSelf:
783 return bitc::ATTR_KIND_SWIFT_SELF;
784 case Attribute::SwiftAsync:
785 return bitc::ATTR_KIND_SWIFT_ASYNC;
786 case Attribute::UWTable:
787 return bitc::ATTR_KIND_UW_TABLE;
788 case Attribute::VScaleRange:
789 return bitc::ATTR_KIND_VSCALE_RANGE;
790 case Attribute::WillReturn:
791 return bitc::ATTR_KIND_WILLRETURN;
792 case Attribute::WriteOnly:
793 return bitc::ATTR_KIND_WRITEONLY;
794 case Attribute::ZExt:
795 return bitc::ATTR_KIND_Z_EXT;
796 case Attribute::ImmArg:
797 return bitc::ATTR_KIND_IMMARG;
798 case Attribute::SanitizeMemTag:
799 return bitc::ATTR_KIND_SANITIZE_MEMTAG;
800 case Attribute::Preallocated:
801 return bitc::ATTR_KIND_PREALLOCATED;
802 case Attribute::NoUndef:
803 return bitc::ATTR_KIND_NOUNDEF;
804 case Attribute::ByRef:
805 return bitc::ATTR_KIND_BYREF;
806 case Attribute::MustProgress:
807 return bitc::ATTR_KIND_MUSTPROGRESS;
808 case Attribute::PresplitCoroutine:
809 return bitc::ATTR_KIND_PRESPLIT_COROUTINE;
810 case Attribute::EndAttrKinds:
811 llvm_unreachable("Can not encode end-attribute kinds marker.");
812 case Attribute::None:
813 llvm_unreachable("Can not encode none-attribute.");
814 case Attribute::EmptyKey:
815 case Attribute::TombstoneKey:
816 llvm_unreachable("Trying to encode EmptyKey/TombstoneKey");
817 }
818
819 llvm_unreachable("Trying to encode unknown attribute");
820 }
821
writeAttributeGroupTable()822 void ModuleBitcodeWriter::writeAttributeGroupTable() {
823 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps =
824 VE.getAttributeGroups();
825 if (AttrGrps.empty()) return;
826
827 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3);
828
829 SmallVector<uint64_t, 64> Record;
830 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) {
831 unsigned AttrListIndex = Pair.first;
832 AttributeSet AS = Pair.second;
833 Record.push_back(VE.getAttributeGroupID(Pair));
834 Record.push_back(AttrListIndex);
835
836 for (Attribute Attr : AS) {
837 if (Attr.isEnumAttribute()) {
838 Record.push_back(0);
839 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
840 } else if (Attr.isIntAttribute()) {
841 Record.push_back(1);
842 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
843 Record.push_back(Attr.getValueAsInt());
844 } else if (Attr.isStringAttribute()) {
845 StringRef Kind = Attr.getKindAsString();
846 StringRef Val = Attr.getValueAsString();
847
848 Record.push_back(Val.empty() ? 3 : 4);
849 Record.append(Kind.begin(), Kind.end());
850 Record.push_back(0);
851 if (!Val.empty()) {
852 Record.append(Val.begin(), Val.end());
853 Record.push_back(0);
854 }
855 } else {
856 assert(Attr.isTypeAttribute());
857 Type *Ty = Attr.getValueAsType();
858 Record.push_back(Ty ? 6 : 5);
859 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
860 if (Ty)
861 Record.push_back(VE.getTypeID(Attr.getValueAsType()));
862 }
863 }
864
865 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record);
866 Record.clear();
867 }
868
869 Stream.ExitBlock();
870 }
871
writeAttributeTable()872 void ModuleBitcodeWriter::writeAttributeTable() {
873 const std::vector<AttributeList> &Attrs = VE.getAttributeLists();
874 if (Attrs.empty()) return;
875
876 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
877
878 SmallVector<uint64_t, 64> Record;
879 for (const AttributeList &AL : Attrs) {
880 for (unsigned i : AL.indexes()) {
881 AttributeSet AS = AL.getAttributes(i);
882 if (AS.hasAttributes())
883 Record.push_back(VE.getAttributeGroupID({i, AS}));
884 }
885
886 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
887 Record.clear();
888 }
889
890 Stream.ExitBlock();
891 }
892
893 /// WriteTypeTable - Write out the type table for a module.
writeTypeTable()894 void ModuleBitcodeWriter::writeTypeTable() {
895 const ValueEnumerator::TypeList &TypeList = VE.getTypes();
896
897 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
898 SmallVector<uint64_t, 64> TypeVals;
899
900 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies();
901
902 // Abbrev for TYPE_CODE_POINTER.
903 auto Abbv = std::make_shared<BitCodeAbbrev>();
904 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
905 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
906 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0
907 unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv));
908
909 // Abbrev for TYPE_CODE_OPAQUE_POINTER.
910 Abbv = std::make_shared<BitCodeAbbrev>();
911 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_OPAQUE_POINTER));
912 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0
913 unsigned OpaquePtrAbbrev = Stream.EmitAbbrev(std::move(Abbv));
914
915 // Abbrev for TYPE_CODE_FUNCTION.
916 Abbv = std::make_shared<BitCodeAbbrev>();
917 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
918 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg
919 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
920 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
921 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv));
922
923 // Abbrev for TYPE_CODE_STRUCT_ANON.
924 Abbv = std::make_shared<BitCodeAbbrev>();
925 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
926 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
927 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
928 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
929 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv));
930
931 // Abbrev for TYPE_CODE_STRUCT_NAME.
932 Abbv = std::make_shared<BitCodeAbbrev>();
933 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
934 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
935 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
936 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
937
938 // Abbrev for TYPE_CODE_STRUCT_NAMED.
939 Abbv = std::make_shared<BitCodeAbbrev>();
940 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
941 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
942 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
943 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
944 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv));
945
946 // Abbrev for TYPE_CODE_ARRAY.
947 Abbv = std::make_shared<BitCodeAbbrev>();
948 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
949 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size
950 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
951 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv));
952
953 // Emit an entry count so the reader can reserve space.
954 TypeVals.push_back(TypeList.size());
955 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
956 TypeVals.clear();
957
958 // Loop over all of the types, emitting each in turn.
959 for (Type *T : TypeList) {
960 int AbbrevToUse = 0;
961 unsigned Code = 0;
962
963 switch (T->getTypeID()) {
964 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break;
965 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break;
966 case Type::BFloatTyID: Code = bitc::TYPE_CODE_BFLOAT; break;
967 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break;
968 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break;
969 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break;
970 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break;
971 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
972 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break;
973 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break;
974 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break;
975 case Type::X86_AMXTyID: Code = bitc::TYPE_CODE_X86_AMX; break;
976 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break;
977 case Type::IntegerTyID:
978 // INTEGER: [width]
979 Code = bitc::TYPE_CODE_INTEGER;
980 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
981 break;
982 case Type::PointerTyID: {
983 PointerType *PTy = cast<PointerType>(T);
984 unsigned AddressSpace = PTy->getAddressSpace();
985 if (PTy->isOpaque()) {
986 // OPAQUE_POINTER: [address space]
987 Code = bitc::TYPE_CODE_OPAQUE_POINTER;
988 TypeVals.push_back(AddressSpace);
989 if (AddressSpace == 0)
990 AbbrevToUse = OpaquePtrAbbrev;
991 } else {
992 // POINTER: [pointee type, address space]
993 Code = bitc::TYPE_CODE_POINTER;
994 TypeVals.push_back(VE.getTypeID(PTy->getNonOpaquePointerElementType()));
995 TypeVals.push_back(AddressSpace);
996 if (AddressSpace == 0)
997 AbbrevToUse = PtrAbbrev;
998 }
999 break;
1000 }
1001 case Type::FunctionTyID: {
1002 FunctionType *FT = cast<FunctionType>(T);
1003 // FUNCTION: [isvararg, retty, paramty x N]
1004 Code = bitc::TYPE_CODE_FUNCTION;
1005 TypeVals.push_back(FT->isVarArg());
1006 TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
1007 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
1008 TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
1009 AbbrevToUse = FunctionAbbrev;
1010 break;
1011 }
1012 case Type::StructTyID: {
1013 StructType *ST = cast<StructType>(T);
1014 // STRUCT: [ispacked, eltty x N]
1015 TypeVals.push_back(ST->isPacked());
1016 // Output all of the element types.
1017 for (Type *ET : ST->elements())
1018 TypeVals.push_back(VE.getTypeID(ET));
1019
1020 if (ST->isLiteral()) {
1021 Code = bitc::TYPE_CODE_STRUCT_ANON;
1022 AbbrevToUse = StructAnonAbbrev;
1023 } else {
1024 if (ST->isOpaque()) {
1025 Code = bitc::TYPE_CODE_OPAQUE;
1026 } else {
1027 Code = bitc::TYPE_CODE_STRUCT_NAMED;
1028 AbbrevToUse = StructNamedAbbrev;
1029 }
1030
1031 // Emit the name if it is present.
1032 if (!ST->getName().empty())
1033 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
1034 StructNameAbbrev);
1035 }
1036 break;
1037 }
1038 case Type::ArrayTyID: {
1039 ArrayType *AT = cast<ArrayType>(T);
1040 // ARRAY: [numelts, eltty]
1041 Code = bitc::TYPE_CODE_ARRAY;
1042 TypeVals.push_back(AT->getNumElements());
1043 TypeVals.push_back(VE.getTypeID(AT->getElementType()));
1044 AbbrevToUse = ArrayAbbrev;
1045 break;
1046 }
1047 case Type::FixedVectorTyID:
1048 case Type::ScalableVectorTyID: {
1049 VectorType *VT = cast<VectorType>(T);
1050 // VECTOR [numelts, eltty] or
1051 // [numelts, eltty, scalable]
1052 Code = bitc::TYPE_CODE_VECTOR;
1053 TypeVals.push_back(VT->getElementCount().getKnownMinValue());
1054 TypeVals.push_back(VE.getTypeID(VT->getElementType()));
1055 if (isa<ScalableVectorType>(VT))
1056 TypeVals.push_back(true);
1057 break;
1058 }
1059 case Type::TargetExtTyID: {
1060 TargetExtType *TET = cast<TargetExtType>(T);
1061 Code = bitc::TYPE_CODE_TARGET_TYPE;
1062 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, TET->getName(),
1063 StructNameAbbrev);
1064 TypeVals.push_back(TET->getNumTypeParameters());
1065 for (Type *InnerTy : TET->type_params())
1066 TypeVals.push_back(VE.getTypeID(InnerTy));
1067 for (unsigned IntParam : TET->int_params())
1068 TypeVals.push_back(IntParam);
1069 break;
1070 }
1071 case Type::TypedPointerTyID:
1072 llvm_unreachable("Typed pointers cannot be added to IR modules");
1073 }
1074
1075 // Emit the finished record.
1076 Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
1077 TypeVals.clear();
1078 }
1079
1080 Stream.ExitBlock();
1081 }
1082
getEncodedLinkage(const GlobalValue::LinkageTypes Linkage)1083 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) {
1084 switch (Linkage) {
1085 case GlobalValue::ExternalLinkage:
1086 return 0;
1087 case GlobalValue::WeakAnyLinkage:
1088 return 16;
1089 case GlobalValue::AppendingLinkage:
1090 return 2;
1091 case GlobalValue::InternalLinkage:
1092 return 3;
1093 case GlobalValue::LinkOnceAnyLinkage:
1094 return 18;
1095 case GlobalValue::ExternalWeakLinkage:
1096 return 7;
1097 case GlobalValue::CommonLinkage:
1098 return 8;
1099 case GlobalValue::PrivateLinkage:
1100 return 9;
1101 case GlobalValue::WeakODRLinkage:
1102 return 17;
1103 case GlobalValue::LinkOnceODRLinkage:
1104 return 19;
1105 case GlobalValue::AvailableExternallyLinkage:
1106 return 12;
1107 }
1108 llvm_unreachable("Invalid linkage");
1109 }
1110
getEncodedLinkage(const GlobalValue & GV)1111 static unsigned getEncodedLinkage(const GlobalValue &GV) {
1112 return getEncodedLinkage(GV.getLinkage());
1113 }
1114
getEncodedFFlags(FunctionSummary::FFlags Flags)1115 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) {
1116 uint64_t RawFlags = 0;
1117 RawFlags |= Flags.ReadNone;
1118 RawFlags |= (Flags.ReadOnly << 1);
1119 RawFlags |= (Flags.NoRecurse << 2);
1120 RawFlags |= (Flags.ReturnDoesNotAlias << 3);
1121 RawFlags |= (Flags.NoInline << 4);
1122 RawFlags |= (Flags.AlwaysInline << 5);
1123 RawFlags |= (Flags.NoUnwind << 6);
1124 RawFlags |= (Flags.MayThrow << 7);
1125 RawFlags |= (Flags.HasUnknownCall << 8);
1126 RawFlags |= (Flags.MustBeUnreachable << 9);
1127 return RawFlags;
1128 }
1129
1130 // Decode the flags for GlobalValue in the summary. See getDecodedGVSummaryFlags
1131 // in BitcodeReader.cpp.
getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags)1132 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) {
1133 uint64_t RawFlags = 0;
1134
1135 RawFlags |= Flags.NotEligibleToImport; // bool
1136 RawFlags |= (Flags.Live << 1);
1137 RawFlags |= (Flags.DSOLocal << 2);
1138 RawFlags |= (Flags.CanAutoHide << 3);
1139
1140 // Linkage don't need to be remapped at that time for the summary. Any future
1141 // change to the getEncodedLinkage() function will need to be taken into
1142 // account here as well.
1143 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits
1144
1145 RawFlags |= (Flags.Visibility << 8); // 2 bits
1146
1147 return RawFlags;
1148 }
1149
getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags)1150 static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) {
1151 uint64_t RawFlags = Flags.MaybeReadOnly | (Flags.MaybeWriteOnly << 1) |
1152 (Flags.Constant << 2) | Flags.VCallVisibility << 3;
1153 return RawFlags;
1154 }
1155
getEncodedVisibility(const GlobalValue & GV)1156 static unsigned getEncodedVisibility(const GlobalValue &GV) {
1157 switch (GV.getVisibility()) {
1158 case GlobalValue::DefaultVisibility: return 0;
1159 case GlobalValue::HiddenVisibility: return 1;
1160 case GlobalValue::ProtectedVisibility: return 2;
1161 }
1162 llvm_unreachable("Invalid visibility");
1163 }
1164
getEncodedDLLStorageClass(const GlobalValue & GV)1165 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) {
1166 switch (GV.getDLLStorageClass()) {
1167 case GlobalValue::DefaultStorageClass: return 0;
1168 case GlobalValue::DLLImportStorageClass: return 1;
1169 case GlobalValue::DLLExportStorageClass: return 2;
1170 }
1171 llvm_unreachable("Invalid DLL storage class");
1172 }
1173
getEncodedThreadLocalMode(const GlobalValue & GV)1174 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) {
1175 switch (GV.getThreadLocalMode()) {
1176 case GlobalVariable::NotThreadLocal: return 0;
1177 case GlobalVariable::GeneralDynamicTLSModel: return 1;
1178 case GlobalVariable::LocalDynamicTLSModel: return 2;
1179 case GlobalVariable::InitialExecTLSModel: return 3;
1180 case GlobalVariable::LocalExecTLSModel: return 4;
1181 }
1182 llvm_unreachable("Invalid TLS model");
1183 }
1184
getEncodedComdatSelectionKind(const Comdat & C)1185 static unsigned getEncodedComdatSelectionKind(const Comdat &C) {
1186 switch (C.getSelectionKind()) {
1187 case Comdat::Any:
1188 return bitc::COMDAT_SELECTION_KIND_ANY;
1189 case Comdat::ExactMatch:
1190 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH;
1191 case Comdat::Largest:
1192 return bitc::COMDAT_SELECTION_KIND_LARGEST;
1193 case Comdat::NoDeduplicate:
1194 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES;
1195 case Comdat::SameSize:
1196 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE;
1197 }
1198 llvm_unreachable("Invalid selection kind");
1199 }
1200
getEncodedUnnamedAddr(const GlobalValue & GV)1201 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) {
1202 switch (GV.getUnnamedAddr()) {
1203 case GlobalValue::UnnamedAddr::None: return 0;
1204 case GlobalValue::UnnamedAddr::Local: return 2;
1205 case GlobalValue::UnnamedAddr::Global: return 1;
1206 }
1207 llvm_unreachable("Invalid unnamed_addr");
1208 }
1209
addToStrtab(StringRef Str)1210 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) {
1211 if (GenerateHash)
1212 Hasher.update(Str);
1213 return StrtabBuilder.add(Str);
1214 }
1215
writeComdats()1216 void ModuleBitcodeWriter::writeComdats() {
1217 SmallVector<unsigned, 64> Vals;
1218 for (const Comdat *C : VE.getComdats()) {
1219 // COMDAT: [strtab offset, strtab size, selection_kind]
1220 Vals.push_back(addToStrtab(C->getName()));
1221 Vals.push_back(C->getName().size());
1222 Vals.push_back(getEncodedComdatSelectionKind(*C));
1223 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0);
1224 Vals.clear();
1225 }
1226 }
1227
1228 /// Write a record that will eventually hold the word offset of the
1229 /// module-level VST. For now the offset is 0, which will be backpatched
1230 /// after the real VST is written. Saves the bit offset to backpatch.
writeValueSymbolTableForwardDecl()1231 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() {
1232 // Write a placeholder value in for the offset of the real VST,
1233 // which is written after the function blocks so that it can include
1234 // the offset of each function. The placeholder offset will be
1235 // updated when the real VST is written.
1236 auto Abbv = std::make_shared<BitCodeAbbrev>();
1237 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET));
1238 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to
1239 // hold the real VST offset. Must use fixed instead of VBR as we don't
1240 // know how many VBR chunks to reserve ahead of time.
1241 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
1242 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1243
1244 // Emit the placeholder
1245 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0};
1246 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals);
1247
1248 // Compute and save the bit offset to the placeholder, which will be
1249 // patched when the real VST is written. We can simply subtract the 32-bit
1250 // fixed size from the current bit number to get the location to backpatch.
1251 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32;
1252 }
1253
1254 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 };
1255
1256 /// Determine the encoding to use for the given string name and length.
getStringEncoding(StringRef Str)1257 static StringEncoding getStringEncoding(StringRef Str) {
1258 bool isChar6 = true;
1259 for (char C : Str) {
1260 if (isChar6)
1261 isChar6 = BitCodeAbbrevOp::isChar6(C);
1262 if ((unsigned char)C & 128)
1263 // don't bother scanning the rest.
1264 return SE_Fixed8;
1265 }
1266 if (isChar6)
1267 return SE_Char6;
1268 return SE_Fixed7;
1269 }
1270
1271 static_assert(sizeof(GlobalValue::SanitizerMetadata) <= sizeof(unsigned),
1272 "Sanitizer Metadata is too large for naive serialization.");
1273 static unsigned
serializeSanitizerMetadata(const GlobalValue::SanitizerMetadata & Meta)1274 serializeSanitizerMetadata(const GlobalValue::SanitizerMetadata &Meta) {
1275 return Meta.NoAddress | (Meta.NoHWAddress << 1) |
1276 (Meta.Memtag << 2) | (Meta.IsDynInit << 3);
1277 }
1278
1279 /// Emit top-level description of module, including target triple, inline asm,
1280 /// descriptors for global variables, and function prototype info.
1281 /// Returns the bit offset to backpatch with the location of the real VST.
writeModuleInfo()1282 void ModuleBitcodeWriter::writeModuleInfo() {
1283 // Emit various pieces of data attached to a module.
1284 if (!M.getTargetTriple().empty())
1285 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(),
1286 0 /*TODO*/);
1287 const std::string &DL = M.getDataLayoutStr();
1288 if (!DL.empty())
1289 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/);
1290 if (!M.getModuleInlineAsm().empty())
1291 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(),
1292 0 /*TODO*/);
1293
1294 // Emit information about sections and GC, computing how many there are. Also
1295 // compute the maximum alignment value.
1296 std::map<std::string, unsigned> SectionMap;
1297 std::map<std::string, unsigned> GCMap;
1298 MaybeAlign MaxAlignment;
1299 unsigned MaxGlobalType = 0;
1300 const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) {
1301 if (A)
1302 MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A);
1303 };
1304 for (const GlobalVariable &GV : M.globals()) {
1305 UpdateMaxAlignment(GV.getAlign());
1306 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType()));
1307 if (GV.hasSection()) {
1308 // Give section names unique ID's.
1309 unsigned &Entry = SectionMap[std::string(GV.getSection())];
1310 if (!Entry) {
1311 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(),
1312 0 /*TODO*/);
1313 Entry = SectionMap.size();
1314 }
1315 }
1316 }
1317 for (const Function &F : M) {
1318 UpdateMaxAlignment(F.getAlign());
1319 if (F.hasSection()) {
1320 // Give section names unique ID's.
1321 unsigned &Entry = SectionMap[std::string(F.getSection())];
1322 if (!Entry) {
1323 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(),
1324 0 /*TODO*/);
1325 Entry = SectionMap.size();
1326 }
1327 }
1328 if (F.hasGC()) {
1329 // Same for GC names.
1330 unsigned &Entry = GCMap[F.getGC()];
1331 if (!Entry) {
1332 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(),
1333 0 /*TODO*/);
1334 Entry = GCMap.size();
1335 }
1336 }
1337 }
1338
1339 // Emit abbrev for globals, now that we know # sections and max alignment.
1340 unsigned SimpleGVarAbbrev = 0;
1341 if (!M.global_empty()) {
1342 // Add an abbrev for common globals with no visibility or thread localness.
1343 auto Abbv = std::make_shared<BitCodeAbbrev>();
1344 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
1345 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1346 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1347 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1348 Log2_32_Ceil(MaxGlobalType+1)));
1349 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2
1350 //| explicitType << 1
1351 //| constant
1352 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer.
1353 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage.
1354 if (!MaxAlignment) // Alignment.
1355 Abbv->Add(BitCodeAbbrevOp(0));
1356 else {
1357 unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment);
1358 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1359 Log2_32_Ceil(MaxEncAlignment+1)));
1360 }
1361 if (SectionMap.empty()) // Section.
1362 Abbv->Add(BitCodeAbbrevOp(0));
1363 else
1364 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1365 Log2_32_Ceil(SectionMap.size()+1)));
1366 // Don't bother emitting vis + thread local.
1367 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1368 }
1369
1370 SmallVector<unsigned, 64> Vals;
1371 // Emit the module's source file name.
1372 {
1373 StringEncoding Bits = getStringEncoding(M.getSourceFileName());
1374 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8);
1375 if (Bits == SE_Char6)
1376 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6);
1377 else if (Bits == SE_Fixed7)
1378 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7);
1379
1380 // MODULE_CODE_SOURCE_FILENAME: [namechar x N]
1381 auto Abbv = std::make_shared<BitCodeAbbrev>();
1382 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME));
1383 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1384 Abbv->Add(AbbrevOpToUse);
1385 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1386
1387 for (const auto P : M.getSourceFileName())
1388 Vals.push_back((unsigned char)P);
1389
1390 // Emit the finished record.
1391 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev);
1392 Vals.clear();
1393 }
1394
1395 // Emit the global variable information.
1396 for (const GlobalVariable &GV : M.globals()) {
1397 unsigned AbbrevToUse = 0;
1398
1399 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid,
1400 // linkage, alignment, section, visibility, threadlocal,
1401 // unnamed_addr, externally_initialized, dllstorageclass,
1402 // comdat, attributes, DSO_Local, GlobalSanitizer]
1403 Vals.push_back(addToStrtab(GV.getName()));
1404 Vals.push_back(GV.getName().size());
1405 Vals.push_back(VE.getTypeID(GV.getValueType()));
1406 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant());
1407 Vals.push_back(GV.isDeclaration() ? 0 :
1408 (VE.getValueID(GV.getInitializer()) + 1));
1409 Vals.push_back(getEncodedLinkage(GV));
1410 Vals.push_back(getEncodedAlign(GV.getAlign()));
1411 Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())]
1412 : 0);
1413 if (GV.isThreadLocal() ||
1414 GV.getVisibility() != GlobalValue::DefaultVisibility ||
1415 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None ||
1416 GV.isExternallyInitialized() ||
1417 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass ||
1418 GV.hasComdat() || GV.hasAttributes() || GV.isDSOLocal() ||
1419 GV.hasPartition() || GV.hasSanitizerMetadata()) {
1420 Vals.push_back(getEncodedVisibility(GV));
1421 Vals.push_back(getEncodedThreadLocalMode(GV));
1422 Vals.push_back(getEncodedUnnamedAddr(GV));
1423 Vals.push_back(GV.isExternallyInitialized());
1424 Vals.push_back(getEncodedDLLStorageClass(GV));
1425 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0);
1426
1427 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex);
1428 Vals.push_back(VE.getAttributeListID(AL));
1429
1430 Vals.push_back(GV.isDSOLocal());
1431 Vals.push_back(addToStrtab(GV.getPartition()));
1432 Vals.push_back(GV.getPartition().size());
1433
1434 Vals.push_back((GV.hasSanitizerMetadata() ? serializeSanitizerMetadata(
1435 GV.getSanitizerMetadata())
1436 : 0));
1437 } else {
1438 AbbrevToUse = SimpleGVarAbbrev;
1439 }
1440
1441 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
1442 Vals.clear();
1443 }
1444
1445 // Emit the function proto information.
1446 for (const Function &F : M) {
1447 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto,
1448 // linkage, paramattrs, alignment, section, visibility, gc,
1449 // unnamed_addr, prologuedata, dllstorageclass, comdat,
1450 // prefixdata, personalityfn, DSO_Local, addrspace]
1451 Vals.push_back(addToStrtab(F.getName()));
1452 Vals.push_back(F.getName().size());
1453 Vals.push_back(VE.getTypeID(F.getFunctionType()));
1454 Vals.push_back(F.getCallingConv());
1455 Vals.push_back(F.isDeclaration());
1456 Vals.push_back(getEncodedLinkage(F));
1457 Vals.push_back(VE.getAttributeListID(F.getAttributes()));
1458 Vals.push_back(getEncodedAlign(F.getAlign()));
1459 Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())]
1460 : 0);
1461 Vals.push_back(getEncodedVisibility(F));
1462 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0);
1463 Vals.push_back(getEncodedUnnamedAddr(F));
1464 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1)
1465 : 0);
1466 Vals.push_back(getEncodedDLLStorageClass(F));
1467 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0);
1468 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1)
1469 : 0);
1470 Vals.push_back(
1471 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0);
1472
1473 Vals.push_back(F.isDSOLocal());
1474 Vals.push_back(F.getAddressSpace());
1475 Vals.push_back(addToStrtab(F.getPartition()));
1476 Vals.push_back(F.getPartition().size());
1477
1478 unsigned AbbrevToUse = 0;
1479 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
1480 Vals.clear();
1481 }
1482
1483 // Emit the alias information.
1484 for (const GlobalAlias &A : M.aliases()) {
1485 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage,
1486 // visibility, dllstorageclass, threadlocal, unnamed_addr,
1487 // DSO_Local]
1488 Vals.push_back(addToStrtab(A.getName()));
1489 Vals.push_back(A.getName().size());
1490 Vals.push_back(VE.getTypeID(A.getValueType()));
1491 Vals.push_back(A.getType()->getAddressSpace());
1492 Vals.push_back(VE.getValueID(A.getAliasee()));
1493 Vals.push_back(getEncodedLinkage(A));
1494 Vals.push_back(getEncodedVisibility(A));
1495 Vals.push_back(getEncodedDLLStorageClass(A));
1496 Vals.push_back(getEncodedThreadLocalMode(A));
1497 Vals.push_back(getEncodedUnnamedAddr(A));
1498 Vals.push_back(A.isDSOLocal());
1499 Vals.push_back(addToStrtab(A.getPartition()));
1500 Vals.push_back(A.getPartition().size());
1501
1502 unsigned AbbrevToUse = 0;
1503 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
1504 Vals.clear();
1505 }
1506
1507 // Emit the ifunc information.
1508 for (const GlobalIFunc &I : M.ifuncs()) {
1509 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver
1510 // val#, linkage, visibility, DSO_Local]
1511 Vals.push_back(addToStrtab(I.getName()));
1512 Vals.push_back(I.getName().size());
1513 Vals.push_back(VE.getTypeID(I.getValueType()));
1514 Vals.push_back(I.getType()->getAddressSpace());
1515 Vals.push_back(VE.getValueID(I.getResolver()));
1516 Vals.push_back(getEncodedLinkage(I));
1517 Vals.push_back(getEncodedVisibility(I));
1518 Vals.push_back(I.isDSOLocal());
1519 Vals.push_back(addToStrtab(I.getPartition()));
1520 Vals.push_back(I.getPartition().size());
1521 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals);
1522 Vals.clear();
1523 }
1524
1525 writeValueSymbolTableForwardDecl();
1526 }
1527
getOptimizationFlags(const Value * V)1528 static uint64_t getOptimizationFlags(const Value *V) {
1529 uint64_t Flags = 0;
1530
1531 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) {
1532 if (OBO->hasNoSignedWrap())
1533 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
1534 if (OBO->hasNoUnsignedWrap())
1535 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
1536 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) {
1537 if (PEO->isExact())
1538 Flags |= 1 << bitc::PEO_EXACT;
1539 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) {
1540 if (FPMO->hasAllowReassoc())
1541 Flags |= bitc::AllowReassoc;
1542 if (FPMO->hasNoNaNs())
1543 Flags |= bitc::NoNaNs;
1544 if (FPMO->hasNoInfs())
1545 Flags |= bitc::NoInfs;
1546 if (FPMO->hasNoSignedZeros())
1547 Flags |= bitc::NoSignedZeros;
1548 if (FPMO->hasAllowReciprocal())
1549 Flags |= bitc::AllowReciprocal;
1550 if (FPMO->hasAllowContract())
1551 Flags |= bitc::AllowContract;
1552 if (FPMO->hasApproxFunc())
1553 Flags |= bitc::ApproxFunc;
1554 }
1555
1556 return Flags;
1557 }
1558
writeValueAsMetadata(const ValueAsMetadata * MD,SmallVectorImpl<uint64_t> & Record)1559 void ModuleBitcodeWriter::writeValueAsMetadata(
1560 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) {
1561 // Mimic an MDNode with a value as one operand.
1562 Value *V = MD->getValue();
1563 Record.push_back(VE.getTypeID(V->getType()));
1564 Record.push_back(VE.getValueID(V));
1565 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0);
1566 Record.clear();
1567 }
1568
writeMDTuple(const MDTuple * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1569 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N,
1570 SmallVectorImpl<uint64_t> &Record,
1571 unsigned Abbrev) {
1572 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1573 Metadata *MD = N->getOperand(i);
1574 assert(!(MD && isa<LocalAsMetadata>(MD)) &&
1575 "Unexpected function-local metadata");
1576 Record.push_back(VE.getMetadataOrNullID(MD));
1577 }
1578 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE
1579 : bitc::METADATA_NODE,
1580 Record, Abbrev);
1581 Record.clear();
1582 }
1583
createDILocationAbbrev()1584 unsigned ModuleBitcodeWriter::createDILocationAbbrev() {
1585 // Assume the column is usually under 128, and always output the inlined-at
1586 // location (it's never more expensive than building an array size 1).
1587 auto Abbv = std::make_shared<BitCodeAbbrev>();
1588 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION));
1589 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1590 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1591 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1592 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1593 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1594 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1595 return Stream.EmitAbbrev(std::move(Abbv));
1596 }
1597
writeDILocation(const DILocation * N,SmallVectorImpl<uint64_t> & Record,unsigned & Abbrev)1598 void ModuleBitcodeWriter::writeDILocation(const DILocation *N,
1599 SmallVectorImpl<uint64_t> &Record,
1600 unsigned &Abbrev) {
1601 if (!Abbrev)
1602 Abbrev = createDILocationAbbrev();
1603
1604 Record.push_back(N->isDistinct());
1605 Record.push_back(N->getLine());
1606 Record.push_back(N->getColumn());
1607 Record.push_back(VE.getMetadataID(N->getScope()));
1608 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt()));
1609 Record.push_back(N->isImplicitCode());
1610
1611 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev);
1612 Record.clear();
1613 }
1614
createGenericDINodeAbbrev()1615 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() {
1616 // Assume the column is usually under 128, and always output the inlined-at
1617 // location (it's never more expensive than building an array size 1).
1618 auto Abbv = std::make_shared<BitCodeAbbrev>();
1619 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG));
1620 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1621 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1622 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1623 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1624 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1625 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1626 return Stream.EmitAbbrev(std::move(Abbv));
1627 }
1628
writeGenericDINode(const GenericDINode * N,SmallVectorImpl<uint64_t> & Record,unsigned & Abbrev)1629 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N,
1630 SmallVectorImpl<uint64_t> &Record,
1631 unsigned &Abbrev) {
1632 if (!Abbrev)
1633 Abbrev = createGenericDINodeAbbrev();
1634
1635 Record.push_back(N->isDistinct());
1636 Record.push_back(N->getTag());
1637 Record.push_back(0); // Per-tag version field; unused for now.
1638
1639 for (auto &I : N->operands())
1640 Record.push_back(VE.getMetadataOrNullID(I));
1641
1642 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev);
1643 Record.clear();
1644 }
1645
writeDISubrange(const DISubrange * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1646 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N,
1647 SmallVectorImpl<uint64_t> &Record,
1648 unsigned Abbrev) {
1649 const uint64_t Version = 2 << 1;
1650 Record.push_back((uint64_t)N->isDistinct() | Version);
1651 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode()));
1652 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound()));
1653 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound()));
1654 Record.push_back(VE.getMetadataOrNullID(N->getRawStride()));
1655
1656 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev);
1657 Record.clear();
1658 }
1659
writeDIGenericSubrange(const DIGenericSubrange * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1660 void ModuleBitcodeWriter::writeDIGenericSubrange(
1661 const DIGenericSubrange *N, SmallVectorImpl<uint64_t> &Record,
1662 unsigned Abbrev) {
1663 Record.push_back((uint64_t)N->isDistinct());
1664 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode()));
1665 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound()));
1666 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound()));
1667 Record.push_back(VE.getMetadataOrNullID(N->getRawStride()));
1668
1669 Stream.EmitRecord(bitc::METADATA_GENERIC_SUBRANGE, Record, Abbrev);
1670 Record.clear();
1671 }
1672
emitSignedInt64(SmallVectorImpl<uint64_t> & Vals,uint64_t V)1673 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) {
1674 if ((int64_t)V >= 0)
1675 Vals.push_back(V << 1);
1676 else
1677 Vals.push_back((-V << 1) | 1);
1678 }
1679
emitWideAPInt(SmallVectorImpl<uint64_t> & Vals,const APInt & A)1680 static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A) {
1681 // We have an arbitrary precision integer value to write whose
1682 // bit width is > 64. However, in canonical unsigned integer
1683 // format it is likely that the high bits are going to be zero.
1684 // So, we only write the number of active words.
1685 unsigned NumWords = A.getActiveWords();
1686 const uint64_t *RawData = A.getRawData();
1687 for (unsigned i = 0; i < NumWords; i++)
1688 emitSignedInt64(Vals, RawData[i]);
1689 }
1690
writeDIEnumerator(const DIEnumerator * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1691 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N,
1692 SmallVectorImpl<uint64_t> &Record,
1693 unsigned Abbrev) {
1694 const uint64_t IsBigInt = 1 << 2;
1695 Record.push_back(IsBigInt | (N->isUnsigned() << 1) | N->isDistinct());
1696 Record.push_back(N->getValue().getBitWidth());
1697 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1698 emitWideAPInt(Record, N->getValue());
1699
1700 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev);
1701 Record.clear();
1702 }
1703
writeDIBasicType(const DIBasicType * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1704 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N,
1705 SmallVectorImpl<uint64_t> &Record,
1706 unsigned Abbrev) {
1707 Record.push_back(N->isDistinct());
1708 Record.push_back(N->getTag());
1709 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1710 Record.push_back(N->getSizeInBits());
1711 Record.push_back(N->getAlignInBits());
1712 Record.push_back(N->getEncoding());
1713 Record.push_back(N->getFlags());
1714
1715 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev);
1716 Record.clear();
1717 }
1718
writeDIStringType(const DIStringType * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1719 void ModuleBitcodeWriter::writeDIStringType(const DIStringType *N,
1720 SmallVectorImpl<uint64_t> &Record,
1721 unsigned Abbrev) {
1722 Record.push_back(N->isDistinct());
1723 Record.push_back(N->getTag());
1724 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1725 Record.push_back(VE.getMetadataOrNullID(N->getStringLength()));
1726 Record.push_back(VE.getMetadataOrNullID(N->getStringLengthExp()));
1727 Record.push_back(VE.getMetadataOrNullID(N->getStringLocationExp()));
1728 Record.push_back(N->getSizeInBits());
1729 Record.push_back(N->getAlignInBits());
1730 Record.push_back(N->getEncoding());
1731
1732 Stream.EmitRecord(bitc::METADATA_STRING_TYPE, Record, Abbrev);
1733 Record.clear();
1734 }
1735
writeDIDerivedType(const DIDerivedType * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1736 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N,
1737 SmallVectorImpl<uint64_t> &Record,
1738 unsigned Abbrev) {
1739 Record.push_back(N->isDistinct());
1740 Record.push_back(N->getTag());
1741 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1742 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1743 Record.push_back(N->getLine());
1744 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1745 Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1746 Record.push_back(N->getSizeInBits());
1747 Record.push_back(N->getAlignInBits());
1748 Record.push_back(N->getOffsetInBits());
1749 Record.push_back(N->getFlags());
1750 Record.push_back(VE.getMetadataOrNullID(N->getExtraData()));
1751
1752 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means
1753 // that there is no DWARF address space associated with DIDerivedType.
1754 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace())
1755 Record.push_back(*DWARFAddressSpace + 1);
1756 else
1757 Record.push_back(0);
1758
1759 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get()));
1760
1761 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev);
1762 Record.clear();
1763 }
1764
writeDICompositeType(const DICompositeType * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1765 void ModuleBitcodeWriter::writeDICompositeType(
1766 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record,
1767 unsigned Abbrev) {
1768 const unsigned IsNotUsedInOldTypeRef = 0x2;
1769 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct());
1770 Record.push_back(N->getTag());
1771 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1772 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1773 Record.push_back(N->getLine());
1774 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1775 Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1776 Record.push_back(N->getSizeInBits());
1777 Record.push_back(N->getAlignInBits());
1778 Record.push_back(N->getOffsetInBits());
1779 Record.push_back(N->getFlags());
1780 Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
1781 Record.push_back(N->getRuntimeLang());
1782 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder()));
1783 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1784 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier()));
1785 Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator()));
1786 Record.push_back(VE.getMetadataOrNullID(N->getRawDataLocation()));
1787 Record.push_back(VE.getMetadataOrNullID(N->getRawAssociated()));
1788 Record.push_back(VE.getMetadataOrNullID(N->getRawAllocated()));
1789 Record.push_back(VE.getMetadataOrNullID(N->getRawRank()));
1790 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get()));
1791
1792 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev);
1793 Record.clear();
1794 }
1795
writeDISubroutineType(const DISubroutineType * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1796 void ModuleBitcodeWriter::writeDISubroutineType(
1797 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record,
1798 unsigned Abbrev) {
1799 const unsigned HasNoOldTypeRefs = 0x2;
1800 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct());
1801 Record.push_back(N->getFlags());
1802 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get()));
1803 Record.push_back(N->getCC());
1804
1805 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev);
1806 Record.clear();
1807 }
1808
writeDIFile(const DIFile * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1809 void ModuleBitcodeWriter::writeDIFile(const DIFile *N,
1810 SmallVectorImpl<uint64_t> &Record,
1811 unsigned Abbrev) {
1812 Record.push_back(N->isDistinct());
1813 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename()));
1814 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory()));
1815 if (N->getRawChecksum()) {
1816 Record.push_back(N->getRawChecksum()->Kind);
1817 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value));
1818 } else {
1819 // Maintain backwards compatibility with the old internal representation of
1820 // CSK_None in ChecksumKind by writing nulls here when Checksum is None.
1821 Record.push_back(0);
1822 Record.push_back(VE.getMetadataOrNullID(nullptr));
1823 }
1824 auto Source = N->getRawSource();
1825 if (Source)
1826 Record.push_back(VE.getMetadataOrNullID(Source));
1827
1828 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev);
1829 Record.clear();
1830 }
1831
writeDICompileUnit(const DICompileUnit * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1832 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N,
1833 SmallVectorImpl<uint64_t> &Record,
1834 unsigned Abbrev) {
1835 assert(N->isDistinct() && "Expected distinct compile units");
1836 Record.push_back(/* IsDistinct */ true);
1837 Record.push_back(N->getSourceLanguage());
1838 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1839 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer()));
1840 Record.push_back(N->isOptimized());
1841 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags()));
1842 Record.push_back(N->getRuntimeVersion());
1843 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename()));
1844 Record.push_back(N->getEmissionKind());
1845 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get()));
1846 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get()));
1847 Record.push_back(/* subprograms */ 0);
1848 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get()));
1849 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get()));
1850 Record.push_back(N->getDWOId());
1851 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get()));
1852 Record.push_back(N->getSplitDebugInlining());
1853 Record.push_back(N->getDebugInfoForProfiling());
1854 Record.push_back((unsigned)N->getNameTableKind());
1855 Record.push_back(N->getRangesBaseAddress());
1856 Record.push_back(VE.getMetadataOrNullID(N->getRawSysRoot()));
1857 Record.push_back(VE.getMetadataOrNullID(N->getRawSDK()));
1858
1859 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev);
1860 Record.clear();
1861 }
1862
writeDISubprogram(const DISubprogram * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1863 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N,
1864 SmallVectorImpl<uint64_t> &Record,
1865 unsigned Abbrev) {
1866 const uint64_t HasUnitFlag = 1 << 1;
1867 const uint64_t HasSPFlagsFlag = 1 << 2;
1868 Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag);
1869 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1870 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1871 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
1872 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1873 Record.push_back(N->getLine());
1874 Record.push_back(VE.getMetadataOrNullID(N->getType()));
1875 Record.push_back(N->getScopeLine());
1876 Record.push_back(VE.getMetadataOrNullID(N->getContainingType()));
1877 Record.push_back(N->getSPFlags());
1878 Record.push_back(N->getVirtualIndex());
1879 Record.push_back(N->getFlags());
1880 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit()));
1881 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1882 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration()));
1883 Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get()));
1884 Record.push_back(N->getThisAdjustment());
1885 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get()));
1886 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get()));
1887 Record.push_back(VE.getMetadataOrNullID(N->getRawTargetFuncName()));
1888
1889 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev);
1890 Record.clear();
1891 }
1892
writeDILexicalBlock(const DILexicalBlock * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1893 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N,
1894 SmallVectorImpl<uint64_t> &Record,
1895 unsigned Abbrev) {
1896 Record.push_back(N->isDistinct());
1897 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1898 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1899 Record.push_back(N->getLine());
1900 Record.push_back(N->getColumn());
1901
1902 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev);
1903 Record.clear();
1904 }
1905
writeDILexicalBlockFile(const DILexicalBlockFile * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1906 void ModuleBitcodeWriter::writeDILexicalBlockFile(
1907 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record,
1908 unsigned Abbrev) {
1909 Record.push_back(N->isDistinct());
1910 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1911 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1912 Record.push_back(N->getDiscriminator());
1913
1914 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev);
1915 Record.clear();
1916 }
1917
writeDICommonBlock(const DICommonBlock * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1918 void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N,
1919 SmallVectorImpl<uint64_t> &Record,
1920 unsigned Abbrev) {
1921 Record.push_back(N->isDistinct());
1922 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1923 Record.push_back(VE.getMetadataOrNullID(N->getDecl()));
1924 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1925 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1926 Record.push_back(N->getLineNo());
1927
1928 Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev);
1929 Record.clear();
1930 }
1931
writeDINamespace(const DINamespace * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1932 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N,
1933 SmallVectorImpl<uint64_t> &Record,
1934 unsigned Abbrev) {
1935 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1);
1936 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1937 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1938
1939 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev);
1940 Record.clear();
1941 }
1942
writeDIMacro(const DIMacro * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1943 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N,
1944 SmallVectorImpl<uint64_t> &Record,
1945 unsigned Abbrev) {
1946 Record.push_back(N->isDistinct());
1947 Record.push_back(N->getMacinfoType());
1948 Record.push_back(N->getLine());
1949 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1950 Record.push_back(VE.getMetadataOrNullID(N->getRawValue()));
1951
1952 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev);
1953 Record.clear();
1954 }
1955
writeDIMacroFile(const DIMacroFile * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1956 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N,
1957 SmallVectorImpl<uint64_t> &Record,
1958 unsigned Abbrev) {
1959 Record.push_back(N->isDistinct());
1960 Record.push_back(N->getMacinfoType());
1961 Record.push_back(N->getLine());
1962 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1963 Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
1964
1965 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev);
1966 Record.clear();
1967 }
1968
writeDIArgList(const DIArgList * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1969 void ModuleBitcodeWriter::writeDIArgList(const DIArgList *N,
1970 SmallVectorImpl<uint64_t> &Record,
1971 unsigned Abbrev) {
1972 Record.reserve(N->getArgs().size());
1973 for (ValueAsMetadata *MD : N->getArgs())
1974 Record.push_back(VE.getMetadataID(MD));
1975
1976 Stream.EmitRecord(bitc::METADATA_ARG_LIST, Record, Abbrev);
1977 Record.clear();
1978 }
1979
writeDIModule(const DIModule * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1980 void ModuleBitcodeWriter::writeDIModule(const DIModule *N,
1981 SmallVectorImpl<uint64_t> &Record,
1982 unsigned Abbrev) {
1983 Record.push_back(N->isDistinct());
1984 for (auto &I : N->operands())
1985 Record.push_back(VE.getMetadataOrNullID(I));
1986 Record.push_back(N->getLineNo());
1987 Record.push_back(N->getIsDecl());
1988
1989 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev);
1990 Record.clear();
1991 }
1992
writeDIAssignID(const DIAssignID * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1993 void ModuleBitcodeWriter::writeDIAssignID(const DIAssignID *N,
1994 SmallVectorImpl<uint64_t> &Record,
1995 unsigned Abbrev) {
1996 // There are no arguments for this metadata type.
1997 Record.push_back(N->isDistinct());
1998 Stream.EmitRecord(bitc::METADATA_ASSIGN_ID, Record, Abbrev);
1999 Record.clear();
2000 }
2001
writeDITemplateTypeParameter(const DITemplateTypeParameter * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)2002 void ModuleBitcodeWriter::writeDITemplateTypeParameter(
2003 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record,
2004 unsigned Abbrev) {
2005 Record.push_back(N->isDistinct());
2006 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2007 Record.push_back(VE.getMetadataOrNullID(N->getType()));
2008 Record.push_back(N->isDefault());
2009
2010 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev);
2011 Record.clear();
2012 }
2013
writeDITemplateValueParameter(const DITemplateValueParameter * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)2014 void ModuleBitcodeWriter::writeDITemplateValueParameter(
2015 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record,
2016 unsigned Abbrev) {
2017 Record.push_back(N->isDistinct());
2018 Record.push_back(N->getTag());
2019 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2020 Record.push_back(VE.getMetadataOrNullID(N->getType()));
2021 Record.push_back(N->isDefault());
2022 Record.push_back(VE.getMetadataOrNullID(N->getValue()));
2023
2024 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev);
2025 Record.clear();
2026 }
2027
writeDIGlobalVariable(const DIGlobalVariable * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)2028 void ModuleBitcodeWriter::writeDIGlobalVariable(
2029 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record,
2030 unsigned Abbrev) {
2031 const uint64_t Version = 2 << 1;
2032 Record.push_back((uint64_t)N->isDistinct() | Version);
2033 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
2034 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2035 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
2036 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
2037 Record.push_back(N->getLine());
2038 Record.push_back(VE.getMetadataOrNullID(N->getType()));
2039 Record.push_back(N->isLocalToUnit());
2040 Record.push_back(N->isDefinition());
2041 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration()));
2042 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams()));
2043 Record.push_back(N->getAlignInBits());
2044 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get()));
2045
2046 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev);
2047 Record.clear();
2048 }
2049
writeDILocalVariable(const DILocalVariable * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)2050 void ModuleBitcodeWriter::writeDILocalVariable(
2051 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record,
2052 unsigned Abbrev) {
2053 // In order to support all possible bitcode formats in BitcodeReader we need
2054 // to distinguish the following cases:
2055 // 1) Record has no artificial tag (Record[1]),
2056 // has no obsolete inlinedAt field (Record[9]).
2057 // In this case Record size will be 8, HasAlignment flag is false.
2058 // 2) Record has artificial tag (Record[1]),
2059 // has no obsolete inlignedAt field (Record[9]).
2060 // In this case Record size will be 9, HasAlignment flag is false.
2061 // 3) Record has both artificial tag (Record[1]) and
2062 // obsolete inlignedAt field (Record[9]).
2063 // In this case Record size will be 10, HasAlignment flag is false.
2064 // 4) Record has neither artificial tag, nor inlignedAt field, but
2065 // HasAlignment flag is true and Record[8] contains alignment value.
2066 const uint64_t HasAlignmentFlag = 1 << 1;
2067 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag);
2068 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
2069 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2070 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
2071 Record.push_back(N->getLine());
2072 Record.push_back(VE.getMetadataOrNullID(N->getType()));
2073 Record.push_back(N->getArg());
2074 Record.push_back(N->getFlags());
2075 Record.push_back(N->getAlignInBits());
2076 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get()));
2077
2078 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev);
2079 Record.clear();
2080 }
2081
writeDILabel(const DILabel * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)2082 void ModuleBitcodeWriter::writeDILabel(
2083 const DILabel *N, SmallVectorImpl<uint64_t> &Record,
2084 unsigned Abbrev) {
2085 Record.push_back((uint64_t)N->isDistinct());
2086 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
2087 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2088 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
2089 Record.push_back(N->getLine());
2090
2091 Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev);
2092 Record.clear();
2093 }
2094
writeDIExpression(const DIExpression * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)2095 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N,
2096 SmallVectorImpl<uint64_t> &Record,
2097 unsigned Abbrev) {
2098 Record.reserve(N->getElements().size() + 1);
2099 const uint64_t Version = 3 << 1;
2100 Record.push_back((uint64_t)N->isDistinct() | Version);
2101 Record.append(N->elements_begin(), N->elements_end());
2102
2103 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev);
2104 Record.clear();
2105 }
2106
writeDIGlobalVariableExpression(const DIGlobalVariableExpression * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)2107 void ModuleBitcodeWriter::writeDIGlobalVariableExpression(
2108 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record,
2109 unsigned Abbrev) {
2110 Record.push_back(N->isDistinct());
2111 Record.push_back(VE.getMetadataOrNullID(N->getVariable()));
2112 Record.push_back(VE.getMetadataOrNullID(N->getExpression()));
2113
2114 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev);
2115 Record.clear();
2116 }
2117
writeDIObjCProperty(const DIObjCProperty * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)2118 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N,
2119 SmallVectorImpl<uint64_t> &Record,
2120 unsigned Abbrev) {
2121 Record.push_back(N->isDistinct());
2122 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2123 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
2124 Record.push_back(N->getLine());
2125 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName()));
2126 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName()));
2127 Record.push_back(N->getAttributes());
2128 Record.push_back(VE.getMetadataOrNullID(N->getType()));
2129
2130 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev);
2131 Record.clear();
2132 }
2133
writeDIImportedEntity(const DIImportedEntity * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)2134 void ModuleBitcodeWriter::writeDIImportedEntity(
2135 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record,
2136 unsigned Abbrev) {
2137 Record.push_back(N->isDistinct());
2138 Record.push_back(N->getTag());
2139 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
2140 Record.push_back(VE.getMetadataOrNullID(N->getEntity()));
2141 Record.push_back(N->getLine());
2142 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2143 Record.push_back(VE.getMetadataOrNullID(N->getRawFile()));
2144 Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
2145
2146 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev);
2147 Record.clear();
2148 }
2149
createNamedMetadataAbbrev()2150 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() {
2151 auto Abbv = std::make_shared<BitCodeAbbrev>();
2152 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME));
2153 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2154 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
2155 return Stream.EmitAbbrev(std::move(Abbv));
2156 }
2157
writeNamedMetadata(SmallVectorImpl<uint64_t> & Record)2158 void ModuleBitcodeWriter::writeNamedMetadata(
2159 SmallVectorImpl<uint64_t> &Record) {
2160 if (M.named_metadata_empty())
2161 return;
2162
2163 unsigned Abbrev = createNamedMetadataAbbrev();
2164 for (const NamedMDNode &NMD : M.named_metadata()) {
2165 // Write name.
2166 StringRef Str = NMD.getName();
2167 Record.append(Str.bytes_begin(), Str.bytes_end());
2168 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev);
2169 Record.clear();
2170
2171 // Write named metadata operands.
2172 for (const MDNode *N : NMD.operands())
2173 Record.push_back(VE.getMetadataID(N));
2174 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
2175 Record.clear();
2176 }
2177 }
2178
createMetadataStringsAbbrev()2179 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() {
2180 auto Abbv = std::make_shared<BitCodeAbbrev>();
2181 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS));
2182 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings
2183 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars
2184 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
2185 return Stream.EmitAbbrev(std::move(Abbv));
2186 }
2187
2188 /// Write out a record for MDString.
2189 ///
2190 /// All the metadata strings in a metadata block are emitted in a single
2191 /// record. The sizes and strings themselves are shoved into a blob.
writeMetadataStrings(ArrayRef<const Metadata * > Strings,SmallVectorImpl<uint64_t> & Record)2192 void ModuleBitcodeWriter::writeMetadataStrings(
2193 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) {
2194 if (Strings.empty())
2195 return;
2196
2197 // Start the record with the number of strings.
2198 Record.push_back(bitc::METADATA_STRINGS);
2199 Record.push_back(Strings.size());
2200
2201 // Emit the sizes of the strings in the blob.
2202 SmallString<256> Blob;
2203 {
2204 BitstreamWriter W(Blob);
2205 for (const Metadata *MD : Strings)
2206 W.EmitVBR(cast<MDString>(MD)->getLength(), 6);
2207 W.FlushToWord();
2208 }
2209
2210 // Add the offset to the strings to the record.
2211 Record.push_back(Blob.size());
2212
2213 // Add the strings to the blob.
2214 for (const Metadata *MD : Strings)
2215 Blob.append(cast<MDString>(MD)->getString());
2216
2217 // Emit the final record.
2218 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob);
2219 Record.clear();
2220 }
2221
2222 // Generates an enum to use as an index in the Abbrev array of Metadata record.
2223 enum MetadataAbbrev : unsigned {
2224 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID,
2225 #include "llvm/IR/Metadata.def"
2226 LastPlusOne
2227 };
2228
writeMetadataRecords(ArrayRef<const Metadata * > MDs,SmallVectorImpl<uint64_t> & Record,std::vector<unsigned> * MDAbbrevs,std::vector<uint64_t> * IndexPos)2229 void ModuleBitcodeWriter::writeMetadataRecords(
2230 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record,
2231 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) {
2232 if (MDs.empty())
2233 return;
2234
2235 // Initialize MDNode abbreviations.
2236 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0;
2237 #include "llvm/IR/Metadata.def"
2238
2239 for (const Metadata *MD : MDs) {
2240 if (IndexPos)
2241 IndexPos->push_back(Stream.GetCurrentBitNo());
2242 if (const MDNode *N = dyn_cast<MDNode>(MD)) {
2243 assert(N->isResolved() && "Expected forward references to be resolved");
2244
2245 switch (N->getMetadataID()) {
2246 default:
2247 llvm_unreachable("Invalid MDNode subclass");
2248 #define HANDLE_MDNODE_LEAF(CLASS) \
2249 case Metadata::CLASS##Kind: \
2250 if (MDAbbrevs) \
2251 write##CLASS(cast<CLASS>(N), Record, \
2252 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \
2253 else \
2254 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \
2255 continue;
2256 #include "llvm/IR/Metadata.def"
2257 }
2258 }
2259 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record);
2260 }
2261 }
2262
writeModuleMetadata()2263 void ModuleBitcodeWriter::writeModuleMetadata() {
2264 if (!VE.hasMDs() && M.named_metadata_empty())
2265 return;
2266
2267 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4);
2268 SmallVector<uint64_t, 64> Record;
2269
2270 // Emit all abbrevs upfront, so that the reader can jump in the middle of the
2271 // block and load any metadata.
2272 std::vector<unsigned> MDAbbrevs;
2273
2274 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne);
2275 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev();
2276 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] =
2277 createGenericDINodeAbbrev();
2278
2279 auto Abbv = std::make_shared<BitCodeAbbrev>();
2280 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET));
2281 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
2282 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
2283 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2284
2285 Abbv = std::make_shared<BitCodeAbbrev>();
2286 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX));
2287 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2288 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
2289 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2290
2291 // Emit MDStrings together upfront.
2292 writeMetadataStrings(VE.getMDStrings(), Record);
2293
2294 // We only emit an index for the metadata record if we have more than a given
2295 // (naive) threshold of metadatas, otherwise it is not worth it.
2296 if (VE.getNonMDStrings().size() > IndexThreshold) {
2297 // Write a placeholder value in for the offset of the metadata index,
2298 // which is written after the records, so that it can include
2299 // the offset of each entry. The placeholder offset will be
2300 // updated after all records are emitted.
2301 uint64_t Vals[] = {0, 0};
2302 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev);
2303 }
2304
2305 // Compute and save the bit offset to the current position, which will be
2306 // patched when we emit the index later. We can simply subtract the 64-bit
2307 // fixed size from the current bit number to get the location to backpatch.
2308 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo();
2309
2310 // This index will contain the bitpos for each individual record.
2311 std::vector<uint64_t> IndexPos;
2312 IndexPos.reserve(VE.getNonMDStrings().size());
2313
2314 // Write all the records
2315 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos);
2316
2317 if (VE.getNonMDStrings().size() > IndexThreshold) {
2318 // Now that we have emitted all the records we will emit the index. But
2319 // first
2320 // backpatch the forward reference so that the reader can skip the records
2321 // efficiently.
2322 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64,
2323 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos);
2324
2325 // Delta encode the index.
2326 uint64_t PreviousValue = IndexOffsetRecordBitPos;
2327 for (auto &Elt : IndexPos) {
2328 auto EltDelta = Elt - PreviousValue;
2329 PreviousValue = Elt;
2330 Elt = EltDelta;
2331 }
2332 // Emit the index record.
2333 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev);
2334 IndexPos.clear();
2335 }
2336
2337 // Write the named metadata now.
2338 writeNamedMetadata(Record);
2339
2340 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) {
2341 SmallVector<uint64_t, 4> Record;
2342 Record.push_back(VE.getValueID(&GO));
2343 pushGlobalMetadataAttachment(Record, GO);
2344 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record);
2345 };
2346 for (const Function &F : M)
2347 if (F.isDeclaration() && F.hasMetadata())
2348 AddDeclAttachedMetadata(F);
2349 // FIXME: Only store metadata for declarations here, and move data for global
2350 // variable definitions to a separate block (PR28134).
2351 for (const GlobalVariable &GV : M.globals())
2352 if (GV.hasMetadata())
2353 AddDeclAttachedMetadata(GV);
2354
2355 Stream.ExitBlock();
2356 }
2357
writeFunctionMetadata(const Function & F)2358 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) {
2359 if (!VE.hasMDs())
2360 return;
2361
2362 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
2363 SmallVector<uint64_t, 64> Record;
2364 writeMetadataStrings(VE.getMDStrings(), Record);
2365 writeMetadataRecords(VE.getNonMDStrings(), Record);
2366 Stream.ExitBlock();
2367 }
2368
pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> & Record,const GlobalObject & GO)2369 void ModuleBitcodeWriter::pushGlobalMetadataAttachment(
2370 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) {
2371 // [n x [id, mdnode]]
2372 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2373 GO.getAllMetadata(MDs);
2374 for (const auto &I : MDs) {
2375 Record.push_back(I.first);
2376 Record.push_back(VE.getMetadataID(I.second));
2377 }
2378 }
2379
writeFunctionMetadataAttachment(const Function & F)2380 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) {
2381 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
2382
2383 SmallVector<uint64_t, 64> Record;
2384
2385 if (F.hasMetadata()) {
2386 pushGlobalMetadataAttachment(Record, F);
2387 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
2388 Record.clear();
2389 }
2390
2391 // Write metadata attachments
2392 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
2393 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2394 for (const BasicBlock &BB : F)
2395 for (const Instruction &I : BB) {
2396 MDs.clear();
2397 I.getAllMetadataOtherThanDebugLoc(MDs);
2398
2399 // If no metadata, ignore instruction.
2400 if (MDs.empty()) continue;
2401
2402 Record.push_back(VE.getInstructionID(&I));
2403
2404 for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
2405 Record.push_back(MDs[i].first);
2406 Record.push_back(VE.getMetadataID(MDs[i].second));
2407 }
2408 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
2409 Record.clear();
2410 }
2411
2412 Stream.ExitBlock();
2413 }
2414
writeModuleMetadataKinds()2415 void ModuleBitcodeWriter::writeModuleMetadataKinds() {
2416 SmallVector<uint64_t, 64> Record;
2417
2418 // Write metadata kinds
2419 // METADATA_KIND - [n x [id, name]]
2420 SmallVector<StringRef, 8> Names;
2421 M.getMDKindNames(Names);
2422
2423 if (Names.empty()) return;
2424
2425 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3);
2426
2427 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
2428 Record.push_back(MDKindID);
2429 StringRef KName = Names[MDKindID];
2430 Record.append(KName.begin(), KName.end());
2431
2432 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
2433 Record.clear();
2434 }
2435
2436 Stream.ExitBlock();
2437 }
2438
writeOperandBundleTags()2439 void ModuleBitcodeWriter::writeOperandBundleTags() {
2440 // Write metadata kinds
2441 //
2442 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG
2443 //
2444 // OPERAND_BUNDLE_TAG - [strchr x N]
2445
2446 SmallVector<StringRef, 8> Tags;
2447 M.getOperandBundleTags(Tags);
2448
2449 if (Tags.empty())
2450 return;
2451
2452 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3);
2453
2454 SmallVector<uint64_t, 64> Record;
2455
2456 for (auto Tag : Tags) {
2457 Record.append(Tag.begin(), Tag.end());
2458
2459 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0);
2460 Record.clear();
2461 }
2462
2463 Stream.ExitBlock();
2464 }
2465
writeSyncScopeNames()2466 void ModuleBitcodeWriter::writeSyncScopeNames() {
2467 SmallVector<StringRef, 8> SSNs;
2468 M.getContext().getSyncScopeNames(SSNs);
2469 if (SSNs.empty())
2470 return;
2471
2472 Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2);
2473
2474 SmallVector<uint64_t, 64> Record;
2475 for (auto SSN : SSNs) {
2476 Record.append(SSN.begin(), SSN.end());
2477 Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0);
2478 Record.clear();
2479 }
2480
2481 Stream.ExitBlock();
2482 }
2483
writeConstants(unsigned FirstVal,unsigned LastVal,bool isGlobal)2484 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal,
2485 bool isGlobal) {
2486 if (FirstVal == LastVal) return;
2487
2488 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
2489
2490 unsigned AggregateAbbrev = 0;
2491 unsigned String8Abbrev = 0;
2492 unsigned CString7Abbrev = 0;
2493 unsigned CString6Abbrev = 0;
2494 // If this is a constant pool for the module, emit module-specific abbrevs.
2495 if (isGlobal) {
2496 // Abbrev for CST_CODE_AGGREGATE.
2497 auto Abbv = std::make_shared<BitCodeAbbrev>();
2498 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
2499 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2500 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
2501 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2502
2503 // Abbrev for CST_CODE_STRING.
2504 Abbv = std::make_shared<BitCodeAbbrev>();
2505 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
2506 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2507 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
2508 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2509 // Abbrev for CST_CODE_CSTRING.
2510 Abbv = std::make_shared<BitCodeAbbrev>();
2511 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
2512 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2513 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
2514 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2515 // Abbrev for CST_CODE_CSTRING.
2516 Abbv = std::make_shared<BitCodeAbbrev>();
2517 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
2518 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2519 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2520 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2521 }
2522
2523 SmallVector<uint64_t, 64> Record;
2524
2525 const ValueEnumerator::ValueList &Vals = VE.getValues();
2526 Type *LastTy = nullptr;
2527 for (unsigned i = FirstVal; i != LastVal; ++i) {
2528 const Value *V = Vals[i].first;
2529 // If we need to switch types, do so now.
2530 if (V->getType() != LastTy) {
2531 LastTy = V->getType();
2532 Record.push_back(VE.getTypeID(LastTy));
2533 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
2534 CONSTANTS_SETTYPE_ABBREV);
2535 Record.clear();
2536 }
2537
2538 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
2539 Record.push_back(VE.getTypeID(IA->getFunctionType()));
2540 Record.push_back(
2541 unsigned(IA->hasSideEffects()) | unsigned(IA->isAlignStack()) << 1 |
2542 unsigned(IA->getDialect() & 1) << 2 | unsigned(IA->canThrow()) << 3);
2543
2544 // Add the asm string.
2545 const std::string &AsmStr = IA->getAsmString();
2546 Record.push_back(AsmStr.size());
2547 Record.append(AsmStr.begin(), AsmStr.end());
2548
2549 // Add the constraint string.
2550 const std::string &ConstraintStr = IA->getConstraintString();
2551 Record.push_back(ConstraintStr.size());
2552 Record.append(ConstraintStr.begin(), ConstraintStr.end());
2553 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
2554 Record.clear();
2555 continue;
2556 }
2557 const Constant *C = cast<Constant>(V);
2558 unsigned Code = -1U;
2559 unsigned AbbrevToUse = 0;
2560 if (C->isNullValue()) {
2561 Code = bitc::CST_CODE_NULL;
2562 } else if (isa<PoisonValue>(C)) {
2563 Code = bitc::CST_CODE_POISON;
2564 } else if (isa<UndefValue>(C)) {
2565 Code = bitc::CST_CODE_UNDEF;
2566 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
2567 if (IV->getBitWidth() <= 64) {
2568 uint64_t V = IV->getSExtValue();
2569 emitSignedInt64(Record, V);
2570 Code = bitc::CST_CODE_INTEGER;
2571 AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
2572 } else { // Wide integers, > 64 bits in size.
2573 emitWideAPInt(Record, IV->getValue());
2574 Code = bitc::CST_CODE_WIDE_INTEGER;
2575 }
2576 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
2577 Code = bitc::CST_CODE_FLOAT;
2578 Type *Ty = CFP->getType();
2579 if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() ||
2580 Ty->isDoubleTy()) {
2581 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
2582 } else if (Ty->isX86_FP80Ty()) {
2583 // api needed to prevent premature destruction
2584 // bits are not in the same order as a normal i80 APInt, compensate.
2585 APInt api = CFP->getValueAPF().bitcastToAPInt();
2586 const uint64_t *p = api.getRawData();
2587 Record.push_back((p[1] << 48) | (p[0] >> 16));
2588 Record.push_back(p[0] & 0xffffLL);
2589 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
2590 APInt api = CFP->getValueAPF().bitcastToAPInt();
2591 const uint64_t *p = api.getRawData();
2592 Record.push_back(p[0]);
2593 Record.push_back(p[1]);
2594 } else {
2595 assert(0 && "Unknown FP type!");
2596 }
2597 } else if (isa<ConstantDataSequential>(C) &&
2598 cast<ConstantDataSequential>(C)->isString()) {
2599 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
2600 // Emit constant strings specially.
2601 unsigned NumElts = Str->getNumElements();
2602 // If this is a null-terminated string, use the denser CSTRING encoding.
2603 if (Str->isCString()) {
2604 Code = bitc::CST_CODE_CSTRING;
2605 --NumElts; // Don't encode the null, which isn't allowed by char6.
2606 } else {
2607 Code = bitc::CST_CODE_STRING;
2608 AbbrevToUse = String8Abbrev;
2609 }
2610 bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
2611 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
2612 for (unsigned i = 0; i != NumElts; ++i) {
2613 unsigned char V = Str->getElementAsInteger(i);
2614 Record.push_back(V);
2615 isCStr7 &= (V & 128) == 0;
2616 if (isCStrChar6)
2617 isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
2618 }
2619
2620 if (isCStrChar6)
2621 AbbrevToUse = CString6Abbrev;
2622 else if (isCStr7)
2623 AbbrevToUse = CString7Abbrev;
2624 } else if (const ConstantDataSequential *CDS =
2625 dyn_cast<ConstantDataSequential>(C)) {
2626 Code = bitc::CST_CODE_DATA;
2627 Type *EltTy = CDS->getElementType();
2628 if (isa<IntegerType>(EltTy)) {
2629 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
2630 Record.push_back(CDS->getElementAsInteger(i));
2631 } else {
2632 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
2633 Record.push_back(
2634 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue());
2635 }
2636 } else if (isa<ConstantAggregate>(C)) {
2637 Code = bitc::CST_CODE_AGGREGATE;
2638 for (const Value *Op : C->operands())
2639 Record.push_back(VE.getValueID(Op));
2640 AbbrevToUse = AggregateAbbrev;
2641 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
2642 switch (CE->getOpcode()) {
2643 default:
2644 if (Instruction::isCast(CE->getOpcode())) {
2645 Code = bitc::CST_CODE_CE_CAST;
2646 Record.push_back(getEncodedCastOpcode(CE->getOpcode()));
2647 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2648 Record.push_back(VE.getValueID(C->getOperand(0)));
2649 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
2650 } else {
2651 assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
2652 Code = bitc::CST_CODE_CE_BINOP;
2653 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode()));
2654 Record.push_back(VE.getValueID(C->getOperand(0)));
2655 Record.push_back(VE.getValueID(C->getOperand(1)));
2656 uint64_t Flags = getOptimizationFlags(CE);
2657 if (Flags != 0)
2658 Record.push_back(Flags);
2659 }
2660 break;
2661 case Instruction::FNeg: {
2662 assert(CE->getNumOperands() == 1 && "Unknown constant expr!");
2663 Code = bitc::CST_CODE_CE_UNOP;
2664 Record.push_back(getEncodedUnaryOpcode(CE->getOpcode()));
2665 Record.push_back(VE.getValueID(C->getOperand(0)));
2666 uint64_t Flags = getOptimizationFlags(CE);
2667 if (Flags != 0)
2668 Record.push_back(Flags);
2669 break;
2670 }
2671 case Instruction::GetElementPtr: {
2672 Code = bitc::CST_CODE_CE_GEP;
2673 const auto *GO = cast<GEPOperator>(C);
2674 Record.push_back(VE.getTypeID(GO->getSourceElementType()));
2675 if (std::optional<unsigned> Idx = GO->getInRangeIndex()) {
2676 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX;
2677 Record.push_back((*Idx << 1) | GO->isInBounds());
2678 } else if (GO->isInBounds())
2679 Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
2680 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
2681 Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
2682 Record.push_back(VE.getValueID(C->getOperand(i)));
2683 }
2684 break;
2685 }
2686 case Instruction::Select:
2687 Code = bitc::CST_CODE_CE_SELECT;
2688 Record.push_back(VE.getValueID(C->getOperand(0)));
2689 Record.push_back(VE.getValueID(C->getOperand(1)));
2690 Record.push_back(VE.getValueID(C->getOperand(2)));
2691 break;
2692 case Instruction::ExtractElement:
2693 Code = bitc::CST_CODE_CE_EXTRACTELT;
2694 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2695 Record.push_back(VE.getValueID(C->getOperand(0)));
2696 Record.push_back(VE.getTypeID(C->getOperand(1)->getType()));
2697 Record.push_back(VE.getValueID(C->getOperand(1)));
2698 break;
2699 case Instruction::InsertElement:
2700 Code = bitc::CST_CODE_CE_INSERTELT;
2701 Record.push_back(VE.getValueID(C->getOperand(0)));
2702 Record.push_back(VE.getValueID(C->getOperand(1)));
2703 Record.push_back(VE.getTypeID(C->getOperand(2)->getType()));
2704 Record.push_back(VE.getValueID(C->getOperand(2)));
2705 break;
2706 case Instruction::ShuffleVector:
2707 // If the return type and argument types are the same, this is a
2708 // standard shufflevector instruction. If the types are different,
2709 // then the shuffle is widening or truncating the input vectors, and
2710 // the argument type must also be encoded.
2711 if (C->getType() == C->getOperand(0)->getType()) {
2712 Code = bitc::CST_CODE_CE_SHUFFLEVEC;
2713 } else {
2714 Code = bitc::CST_CODE_CE_SHUFVEC_EX;
2715 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2716 }
2717 Record.push_back(VE.getValueID(C->getOperand(0)));
2718 Record.push_back(VE.getValueID(C->getOperand(1)));
2719 Record.push_back(VE.getValueID(CE->getShuffleMaskForBitcode()));
2720 break;
2721 case Instruction::ICmp:
2722 case Instruction::FCmp:
2723 Code = bitc::CST_CODE_CE_CMP;
2724 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2725 Record.push_back(VE.getValueID(C->getOperand(0)));
2726 Record.push_back(VE.getValueID(C->getOperand(1)));
2727 Record.push_back(CE->getPredicate());
2728 break;
2729 }
2730 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
2731 Code = bitc::CST_CODE_BLOCKADDRESS;
2732 Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
2733 Record.push_back(VE.getValueID(BA->getFunction()));
2734 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
2735 } else if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) {
2736 Code = bitc::CST_CODE_DSO_LOCAL_EQUIVALENT;
2737 Record.push_back(VE.getTypeID(Equiv->getGlobalValue()->getType()));
2738 Record.push_back(VE.getValueID(Equiv->getGlobalValue()));
2739 } else if (const auto *NC = dyn_cast<NoCFIValue>(C)) {
2740 Code = bitc::CST_CODE_NO_CFI_VALUE;
2741 Record.push_back(VE.getTypeID(NC->getGlobalValue()->getType()));
2742 Record.push_back(VE.getValueID(NC->getGlobalValue()));
2743 } else {
2744 #ifndef NDEBUG
2745 C->dump();
2746 #endif
2747 llvm_unreachable("Unknown constant!");
2748 }
2749 Stream.EmitRecord(Code, Record, AbbrevToUse);
2750 Record.clear();
2751 }
2752
2753 Stream.ExitBlock();
2754 }
2755
writeModuleConstants()2756 void ModuleBitcodeWriter::writeModuleConstants() {
2757 const ValueEnumerator::ValueList &Vals = VE.getValues();
2758
2759 // Find the first constant to emit, which is the first non-globalvalue value.
2760 // We know globalvalues have been emitted by WriteModuleInfo.
2761 for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
2762 if (!isa<GlobalValue>(Vals[i].first)) {
2763 writeConstants(i, Vals.size(), true);
2764 return;
2765 }
2766 }
2767 }
2768
2769 /// pushValueAndType - The file has to encode both the value and type id for
2770 /// many values, because we need to know what type to create for forward
2771 /// references. However, most operands are not forward references, so this type
2772 /// field is not needed.
2773 ///
2774 /// This function adds V's value ID to Vals. If the value ID is higher than the
2775 /// instruction ID, then it is a forward reference, and it also includes the
2776 /// type ID. The value ID that is written is encoded relative to the InstID.
pushValueAndType(const Value * V,unsigned InstID,SmallVectorImpl<unsigned> & Vals)2777 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID,
2778 SmallVectorImpl<unsigned> &Vals) {
2779 unsigned ValID = VE.getValueID(V);
2780 // Make encoding relative to the InstID.
2781 Vals.push_back(InstID - ValID);
2782 if (ValID >= InstID) {
2783 Vals.push_back(VE.getTypeID(V->getType()));
2784 return true;
2785 }
2786 return false;
2787 }
2788
writeOperandBundles(const CallBase & CS,unsigned InstID)2789 void ModuleBitcodeWriter::writeOperandBundles(const CallBase &CS,
2790 unsigned InstID) {
2791 SmallVector<unsigned, 64> Record;
2792 LLVMContext &C = CS.getContext();
2793
2794 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) {
2795 const auto &Bundle = CS.getOperandBundleAt(i);
2796 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName()));
2797
2798 for (auto &Input : Bundle.Inputs)
2799 pushValueAndType(Input, InstID, Record);
2800
2801 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record);
2802 Record.clear();
2803 }
2804 }
2805
2806 /// pushValue - Like pushValueAndType, but where the type of the value is
2807 /// omitted (perhaps it was already encoded in an earlier operand).
pushValue(const Value * V,unsigned InstID,SmallVectorImpl<unsigned> & Vals)2808 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID,
2809 SmallVectorImpl<unsigned> &Vals) {
2810 unsigned ValID = VE.getValueID(V);
2811 Vals.push_back(InstID - ValID);
2812 }
2813
pushValueSigned(const Value * V,unsigned InstID,SmallVectorImpl<uint64_t> & Vals)2814 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID,
2815 SmallVectorImpl<uint64_t> &Vals) {
2816 unsigned ValID = VE.getValueID(V);
2817 int64_t diff = ((int32_t)InstID - (int32_t)ValID);
2818 emitSignedInt64(Vals, diff);
2819 }
2820
2821 /// WriteInstruction - Emit an instruction to the specified stream.
writeInstruction(const Instruction & I,unsigned InstID,SmallVectorImpl<unsigned> & Vals)2822 void ModuleBitcodeWriter::writeInstruction(const Instruction &I,
2823 unsigned InstID,
2824 SmallVectorImpl<unsigned> &Vals) {
2825 unsigned Code = 0;
2826 unsigned AbbrevToUse = 0;
2827 VE.setInstructionID(&I);
2828 switch (I.getOpcode()) {
2829 default:
2830 if (Instruction::isCast(I.getOpcode())) {
2831 Code = bitc::FUNC_CODE_INST_CAST;
2832 if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2833 AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
2834 Vals.push_back(VE.getTypeID(I.getType()));
2835 Vals.push_back(getEncodedCastOpcode(I.getOpcode()));
2836 } else {
2837 assert(isa<BinaryOperator>(I) && "Unknown instruction!");
2838 Code = bitc::FUNC_CODE_INST_BINOP;
2839 if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2840 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
2841 pushValue(I.getOperand(1), InstID, Vals);
2842 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode()));
2843 uint64_t Flags = getOptimizationFlags(&I);
2844 if (Flags != 0) {
2845 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
2846 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
2847 Vals.push_back(Flags);
2848 }
2849 }
2850 break;
2851 case Instruction::FNeg: {
2852 Code = bitc::FUNC_CODE_INST_UNOP;
2853 if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2854 AbbrevToUse = FUNCTION_INST_UNOP_ABBREV;
2855 Vals.push_back(getEncodedUnaryOpcode(I.getOpcode()));
2856 uint64_t Flags = getOptimizationFlags(&I);
2857 if (Flags != 0) {
2858 if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV)
2859 AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV;
2860 Vals.push_back(Flags);
2861 }
2862 break;
2863 }
2864 case Instruction::GetElementPtr: {
2865 Code = bitc::FUNC_CODE_INST_GEP;
2866 AbbrevToUse = FUNCTION_INST_GEP_ABBREV;
2867 auto &GEPInst = cast<GetElementPtrInst>(I);
2868 Vals.push_back(GEPInst.isInBounds());
2869 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType()));
2870 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
2871 pushValueAndType(I.getOperand(i), InstID, Vals);
2872 break;
2873 }
2874 case Instruction::ExtractValue: {
2875 Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
2876 pushValueAndType(I.getOperand(0), InstID, Vals);
2877 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
2878 Vals.append(EVI->idx_begin(), EVI->idx_end());
2879 break;
2880 }
2881 case Instruction::InsertValue: {
2882 Code = bitc::FUNC_CODE_INST_INSERTVAL;
2883 pushValueAndType(I.getOperand(0), InstID, Vals);
2884 pushValueAndType(I.getOperand(1), InstID, Vals);
2885 const InsertValueInst *IVI = cast<InsertValueInst>(&I);
2886 Vals.append(IVI->idx_begin(), IVI->idx_end());
2887 break;
2888 }
2889 case Instruction::Select: {
2890 Code = bitc::FUNC_CODE_INST_VSELECT;
2891 pushValueAndType(I.getOperand(1), InstID, Vals);
2892 pushValue(I.getOperand(2), InstID, Vals);
2893 pushValueAndType(I.getOperand(0), InstID, Vals);
2894 uint64_t Flags = getOptimizationFlags(&I);
2895 if (Flags != 0)
2896 Vals.push_back(Flags);
2897 break;
2898 }
2899 case Instruction::ExtractElement:
2900 Code = bitc::FUNC_CODE_INST_EXTRACTELT;
2901 pushValueAndType(I.getOperand(0), InstID, Vals);
2902 pushValueAndType(I.getOperand(1), InstID, Vals);
2903 break;
2904 case Instruction::InsertElement:
2905 Code = bitc::FUNC_CODE_INST_INSERTELT;
2906 pushValueAndType(I.getOperand(0), InstID, Vals);
2907 pushValue(I.getOperand(1), InstID, Vals);
2908 pushValueAndType(I.getOperand(2), InstID, Vals);
2909 break;
2910 case Instruction::ShuffleVector:
2911 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
2912 pushValueAndType(I.getOperand(0), InstID, Vals);
2913 pushValue(I.getOperand(1), InstID, Vals);
2914 pushValue(cast<ShuffleVectorInst>(I).getShuffleMaskForBitcode(), InstID,
2915 Vals);
2916 break;
2917 case Instruction::ICmp:
2918 case Instruction::FCmp: {
2919 // compare returning Int1Ty or vector of Int1Ty
2920 Code = bitc::FUNC_CODE_INST_CMP2;
2921 pushValueAndType(I.getOperand(0), InstID, Vals);
2922 pushValue(I.getOperand(1), InstID, Vals);
2923 Vals.push_back(cast<CmpInst>(I).getPredicate());
2924 uint64_t Flags = getOptimizationFlags(&I);
2925 if (Flags != 0)
2926 Vals.push_back(Flags);
2927 break;
2928 }
2929
2930 case Instruction::Ret:
2931 {
2932 Code = bitc::FUNC_CODE_INST_RET;
2933 unsigned NumOperands = I.getNumOperands();
2934 if (NumOperands == 0)
2935 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
2936 else if (NumOperands == 1) {
2937 if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2938 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
2939 } else {
2940 for (unsigned i = 0, e = NumOperands; i != e; ++i)
2941 pushValueAndType(I.getOperand(i), InstID, Vals);
2942 }
2943 }
2944 break;
2945 case Instruction::Br:
2946 {
2947 Code = bitc::FUNC_CODE_INST_BR;
2948 const BranchInst &II = cast<BranchInst>(I);
2949 Vals.push_back(VE.getValueID(II.getSuccessor(0)));
2950 if (II.isConditional()) {
2951 Vals.push_back(VE.getValueID(II.getSuccessor(1)));
2952 pushValue(II.getCondition(), InstID, Vals);
2953 }
2954 }
2955 break;
2956 case Instruction::Switch:
2957 {
2958 Code = bitc::FUNC_CODE_INST_SWITCH;
2959 const SwitchInst &SI = cast<SwitchInst>(I);
2960 Vals.push_back(VE.getTypeID(SI.getCondition()->getType()));
2961 pushValue(SI.getCondition(), InstID, Vals);
2962 Vals.push_back(VE.getValueID(SI.getDefaultDest()));
2963 for (auto Case : SI.cases()) {
2964 Vals.push_back(VE.getValueID(Case.getCaseValue()));
2965 Vals.push_back(VE.getValueID(Case.getCaseSuccessor()));
2966 }
2967 }
2968 break;
2969 case Instruction::IndirectBr:
2970 Code = bitc::FUNC_CODE_INST_INDIRECTBR;
2971 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
2972 // Encode the address operand as relative, but not the basic blocks.
2973 pushValue(I.getOperand(0), InstID, Vals);
2974 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i)
2975 Vals.push_back(VE.getValueID(I.getOperand(i)));
2976 break;
2977
2978 case Instruction::Invoke: {
2979 const InvokeInst *II = cast<InvokeInst>(&I);
2980 const Value *Callee = II->getCalledOperand();
2981 FunctionType *FTy = II->getFunctionType();
2982
2983 if (II->hasOperandBundles())
2984 writeOperandBundles(*II, InstID);
2985
2986 Code = bitc::FUNC_CODE_INST_INVOKE;
2987
2988 Vals.push_back(VE.getAttributeListID(II->getAttributes()));
2989 Vals.push_back(II->getCallingConv() | 1 << 13);
2990 Vals.push_back(VE.getValueID(II->getNormalDest()));
2991 Vals.push_back(VE.getValueID(II->getUnwindDest()));
2992 Vals.push_back(VE.getTypeID(FTy));
2993 pushValueAndType(Callee, InstID, Vals);
2994
2995 // Emit value #'s for the fixed parameters.
2996 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2997 pushValue(I.getOperand(i), InstID, Vals); // fixed param.
2998
2999 // Emit type/value pairs for varargs params.
3000 if (FTy->isVarArg()) {
3001 for (unsigned i = FTy->getNumParams(), e = II->arg_size(); i != e; ++i)
3002 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg
3003 }
3004 break;
3005 }
3006 case Instruction::Resume:
3007 Code = bitc::FUNC_CODE_INST_RESUME;
3008 pushValueAndType(I.getOperand(0), InstID, Vals);
3009 break;
3010 case Instruction::CleanupRet: {
3011 Code = bitc::FUNC_CODE_INST_CLEANUPRET;
3012 const auto &CRI = cast<CleanupReturnInst>(I);
3013 pushValue(CRI.getCleanupPad(), InstID, Vals);
3014 if (CRI.hasUnwindDest())
3015 Vals.push_back(VE.getValueID(CRI.getUnwindDest()));
3016 break;
3017 }
3018 case Instruction::CatchRet: {
3019 Code = bitc::FUNC_CODE_INST_CATCHRET;
3020 const auto &CRI = cast<CatchReturnInst>(I);
3021 pushValue(CRI.getCatchPad(), InstID, Vals);
3022 Vals.push_back(VE.getValueID(CRI.getSuccessor()));
3023 break;
3024 }
3025 case Instruction::CleanupPad:
3026 case Instruction::CatchPad: {
3027 const auto &FuncletPad = cast<FuncletPadInst>(I);
3028 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD
3029 : bitc::FUNC_CODE_INST_CLEANUPPAD;
3030 pushValue(FuncletPad.getParentPad(), InstID, Vals);
3031
3032 unsigned NumArgOperands = FuncletPad.arg_size();
3033 Vals.push_back(NumArgOperands);
3034 for (unsigned Op = 0; Op != NumArgOperands; ++Op)
3035 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals);
3036 break;
3037 }
3038 case Instruction::CatchSwitch: {
3039 Code = bitc::FUNC_CODE_INST_CATCHSWITCH;
3040 const auto &CatchSwitch = cast<CatchSwitchInst>(I);
3041
3042 pushValue(CatchSwitch.getParentPad(), InstID, Vals);
3043
3044 unsigned NumHandlers = CatchSwitch.getNumHandlers();
3045 Vals.push_back(NumHandlers);
3046 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers())
3047 Vals.push_back(VE.getValueID(CatchPadBB));
3048
3049 if (CatchSwitch.hasUnwindDest())
3050 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest()));
3051 break;
3052 }
3053 case Instruction::CallBr: {
3054 const CallBrInst *CBI = cast<CallBrInst>(&I);
3055 const Value *Callee = CBI->getCalledOperand();
3056 FunctionType *FTy = CBI->getFunctionType();
3057
3058 if (CBI->hasOperandBundles())
3059 writeOperandBundles(*CBI, InstID);
3060
3061 Code = bitc::FUNC_CODE_INST_CALLBR;
3062
3063 Vals.push_back(VE.getAttributeListID(CBI->getAttributes()));
3064
3065 Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV |
3066 1 << bitc::CALL_EXPLICIT_TYPE);
3067
3068 Vals.push_back(VE.getValueID(CBI->getDefaultDest()));
3069 Vals.push_back(CBI->getNumIndirectDests());
3070 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i)
3071 Vals.push_back(VE.getValueID(CBI->getIndirectDest(i)));
3072
3073 Vals.push_back(VE.getTypeID(FTy));
3074 pushValueAndType(Callee, InstID, Vals);
3075
3076 // Emit value #'s for the fixed parameters.
3077 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
3078 pushValue(I.getOperand(i), InstID, Vals); // fixed param.
3079
3080 // Emit type/value pairs for varargs params.
3081 if (FTy->isVarArg()) {
3082 for (unsigned i = FTy->getNumParams(), e = CBI->arg_size(); i != e; ++i)
3083 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg
3084 }
3085 break;
3086 }
3087 case Instruction::Unreachable:
3088 Code = bitc::FUNC_CODE_INST_UNREACHABLE;
3089 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
3090 break;
3091
3092 case Instruction::PHI: {
3093 const PHINode &PN = cast<PHINode>(I);
3094 Code = bitc::FUNC_CODE_INST_PHI;
3095 // With the newer instruction encoding, forward references could give
3096 // negative valued IDs. This is most common for PHIs, so we use
3097 // signed VBRs.
3098 SmallVector<uint64_t, 128> Vals64;
3099 Vals64.push_back(VE.getTypeID(PN.getType()));
3100 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
3101 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64);
3102 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i)));
3103 }
3104
3105 uint64_t Flags = getOptimizationFlags(&I);
3106 if (Flags != 0)
3107 Vals64.push_back(Flags);
3108
3109 // Emit a Vals64 vector and exit.
3110 Stream.EmitRecord(Code, Vals64, AbbrevToUse);
3111 Vals64.clear();
3112 return;
3113 }
3114
3115 case Instruction::LandingPad: {
3116 const LandingPadInst &LP = cast<LandingPadInst>(I);
3117 Code = bitc::FUNC_CODE_INST_LANDINGPAD;
3118 Vals.push_back(VE.getTypeID(LP.getType()));
3119 Vals.push_back(LP.isCleanup());
3120 Vals.push_back(LP.getNumClauses());
3121 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
3122 if (LP.isCatch(I))
3123 Vals.push_back(LandingPadInst::Catch);
3124 else
3125 Vals.push_back(LandingPadInst::Filter);
3126 pushValueAndType(LP.getClause(I), InstID, Vals);
3127 }
3128 break;
3129 }
3130
3131 case Instruction::Alloca: {
3132 Code = bitc::FUNC_CODE_INST_ALLOCA;
3133 const AllocaInst &AI = cast<AllocaInst>(I);
3134 Vals.push_back(VE.getTypeID(AI.getAllocatedType()));
3135 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
3136 Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
3137 using APV = AllocaPackedValues;
3138 unsigned Record = 0;
3139 unsigned EncodedAlign = getEncodedAlign(AI.getAlign());
3140 Bitfield::set<APV::AlignLower>(
3141 Record, EncodedAlign & ((1 << APV::AlignLower::Bits) - 1));
3142 Bitfield::set<APV::AlignUpper>(Record,
3143 EncodedAlign >> APV::AlignLower::Bits);
3144 Bitfield::set<APV::UsedWithInAlloca>(Record, AI.isUsedWithInAlloca());
3145 Bitfield::set<APV::ExplicitType>(Record, true);
3146 Bitfield::set<APV::SwiftError>(Record, AI.isSwiftError());
3147 Vals.push_back(Record);
3148
3149 unsigned AS = AI.getAddressSpace();
3150 if (AS != M.getDataLayout().getAllocaAddrSpace())
3151 Vals.push_back(AS);
3152 break;
3153 }
3154
3155 case Instruction::Load:
3156 if (cast<LoadInst>(I).isAtomic()) {
3157 Code = bitc::FUNC_CODE_INST_LOADATOMIC;
3158 pushValueAndType(I.getOperand(0), InstID, Vals);
3159 } else {
3160 Code = bitc::FUNC_CODE_INST_LOAD;
3161 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr
3162 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
3163 }
3164 Vals.push_back(VE.getTypeID(I.getType()));
3165 Vals.push_back(getEncodedAlign(cast<LoadInst>(I).getAlign()));
3166 Vals.push_back(cast<LoadInst>(I).isVolatile());
3167 if (cast<LoadInst>(I).isAtomic()) {
3168 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering()));
3169 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID()));
3170 }
3171 break;
3172 case Instruction::Store:
3173 if (cast<StoreInst>(I).isAtomic())
3174 Code = bitc::FUNC_CODE_INST_STOREATOMIC;
3175 else
3176 Code = bitc::FUNC_CODE_INST_STORE;
3177 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr
3178 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val
3179 Vals.push_back(getEncodedAlign(cast<StoreInst>(I).getAlign()));
3180 Vals.push_back(cast<StoreInst>(I).isVolatile());
3181 if (cast<StoreInst>(I).isAtomic()) {
3182 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering()));
3183 Vals.push_back(
3184 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID()));
3185 }
3186 break;
3187 case Instruction::AtomicCmpXchg:
3188 Code = bitc::FUNC_CODE_INST_CMPXCHG;
3189 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
3190 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp.
3191 pushValue(I.getOperand(2), InstID, Vals); // newval.
3192 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
3193 Vals.push_back(
3194 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering()));
3195 Vals.push_back(
3196 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID()));
3197 Vals.push_back(
3198 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering()));
3199 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak());
3200 Vals.push_back(getEncodedAlign(cast<AtomicCmpXchgInst>(I).getAlign()));
3201 break;
3202 case Instruction::AtomicRMW:
3203 Code = bitc::FUNC_CODE_INST_ATOMICRMW;
3204 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
3205 pushValueAndType(I.getOperand(1), InstID, Vals); // valty + val
3206 Vals.push_back(
3207 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation()));
3208 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
3209 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
3210 Vals.push_back(
3211 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID()));
3212 Vals.push_back(getEncodedAlign(cast<AtomicRMWInst>(I).getAlign()));
3213 break;
3214 case Instruction::Fence:
3215 Code = bitc::FUNC_CODE_INST_FENCE;
3216 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering()));
3217 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID()));
3218 break;
3219 case Instruction::Call: {
3220 const CallInst &CI = cast<CallInst>(I);
3221 FunctionType *FTy = CI.getFunctionType();
3222
3223 if (CI.hasOperandBundles())
3224 writeOperandBundles(CI, InstID);
3225
3226 Code = bitc::FUNC_CODE_INST_CALL;
3227
3228 Vals.push_back(VE.getAttributeListID(CI.getAttributes()));
3229
3230 unsigned Flags = getOptimizationFlags(&I);
3231 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV |
3232 unsigned(CI.isTailCall()) << bitc::CALL_TAIL |
3233 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL |
3234 1 << bitc::CALL_EXPLICIT_TYPE |
3235 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL |
3236 unsigned(Flags != 0) << bitc::CALL_FMF);
3237 if (Flags != 0)
3238 Vals.push_back(Flags);
3239
3240 Vals.push_back(VE.getTypeID(FTy));
3241 pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee
3242
3243 // Emit value #'s for the fixed parameters.
3244 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
3245 // Check for labels (can happen with asm labels).
3246 if (FTy->getParamType(i)->isLabelTy())
3247 Vals.push_back(VE.getValueID(CI.getArgOperand(i)));
3248 else
3249 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param.
3250 }
3251
3252 // Emit type/value pairs for varargs params.
3253 if (FTy->isVarArg()) {
3254 for (unsigned i = FTy->getNumParams(), e = CI.arg_size(); i != e; ++i)
3255 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs
3256 }
3257 break;
3258 }
3259 case Instruction::VAArg:
3260 Code = bitc::FUNC_CODE_INST_VAARG;
3261 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty
3262 pushValue(I.getOperand(0), InstID, Vals); // valist.
3263 Vals.push_back(VE.getTypeID(I.getType())); // restype.
3264 break;
3265 case Instruction::Freeze:
3266 Code = bitc::FUNC_CODE_INST_FREEZE;
3267 pushValueAndType(I.getOperand(0), InstID, Vals);
3268 break;
3269 }
3270
3271 Stream.EmitRecord(Code, Vals, AbbrevToUse);
3272 Vals.clear();
3273 }
3274
3275 /// Write a GlobalValue VST to the module. The purpose of this data structure is
3276 /// to allow clients to efficiently find the function body.
writeGlobalValueSymbolTable(DenseMap<const Function *,uint64_t> & FunctionToBitcodeIndex)3277 void ModuleBitcodeWriter::writeGlobalValueSymbolTable(
3278 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) {
3279 // Get the offset of the VST we are writing, and backpatch it into
3280 // the VST forward declaration record.
3281 uint64_t VSTOffset = Stream.GetCurrentBitNo();
3282 // The BitcodeStartBit was the stream offset of the identification block.
3283 VSTOffset -= bitcodeStartBit();
3284 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned");
3285 // Note that we add 1 here because the offset is relative to one word
3286 // before the start of the identification block, which was historically
3287 // always the start of the regular bitcode header.
3288 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1);
3289
3290 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
3291
3292 auto Abbv = std::make_shared<BitCodeAbbrev>();
3293 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY));
3294 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
3295 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset
3296 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3297
3298 for (const Function &F : M) {
3299 uint64_t Record[2];
3300
3301 if (F.isDeclaration())
3302 continue;
3303
3304 Record[0] = VE.getValueID(&F);
3305
3306 // Save the word offset of the function (from the start of the
3307 // actual bitcode written to the stream).
3308 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit();
3309 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned");
3310 // Note that we add 1 here because the offset is relative to one word
3311 // before the start of the identification block, which was historically
3312 // always the start of the regular bitcode header.
3313 Record[1] = BitcodeIndex / 32 + 1;
3314
3315 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev);
3316 }
3317
3318 Stream.ExitBlock();
3319 }
3320
3321 /// Emit names for arguments, instructions and basic blocks in a function.
writeFunctionLevelValueSymbolTable(const ValueSymbolTable & VST)3322 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable(
3323 const ValueSymbolTable &VST) {
3324 if (VST.empty())
3325 return;
3326
3327 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
3328
3329 // FIXME: Set up the abbrev, we know how many values there are!
3330 // FIXME: We know if the type names can use 7-bit ascii.
3331 SmallVector<uint64_t, 64> NameVals;
3332
3333 for (const ValueName &Name : VST) {
3334 // Figure out the encoding to use for the name.
3335 StringEncoding Bits = getStringEncoding(Name.getKey());
3336
3337 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
3338 NameVals.push_back(VE.getValueID(Name.getValue()));
3339
3340 // VST_CODE_ENTRY: [valueid, namechar x N]
3341 // VST_CODE_BBENTRY: [bbid, namechar x N]
3342 unsigned Code;
3343 if (isa<BasicBlock>(Name.getValue())) {
3344 Code = bitc::VST_CODE_BBENTRY;
3345 if (Bits == SE_Char6)
3346 AbbrevToUse = VST_BBENTRY_6_ABBREV;
3347 } else {
3348 Code = bitc::VST_CODE_ENTRY;
3349 if (Bits == SE_Char6)
3350 AbbrevToUse = VST_ENTRY_6_ABBREV;
3351 else if (Bits == SE_Fixed7)
3352 AbbrevToUse = VST_ENTRY_7_ABBREV;
3353 }
3354
3355 for (const auto P : Name.getKey())
3356 NameVals.push_back((unsigned char)P);
3357
3358 // Emit the finished record.
3359 Stream.EmitRecord(Code, NameVals, AbbrevToUse);
3360 NameVals.clear();
3361 }
3362
3363 Stream.ExitBlock();
3364 }
3365
writeUseList(UseListOrder && Order)3366 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) {
3367 assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
3368 unsigned Code;
3369 if (isa<BasicBlock>(Order.V))
3370 Code = bitc::USELIST_CODE_BB;
3371 else
3372 Code = bitc::USELIST_CODE_DEFAULT;
3373
3374 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end());
3375 Record.push_back(VE.getValueID(Order.V));
3376 Stream.EmitRecord(Code, Record);
3377 }
3378
writeUseListBlock(const Function * F)3379 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) {
3380 assert(VE.shouldPreserveUseListOrder() &&
3381 "Expected to be preserving use-list order");
3382
3383 auto hasMore = [&]() {
3384 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F;
3385 };
3386 if (!hasMore())
3387 // Nothing to do.
3388 return;
3389
3390 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3);
3391 while (hasMore()) {
3392 writeUseList(std::move(VE.UseListOrders.back()));
3393 VE.UseListOrders.pop_back();
3394 }
3395 Stream.ExitBlock();
3396 }
3397
3398 /// Emit a function body to the module stream.
writeFunction(const Function & F,DenseMap<const Function *,uint64_t> & FunctionToBitcodeIndex)3399 void ModuleBitcodeWriter::writeFunction(
3400 const Function &F,
3401 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) {
3402 // Save the bitcode index of the start of this function block for recording
3403 // in the VST.
3404 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo();
3405
3406 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
3407 VE.incorporateFunction(F);
3408
3409 SmallVector<unsigned, 64> Vals;
3410
3411 // Emit the number of basic blocks, so the reader can create them ahead of
3412 // time.
3413 Vals.push_back(VE.getBasicBlocks().size());
3414 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
3415 Vals.clear();
3416
3417 // If there are function-local constants, emit them now.
3418 unsigned CstStart, CstEnd;
3419 VE.getFunctionConstantRange(CstStart, CstEnd);
3420 writeConstants(CstStart, CstEnd, false);
3421
3422 // If there is function-local metadata, emit it now.
3423 writeFunctionMetadata(F);
3424
3425 // Keep a running idea of what the instruction ID is.
3426 unsigned InstID = CstEnd;
3427
3428 bool NeedsMetadataAttachment = F.hasMetadata();
3429
3430 DILocation *LastDL = nullptr;
3431 SmallSetVector<Function *, 4> BlockAddressUsers;
3432
3433 // Finally, emit all the instructions, in order.
3434 for (const BasicBlock &BB : F) {
3435 for (const Instruction &I : BB) {
3436 writeInstruction(I, InstID, Vals);
3437
3438 if (!I.getType()->isVoidTy())
3439 ++InstID;
3440
3441 // If the instruction has metadata, write a metadata attachment later.
3442 NeedsMetadataAttachment |= I.hasMetadataOtherThanDebugLoc();
3443
3444 // If the instruction has a debug location, emit it.
3445 DILocation *DL = I.getDebugLoc();
3446 if (!DL)
3447 continue;
3448
3449 if (DL == LastDL) {
3450 // Just repeat the same debug loc as last time.
3451 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
3452 continue;
3453 }
3454
3455 Vals.push_back(DL->getLine());
3456 Vals.push_back(DL->getColumn());
3457 Vals.push_back(VE.getMetadataOrNullID(DL->getScope()));
3458 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt()));
3459 Vals.push_back(DL->isImplicitCode());
3460 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
3461 Vals.clear();
3462
3463 LastDL = DL;
3464 }
3465
3466 if (BlockAddress *BA = BlockAddress::lookup(&BB)) {
3467 SmallVector<Value *> Worklist{BA};
3468 SmallPtrSet<Value *, 8> Visited{BA};
3469 while (!Worklist.empty()) {
3470 Value *V = Worklist.pop_back_val();
3471 for (User *U : V->users()) {
3472 if (auto *I = dyn_cast<Instruction>(U)) {
3473 Function *P = I->getFunction();
3474 if (P != &F)
3475 BlockAddressUsers.insert(P);
3476 } else if (isa<Constant>(U) && !isa<GlobalValue>(U) &&
3477 Visited.insert(U).second)
3478 Worklist.push_back(U);
3479 }
3480 }
3481 }
3482 }
3483
3484 if (!BlockAddressUsers.empty()) {
3485 Vals.resize(BlockAddressUsers.size());
3486 for (auto I : llvm::enumerate(BlockAddressUsers))
3487 Vals[I.index()] = VE.getValueID(I.value());
3488 Stream.EmitRecord(bitc::FUNC_CODE_BLOCKADDR_USERS, Vals);
3489 Vals.clear();
3490 }
3491
3492 // Emit names for all the instructions etc.
3493 if (auto *Symtab = F.getValueSymbolTable())
3494 writeFunctionLevelValueSymbolTable(*Symtab);
3495
3496 if (NeedsMetadataAttachment)
3497 writeFunctionMetadataAttachment(F);
3498 if (VE.shouldPreserveUseListOrder())
3499 writeUseListBlock(&F);
3500 VE.purgeFunction();
3501 Stream.ExitBlock();
3502 }
3503
3504 // Emit blockinfo, which defines the standard abbreviations etc.
writeBlockInfo()3505 void ModuleBitcodeWriter::writeBlockInfo() {
3506 // We only want to emit block info records for blocks that have multiple
3507 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.
3508 // Other blocks can define their abbrevs inline.
3509 Stream.EnterBlockInfoBlock();
3510
3511 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings.
3512 auto Abbv = std::make_shared<BitCodeAbbrev>();
3513 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
3514 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3515 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3516 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
3517 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3518 VST_ENTRY_8_ABBREV)
3519 llvm_unreachable("Unexpected abbrev ordering!");
3520 }
3521
3522 { // 7-bit fixed width VST_CODE_ENTRY strings.
3523 auto Abbv = std::make_shared<BitCodeAbbrev>();
3524 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
3525 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3526 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3527 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
3528 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3529 VST_ENTRY_7_ABBREV)
3530 llvm_unreachable("Unexpected abbrev ordering!");
3531 }
3532 { // 6-bit char6 VST_CODE_ENTRY strings.
3533 auto Abbv = std::make_shared<BitCodeAbbrev>();
3534 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
3535 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3536 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3537 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3538 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3539 VST_ENTRY_6_ABBREV)
3540 llvm_unreachable("Unexpected abbrev ordering!");
3541 }
3542 { // 6-bit char6 VST_CODE_BBENTRY strings.
3543 auto Abbv = std::make_shared<BitCodeAbbrev>();
3544 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
3545 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3546 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3547 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3548 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3549 VST_BBENTRY_6_ABBREV)
3550 llvm_unreachable("Unexpected abbrev ordering!");
3551 }
3552
3553 { // SETTYPE abbrev for CONSTANTS_BLOCK.
3554 auto Abbv = std::make_shared<BitCodeAbbrev>();
3555 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
3556 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
3557 VE.computeBitsRequiredForTypeIndicies()));
3558 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3559 CONSTANTS_SETTYPE_ABBREV)
3560 llvm_unreachable("Unexpected abbrev ordering!");
3561 }
3562
3563 { // INTEGER abbrev for CONSTANTS_BLOCK.
3564 auto Abbv = std::make_shared<BitCodeAbbrev>();
3565 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
3566 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3567 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3568 CONSTANTS_INTEGER_ABBREV)
3569 llvm_unreachable("Unexpected abbrev ordering!");
3570 }
3571
3572 { // CE_CAST abbrev for CONSTANTS_BLOCK.
3573 auto Abbv = std::make_shared<BitCodeAbbrev>();
3574 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
3575 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc
3576 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid
3577 VE.computeBitsRequiredForTypeIndicies()));
3578 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
3579
3580 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3581 CONSTANTS_CE_CAST_Abbrev)
3582 llvm_unreachable("Unexpected abbrev ordering!");
3583 }
3584 { // NULL abbrev for CONSTANTS_BLOCK.
3585 auto Abbv = std::make_shared<BitCodeAbbrev>();
3586 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
3587 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3588 CONSTANTS_NULL_Abbrev)
3589 llvm_unreachable("Unexpected abbrev ordering!");
3590 }
3591
3592 // FIXME: This should only use space for first class types!
3593
3594 { // INST_LOAD abbrev for FUNCTION_BLOCK.
3595 auto Abbv = std::make_shared<BitCodeAbbrev>();
3596 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
3597 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
3598 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
3599 VE.computeBitsRequiredForTypeIndicies()));
3600 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
3601 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
3602 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3603 FUNCTION_INST_LOAD_ABBREV)
3604 llvm_unreachable("Unexpected abbrev ordering!");
3605 }
3606 { // INST_UNOP abbrev for FUNCTION_BLOCK.
3607 auto Abbv = std::make_shared<BitCodeAbbrev>();
3608 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP));
3609 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3610 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3611 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3612 FUNCTION_INST_UNOP_ABBREV)
3613 llvm_unreachable("Unexpected abbrev ordering!");
3614 }
3615 { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK.
3616 auto Abbv = std::make_shared<BitCodeAbbrev>();
3617 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP));
3618 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3619 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3620 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags
3621 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3622 FUNCTION_INST_UNOP_FLAGS_ABBREV)
3623 llvm_unreachable("Unexpected abbrev ordering!");
3624 }
3625 { // INST_BINOP abbrev for FUNCTION_BLOCK.
3626 auto Abbv = std::make_shared<BitCodeAbbrev>();
3627 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
3628 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3629 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
3630 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3631 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3632 FUNCTION_INST_BINOP_ABBREV)
3633 llvm_unreachable("Unexpected abbrev ordering!");
3634 }
3635 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
3636 auto Abbv = std::make_shared<BitCodeAbbrev>();
3637 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
3638 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3639 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
3640 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3641 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags
3642 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3643 FUNCTION_INST_BINOP_FLAGS_ABBREV)
3644 llvm_unreachable("Unexpected abbrev ordering!");
3645 }
3646 { // INST_CAST abbrev for FUNCTION_BLOCK.
3647 auto Abbv = std::make_shared<BitCodeAbbrev>();
3648 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
3649 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal
3650 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
3651 VE.computeBitsRequiredForTypeIndicies()));
3652 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3653 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3654 FUNCTION_INST_CAST_ABBREV)
3655 llvm_unreachable("Unexpected abbrev ordering!");
3656 }
3657
3658 { // INST_RET abbrev for FUNCTION_BLOCK.
3659 auto Abbv = std::make_shared<BitCodeAbbrev>();
3660 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
3661 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3662 FUNCTION_INST_RET_VOID_ABBREV)
3663 llvm_unreachable("Unexpected abbrev ordering!");
3664 }
3665 { // INST_RET abbrev for FUNCTION_BLOCK.
3666 auto Abbv = std::make_shared<BitCodeAbbrev>();
3667 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
3668 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
3669 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3670 FUNCTION_INST_RET_VAL_ABBREV)
3671 llvm_unreachable("Unexpected abbrev ordering!");
3672 }
3673 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
3674 auto Abbv = std::make_shared<BitCodeAbbrev>();
3675 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
3676 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3677 FUNCTION_INST_UNREACHABLE_ABBREV)
3678 llvm_unreachable("Unexpected abbrev ordering!");
3679 }
3680 {
3681 auto Abbv = std::make_shared<BitCodeAbbrev>();
3682 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP));
3683 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
3684 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
3685 Log2_32_Ceil(VE.getTypes().size() + 1)));
3686 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3687 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
3688 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3689 FUNCTION_INST_GEP_ABBREV)
3690 llvm_unreachable("Unexpected abbrev ordering!");
3691 }
3692
3693 Stream.ExitBlock();
3694 }
3695
3696 /// Write the module path strings, currently only used when generating
3697 /// a combined index file.
writeModStrings()3698 void IndexBitcodeWriter::writeModStrings() {
3699 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3);
3700
3701 // TODO: See which abbrev sizes we actually need to emit
3702
3703 // 8-bit fixed-width MST_ENTRY strings.
3704 auto Abbv = std::make_shared<BitCodeAbbrev>();
3705 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3706 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3707 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3708 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
3709 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv));
3710
3711 // 7-bit fixed width MST_ENTRY strings.
3712 Abbv = std::make_shared<BitCodeAbbrev>();
3713 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3714 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3715 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3716 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
3717 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv));
3718
3719 // 6-bit char6 MST_ENTRY strings.
3720 Abbv = std::make_shared<BitCodeAbbrev>();
3721 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3722 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3723 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3724 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3725 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv));
3726
3727 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY.
3728 Abbv = std::make_shared<BitCodeAbbrev>();
3729 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH));
3730 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3731 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3732 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3733 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3734 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3735 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv));
3736
3737 SmallVector<unsigned, 64> Vals;
3738 forEachModule(
3739 [&](const StringMapEntry<std::pair<uint64_t, ModuleHash>> &MPSE) {
3740 StringRef Key = MPSE.getKey();
3741 const auto &Value = MPSE.getValue();
3742 StringEncoding Bits = getStringEncoding(Key);
3743 unsigned AbbrevToUse = Abbrev8Bit;
3744 if (Bits == SE_Char6)
3745 AbbrevToUse = Abbrev6Bit;
3746 else if (Bits == SE_Fixed7)
3747 AbbrevToUse = Abbrev7Bit;
3748
3749 Vals.push_back(Value.first);
3750 Vals.append(Key.begin(), Key.end());
3751
3752 // Emit the finished record.
3753 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse);
3754
3755 // Emit an optional hash for the module now
3756 const auto &Hash = Value.second;
3757 if (llvm::any_of(Hash, [](uint32_t H) { return H; })) {
3758 Vals.assign(Hash.begin(), Hash.end());
3759 // Emit the hash record.
3760 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash);
3761 }
3762
3763 Vals.clear();
3764 });
3765 Stream.ExitBlock();
3766 }
3767
3768 /// Write the function type metadata related records that need to appear before
3769 /// a function summary entry (whether per-module or combined).
3770 template <typename Fn>
writeFunctionTypeMetadataRecords(BitstreamWriter & Stream,FunctionSummary * FS,Fn GetValueID)3771 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream,
3772 FunctionSummary *FS,
3773 Fn GetValueID) {
3774 if (!FS->type_tests().empty())
3775 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests());
3776
3777 SmallVector<uint64_t, 64> Record;
3778
3779 auto WriteVFuncIdVec = [&](uint64_t Ty,
3780 ArrayRef<FunctionSummary::VFuncId> VFs) {
3781 if (VFs.empty())
3782 return;
3783 Record.clear();
3784 for (auto &VF : VFs) {
3785 Record.push_back(VF.GUID);
3786 Record.push_back(VF.Offset);
3787 }
3788 Stream.EmitRecord(Ty, Record);
3789 };
3790
3791 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS,
3792 FS->type_test_assume_vcalls());
3793 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS,
3794 FS->type_checked_load_vcalls());
3795
3796 auto WriteConstVCallVec = [&](uint64_t Ty,
3797 ArrayRef<FunctionSummary::ConstVCall> VCs) {
3798 for (auto &VC : VCs) {
3799 Record.clear();
3800 Record.push_back(VC.VFunc.GUID);
3801 Record.push_back(VC.VFunc.Offset);
3802 llvm::append_range(Record, VC.Args);
3803 Stream.EmitRecord(Ty, Record);
3804 }
3805 };
3806
3807 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL,
3808 FS->type_test_assume_const_vcalls());
3809 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL,
3810 FS->type_checked_load_const_vcalls());
3811
3812 auto WriteRange = [&](ConstantRange Range) {
3813 Range = Range.sextOrTrunc(FunctionSummary::ParamAccess::RangeWidth);
3814 assert(Range.getLower().getNumWords() == 1);
3815 assert(Range.getUpper().getNumWords() == 1);
3816 emitSignedInt64(Record, *Range.getLower().getRawData());
3817 emitSignedInt64(Record, *Range.getUpper().getRawData());
3818 };
3819
3820 if (!FS->paramAccesses().empty()) {
3821 Record.clear();
3822 for (auto &Arg : FS->paramAccesses()) {
3823 size_t UndoSize = Record.size();
3824 Record.push_back(Arg.ParamNo);
3825 WriteRange(Arg.Use);
3826 Record.push_back(Arg.Calls.size());
3827 for (auto &Call : Arg.Calls) {
3828 Record.push_back(Call.ParamNo);
3829 std::optional<unsigned> ValueID = GetValueID(Call.Callee);
3830 if (!ValueID) {
3831 // If ValueID is unknown we can't drop just this call, we must drop
3832 // entire parameter.
3833 Record.resize(UndoSize);
3834 break;
3835 }
3836 Record.push_back(*ValueID);
3837 WriteRange(Call.Offsets);
3838 }
3839 }
3840 if (!Record.empty())
3841 Stream.EmitRecord(bitc::FS_PARAM_ACCESS, Record);
3842 }
3843 }
3844
3845 /// Collect type IDs from type tests used by function.
3846 static void
getReferencedTypeIds(FunctionSummary * FS,std::set<GlobalValue::GUID> & ReferencedTypeIds)3847 getReferencedTypeIds(FunctionSummary *FS,
3848 std::set<GlobalValue::GUID> &ReferencedTypeIds) {
3849 if (!FS->type_tests().empty())
3850 for (auto &TT : FS->type_tests())
3851 ReferencedTypeIds.insert(TT);
3852
3853 auto GetReferencedTypesFromVFuncIdVec =
3854 [&](ArrayRef<FunctionSummary::VFuncId> VFs) {
3855 for (auto &VF : VFs)
3856 ReferencedTypeIds.insert(VF.GUID);
3857 };
3858
3859 GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls());
3860 GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls());
3861
3862 auto GetReferencedTypesFromConstVCallVec =
3863 [&](ArrayRef<FunctionSummary::ConstVCall> VCs) {
3864 for (auto &VC : VCs)
3865 ReferencedTypeIds.insert(VC.VFunc.GUID);
3866 };
3867
3868 GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls());
3869 GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls());
3870 }
3871
writeWholeProgramDevirtResolutionByArg(SmallVector<uint64_t,64> & NameVals,const std::vector<uint64_t> & args,const WholeProgramDevirtResolution::ByArg & ByArg)3872 static void writeWholeProgramDevirtResolutionByArg(
3873 SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args,
3874 const WholeProgramDevirtResolution::ByArg &ByArg) {
3875 NameVals.push_back(args.size());
3876 llvm::append_range(NameVals, args);
3877
3878 NameVals.push_back(ByArg.TheKind);
3879 NameVals.push_back(ByArg.Info);
3880 NameVals.push_back(ByArg.Byte);
3881 NameVals.push_back(ByArg.Bit);
3882 }
3883
writeWholeProgramDevirtResolution(SmallVector<uint64_t,64> & NameVals,StringTableBuilder & StrtabBuilder,uint64_t Id,const WholeProgramDevirtResolution & Wpd)3884 static void writeWholeProgramDevirtResolution(
3885 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder,
3886 uint64_t Id, const WholeProgramDevirtResolution &Wpd) {
3887 NameVals.push_back(Id);
3888
3889 NameVals.push_back(Wpd.TheKind);
3890 NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName));
3891 NameVals.push_back(Wpd.SingleImplName.size());
3892
3893 NameVals.push_back(Wpd.ResByArg.size());
3894 for (auto &A : Wpd.ResByArg)
3895 writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second);
3896 }
3897
writeTypeIdSummaryRecord(SmallVector<uint64_t,64> & NameVals,StringTableBuilder & StrtabBuilder,const std::string & Id,const TypeIdSummary & Summary)3898 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals,
3899 StringTableBuilder &StrtabBuilder,
3900 const std::string &Id,
3901 const TypeIdSummary &Summary) {
3902 NameVals.push_back(StrtabBuilder.add(Id));
3903 NameVals.push_back(Id.size());
3904
3905 NameVals.push_back(Summary.TTRes.TheKind);
3906 NameVals.push_back(Summary.TTRes.SizeM1BitWidth);
3907 NameVals.push_back(Summary.TTRes.AlignLog2);
3908 NameVals.push_back(Summary.TTRes.SizeM1);
3909 NameVals.push_back(Summary.TTRes.BitMask);
3910 NameVals.push_back(Summary.TTRes.InlineBits);
3911
3912 for (auto &W : Summary.WPDRes)
3913 writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first,
3914 W.second);
3915 }
3916
writeTypeIdCompatibleVtableSummaryRecord(SmallVector<uint64_t,64> & NameVals,StringTableBuilder & StrtabBuilder,const std::string & Id,const TypeIdCompatibleVtableInfo & Summary,ValueEnumerator & VE)3917 static void writeTypeIdCompatibleVtableSummaryRecord(
3918 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder,
3919 const std::string &Id, const TypeIdCompatibleVtableInfo &Summary,
3920 ValueEnumerator &VE) {
3921 NameVals.push_back(StrtabBuilder.add(Id));
3922 NameVals.push_back(Id.size());
3923
3924 for (auto &P : Summary) {
3925 NameVals.push_back(P.AddressPointOffset);
3926 NameVals.push_back(VE.getValueID(P.VTableVI.getValue()));
3927 }
3928 }
3929
writeFunctionHeapProfileRecords(BitstreamWriter & Stream,FunctionSummary * FS,unsigned CallsiteAbbrev,unsigned AllocAbbrev,bool PerModule,std::function<unsigned (const ValueInfo & VI)> GetValueID,std::function<unsigned (unsigned)> GetStackIndex)3930 static void writeFunctionHeapProfileRecords(
3931 BitstreamWriter &Stream, FunctionSummary *FS, unsigned CallsiteAbbrev,
3932 unsigned AllocAbbrev, bool PerModule,
3933 std::function<unsigned(const ValueInfo &VI)> GetValueID,
3934 std::function<unsigned(unsigned)> GetStackIndex) {
3935 SmallVector<uint64_t> Record;
3936
3937 for (auto &CI : FS->callsites()) {
3938 Record.clear();
3939 // Per module callsite clones should always have a single entry of
3940 // value 0.
3941 assert(!PerModule || (CI.Clones.size() == 1 && CI.Clones[0] == 0));
3942 Record.push_back(GetValueID(CI.Callee));
3943 if (!PerModule) {
3944 Record.push_back(CI.StackIdIndices.size());
3945 Record.push_back(CI.Clones.size());
3946 }
3947 for (auto Id : CI.StackIdIndices)
3948 Record.push_back(GetStackIndex(Id));
3949 if (!PerModule) {
3950 for (auto V : CI.Clones)
3951 Record.push_back(V);
3952 }
3953 Stream.EmitRecord(PerModule ? bitc::FS_PERMODULE_CALLSITE_INFO
3954 : bitc::FS_COMBINED_CALLSITE_INFO,
3955 Record, CallsiteAbbrev);
3956 }
3957
3958 for (auto &AI : FS->allocs()) {
3959 Record.clear();
3960 // Per module alloc versions should always have a single entry of
3961 // value 0.
3962 assert(!PerModule || (AI.Versions.size() == 1 && AI.Versions[0] == 0));
3963 if (!PerModule) {
3964 Record.push_back(AI.MIBs.size());
3965 Record.push_back(AI.Versions.size());
3966 }
3967 for (auto &MIB : AI.MIBs) {
3968 Record.push_back((uint8_t)MIB.AllocType);
3969 Record.push_back(MIB.StackIdIndices.size());
3970 for (auto Id : MIB.StackIdIndices)
3971 Record.push_back(GetStackIndex(Id));
3972 }
3973 if (!PerModule) {
3974 for (auto V : AI.Versions)
3975 Record.push_back(V);
3976 }
3977 Stream.EmitRecord(PerModule ? bitc::FS_PERMODULE_ALLOC_INFO
3978 : bitc::FS_COMBINED_ALLOC_INFO,
3979 Record, AllocAbbrev);
3980 }
3981 }
3982
3983 // Helper to emit a single function summary record.
writePerModuleFunctionSummaryRecord(SmallVector<uint64_t,64> & NameVals,GlobalValueSummary * Summary,unsigned ValueID,unsigned FSCallsAbbrev,unsigned FSCallsProfileAbbrev,unsigned CallsiteAbbrev,unsigned AllocAbbrev,const Function & F)3984 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord(
3985 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary,
3986 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev,
3987 unsigned CallsiteAbbrev, unsigned AllocAbbrev, const Function &F) {
3988 NameVals.push_back(ValueID);
3989
3990 FunctionSummary *FS = cast<FunctionSummary>(Summary);
3991
3992 writeFunctionTypeMetadataRecords(
3993 Stream, FS, [&](const ValueInfo &VI) -> std::optional<unsigned> {
3994 return {VE.getValueID(VI.getValue())};
3995 });
3996
3997 writeFunctionHeapProfileRecords(
3998 Stream, FS, CallsiteAbbrev, AllocAbbrev,
3999 /*PerModule*/ true,
4000 /*GetValueId*/ [&](const ValueInfo &VI) { return getValueId(VI); },
4001 /*GetStackIndex*/ [&](unsigned I) { return I; });
4002
4003 auto SpecialRefCnts = FS->specialRefCounts();
4004 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags()));
4005 NameVals.push_back(FS->instCount());
4006 NameVals.push_back(getEncodedFFlags(FS->fflags()));
4007 NameVals.push_back(FS->refs().size());
4008 NameVals.push_back(SpecialRefCnts.first); // rorefcnt
4009 NameVals.push_back(SpecialRefCnts.second); // worefcnt
4010
4011 for (auto &RI : FS->refs())
4012 NameVals.push_back(VE.getValueID(RI.getValue()));
4013
4014 bool HasProfileData =
4015 F.hasProfileData() || ForceSummaryEdgesCold != FunctionSummary::FSHT_None;
4016 for (auto &ECI : FS->calls()) {
4017 NameVals.push_back(getValueId(ECI.first));
4018 if (HasProfileData)
4019 NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness));
4020 else if (WriteRelBFToSummary)
4021 NameVals.push_back(ECI.second.RelBlockFreq);
4022 }
4023
4024 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev);
4025 unsigned Code =
4026 (HasProfileData ? bitc::FS_PERMODULE_PROFILE
4027 : (WriteRelBFToSummary ? bitc::FS_PERMODULE_RELBF
4028 : bitc::FS_PERMODULE));
4029
4030 // Emit the finished record.
4031 Stream.EmitRecord(Code, NameVals, FSAbbrev);
4032 NameVals.clear();
4033 }
4034
4035 // Collect the global value references in the given variable's initializer,
4036 // and emit them in a summary record.
writeModuleLevelReferences(const GlobalVariable & V,SmallVector<uint64_t,64> & NameVals,unsigned FSModRefsAbbrev,unsigned FSModVTableRefsAbbrev)4037 void ModuleBitcodeWriterBase::writeModuleLevelReferences(
4038 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals,
4039 unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) {
4040 auto VI = Index->getValueInfo(V.getGUID());
4041 if (!VI || VI.getSummaryList().empty()) {
4042 // Only declarations should not have a summary (a declaration might however
4043 // have a summary if the def was in module level asm).
4044 assert(V.isDeclaration());
4045 return;
4046 }
4047 auto *Summary = VI.getSummaryList()[0].get();
4048 NameVals.push_back(VE.getValueID(&V));
4049 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary);
4050 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags()));
4051 NameVals.push_back(getEncodedGVarFlags(VS->varflags()));
4052
4053 auto VTableFuncs = VS->vTableFuncs();
4054 if (!VTableFuncs.empty())
4055 NameVals.push_back(VS->refs().size());
4056
4057 unsigned SizeBeforeRefs = NameVals.size();
4058 for (auto &RI : VS->refs())
4059 NameVals.push_back(VE.getValueID(RI.getValue()));
4060 // Sort the refs for determinism output, the vector returned by FS->refs() has
4061 // been initialized from a DenseSet.
4062 llvm::sort(drop_begin(NameVals, SizeBeforeRefs));
4063
4064 if (VTableFuncs.empty())
4065 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals,
4066 FSModRefsAbbrev);
4067 else {
4068 // VTableFuncs pairs should already be sorted by offset.
4069 for (auto &P : VTableFuncs) {
4070 NameVals.push_back(VE.getValueID(P.FuncVI.getValue()));
4071 NameVals.push_back(P.VTableOffset);
4072 }
4073
4074 Stream.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, NameVals,
4075 FSModVTableRefsAbbrev);
4076 }
4077 NameVals.clear();
4078 }
4079
4080 /// Emit the per-module summary section alongside the rest of
4081 /// the module's bitcode.
writePerModuleGlobalValueSummary()4082 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() {
4083 // By default we compile with ThinLTO if the module has a summary, but the
4084 // client can request full LTO with a module flag.
4085 bool IsThinLTO = true;
4086 if (auto *MD =
4087 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO")))
4088 IsThinLTO = MD->getZExtValue();
4089 Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID
4090 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID,
4091 4);
4092
4093 Stream.EmitRecord(
4094 bitc::FS_VERSION,
4095 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion});
4096
4097 // Write the index flags.
4098 uint64_t Flags = 0;
4099 // Bits 1-3 are set only in the combined index, skip them.
4100 if (Index->enableSplitLTOUnit())
4101 Flags |= 0x8;
4102 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags});
4103
4104 if (Index->begin() == Index->end()) {
4105 Stream.ExitBlock();
4106 return;
4107 }
4108
4109 for (const auto &GVI : valueIds()) {
4110 Stream.EmitRecord(bitc::FS_VALUE_GUID,
4111 ArrayRef<uint64_t>{GVI.second, GVI.first});
4112 }
4113
4114 if (!Index->stackIds().empty()) {
4115 auto StackIdAbbv = std::make_shared<BitCodeAbbrev>();
4116 StackIdAbbv->Add(BitCodeAbbrevOp(bitc::FS_STACK_IDS));
4117 // numids x stackid
4118 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4119 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4120 unsigned StackIdAbbvId = Stream.EmitAbbrev(std::move(StackIdAbbv));
4121 Stream.EmitRecord(bitc::FS_STACK_IDS, Index->stackIds(), StackIdAbbvId);
4122 }
4123
4124 // Abbrev for FS_PERMODULE_PROFILE.
4125 auto Abbv = std::make_shared<BitCodeAbbrev>();
4126 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE));
4127 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4128 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
4129 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount
4130 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags
4131 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs
4132 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt
4133 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt
4134 // numrefs x valueid, n x (valueid, hotness)
4135 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4136 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4137 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4138
4139 // Abbrev for FS_PERMODULE or FS_PERMODULE_RELBF.
4140 Abbv = std::make_shared<BitCodeAbbrev>();
4141 if (WriteRelBFToSummary)
4142 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF));
4143 else
4144 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE));
4145 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4146 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
4147 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount
4148 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags
4149 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs
4150 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt
4151 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt
4152 // numrefs x valueid, n x (valueid [, rel_block_freq])
4153 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4154 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4155 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4156
4157 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS.
4158 Abbv = std::make_shared<BitCodeAbbrev>();
4159 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS));
4160 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4161 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
4162 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids
4163 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4164 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4165
4166 // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS.
4167 Abbv = std::make_shared<BitCodeAbbrev>();
4168 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS));
4169 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4170 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
4171 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs
4172 // numrefs x valueid, n x (valueid , offset)
4173 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4174 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4175 unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4176
4177 // Abbrev for FS_ALIAS.
4178 Abbv = std::make_shared<BitCodeAbbrev>();
4179 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS));
4180 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4181 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
4182 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4183 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4184
4185 // Abbrev for FS_TYPE_ID_METADATA
4186 Abbv = std::make_shared<BitCodeAbbrev>();
4187 Abbv->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA));
4188 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index
4189 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length
4190 // n x (valueid , offset)
4191 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4192 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4193 unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4194
4195 Abbv = std::make_shared<BitCodeAbbrev>();
4196 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_CALLSITE_INFO));
4197 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4198 // n x stackidindex
4199 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4200 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4201 unsigned CallsiteAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4202
4203 Abbv = std::make_shared<BitCodeAbbrev>();
4204 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_ALLOC_INFO));
4205 // n x (alloc type, numstackids, numstackids x stackidindex)
4206 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4207 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4208 unsigned AllocAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4209
4210 SmallVector<uint64_t, 64> NameVals;
4211 // Iterate over the list of functions instead of the Index to
4212 // ensure the ordering is stable.
4213 for (const Function &F : M) {
4214 // Summary emission does not support anonymous functions, they have to
4215 // renamed using the anonymous function renaming pass.
4216 if (!F.hasName())
4217 report_fatal_error("Unexpected anonymous function when writing summary");
4218
4219 ValueInfo VI = Index->getValueInfo(F.getGUID());
4220 if (!VI || VI.getSummaryList().empty()) {
4221 // Only declarations should not have a summary (a declaration might
4222 // however have a summary if the def was in module level asm).
4223 assert(F.isDeclaration());
4224 continue;
4225 }
4226 auto *Summary = VI.getSummaryList()[0].get();
4227 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F),
4228 FSCallsAbbrev, FSCallsProfileAbbrev,
4229 CallsiteAbbrev, AllocAbbrev, F);
4230 }
4231
4232 // Capture references from GlobalVariable initializers, which are outside
4233 // of a function scope.
4234 for (const GlobalVariable &G : M.globals())
4235 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev,
4236 FSModVTableRefsAbbrev);
4237
4238 for (const GlobalAlias &A : M.aliases()) {
4239 auto *Aliasee = A.getAliaseeObject();
4240 // Skip ifunc and nameless functions which don't have an entry in the
4241 // summary.
4242 if (!Aliasee->hasName() || isa<GlobalIFunc>(Aliasee))
4243 continue;
4244 auto AliasId = VE.getValueID(&A);
4245 auto AliaseeId = VE.getValueID(Aliasee);
4246 NameVals.push_back(AliasId);
4247 auto *Summary = Index->getGlobalValueSummary(A);
4248 AliasSummary *AS = cast<AliasSummary>(Summary);
4249 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags()));
4250 NameVals.push_back(AliaseeId);
4251 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev);
4252 NameVals.clear();
4253 }
4254
4255 for (auto &S : Index->typeIdCompatibleVtableMap()) {
4256 writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, S.first,
4257 S.second, VE);
4258 Stream.EmitRecord(bitc::FS_TYPE_ID_METADATA, NameVals,
4259 TypeIdCompatibleVtableAbbrev);
4260 NameVals.clear();
4261 }
4262
4263 Stream.EmitRecord(bitc::FS_BLOCK_COUNT,
4264 ArrayRef<uint64_t>{Index->getBlockCount()});
4265
4266 Stream.ExitBlock();
4267 }
4268
4269 /// Emit the combined summary section into the combined index file.
writeCombinedGlobalValueSummary()4270 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() {
4271 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 4);
4272 Stream.EmitRecord(
4273 bitc::FS_VERSION,
4274 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion});
4275
4276 // Write the index flags.
4277 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Index.getFlags()});
4278
4279 for (const auto &GVI : valueIds()) {
4280 Stream.EmitRecord(bitc::FS_VALUE_GUID,
4281 ArrayRef<uint64_t>{GVI.second, GVI.first});
4282 }
4283
4284 if (!StackIdIndices.empty()) {
4285 auto StackIdAbbv = std::make_shared<BitCodeAbbrev>();
4286 StackIdAbbv->Add(BitCodeAbbrevOp(bitc::FS_STACK_IDS));
4287 // numids x stackid
4288 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4289 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4290 unsigned StackIdAbbvId = Stream.EmitAbbrev(std::move(StackIdAbbv));
4291 // Write the stack ids used by this index, which will be a subset of those in
4292 // the full index in the case of distributed indexes.
4293 std::vector<uint64_t> StackIds;
4294 for (auto &I : StackIdIndices)
4295 StackIds.push_back(Index.getStackIdAtIndex(I));
4296 Stream.EmitRecord(bitc::FS_STACK_IDS, StackIds, StackIdAbbvId);
4297 }
4298
4299 // Abbrev for FS_COMBINED.
4300 auto Abbv = std::make_shared<BitCodeAbbrev>();
4301 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED));
4302 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4303 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid
4304 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
4305 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount
4306 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags
4307 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount
4308 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs
4309 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt
4310 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt
4311 // numrefs x valueid, n x (valueid)
4312 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4313 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4314 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4315
4316 // Abbrev for FS_COMBINED_PROFILE.
4317 Abbv = std::make_shared<BitCodeAbbrev>();
4318 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE));
4319 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4320 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid
4321 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
4322 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount
4323 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags
4324 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount
4325 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs
4326 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt
4327 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt
4328 // numrefs x valueid, n x (valueid, hotness)
4329 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4330 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4331 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4332
4333 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS.
4334 Abbv = std::make_shared<BitCodeAbbrev>();
4335 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS));
4336 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4337 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid
4338 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
4339 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids
4340 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4341 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4342
4343 // Abbrev for FS_COMBINED_ALIAS.
4344 Abbv = std::make_shared<BitCodeAbbrev>();
4345 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS));
4346 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4347 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid
4348 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
4349 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4350 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4351
4352 Abbv = std::make_shared<BitCodeAbbrev>();
4353 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_CALLSITE_INFO));
4354 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4355 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numstackindices
4356 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numver
4357 // numstackindices x stackidindex, numver x version
4358 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4359 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4360 unsigned CallsiteAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4361
4362 Abbv = std::make_shared<BitCodeAbbrev>();
4363 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALLOC_INFO));
4364 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // nummib
4365 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numver
4366 // nummib x (alloc type, numstackids, numstackids x stackidindex),
4367 // numver x version
4368 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4369 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4370 unsigned AllocAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4371
4372 // The aliases are emitted as a post-pass, and will point to the value
4373 // id of the aliasee. Save them in a vector for post-processing.
4374 SmallVector<AliasSummary *, 64> Aliases;
4375
4376 // Save the value id for each summary for alias emission.
4377 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap;
4378
4379 SmallVector<uint64_t, 64> NameVals;
4380
4381 // Set that will be populated during call to writeFunctionTypeMetadataRecords
4382 // with the type ids referenced by this index file.
4383 std::set<GlobalValue::GUID> ReferencedTypeIds;
4384
4385 // For local linkage, we also emit the original name separately
4386 // immediately after the record.
4387 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) {
4388 // We don't need to emit the original name if we are writing the index for
4389 // distributed backends (in which case ModuleToSummariesForIndex is
4390 // non-null). The original name is only needed during the thin link, since
4391 // for SamplePGO the indirect call targets for local functions have
4392 // have the original name annotated in profile.
4393 // Continue to emit it when writing out the entire combined index, which is
4394 // used in testing the thin link via llvm-lto.
4395 if (ModuleToSummariesForIndex || !GlobalValue::isLocalLinkage(S.linkage()))
4396 return;
4397 NameVals.push_back(S.getOriginalName());
4398 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals);
4399 NameVals.clear();
4400 };
4401
4402 std::set<GlobalValue::GUID> DefOrUseGUIDs;
4403 forEachSummary([&](GVInfo I, bool IsAliasee) {
4404 GlobalValueSummary *S = I.second;
4405 assert(S);
4406 DefOrUseGUIDs.insert(I.first);
4407 for (const ValueInfo &VI : S->refs())
4408 DefOrUseGUIDs.insert(VI.getGUID());
4409
4410 auto ValueId = getValueId(I.first);
4411 assert(ValueId);
4412 SummaryToValueIdMap[S] = *ValueId;
4413
4414 // If this is invoked for an aliasee, we want to record the above
4415 // mapping, but then not emit a summary entry (if the aliasee is
4416 // to be imported, we will invoke this separately with IsAliasee=false).
4417 if (IsAliasee)
4418 return;
4419
4420 if (auto *AS = dyn_cast<AliasSummary>(S)) {
4421 // Will process aliases as a post-pass because the reader wants all
4422 // global to be loaded first.
4423 Aliases.push_back(AS);
4424 return;
4425 }
4426
4427 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) {
4428 NameVals.push_back(*ValueId);
4429 NameVals.push_back(Index.getModuleId(VS->modulePath()));
4430 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags()));
4431 NameVals.push_back(getEncodedGVarFlags(VS->varflags()));
4432 for (auto &RI : VS->refs()) {
4433 auto RefValueId = getValueId(RI.getGUID());
4434 if (!RefValueId)
4435 continue;
4436 NameVals.push_back(*RefValueId);
4437 }
4438
4439 // Emit the finished record.
4440 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals,
4441 FSModRefsAbbrev);
4442 NameVals.clear();
4443 MaybeEmitOriginalName(*S);
4444 return;
4445 }
4446
4447 auto GetValueId = [&](const ValueInfo &VI) -> std::optional<unsigned> {
4448 if (!VI)
4449 return std::nullopt;
4450 return getValueId(VI.getGUID());
4451 };
4452
4453 auto *FS = cast<FunctionSummary>(S);
4454 writeFunctionTypeMetadataRecords(Stream, FS, GetValueId);
4455 getReferencedTypeIds(FS, ReferencedTypeIds);
4456
4457 writeFunctionHeapProfileRecords(
4458 Stream, FS, CallsiteAbbrev, AllocAbbrev,
4459 /*PerModule*/ false,
4460 /*GetValueId*/ [&](const ValueInfo &VI) -> unsigned {
4461 std::optional<unsigned> ValueID = GetValueId(VI);
4462 // This can happen in shared index files for distributed ThinLTO if
4463 // the callee function summary is not included. Record 0 which we
4464 // will have to deal with conservatively when doing any kind of
4465 // validation in the ThinLTO backends.
4466 if (!ValueID)
4467 return 0;
4468 return *ValueID;
4469 },
4470 /*GetStackIndex*/ [&](unsigned I) {
4471 // Get the corresponding index into the list of StackIdIndices
4472 // actually being written for this combined index (which may be a
4473 // subset in the case of distributed indexes).
4474 auto Lower = llvm::lower_bound(StackIdIndices, I);
4475 return std::distance(StackIdIndices.begin(), Lower);
4476 });
4477
4478 NameVals.push_back(*ValueId);
4479 NameVals.push_back(Index.getModuleId(FS->modulePath()));
4480 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags()));
4481 NameVals.push_back(FS->instCount());
4482 NameVals.push_back(getEncodedFFlags(FS->fflags()));
4483 NameVals.push_back(FS->entryCount());
4484
4485 // Fill in below
4486 NameVals.push_back(0); // numrefs
4487 NameVals.push_back(0); // rorefcnt
4488 NameVals.push_back(0); // worefcnt
4489
4490 unsigned Count = 0, RORefCnt = 0, WORefCnt = 0;
4491 for (auto &RI : FS->refs()) {
4492 auto RefValueId = getValueId(RI.getGUID());
4493 if (!RefValueId)
4494 continue;
4495 NameVals.push_back(*RefValueId);
4496 if (RI.isReadOnly())
4497 RORefCnt++;
4498 else if (RI.isWriteOnly())
4499 WORefCnt++;
4500 Count++;
4501 }
4502 NameVals[6] = Count;
4503 NameVals[7] = RORefCnt;
4504 NameVals[8] = WORefCnt;
4505
4506 bool HasProfileData = false;
4507 for (auto &EI : FS->calls()) {
4508 HasProfileData |=
4509 EI.second.getHotness() != CalleeInfo::HotnessType::Unknown;
4510 if (HasProfileData)
4511 break;
4512 }
4513
4514 for (auto &EI : FS->calls()) {
4515 // If this GUID doesn't have a value id, it doesn't have a function
4516 // summary and we don't need to record any calls to it.
4517 std::optional<unsigned> CallValueId = GetValueId(EI.first);
4518 if (!CallValueId)
4519 continue;
4520 NameVals.push_back(*CallValueId);
4521 if (HasProfileData)
4522 NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness));
4523 }
4524
4525 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev);
4526 unsigned Code =
4527 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED);
4528
4529 // Emit the finished record.
4530 Stream.EmitRecord(Code, NameVals, FSAbbrev);
4531 NameVals.clear();
4532 MaybeEmitOriginalName(*S);
4533 });
4534
4535 for (auto *AS : Aliases) {
4536 auto AliasValueId = SummaryToValueIdMap[AS];
4537 assert(AliasValueId);
4538 NameVals.push_back(AliasValueId);
4539 NameVals.push_back(Index.getModuleId(AS->modulePath()));
4540 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags()));
4541 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()];
4542 assert(AliaseeValueId);
4543 NameVals.push_back(AliaseeValueId);
4544
4545 // Emit the finished record.
4546 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev);
4547 NameVals.clear();
4548 MaybeEmitOriginalName(*AS);
4549
4550 if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee()))
4551 getReferencedTypeIds(FS, ReferencedTypeIds);
4552 }
4553
4554 if (!Index.cfiFunctionDefs().empty()) {
4555 for (auto &S : Index.cfiFunctionDefs()) {
4556 if (DefOrUseGUIDs.count(
4557 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) {
4558 NameVals.push_back(StrtabBuilder.add(S));
4559 NameVals.push_back(S.size());
4560 }
4561 }
4562 if (!NameVals.empty()) {
4563 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals);
4564 NameVals.clear();
4565 }
4566 }
4567
4568 if (!Index.cfiFunctionDecls().empty()) {
4569 for (auto &S : Index.cfiFunctionDecls()) {
4570 if (DefOrUseGUIDs.count(
4571 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) {
4572 NameVals.push_back(StrtabBuilder.add(S));
4573 NameVals.push_back(S.size());
4574 }
4575 }
4576 if (!NameVals.empty()) {
4577 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals);
4578 NameVals.clear();
4579 }
4580 }
4581
4582 // Walk the GUIDs that were referenced, and write the
4583 // corresponding type id records.
4584 for (auto &T : ReferencedTypeIds) {
4585 auto TidIter = Index.typeIds().equal_range(T);
4586 for (auto It = TidIter.first; It != TidIter.second; ++It) {
4587 writeTypeIdSummaryRecord(NameVals, StrtabBuilder, It->second.first,
4588 It->second.second);
4589 Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals);
4590 NameVals.clear();
4591 }
4592 }
4593
4594 Stream.EmitRecord(bitc::FS_BLOCK_COUNT,
4595 ArrayRef<uint64_t>{Index.getBlockCount()});
4596
4597 Stream.ExitBlock();
4598 }
4599
4600 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the
4601 /// current llvm version, and a record for the epoch number.
writeIdentificationBlock(BitstreamWriter & Stream)4602 static void writeIdentificationBlock(BitstreamWriter &Stream) {
4603 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5);
4604
4605 // Write the "user readable" string identifying the bitcode producer
4606 auto Abbv = std::make_shared<BitCodeAbbrev>();
4607 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING));
4608 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4609 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
4610 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4611 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING,
4612 "LLVM" LLVM_VERSION_STRING, StringAbbrev);
4613
4614 // Write the epoch version
4615 Abbv = std::make_shared<BitCodeAbbrev>();
4616 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH));
4617 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
4618 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4619 constexpr std::array<unsigned, 1> Vals = {{bitc::BITCODE_CURRENT_EPOCH}};
4620 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev);
4621 Stream.ExitBlock();
4622 }
4623
writeModuleHash(size_t BlockStartPos)4624 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) {
4625 // Emit the module's hash.
4626 // MODULE_CODE_HASH: [5*i32]
4627 if (GenerateHash) {
4628 uint32_t Vals[5];
4629 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos],
4630 Buffer.size() - BlockStartPos));
4631 std::array<uint8_t, 20> Hash = Hasher.result();
4632 for (int Pos = 0; Pos < 20; Pos += 4) {
4633 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos);
4634 }
4635
4636 // Emit the finished record.
4637 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals);
4638
4639 if (ModHash)
4640 // Save the written hash value.
4641 llvm::copy(Vals, std::begin(*ModHash));
4642 }
4643 }
4644
write()4645 void ModuleBitcodeWriter::write() {
4646 writeIdentificationBlock(Stream);
4647
4648 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
4649 size_t BlockStartPos = Buffer.size();
4650
4651 writeModuleVersion();
4652
4653 // Emit blockinfo, which defines the standard abbreviations etc.
4654 writeBlockInfo();
4655
4656 // Emit information describing all of the types in the module.
4657 writeTypeTable();
4658
4659 // Emit information about attribute groups.
4660 writeAttributeGroupTable();
4661
4662 // Emit information about parameter attributes.
4663 writeAttributeTable();
4664
4665 writeComdats();
4666
4667 // Emit top-level description of module, including target triple, inline asm,
4668 // descriptors for global variables, and function prototype info.
4669 writeModuleInfo();
4670
4671 // Emit constants.
4672 writeModuleConstants();
4673
4674 // Emit metadata kind names.
4675 writeModuleMetadataKinds();
4676
4677 // Emit metadata.
4678 writeModuleMetadata();
4679
4680 // Emit module-level use-lists.
4681 if (VE.shouldPreserveUseListOrder())
4682 writeUseListBlock(nullptr);
4683
4684 writeOperandBundleTags();
4685 writeSyncScopeNames();
4686
4687 // Emit function bodies.
4688 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex;
4689 for (const Function &F : M)
4690 if (!F.isDeclaration())
4691 writeFunction(F, FunctionToBitcodeIndex);
4692
4693 // Need to write after the above call to WriteFunction which populates
4694 // the summary information in the index.
4695 if (Index)
4696 writePerModuleGlobalValueSummary();
4697
4698 writeGlobalValueSymbolTable(FunctionToBitcodeIndex);
4699
4700 writeModuleHash(BlockStartPos);
4701
4702 Stream.ExitBlock();
4703 }
4704
writeInt32ToBuffer(uint32_t Value,SmallVectorImpl<char> & Buffer,uint32_t & Position)4705 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer,
4706 uint32_t &Position) {
4707 support::endian::write32le(&Buffer[Position], Value);
4708 Position += 4;
4709 }
4710
4711 /// If generating a bc file on darwin, we have to emit a
4712 /// header and trailer to make it compatible with the system archiver. To do
4713 /// this we emit the following header, and then emit a trailer that pads the
4714 /// file out to be a multiple of 16 bytes.
4715 ///
4716 /// struct bc_header {
4717 /// uint32_t Magic; // 0x0B17C0DE
4718 /// uint32_t Version; // Version, currently always 0.
4719 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file.
4720 /// uint32_t BitcodeSize; // Size of traditional bitcode file.
4721 /// uint32_t CPUType; // CPU specifier.
4722 /// ... potentially more later ...
4723 /// };
emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> & Buffer,const Triple & TT)4724 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer,
4725 const Triple &TT) {
4726 unsigned CPUType = ~0U;
4727
4728 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
4729 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
4730 // number from /usr/include/mach/machine.h. It is ok to reproduce the
4731 // specific constants here because they are implicitly part of the Darwin ABI.
4732 enum {
4733 DARWIN_CPU_ARCH_ABI64 = 0x01000000,
4734 DARWIN_CPU_TYPE_X86 = 7,
4735 DARWIN_CPU_TYPE_ARM = 12,
4736 DARWIN_CPU_TYPE_POWERPC = 18
4737 };
4738
4739 Triple::ArchType Arch = TT.getArch();
4740 if (Arch == Triple::x86_64)
4741 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
4742 else if (Arch == Triple::x86)
4743 CPUType = DARWIN_CPU_TYPE_X86;
4744 else if (Arch == Triple::ppc)
4745 CPUType = DARWIN_CPU_TYPE_POWERPC;
4746 else if (Arch == Triple::ppc64)
4747 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
4748 else if (Arch == Triple::arm || Arch == Triple::thumb)
4749 CPUType = DARWIN_CPU_TYPE_ARM;
4750
4751 // Traditional Bitcode starts after header.
4752 assert(Buffer.size() >= BWH_HeaderSize &&
4753 "Expected header size to be reserved");
4754 unsigned BCOffset = BWH_HeaderSize;
4755 unsigned BCSize = Buffer.size() - BWH_HeaderSize;
4756
4757 // Write the magic and version.
4758 unsigned Position = 0;
4759 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position);
4760 writeInt32ToBuffer(0, Buffer, Position); // Version.
4761 writeInt32ToBuffer(BCOffset, Buffer, Position);
4762 writeInt32ToBuffer(BCSize, Buffer, Position);
4763 writeInt32ToBuffer(CPUType, Buffer, Position);
4764
4765 // If the file is not a multiple of 16 bytes, insert dummy padding.
4766 while (Buffer.size() & 15)
4767 Buffer.push_back(0);
4768 }
4769
4770 /// Helper to write the header common to all bitcode files.
writeBitcodeHeader(BitstreamWriter & Stream)4771 static void writeBitcodeHeader(BitstreamWriter &Stream) {
4772 // Emit the file header.
4773 Stream.Emit((unsigned)'B', 8);
4774 Stream.Emit((unsigned)'C', 8);
4775 Stream.Emit(0x0, 4);
4776 Stream.Emit(0xC, 4);
4777 Stream.Emit(0xE, 4);
4778 Stream.Emit(0xD, 4);
4779 }
4780
BitcodeWriter(SmallVectorImpl<char> & Buffer,raw_fd_stream * FS)4781 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer, raw_fd_stream *FS)
4782 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer, FS, FlushThreshold)) {
4783 writeBitcodeHeader(*Stream);
4784 }
4785
~BitcodeWriter()4786 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); }
4787
writeBlob(unsigned Block,unsigned Record,StringRef Blob)4788 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) {
4789 Stream->EnterSubblock(Block, 3);
4790
4791 auto Abbv = std::make_shared<BitCodeAbbrev>();
4792 Abbv->Add(BitCodeAbbrevOp(Record));
4793 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
4794 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv));
4795
4796 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob);
4797
4798 Stream->ExitBlock();
4799 }
4800
writeSymtab()4801 void BitcodeWriter::writeSymtab() {
4802 assert(!WroteStrtab && !WroteSymtab);
4803
4804 // If any module has module-level inline asm, we will require a registered asm
4805 // parser for the target so that we can create an accurate symbol table for
4806 // the module.
4807 for (Module *M : Mods) {
4808 if (M->getModuleInlineAsm().empty())
4809 continue;
4810
4811 std::string Err;
4812 const Triple TT(M->getTargetTriple());
4813 const Target *T = TargetRegistry::lookupTarget(TT.str(), Err);
4814 if (!T || !T->hasMCAsmParser())
4815 return;
4816 }
4817
4818 WroteSymtab = true;
4819 SmallVector<char, 0> Symtab;
4820 // The irsymtab::build function may be unable to create a symbol table if the
4821 // module is malformed (e.g. it contains an invalid alias). Writing a symbol
4822 // table is not required for correctness, but we still want to be able to
4823 // write malformed modules to bitcode files, so swallow the error.
4824 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) {
4825 consumeError(std::move(E));
4826 return;
4827 }
4828
4829 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB,
4830 {Symtab.data(), Symtab.size()});
4831 }
4832
writeStrtab()4833 void BitcodeWriter::writeStrtab() {
4834 assert(!WroteStrtab);
4835
4836 std::vector<char> Strtab;
4837 StrtabBuilder.finalizeInOrder();
4838 Strtab.resize(StrtabBuilder.getSize());
4839 StrtabBuilder.write((uint8_t *)Strtab.data());
4840
4841 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB,
4842 {Strtab.data(), Strtab.size()});
4843
4844 WroteStrtab = true;
4845 }
4846
copyStrtab(StringRef Strtab)4847 void BitcodeWriter::copyStrtab(StringRef Strtab) {
4848 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab);
4849 WroteStrtab = true;
4850 }
4851
writeModule(const Module & M,bool ShouldPreserveUseListOrder,const ModuleSummaryIndex * Index,bool GenerateHash,ModuleHash * ModHash)4852 void BitcodeWriter::writeModule(const Module &M,
4853 bool ShouldPreserveUseListOrder,
4854 const ModuleSummaryIndex *Index,
4855 bool GenerateHash, ModuleHash *ModHash) {
4856 assert(!WroteStrtab);
4857
4858 // The Mods vector is used by irsymtab::build, which requires non-const
4859 // Modules in case it needs to materialize metadata. But the bitcode writer
4860 // requires that the module is materialized, so we can cast to non-const here,
4861 // after checking that it is in fact materialized.
4862 assert(M.isMaterialized());
4863 Mods.push_back(const_cast<Module *>(&M));
4864
4865 ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream,
4866 ShouldPreserveUseListOrder, Index,
4867 GenerateHash, ModHash);
4868 ModuleWriter.write();
4869 }
4870
writeIndex(const ModuleSummaryIndex * Index,const std::map<std::string,GVSummaryMapTy> * ModuleToSummariesForIndex)4871 void BitcodeWriter::writeIndex(
4872 const ModuleSummaryIndex *Index,
4873 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) {
4874 IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index,
4875 ModuleToSummariesForIndex);
4876 IndexWriter.write();
4877 }
4878
4879 /// Write the specified module to the specified output stream.
WriteBitcodeToFile(const Module & M,raw_ostream & Out,bool ShouldPreserveUseListOrder,const ModuleSummaryIndex * Index,bool GenerateHash,ModuleHash * ModHash)4880 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out,
4881 bool ShouldPreserveUseListOrder,
4882 const ModuleSummaryIndex *Index,
4883 bool GenerateHash, ModuleHash *ModHash) {
4884 SmallVector<char, 0> Buffer;
4885 Buffer.reserve(256*1024);
4886
4887 // If this is darwin or another generic macho target, reserve space for the
4888 // header.
4889 Triple TT(M.getTargetTriple());
4890 if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
4891 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0);
4892
4893 BitcodeWriter Writer(Buffer, dyn_cast<raw_fd_stream>(&Out));
4894 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash,
4895 ModHash);
4896 Writer.writeSymtab();
4897 Writer.writeStrtab();
4898
4899 if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
4900 emitDarwinBCHeaderAndTrailer(Buffer, TT);
4901
4902 // Write the generated bitstream to "Out".
4903 if (!Buffer.empty())
4904 Out.write((char *)&Buffer.front(), Buffer.size());
4905 }
4906
write()4907 void IndexBitcodeWriter::write() {
4908 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
4909
4910 writeModuleVersion();
4911
4912 // Write the module paths in the combined index.
4913 writeModStrings();
4914
4915 // Write the summary combined index records.
4916 writeCombinedGlobalValueSummary();
4917
4918 Stream.ExitBlock();
4919 }
4920
4921 // Write the specified module summary index to the given raw output stream,
4922 // where it will be written in a new bitcode block. This is used when
4923 // writing the combined index file for ThinLTO. When writing a subset of the
4924 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map.
writeIndexToFile(const ModuleSummaryIndex & Index,raw_ostream & Out,const std::map<std::string,GVSummaryMapTy> * ModuleToSummariesForIndex)4925 void llvm::writeIndexToFile(
4926 const ModuleSummaryIndex &Index, raw_ostream &Out,
4927 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) {
4928 SmallVector<char, 0> Buffer;
4929 Buffer.reserve(256 * 1024);
4930
4931 BitcodeWriter Writer(Buffer);
4932 Writer.writeIndex(&Index, ModuleToSummariesForIndex);
4933 Writer.writeStrtab();
4934
4935 Out.write((char *)&Buffer.front(), Buffer.size());
4936 }
4937
4938 namespace {
4939
4940 /// Class to manage the bitcode writing for a thin link bitcode file.
4941 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase {
4942 /// ModHash is for use in ThinLTO incremental build, generated while writing
4943 /// the module bitcode file.
4944 const ModuleHash *ModHash;
4945
4946 public:
ThinLinkBitcodeWriter(const Module & M,StringTableBuilder & StrtabBuilder,BitstreamWriter & Stream,const ModuleSummaryIndex & Index,const ModuleHash & ModHash)4947 ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder,
4948 BitstreamWriter &Stream,
4949 const ModuleSummaryIndex &Index,
4950 const ModuleHash &ModHash)
4951 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream,
4952 /*ShouldPreserveUseListOrder=*/false, &Index),
4953 ModHash(&ModHash) {}
4954
4955 void write();
4956
4957 private:
4958 void writeSimplifiedModuleInfo();
4959 };
4960
4961 } // end anonymous namespace
4962
4963 // This function writes a simpilified module info for thin link bitcode file.
4964 // It only contains the source file name along with the name(the offset and
4965 // size in strtab) and linkage for global values. For the global value info
4966 // entry, in order to keep linkage at offset 5, there are three zeros used
4967 // as padding.
writeSimplifiedModuleInfo()4968 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() {
4969 SmallVector<unsigned, 64> Vals;
4970 // Emit the module's source file name.
4971 {
4972 StringEncoding Bits = getStringEncoding(M.getSourceFileName());
4973 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8);
4974 if (Bits == SE_Char6)
4975 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6);
4976 else if (Bits == SE_Fixed7)
4977 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7);
4978
4979 // MODULE_CODE_SOURCE_FILENAME: [namechar x N]
4980 auto Abbv = std::make_shared<BitCodeAbbrev>();
4981 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME));
4982 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4983 Abbv->Add(AbbrevOpToUse);
4984 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4985
4986 for (const auto P : M.getSourceFileName())
4987 Vals.push_back((unsigned char)P);
4988
4989 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev);
4990 Vals.clear();
4991 }
4992
4993 // Emit the global variable information.
4994 for (const GlobalVariable &GV : M.globals()) {
4995 // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage]
4996 Vals.push_back(StrtabBuilder.add(GV.getName()));
4997 Vals.push_back(GV.getName().size());
4998 Vals.push_back(0);
4999 Vals.push_back(0);
5000 Vals.push_back(0);
5001 Vals.push_back(getEncodedLinkage(GV));
5002
5003 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals);
5004 Vals.clear();
5005 }
5006
5007 // Emit the function proto information.
5008 for (const Function &F : M) {
5009 // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage]
5010 Vals.push_back(StrtabBuilder.add(F.getName()));
5011 Vals.push_back(F.getName().size());
5012 Vals.push_back(0);
5013 Vals.push_back(0);
5014 Vals.push_back(0);
5015 Vals.push_back(getEncodedLinkage(F));
5016
5017 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals);
5018 Vals.clear();
5019 }
5020
5021 // Emit the alias information.
5022 for (const GlobalAlias &A : M.aliases()) {
5023 // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage]
5024 Vals.push_back(StrtabBuilder.add(A.getName()));
5025 Vals.push_back(A.getName().size());
5026 Vals.push_back(0);
5027 Vals.push_back(0);
5028 Vals.push_back(0);
5029 Vals.push_back(getEncodedLinkage(A));
5030
5031 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals);
5032 Vals.clear();
5033 }
5034
5035 // Emit the ifunc information.
5036 for (const GlobalIFunc &I : M.ifuncs()) {
5037 // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage]
5038 Vals.push_back(StrtabBuilder.add(I.getName()));
5039 Vals.push_back(I.getName().size());
5040 Vals.push_back(0);
5041 Vals.push_back(0);
5042 Vals.push_back(0);
5043 Vals.push_back(getEncodedLinkage(I));
5044
5045 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals);
5046 Vals.clear();
5047 }
5048 }
5049
write()5050 void ThinLinkBitcodeWriter::write() {
5051 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
5052
5053 writeModuleVersion();
5054
5055 writeSimplifiedModuleInfo();
5056
5057 writePerModuleGlobalValueSummary();
5058
5059 // Write module hash.
5060 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash));
5061
5062 Stream.ExitBlock();
5063 }
5064
writeThinLinkBitcode(const Module & M,const ModuleSummaryIndex & Index,const ModuleHash & ModHash)5065 void BitcodeWriter::writeThinLinkBitcode(const Module &M,
5066 const ModuleSummaryIndex &Index,
5067 const ModuleHash &ModHash) {
5068 assert(!WroteStrtab);
5069
5070 // The Mods vector is used by irsymtab::build, which requires non-const
5071 // Modules in case it needs to materialize metadata. But the bitcode writer
5072 // requires that the module is materialized, so we can cast to non-const here,
5073 // after checking that it is in fact materialized.
5074 assert(M.isMaterialized());
5075 Mods.push_back(const_cast<Module *>(&M));
5076
5077 ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index,
5078 ModHash);
5079 ThinLinkWriter.write();
5080 }
5081
5082 // Write the specified thin link bitcode file to the given raw output stream,
5083 // where it will be written in a new bitcode block. This is used when
5084 // writing the per-module index file for ThinLTO.
writeThinLinkBitcodeToFile(const Module & M,raw_ostream & Out,const ModuleSummaryIndex & Index,const ModuleHash & ModHash)5085 void llvm::writeThinLinkBitcodeToFile(const Module &M, raw_ostream &Out,
5086 const ModuleSummaryIndex &Index,
5087 const ModuleHash &ModHash) {
5088 SmallVector<char, 0> Buffer;
5089 Buffer.reserve(256 * 1024);
5090
5091 BitcodeWriter Writer(Buffer);
5092 Writer.writeThinLinkBitcode(M, Index, ModHash);
5093 Writer.writeSymtab();
5094 Writer.writeStrtab();
5095
5096 Out.write((char *)&Buffer.front(), Buffer.size());
5097 }
5098
getSectionNameForBitcode(const Triple & T)5099 static const char *getSectionNameForBitcode(const Triple &T) {
5100 switch (T.getObjectFormat()) {
5101 case Triple::MachO:
5102 return "__LLVM,__bitcode";
5103 case Triple::COFF:
5104 case Triple::ELF:
5105 case Triple::Wasm:
5106 case Triple::UnknownObjectFormat:
5107 return ".llvmbc";
5108 case Triple::GOFF:
5109 llvm_unreachable("GOFF is not yet implemented");
5110 break;
5111 case Triple::SPIRV:
5112 llvm_unreachable("SPIRV is not yet implemented");
5113 break;
5114 case Triple::XCOFF:
5115 llvm_unreachable("XCOFF is not yet implemented");
5116 break;
5117 case Triple::DXContainer:
5118 llvm_unreachable("DXContainer is not yet implemented");
5119 break;
5120 }
5121 llvm_unreachable("Unimplemented ObjectFormatType");
5122 }
5123
getSectionNameForCommandline(const Triple & T)5124 static const char *getSectionNameForCommandline(const Triple &T) {
5125 switch (T.getObjectFormat()) {
5126 case Triple::MachO:
5127 return "__LLVM,__cmdline";
5128 case Triple::COFF:
5129 case Triple::ELF:
5130 case Triple::Wasm:
5131 case Triple::UnknownObjectFormat:
5132 return ".llvmcmd";
5133 case Triple::GOFF:
5134 llvm_unreachable("GOFF is not yet implemented");
5135 break;
5136 case Triple::SPIRV:
5137 llvm_unreachable("SPIRV is not yet implemented");
5138 break;
5139 case Triple::XCOFF:
5140 llvm_unreachable("XCOFF is not yet implemented");
5141 break;
5142 case Triple::DXContainer:
5143 llvm_unreachable("DXC is not yet implemented");
5144 break;
5145 }
5146 llvm_unreachable("Unimplemented ObjectFormatType");
5147 }
5148
embedBitcodeInModule(llvm::Module & M,llvm::MemoryBufferRef Buf,bool EmbedBitcode,bool EmbedCmdline,const std::vector<uint8_t> & CmdArgs)5149 void llvm::embedBitcodeInModule(llvm::Module &M, llvm::MemoryBufferRef Buf,
5150 bool EmbedBitcode, bool EmbedCmdline,
5151 const std::vector<uint8_t> &CmdArgs) {
5152 // Save llvm.compiler.used and remove it.
5153 SmallVector<Constant *, 2> UsedArray;
5154 SmallVector<GlobalValue *, 4> UsedGlobals;
5155 Type *UsedElementType = Type::getInt8Ty(M.getContext())->getPointerTo(0);
5156 GlobalVariable *Used = collectUsedGlobalVariables(M, UsedGlobals, true);
5157 for (auto *GV : UsedGlobals) {
5158 if (GV->getName() != "llvm.embedded.module" &&
5159 GV->getName() != "llvm.cmdline")
5160 UsedArray.push_back(
5161 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType));
5162 }
5163 if (Used)
5164 Used->eraseFromParent();
5165
5166 // Embed the bitcode for the llvm module.
5167 std::string Data;
5168 ArrayRef<uint8_t> ModuleData;
5169 Triple T(M.getTargetTriple());
5170
5171 if (EmbedBitcode) {
5172 if (Buf.getBufferSize() == 0 ||
5173 !isBitcode((const unsigned char *)Buf.getBufferStart(),
5174 (const unsigned char *)Buf.getBufferEnd())) {
5175 // If the input is LLVM Assembly, bitcode is produced by serializing
5176 // the module. Use-lists order need to be preserved in this case.
5177 llvm::raw_string_ostream OS(Data);
5178 llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true);
5179 ModuleData =
5180 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size());
5181 } else
5182 // If the input is LLVM bitcode, write the input byte stream directly.
5183 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(),
5184 Buf.getBufferSize());
5185 }
5186 llvm::Constant *ModuleConstant =
5187 llvm::ConstantDataArray::get(M.getContext(), ModuleData);
5188 llvm::GlobalVariable *GV = new llvm::GlobalVariable(
5189 M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage,
5190 ModuleConstant);
5191 GV->setSection(getSectionNameForBitcode(T));
5192 // Set alignment to 1 to prevent padding between two contributions from input
5193 // sections after linking.
5194 GV->setAlignment(Align(1));
5195 UsedArray.push_back(
5196 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType));
5197 if (llvm::GlobalVariable *Old =
5198 M.getGlobalVariable("llvm.embedded.module", true)) {
5199 assert(Old->hasZeroLiveUses() &&
5200 "llvm.embedded.module can only be used once in llvm.compiler.used");
5201 GV->takeName(Old);
5202 Old->eraseFromParent();
5203 } else {
5204 GV->setName("llvm.embedded.module");
5205 }
5206
5207 // Skip if only bitcode needs to be embedded.
5208 if (EmbedCmdline) {
5209 // Embed command-line options.
5210 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CmdArgs.data()),
5211 CmdArgs.size());
5212 llvm::Constant *CmdConstant =
5213 llvm::ConstantDataArray::get(M.getContext(), CmdData);
5214 GV = new llvm::GlobalVariable(M, CmdConstant->getType(), true,
5215 llvm::GlobalValue::PrivateLinkage,
5216 CmdConstant);
5217 GV->setSection(getSectionNameForCommandline(T));
5218 GV->setAlignment(Align(1));
5219 UsedArray.push_back(
5220 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType));
5221 if (llvm::GlobalVariable *Old = M.getGlobalVariable("llvm.cmdline", true)) {
5222 assert(Old->hasZeroLiveUses() &&
5223 "llvm.cmdline can only be used once in llvm.compiler.used");
5224 GV->takeName(Old);
5225 Old->eraseFromParent();
5226 } else {
5227 GV->setName("llvm.cmdline");
5228 }
5229 }
5230
5231 if (UsedArray.empty())
5232 return;
5233
5234 // Recreate llvm.compiler.used.
5235 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size());
5236 auto *NewUsed = new GlobalVariable(
5237 M, ATy, false, llvm::GlobalValue::AppendingLinkage,
5238 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used");
5239 NewUsed->setSection("llvm.metadata");
5240 }
5241