1 //===- AArch64AddressingModes.h - AArch64 Addressing Modes ------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the AArch64 addressing mode implementation stuff.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_LIB_TARGET_AARCH64_MCTARGETDESC_AARCH64ADDRESSINGMODES_H
14 #define LLVM_LIB_TARGET_AARCH64_MCTARGETDESC_AARCH64ADDRESSINGMODES_H
15 
16 #include "AArch64ExpandImm.h"
17 #include "llvm/ADT/APFloat.h"
18 #include "llvm/ADT/APInt.h"
19 #include "llvm/ADT/bit.h"
20 #include "llvm/Support/ErrorHandling.h"
21 #include "llvm/Support/MathExtras.h"
22 #include <cassert>
23 
24 namespace llvm {
25 
26 /// AArch64_AM - AArch64 Addressing Mode Stuff
27 namespace AArch64_AM {
28 
29 //===----------------------------------------------------------------------===//
30 // Shifts
31 //
32 
33 enum ShiftExtendType {
34   InvalidShiftExtend = -1,
35   LSL = 0,
36   LSR,
37   ASR,
38   ROR,
39   MSL,
40 
41   UXTB,
42   UXTH,
43   UXTW,
44   UXTX,
45 
46   SXTB,
47   SXTH,
48   SXTW,
49   SXTX,
50 };
51 
52 /// getShiftName - Get the string encoding for the shift type.
getShiftExtendName(AArch64_AM::ShiftExtendType ST)53 static inline const char *getShiftExtendName(AArch64_AM::ShiftExtendType ST) {
54   switch (ST) {
55   default: llvm_unreachable("unhandled shift type!");
56   case AArch64_AM::LSL: return "lsl";
57   case AArch64_AM::LSR: return "lsr";
58   case AArch64_AM::ASR: return "asr";
59   case AArch64_AM::ROR: return "ror";
60   case AArch64_AM::MSL: return "msl";
61   case AArch64_AM::UXTB: return "uxtb";
62   case AArch64_AM::UXTH: return "uxth";
63   case AArch64_AM::UXTW: return "uxtw";
64   case AArch64_AM::UXTX: return "uxtx";
65   case AArch64_AM::SXTB: return "sxtb";
66   case AArch64_AM::SXTH: return "sxth";
67   case AArch64_AM::SXTW: return "sxtw";
68   case AArch64_AM::SXTX: return "sxtx";
69   }
70   return nullptr;
71 }
72 
73 /// getShiftType - Extract the shift type.
getShiftType(unsigned Imm)74 static inline AArch64_AM::ShiftExtendType getShiftType(unsigned Imm) {
75   switch ((Imm >> 6) & 0x7) {
76   default: return AArch64_AM::InvalidShiftExtend;
77   case 0: return AArch64_AM::LSL;
78   case 1: return AArch64_AM::LSR;
79   case 2: return AArch64_AM::ASR;
80   case 3: return AArch64_AM::ROR;
81   case 4: return AArch64_AM::MSL;
82   }
83 }
84 
85 /// getShiftValue - Extract the shift value.
getShiftValue(unsigned Imm)86 static inline unsigned getShiftValue(unsigned Imm) {
87   return Imm & 0x3f;
88 }
89 
90 /// getShifterImm - Encode the shift type and amount:
91 ///   imm:     6-bit shift amount
92 ///   shifter: 000 ==> lsl
93 ///            001 ==> lsr
94 ///            010 ==> asr
95 ///            011 ==> ror
96 ///            100 ==> msl
97 ///   {8-6}  = shifter
98 ///   {5-0}  = imm
getShifterImm(AArch64_AM::ShiftExtendType ST,unsigned Imm)99 static inline unsigned getShifterImm(AArch64_AM::ShiftExtendType ST,
100                                      unsigned Imm) {
101   assert((Imm & 0x3f) == Imm && "Illegal shifted immedate value!");
102   unsigned STEnc = 0;
103   switch (ST) {
104   default:  llvm_unreachable("Invalid shift requested");
105   case AArch64_AM::LSL: STEnc = 0; break;
106   case AArch64_AM::LSR: STEnc = 1; break;
107   case AArch64_AM::ASR: STEnc = 2; break;
108   case AArch64_AM::ROR: STEnc = 3; break;
109   case AArch64_AM::MSL: STEnc = 4; break;
110   }
111   return (STEnc << 6) | (Imm & 0x3f);
112 }
113 
114 //===----------------------------------------------------------------------===//
115 // Extends
116 //
117 
118 /// getArithShiftValue - get the arithmetic shift value.
getArithShiftValue(unsigned Imm)119 static inline unsigned getArithShiftValue(unsigned Imm) {
120   return Imm & 0x7;
121 }
122 
123 /// getExtendType - Extract the extend type for operands of arithmetic ops.
getExtendType(unsigned Imm)124 static inline AArch64_AM::ShiftExtendType getExtendType(unsigned Imm) {
125   assert((Imm & 0x7) == Imm && "invalid immediate!");
126   switch (Imm) {
127   default: llvm_unreachable("Compiler bug!");
128   case 0: return AArch64_AM::UXTB;
129   case 1: return AArch64_AM::UXTH;
130   case 2: return AArch64_AM::UXTW;
131   case 3: return AArch64_AM::UXTX;
132   case 4: return AArch64_AM::SXTB;
133   case 5: return AArch64_AM::SXTH;
134   case 6: return AArch64_AM::SXTW;
135   case 7: return AArch64_AM::SXTX;
136   }
137 }
138 
getArithExtendType(unsigned Imm)139 static inline AArch64_AM::ShiftExtendType getArithExtendType(unsigned Imm) {
140   return getExtendType((Imm >> 3) & 0x7);
141 }
142 
143 /// Mapping from extend bits to required operation:
144 ///   shifter: 000 ==> uxtb
145 ///            001 ==> uxth
146 ///            010 ==> uxtw
147 ///            011 ==> uxtx
148 ///            100 ==> sxtb
149 ///            101 ==> sxth
150 ///            110 ==> sxtw
151 ///            111 ==> sxtx
getExtendEncoding(AArch64_AM::ShiftExtendType ET)152 inline unsigned getExtendEncoding(AArch64_AM::ShiftExtendType ET) {
153   switch (ET) {
154   default: llvm_unreachable("Invalid extend type requested");
155   case AArch64_AM::UXTB: return 0; break;
156   case AArch64_AM::UXTH: return 1; break;
157   case AArch64_AM::UXTW: return 2; break;
158   case AArch64_AM::UXTX: return 3; break;
159   case AArch64_AM::SXTB: return 4; break;
160   case AArch64_AM::SXTH: return 5; break;
161   case AArch64_AM::SXTW: return 6; break;
162   case AArch64_AM::SXTX: return 7; break;
163   }
164 }
165 
166 /// getArithExtendImm - Encode the extend type and shift amount for an
167 ///                     arithmetic instruction:
168 ///   imm:     3-bit extend amount
169 ///   {5-3}  = shifter
170 ///   {2-0}  = imm3
getArithExtendImm(AArch64_AM::ShiftExtendType ET,unsigned Imm)171 static inline unsigned getArithExtendImm(AArch64_AM::ShiftExtendType ET,
172                                          unsigned Imm) {
173   assert((Imm & 0x7) == Imm && "Illegal shifted immedate value!");
174   return (getExtendEncoding(ET) << 3) | (Imm & 0x7);
175 }
176 
177 /// getMemDoShift - Extract the "do shift" flag value for load/store
178 /// instructions.
getMemDoShift(unsigned Imm)179 static inline bool getMemDoShift(unsigned Imm) {
180   return (Imm & 0x1) != 0;
181 }
182 
183 /// getExtendType - Extract the extend type for the offset operand of
184 /// loads/stores.
getMemExtendType(unsigned Imm)185 static inline AArch64_AM::ShiftExtendType getMemExtendType(unsigned Imm) {
186   return getExtendType((Imm >> 1) & 0x7);
187 }
188 
189 /// getExtendImm - Encode the extend type and amount for a load/store inst:
190 ///   doshift:     should the offset be scaled by the access size
191 ///   shifter: 000 ==> uxtb
192 ///            001 ==> uxth
193 ///            010 ==> uxtw
194 ///            011 ==> uxtx
195 ///            100 ==> sxtb
196 ///            101 ==> sxth
197 ///            110 ==> sxtw
198 ///            111 ==> sxtx
199 ///   {3-1}  = shifter
200 ///   {0}  = doshift
getMemExtendImm(AArch64_AM::ShiftExtendType ET,bool DoShift)201 static inline unsigned getMemExtendImm(AArch64_AM::ShiftExtendType ET,
202                                        bool DoShift) {
203   return (getExtendEncoding(ET) << 1) | unsigned(DoShift);
204 }
205 
ror(uint64_t elt,unsigned size)206 static inline uint64_t ror(uint64_t elt, unsigned size) {
207   return ((elt & 1) << (size-1)) | (elt >> 1);
208 }
209 
210 /// processLogicalImmediate - Determine if an immediate value can be encoded
211 /// as the immediate operand of a logical instruction for the given register
212 /// size.  If so, return true with "encoding" set to the encoded value in
213 /// the form N:immr:imms.
processLogicalImmediate(uint64_t Imm,unsigned RegSize,uint64_t & Encoding)214 static inline bool processLogicalImmediate(uint64_t Imm, unsigned RegSize,
215                                            uint64_t &Encoding) {
216   if (Imm == 0ULL || Imm == ~0ULL ||
217       (RegSize != 64 &&
218         (Imm >> RegSize != 0 || Imm == (~0ULL >> (64 - RegSize)))))
219     return false;
220 
221   // First, determine the element size.
222   unsigned Size = RegSize;
223 
224   do {
225     Size /= 2;
226     uint64_t Mask = (1ULL << Size) - 1;
227 
228     if ((Imm & Mask) != ((Imm >> Size) & Mask)) {
229       Size *= 2;
230       break;
231     }
232   } while (Size > 2);
233 
234   // Second, determine the rotation to make the element be: 0^m 1^n.
235   uint32_t CTO, I;
236   uint64_t Mask = ((uint64_t)-1LL) >> (64 - Size);
237   Imm &= Mask;
238 
239   if (isShiftedMask_64(Imm)) {
240     I = countTrailingZeros(Imm);
241     assert(I < 64 && "undefined behavior");
242     CTO = countTrailingOnes(Imm >> I);
243   } else {
244     Imm |= ~Mask;
245     if (!isShiftedMask_64(~Imm))
246       return false;
247 
248     unsigned CLO = countLeadingOnes(Imm);
249     I = 64 - CLO;
250     CTO = CLO + countTrailingOnes(Imm) - (64 - Size);
251   }
252 
253   // Encode in Immr the number of RORs it would take to get *from* 0^m 1^n
254   // to our target value, where I is the number of RORs to go the opposite
255   // direction.
256   assert(Size > I && "I should be smaller than element size");
257   unsigned Immr = (Size - I) & (Size - 1);
258 
259   // If size has a 1 in the n'th bit, create a value that has zeroes in
260   // bits [0, n] and ones above that.
261   uint64_t NImms = ~(Size-1) << 1;
262 
263   // Or the CTO value into the low bits, which must be below the Nth bit
264   // bit mentioned above.
265   NImms |= (CTO-1);
266 
267   // Extract the seventh bit and toggle it to create the N field.
268   unsigned N = ((NImms >> 6) & 1) ^ 1;
269 
270   Encoding = (N << 12) | (Immr << 6) | (NImms & 0x3f);
271   return true;
272 }
273 
274 /// isLogicalImmediate - Return true if the immediate is valid for a logical
275 /// immediate instruction of the given register size. Return false otherwise.
isLogicalImmediate(uint64_t imm,unsigned regSize)276 static inline bool isLogicalImmediate(uint64_t imm, unsigned regSize) {
277   uint64_t encoding;
278   return processLogicalImmediate(imm, regSize, encoding);
279 }
280 
281 /// encodeLogicalImmediate - Return the encoded immediate value for a logical
282 /// immediate instruction of the given register size.
encodeLogicalImmediate(uint64_t imm,unsigned regSize)283 static inline uint64_t encodeLogicalImmediate(uint64_t imm, unsigned regSize) {
284   uint64_t encoding = 0;
285   bool res = processLogicalImmediate(imm, regSize, encoding);
286   assert(res && "invalid logical immediate");
287   (void)res;
288   return encoding;
289 }
290 
291 /// decodeLogicalImmediate - Decode a logical immediate value in the form
292 /// "N:immr:imms" (where the immr and imms fields are each 6 bits) into the
293 /// integer value it represents with regSize bits.
decodeLogicalImmediate(uint64_t val,unsigned regSize)294 static inline uint64_t decodeLogicalImmediate(uint64_t val, unsigned regSize) {
295   // Extract the N, imms, and immr fields.
296   unsigned N = (val >> 12) & 1;
297   unsigned immr = (val >> 6) & 0x3f;
298   unsigned imms = val & 0x3f;
299 
300   assert((regSize == 64 || N == 0) && "undefined logical immediate encoding");
301   int len = 31 - countLeadingZeros((N << 6) | (~imms & 0x3f));
302   assert(len >= 0 && "undefined logical immediate encoding");
303   unsigned size = (1 << len);
304   unsigned R = immr & (size - 1);
305   unsigned S = imms & (size - 1);
306   assert(S != size - 1 && "undefined logical immediate encoding");
307   uint64_t pattern = (1ULL << (S + 1)) - 1;
308   for (unsigned i = 0; i < R; ++i)
309     pattern = ror(pattern, size);
310 
311   // Replicate the pattern to fill the regSize.
312   while (size != regSize) {
313     pattern |= (pattern << size);
314     size *= 2;
315   }
316   return pattern;
317 }
318 
319 /// isValidDecodeLogicalImmediate - Check to see if the logical immediate value
320 /// in the form "N:immr:imms" (where the immr and imms fields are each 6 bits)
321 /// is a valid encoding for an integer value with regSize bits.
isValidDecodeLogicalImmediate(uint64_t val,unsigned regSize)322 static inline bool isValidDecodeLogicalImmediate(uint64_t val,
323                                                  unsigned regSize) {
324   // Extract the N and imms fields needed for checking.
325   unsigned N = (val >> 12) & 1;
326   unsigned imms = val & 0x3f;
327 
328   if (regSize == 32 && N != 0) // undefined logical immediate encoding
329     return false;
330   int len = 31 - countLeadingZeros((N << 6) | (~imms & 0x3f));
331   if (len < 0) // undefined logical immediate encoding
332     return false;
333   unsigned size = (1 << len);
334   unsigned S = imms & (size - 1);
335   if (S == size - 1) // undefined logical immediate encoding
336     return false;
337 
338   return true;
339 }
340 
341 //===----------------------------------------------------------------------===//
342 // Floating-point Immediates
343 //
getFPImmFloat(unsigned Imm)344 static inline float getFPImmFloat(unsigned Imm) {
345   // We expect an 8-bit binary encoding of a floating-point number here.
346 
347   uint8_t Sign = (Imm >> 7) & 0x1;
348   uint8_t Exp = (Imm >> 4) & 0x7;
349   uint8_t Mantissa = Imm & 0xf;
350 
351   //   8-bit FP    IEEE Float Encoding
352   //   abcd efgh   aBbbbbbc defgh000 00000000 00000000
353   //
354   // where B = NOT(b);
355 
356   uint32_t I = 0;
357   I |= Sign << 31;
358   I |= ((Exp & 0x4) != 0 ? 0 : 1) << 30;
359   I |= ((Exp & 0x4) != 0 ? 0x1f : 0) << 25;
360   I |= (Exp & 0x3) << 23;
361   I |= Mantissa << 19;
362   return bit_cast<float>(I);
363 }
364 
365 /// getFP16Imm - Return an 8-bit floating-point version of the 16-bit
366 /// floating-point value. If the value cannot be represented as an 8-bit
367 /// floating-point value, then return -1.
getFP16Imm(const APInt & Imm)368 static inline int getFP16Imm(const APInt &Imm) {
369   uint32_t Sign = Imm.lshr(15).getZExtValue() & 1;
370   int32_t Exp = (Imm.lshr(10).getSExtValue() & 0x1f) - 15;  // -14 to 15
371   int32_t Mantissa = Imm.getZExtValue() & 0x3ff;  // 10 bits
372 
373   // We can handle 4 bits of mantissa.
374   // mantissa = (16+UInt(e:f:g:h))/16.
375   if (Mantissa & 0x3f)
376     return -1;
377   Mantissa >>= 6;
378 
379   // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
380   if (Exp < -3 || Exp > 4)
381     return -1;
382   Exp = ((Exp+3) & 0x7) ^ 4;
383 
384   return ((int)Sign << 7) | (Exp << 4) | Mantissa;
385 }
386 
getFP16Imm(const APFloat & FPImm)387 static inline int getFP16Imm(const APFloat &FPImm) {
388   return getFP16Imm(FPImm.bitcastToAPInt());
389 }
390 
391 /// getFP32Imm - Return an 8-bit floating-point version of the 32-bit
392 /// floating-point value. If the value cannot be represented as an 8-bit
393 /// floating-point value, then return -1.
getFP32Imm(const APInt & Imm)394 static inline int getFP32Imm(const APInt &Imm) {
395   uint32_t Sign = Imm.lshr(31).getZExtValue() & 1;
396   int32_t Exp = (Imm.lshr(23).getSExtValue() & 0xff) - 127;  // -126 to 127
397   int64_t Mantissa = Imm.getZExtValue() & 0x7fffff;  // 23 bits
398 
399   // We can handle 4 bits of mantissa.
400   // mantissa = (16+UInt(e:f:g:h))/16.
401   if (Mantissa & 0x7ffff)
402     return -1;
403   Mantissa >>= 19;
404   if ((Mantissa & 0xf) != Mantissa)
405     return -1;
406 
407   // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
408   if (Exp < -3 || Exp > 4)
409     return -1;
410   Exp = ((Exp+3) & 0x7) ^ 4;
411 
412   return ((int)Sign << 7) | (Exp << 4) | Mantissa;
413 }
414 
getFP32Imm(const APFloat & FPImm)415 static inline int getFP32Imm(const APFloat &FPImm) {
416   return getFP32Imm(FPImm.bitcastToAPInt());
417 }
418 
419 /// getFP64Imm - Return an 8-bit floating-point version of the 64-bit
420 /// floating-point value. If the value cannot be represented as an 8-bit
421 /// floating-point value, then return -1.
getFP64Imm(const APInt & Imm)422 static inline int getFP64Imm(const APInt &Imm) {
423   uint64_t Sign = Imm.lshr(63).getZExtValue() & 1;
424   int64_t Exp = (Imm.lshr(52).getSExtValue() & 0x7ff) - 1023;   // -1022 to 1023
425   uint64_t Mantissa = Imm.getZExtValue() & 0xfffffffffffffULL;
426 
427   // We can handle 4 bits of mantissa.
428   // mantissa = (16+UInt(e:f:g:h))/16.
429   if (Mantissa & 0xffffffffffffULL)
430     return -1;
431   Mantissa >>= 48;
432   if ((Mantissa & 0xf) != Mantissa)
433     return -1;
434 
435   // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
436   if (Exp < -3 || Exp > 4)
437     return -1;
438   Exp = ((Exp+3) & 0x7) ^ 4;
439 
440   return ((int)Sign << 7) | (Exp << 4) | Mantissa;
441 }
442 
getFP64Imm(const APFloat & FPImm)443 static inline int getFP64Imm(const APFloat &FPImm) {
444   return getFP64Imm(FPImm.bitcastToAPInt());
445 }
446 
447 //===--------------------------------------------------------------------===//
448 // AdvSIMD Modified Immediates
449 //===--------------------------------------------------------------------===//
450 
451 // 0x00 0x00 0x00 abcdefgh 0x00 0x00 0x00 abcdefgh
isAdvSIMDModImmType1(uint64_t Imm)452 static inline bool isAdvSIMDModImmType1(uint64_t Imm) {
453   return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
454          ((Imm & 0xffffff00ffffff00ULL) == 0);
455 }
456 
encodeAdvSIMDModImmType1(uint64_t Imm)457 static inline uint8_t encodeAdvSIMDModImmType1(uint64_t Imm) {
458   return (Imm & 0xffULL);
459 }
460 
decodeAdvSIMDModImmType1(uint8_t Imm)461 static inline uint64_t decodeAdvSIMDModImmType1(uint8_t Imm) {
462   uint64_t EncVal = Imm;
463   return (EncVal << 32) | EncVal;
464 }
465 
466 // 0x00 0x00 abcdefgh 0x00 0x00 0x00 abcdefgh 0x00
isAdvSIMDModImmType2(uint64_t Imm)467 static inline bool isAdvSIMDModImmType2(uint64_t Imm) {
468   return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
469          ((Imm & 0xffff00ffffff00ffULL) == 0);
470 }
471 
encodeAdvSIMDModImmType2(uint64_t Imm)472 static inline uint8_t encodeAdvSIMDModImmType2(uint64_t Imm) {
473   return (Imm & 0xff00ULL) >> 8;
474 }
475 
decodeAdvSIMDModImmType2(uint8_t Imm)476 static inline uint64_t decodeAdvSIMDModImmType2(uint8_t Imm) {
477   uint64_t EncVal = Imm;
478   return (EncVal << 40) | (EncVal << 8);
479 }
480 
481 // 0x00 abcdefgh 0x00 0x00 0x00 abcdefgh 0x00 0x00
isAdvSIMDModImmType3(uint64_t Imm)482 static inline bool isAdvSIMDModImmType3(uint64_t Imm) {
483   return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
484          ((Imm & 0xff00ffffff00ffffULL) == 0);
485 }
486 
encodeAdvSIMDModImmType3(uint64_t Imm)487 static inline uint8_t encodeAdvSIMDModImmType3(uint64_t Imm) {
488   return (Imm & 0xff0000ULL) >> 16;
489 }
490 
decodeAdvSIMDModImmType3(uint8_t Imm)491 static inline uint64_t decodeAdvSIMDModImmType3(uint8_t Imm) {
492   uint64_t EncVal = Imm;
493   return (EncVal << 48) | (EncVal << 16);
494 }
495 
496 // abcdefgh 0x00 0x00 0x00 abcdefgh 0x00 0x00 0x00
isAdvSIMDModImmType4(uint64_t Imm)497 static inline bool isAdvSIMDModImmType4(uint64_t Imm) {
498   return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
499          ((Imm & 0x00ffffff00ffffffULL) == 0);
500 }
501 
encodeAdvSIMDModImmType4(uint64_t Imm)502 static inline uint8_t encodeAdvSIMDModImmType4(uint64_t Imm) {
503   return (Imm & 0xff000000ULL) >> 24;
504 }
505 
decodeAdvSIMDModImmType4(uint8_t Imm)506 static inline uint64_t decodeAdvSIMDModImmType4(uint8_t Imm) {
507   uint64_t EncVal = Imm;
508   return (EncVal << 56) | (EncVal << 24);
509 }
510 
511 // 0x00 abcdefgh 0x00 abcdefgh 0x00 abcdefgh 0x00 abcdefgh
isAdvSIMDModImmType5(uint64_t Imm)512 static inline bool isAdvSIMDModImmType5(uint64_t Imm) {
513   return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
514          (((Imm & 0x00ff0000ULL) >> 16) == (Imm & 0x000000ffULL)) &&
515          ((Imm & 0xff00ff00ff00ff00ULL) == 0);
516 }
517 
encodeAdvSIMDModImmType5(uint64_t Imm)518 static inline uint8_t encodeAdvSIMDModImmType5(uint64_t Imm) {
519   return (Imm & 0xffULL);
520 }
521 
decodeAdvSIMDModImmType5(uint8_t Imm)522 static inline uint64_t decodeAdvSIMDModImmType5(uint8_t Imm) {
523   uint64_t EncVal = Imm;
524   return (EncVal << 48) | (EncVal << 32) | (EncVal << 16) | EncVal;
525 }
526 
527 // abcdefgh 0x00 abcdefgh 0x00 abcdefgh 0x00 abcdefgh 0x00
isAdvSIMDModImmType6(uint64_t Imm)528 static inline bool isAdvSIMDModImmType6(uint64_t Imm) {
529   return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
530          (((Imm & 0xff000000ULL) >> 16) == (Imm & 0x0000ff00ULL)) &&
531          ((Imm & 0x00ff00ff00ff00ffULL) == 0);
532 }
533 
encodeAdvSIMDModImmType6(uint64_t Imm)534 static inline uint8_t encodeAdvSIMDModImmType6(uint64_t Imm) {
535   return (Imm & 0xff00ULL) >> 8;
536 }
537 
decodeAdvSIMDModImmType6(uint8_t Imm)538 static inline uint64_t decodeAdvSIMDModImmType6(uint8_t Imm) {
539   uint64_t EncVal = Imm;
540   return (EncVal << 56) | (EncVal << 40) | (EncVal << 24) | (EncVal << 8);
541 }
542 
543 // 0x00 0x00 abcdefgh 0xFF 0x00 0x00 abcdefgh 0xFF
isAdvSIMDModImmType7(uint64_t Imm)544 static inline bool isAdvSIMDModImmType7(uint64_t Imm) {
545   return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
546          ((Imm & 0xffff00ffffff00ffULL) == 0x000000ff000000ffULL);
547 }
548 
encodeAdvSIMDModImmType7(uint64_t Imm)549 static inline uint8_t encodeAdvSIMDModImmType7(uint64_t Imm) {
550   return (Imm & 0xff00ULL) >> 8;
551 }
552 
decodeAdvSIMDModImmType7(uint8_t Imm)553 static inline uint64_t decodeAdvSIMDModImmType7(uint8_t Imm) {
554   uint64_t EncVal = Imm;
555   return (EncVal << 40) | (EncVal << 8) | 0x000000ff000000ffULL;
556 }
557 
558 // 0x00 abcdefgh 0xFF 0xFF 0x00 abcdefgh 0xFF 0xFF
isAdvSIMDModImmType8(uint64_t Imm)559 static inline bool isAdvSIMDModImmType8(uint64_t Imm) {
560   return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
561          ((Imm & 0xff00ffffff00ffffULL) == 0x0000ffff0000ffffULL);
562 }
563 
decodeAdvSIMDModImmType8(uint8_t Imm)564 static inline uint64_t decodeAdvSIMDModImmType8(uint8_t Imm) {
565   uint64_t EncVal = Imm;
566   return (EncVal << 48) | (EncVal << 16) | 0x0000ffff0000ffffULL;
567 }
568 
encodeAdvSIMDModImmType8(uint64_t Imm)569 static inline uint8_t encodeAdvSIMDModImmType8(uint64_t Imm) {
570   return (Imm & 0x00ff0000ULL) >> 16;
571 }
572 
573 // abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh
isAdvSIMDModImmType9(uint64_t Imm)574 static inline bool isAdvSIMDModImmType9(uint64_t Imm) {
575   return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
576          ((Imm >> 48) == (Imm & 0x0000ffffULL)) &&
577          ((Imm >> 56) == (Imm & 0x000000ffULL));
578 }
579 
encodeAdvSIMDModImmType9(uint64_t Imm)580 static inline uint8_t encodeAdvSIMDModImmType9(uint64_t Imm) {
581   return (Imm & 0xffULL);
582 }
583 
decodeAdvSIMDModImmType9(uint8_t Imm)584 static inline uint64_t decodeAdvSIMDModImmType9(uint8_t Imm) {
585   uint64_t EncVal = Imm;
586   EncVal |= (EncVal << 8);
587   EncVal |= (EncVal << 16);
588   EncVal |= (EncVal << 32);
589   return EncVal;
590 }
591 
592 // aaaaaaaa bbbbbbbb cccccccc dddddddd eeeeeeee ffffffff gggggggg hhhhhhhh
593 // cmode: 1110, op: 1
isAdvSIMDModImmType10(uint64_t Imm)594 static inline bool isAdvSIMDModImmType10(uint64_t Imm) {
595   uint64_t ByteA = Imm & 0xff00000000000000ULL;
596   uint64_t ByteB = Imm & 0x00ff000000000000ULL;
597   uint64_t ByteC = Imm & 0x0000ff0000000000ULL;
598   uint64_t ByteD = Imm & 0x000000ff00000000ULL;
599   uint64_t ByteE = Imm & 0x00000000ff000000ULL;
600   uint64_t ByteF = Imm & 0x0000000000ff0000ULL;
601   uint64_t ByteG = Imm & 0x000000000000ff00ULL;
602   uint64_t ByteH = Imm & 0x00000000000000ffULL;
603 
604   return (ByteA == 0ULL || ByteA == 0xff00000000000000ULL) &&
605          (ByteB == 0ULL || ByteB == 0x00ff000000000000ULL) &&
606          (ByteC == 0ULL || ByteC == 0x0000ff0000000000ULL) &&
607          (ByteD == 0ULL || ByteD == 0x000000ff00000000ULL) &&
608          (ByteE == 0ULL || ByteE == 0x00000000ff000000ULL) &&
609          (ByteF == 0ULL || ByteF == 0x0000000000ff0000ULL) &&
610          (ByteG == 0ULL || ByteG == 0x000000000000ff00ULL) &&
611          (ByteH == 0ULL || ByteH == 0x00000000000000ffULL);
612 }
613 
encodeAdvSIMDModImmType10(uint64_t Imm)614 static inline uint8_t encodeAdvSIMDModImmType10(uint64_t Imm) {
615   uint8_t BitA = (Imm & 0xff00000000000000ULL) != 0;
616   uint8_t BitB = (Imm & 0x00ff000000000000ULL) != 0;
617   uint8_t BitC = (Imm & 0x0000ff0000000000ULL) != 0;
618   uint8_t BitD = (Imm & 0x000000ff00000000ULL) != 0;
619   uint8_t BitE = (Imm & 0x00000000ff000000ULL) != 0;
620   uint8_t BitF = (Imm & 0x0000000000ff0000ULL) != 0;
621   uint8_t BitG = (Imm & 0x000000000000ff00ULL) != 0;
622   uint8_t BitH = (Imm & 0x00000000000000ffULL) != 0;
623 
624   uint8_t EncVal = BitA;
625   EncVal <<= 1;
626   EncVal |= BitB;
627   EncVal <<= 1;
628   EncVal |= BitC;
629   EncVal <<= 1;
630   EncVal |= BitD;
631   EncVal <<= 1;
632   EncVal |= BitE;
633   EncVal <<= 1;
634   EncVal |= BitF;
635   EncVal <<= 1;
636   EncVal |= BitG;
637   EncVal <<= 1;
638   EncVal |= BitH;
639   return EncVal;
640 }
641 
decodeAdvSIMDModImmType10(uint8_t Imm)642 static inline uint64_t decodeAdvSIMDModImmType10(uint8_t Imm) {
643   uint64_t EncVal = 0;
644   if (Imm & 0x80) EncVal |= 0xff00000000000000ULL;
645   if (Imm & 0x40) EncVal |= 0x00ff000000000000ULL;
646   if (Imm & 0x20) EncVal |= 0x0000ff0000000000ULL;
647   if (Imm & 0x10) EncVal |= 0x000000ff00000000ULL;
648   if (Imm & 0x08) EncVal |= 0x00000000ff000000ULL;
649   if (Imm & 0x04) EncVal |= 0x0000000000ff0000ULL;
650   if (Imm & 0x02) EncVal |= 0x000000000000ff00ULL;
651   if (Imm & 0x01) EncVal |= 0x00000000000000ffULL;
652   return EncVal;
653 }
654 
655 // aBbbbbbc defgh000 0x00 0x00 aBbbbbbc defgh000 0x00 0x00
isAdvSIMDModImmType11(uint64_t Imm)656 static inline bool isAdvSIMDModImmType11(uint64_t Imm) {
657   uint64_t BString = (Imm & 0x7E000000ULL) >> 25;
658   return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
659          (BString == 0x1f || BString == 0x20) &&
660          ((Imm & 0x0007ffff0007ffffULL) == 0);
661 }
662 
encodeAdvSIMDModImmType11(uint64_t Imm)663 static inline uint8_t encodeAdvSIMDModImmType11(uint64_t Imm) {
664   uint8_t BitA = (Imm & 0x80000000ULL) != 0;
665   uint8_t BitB = (Imm & 0x20000000ULL) != 0;
666   uint8_t BitC = (Imm & 0x01000000ULL) != 0;
667   uint8_t BitD = (Imm & 0x00800000ULL) != 0;
668   uint8_t BitE = (Imm & 0x00400000ULL) != 0;
669   uint8_t BitF = (Imm & 0x00200000ULL) != 0;
670   uint8_t BitG = (Imm & 0x00100000ULL) != 0;
671   uint8_t BitH = (Imm & 0x00080000ULL) != 0;
672 
673   uint8_t EncVal = BitA;
674   EncVal <<= 1;
675   EncVal |= BitB;
676   EncVal <<= 1;
677   EncVal |= BitC;
678   EncVal <<= 1;
679   EncVal |= BitD;
680   EncVal <<= 1;
681   EncVal |= BitE;
682   EncVal <<= 1;
683   EncVal |= BitF;
684   EncVal <<= 1;
685   EncVal |= BitG;
686   EncVal <<= 1;
687   EncVal |= BitH;
688   return EncVal;
689 }
690 
decodeAdvSIMDModImmType11(uint8_t Imm)691 static inline uint64_t decodeAdvSIMDModImmType11(uint8_t Imm) {
692   uint64_t EncVal = 0;
693   if (Imm & 0x80) EncVal |= 0x80000000ULL;
694   if (Imm & 0x40) EncVal |= 0x3e000000ULL;
695   else            EncVal |= 0x40000000ULL;
696   if (Imm & 0x20) EncVal |= 0x01000000ULL;
697   if (Imm & 0x10) EncVal |= 0x00800000ULL;
698   if (Imm & 0x08) EncVal |= 0x00400000ULL;
699   if (Imm & 0x04) EncVal |= 0x00200000ULL;
700   if (Imm & 0x02) EncVal |= 0x00100000ULL;
701   if (Imm & 0x01) EncVal |= 0x00080000ULL;
702   return (EncVal << 32) | EncVal;
703 }
704 
705 // aBbbbbbb bbcdefgh 0x00 0x00 0x00 0x00 0x00 0x00
isAdvSIMDModImmType12(uint64_t Imm)706 static inline bool isAdvSIMDModImmType12(uint64_t Imm) {
707   uint64_t BString = (Imm & 0x7fc0000000000000ULL) >> 54;
708   return ((BString == 0xff || BString == 0x100) &&
709          ((Imm & 0x0000ffffffffffffULL) == 0));
710 }
711 
encodeAdvSIMDModImmType12(uint64_t Imm)712 static inline uint8_t encodeAdvSIMDModImmType12(uint64_t Imm) {
713   uint8_t BitA = (Imm & 0x8000000000000000ULL) != 0;
714   uint8_t BitB = (Imm & 0x0040000000000000ULL) != 0;
715   uint8_t BitC = (Imm & 0x0020000000000000ULL) != 0;
716   uint8_t BitD = (Imm & 0x0010000000000000ULL) != 0;
717   uint8_t BitE = (Imm & 0x0008000000000000ULL) != 0;
718   uint8_t BitF = (Imm & 0x0004000000000000ULL) != 0;
719   uint8_t BitG = (Imm & 0x0002000000000000ULL) != 0;
720   uint8_t BitH = (Imm & 0x0001000000000000ULL) != 0;
721 
722   uint8_t EncVal = BitA;
723   EncVal <<= 1;
724   EncVal |= BitB;
725   EncVal <<= 1;
726   EncVal |= BitC;
727   EncVal <<= 1;
728   EncVal |= BitD;
729   EncVal <<= 1;
730   EncVal |= BitE;
731   EncVal <<= 1;
732   EncVal |= BitF;
733   EncVal <<= 1;
734   EncVal |= BitG;
735   EncVal <<= 1;
736   EncVal |= BitH;
737   return EncVal;
738 }
739 
decodeAdvSIMDModImmType12(uint8_t Imm)740 static inline uint64_t decodeAdvSIMDModImmType12(uint8_t Imm) {
741   uint64_t EncVal = 0;
742   if (Imm & 0x80) EncVal |= 0x8000000000000000ULL;
743   if (Imm & 0x40) EncVal |= 0x3fc0000000000000ULL;
744   else            EncVal |= 0x4000000000000000ULL;
745   if (Imm & 0x20) EncVal |= 0x0020000000000000ULL;
746   if (Imm & 0x10) EncVal |= 0x0010000000000000ULL;
747   if (Imm & 0x08) EncVal |= 0x0008000000000000ULL;
748   if (Imm & 0x04) EncVal |= 0x0004000000000000ULL;
749   if (Imm & 0x02) EncVal |= 0x0002000000000000ULL;
750   if (Imm & 0x01) EncVal |= 0x0001000000000000ULL;
751   return (EncVal << 32) | EncVal;
752 }
753 
754 /// Returns true if Imm is the concatenation of a repeating pattern of type T.
755 template <typename T>
isSVEMaskOfIdenticalElements(int64_t Imm)756 static inline bool isSVEMaskOfIdenticalElements(int64_t Imm) {
757   auto Parts = bit_cast<std::array<T, sizeof(int64_t) / sizeof(T)>>(Imm);
758   return llvm::all_equal(Parts);
759 }
760 
761 /// Returns true if Imm is valid for CPY/DUP.
762 template <typename T>
isSVECpyImm(int64_t Imm)763 static inline bool isSVECpyImm(int64_t Imm) {
764   // Imm is interpreted as a signed value, which means top bits must be all ones
765   // (sign bits if the immediate value is negative and passed in a larger
766   // container), or all zeroes.
767   int64_t Mask = ~int64_t(std::numeric_limits<std::make_unsigned_t<T>>::max());
768   if ((Imm & Mask) != 0 && (Imm & Mask) != Mask)
769     return false;
770 
771   // Imm is a signed 8-bit value.
772   // Top bits must be zeroes or sign bits.
773   if (Imm & 0xff)
774     return int8_t(Imm) == T(Imm);
775 
776   // Imm is a signed 16-bit value and multiple of 256.
777   // Top bits must be zeroes or sign bits.
778   if (Imm & 0xff00)
779     return int16_t(Imm) == T(Imm);
780 
781   return Imm == 0;
782 }
783 
784 /// Returns true if Imm is valid for ADD/SUB.
785 template <typename T>
isSVEAddSubImm(int64_t Imm)786 static inline bool isSVEAddSubImm(int64_t Imm) {
787   bool IsInt8t = std::is_same<int8_t, std::make_signed_t<T>>::value ||
788                  std::is_same<int8_t, T>::value;
789   return uint8_t(Imm) == Imm || (!IsInt8t && uint16_t(Imm & ~0xff) == Imm);
790 }
791 
792 /// Return true if Imm is valid for DUPM and has no single CPY/DUP equivalent.
isSVEMoveMaskPreferredLogicalImmediate(int64_t Imm)793 static inline bool isSVEMoveMaskPreferredLogicalImmediate(int64_t Imm) {
794   if (isSVECpyImm<int64_t>(Imm))
795     return false;
796 
797   auto S = bit_cast<std::array<int32_t, 2>>(Imm);
798   auto H = bit_cast<std::array<int16_t, 4>>(Imm);
799   auto B = bit_cast<std::array<int8_t, 8>>(Imm);
800 
801   if (isSVEMaskOfIdenticalElements<int32_t>(Imm) && isSVECpyImm<int32_t>(S[0]))
802     return false;
803   if (isSVEMaskOfIdenticalElements<int16_t>(Imm) && isSVECpyImm<int16_t>(H[0]))
804     return false;
805   if (isSVEMaskOfIdenticalElements<int8_t>(Imm) && isSVECpyImm<int8_t>(B[0]))
806     return false;
807   return isLogicalImmediate(Imm, 64);
808 }
809 
isAnyMOVZMovAlias(uint64_t Value,int RegWidth)810 inline static bool isAnyMOVZMovAlias(uint64_t Value, int RegWidth) {
811   for (int Shift = 0; Shift <= RegWidth - 16; Shift += 16)
812     if ((Value & ~(0xffffULL << Shift)) == 0)
813       return true;
814 
815   return false;
816 }
817 
isMOVZMovAlias(uint64_t Value,int Shift,int RegWidth)818 inline static bool isMOVZMovAlias(uint64_t Value, int Shift, int RegWidth) {
819   if (RegWidth == 32)
820     Value &= 0xffffffffULL;
821 
822   // "lsl #0" takes precedence: in practice this only affects "#0, lsl #0".
823   if (Value == 0 && Shift != 0)
824     return false;
825 
826   return (Value & ~(0xffffULL << Shift)) == 0;
827 }
828 
isMOVNMovAlias(uint64_t Value,int Shift,int RegWidth)829 inline static bool isMOVNMovAlias(uint64_t Value, int Shift, int RegWidth) {
830   // MOVZ takes precedence over MOVN.
831   if (isAnyMOVZMovAlias(Value, RegWidth))
832     return false;
833 
834   Value = ~Value;
835   if (RegWidth == 32)
836     Value &= 0xffffffffULL;
837 
838   return isMOVZMovAlias(Value, Shift, RegWidth);
839 }
840 
isAnyMOVWMovAlias(uint64_t Value,int RegWidth)841 inline static bool isAnyMOVWMovAlias(uint64_t Value, int RegWidth) {
842   if (isAnyMOVZMovAlias(Value, RegWidth))
843     return true;
844 
845   // It's not a MOVZ, but it might be a MOVN.
846   Value = ~Value;
847   if (RegWidth == 32)
848     Value &= 0xffffffffULL;
849 
850   return isAnyMOVZMovAlias(Value, RegWidth);
851 }
852 
853 } // end namespace AArch64_AM
854 
855 } // end namespace llvm
856 
857 #endif
858