1 //===- PHITransAddr.cpp - PHI Translation for Addresses -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the PHITransAddr class.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "llvm/Analysis/PHITransAddr.h"
14 #include "llvm/Analysis/InstructionSimplify.h"
15 #include "llvm/Analysis/ValueTracking.h"
16 #include "llvm/Config/llvm-config.h"
17 #include "llvm/IR/Constants.h"
18 #include "llvm/IR/Dominators.h"
19 #include "llvm/IR/Instructions.h"
20 #include "llvm/Support/ErrorHandling.h"
21 #include "llvm/Support/raw_ostream.h"
22 using namespace llvm;
23
24 static cl::opt<bool> EnableAddPhiTranslation(
25 "gvn-add-phi-translation", cl::init(false), cl::Hidden,
26 cl::desc("Enable phi-translation of add instructions"));
27
CanPHITrans(Instruction * Inst)28 static bool CanPHITrans(Instruction *Inst) {
29 if (isa<PHINode>(Inst) ||
30 isa<GetElementPtrInst>(Inst))
31 return true;
32
33 if (isa<CastInst>(Inst) &&
34 isSafeToSpeculativelyExecute(Inst))
35 return true;
36
37 if (Inst->getOpcode() == Instruction::Add &&
38 isa<ConstantInt>(Inst->getOperand(1)))
39 return true;
40
41 return false;
42 }
43
44 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const45 LLVM_DUMP_METHOD void PHITransAddr::dump() const {
46 if (!Addr) {
47 dbgs() << "PHITransAddr: null\n";
48 return;
49 }
50 dbgs() << "PHITransAddr: " << *Addr << "\n";
51 for (unsigned i = 0, e = InstInputs.size(); i != e; ++i)
52 dbgs() << " Input #" << i << " is " << *InstInputs[i] << "\n";
53 }
54 #endif
55
56
VerifySubExpr(Value * Expr,SmallVectorImpl<Instruction * > & InstInputs)57 static bool VerifySubExpr(Value *Expr,
58 SmallVectorImpl<Instruction*> &InstInputs) {
59 // If this is a non-instruction value, there is nothing to do.
60 Instruction *I = dyn_cast<Instruction>(Expr);
61 if (!I) return true;
62
63 // If it's an instruction, it is either in Tmp or its operands recursively
64 // are.
65 SmallVectorImpl<Instruction *>::iterator Entry = find(InstInputs, I);
66 if (Entry != InstInputs.end()) {
67 InstInputs.erase(Entry);
68 return true;
69 }
70
71 // If it isn't in the InstInputs list it is a subexpr incorporated into the
72 // address. Validate that it is phi translatable.
73 if (!CanPHITrans(I)) {
74 errs() << "Instruction in PHITransAddr is not phi-translatable:\n";
75 errs() << *I << '\n';
76 llvm_unreachable("Either something is missing from InstInputs or "
77 "CanPHITrans is wrong.");
78 }
79
80 // Validate the operands of the instruction.
81 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
82 if (!VerifySubExpr(I->getOperand(i), InstInputs))
83 return false;
84
85 return true;
86 }
87
88 /// Verify - Check internal consistency of this data structure. If the
89 /// structure is valid, it returns true. If invalid, it prints errors and
90 /// returns false.
Verify() const91 bool PHITransAddr::Verify() const {
92 if (!Addr) return true;
93
94 SmallVector<Instruction*, 8> Tmp(InstInputs.begin(), InstInputs.end());
95
96 if (!VerifySubExpr(Addr, Tmp))
97 return false;
98
99 if (!Tmp.empty()) {
100 errs() << "PHITransAddr contains extra instructions:\n";
101 for (unsigned i = 0, e = InstInputs.size(); i != e; ++i)
102 errs() << " InstInput #" << i << " is " << *InstInputs[i] << "\n";
103 llvm_unreachable("This is unexpected.");
104 }
105
106 // a-ok.
107 return true;
108 }
109
110
111 /// IsPotentiallyPHITranslatable - If this needs PHI translation, return true
112 /// if we have some hope of doing it. This should be used as a filter to
113 /// avoid calling PHITranslateValue in hopeless situations.
IsPotentiallyPHITranslatable() const114 bool PHITransAddr::IsPotentiallyPHITranslatable() const {
115 // If the input value is not an instruction, or if it is not defined in CurBB,
116 // then we don't need to phi translate it.
117 Instruction *Inst = dyn_cast<Instruction>(Addr);
118 return !Inst || CanPHITrans(Inst);
119 }
120
121
RemoveInstInputs(Value * V,SmallVectorImpl<Instruction * > & InstInputs)122 static void RemoveInstInputs(Value *V,
123 SmallVectorImpl<Instruction*> &InstInputs) {
124 Instruction *I = dyn_cast<Instruction>(V);
125 if (!I) return;
126
127 // If the instruction is in the InstInputs list, remove it.
128 SmallVectorImpl<Instruction *>::iterator Entry = find(InstInputs, I);
129 if (Entry != InstInputs.end()) {
130 InstInputs.erase(Entry);
131 return;
132 }
133
134 assert(!isa<PHINode>(I) && "Error, removing something that isn't an input");
135
136 // Otherwise, it must have instruction inputs itself. Zap them recursively.
137 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
138 if (Instruction *Op = dyn_cast<Instruction>(I->getOperand(i)))
139 RemoveInstInputs(Op, InstInputs);
140 }
141 }
142
PHITranslateSubExpr(Value * V,BasicBlock * CurBB,BasicBlock * PredBB,const DominatorTree * DT)143 Value *PHITransAddr::PHITranslateSubExpr(Value *V, BasicBlock *CurBB,
144 BasicBlock *PredBB,
145 const DominatorTree *DT) {
146 // If this is a non-instruction value, it can't require PHI translation.
147 Instruction *Inst = dyn_cast<Instruction>(V);
148 if (!Inst) return V;
149
150 // Determine whether 'Inst' is an input to our PHI translatable expression.
151 bool isInput = is_contained(InstInputs, Inst);
152
153 // Handle inputs instructions if needed.
154 if (isInput) {
155 if (Inst->getParent() != CurBB) {
156 // If it is an input defined in a different block, then it remains an
157 // input.
158 return Inst;
159 }
160
161 // If 'Inst' is defined in this block and is an input that needs to be phi
162 // translated, we need to incorporate the value into the expression or fail.
163
164 // In either case, the instruction itself isn't an input any longer.
165 InstInputs.erase(find(InstInputs, Inst));
166
167 // If this is a PHI, go ahead and translate it.
168 if (PHINode *PN = dyn_cast<PHINode>(Inst))
169 return AddAsInput(PN->getIncomingValueForBlock(PredBB));
170
171 // If this is a non-phi value, and it is analyzable, we can incorporate it
172 // into the expression by making all instruction operands be inputs.
173 if (!CanPHITrans(Inst))
174 return nullptr;
175
176 // All instruction operands are now inputs (and of course, they may also be
177 // defined in this block, so they may need to be phi translated themselves.
178 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
179 if (Instruction *Op = dyn_cast<Instruction>(Inst->getOperand(i)))
180 InstInputs.push_back(Op);
181 }
182
183 // Ok, it must be an intermediate result (either because it started that way
184 // or because we just incorporated it into the expression). See if its
185 // operands need to be phi translated, and if so, reconstruct it.
186
187 if (CastInst *Cast = dyn_cast<CastInst>(Inst)) {
188 if (!isSafeToSpeculativelyExecute(Cast)) return nullptr;
189 Value *PHIIn = PHITranslateSubExpr(Cast->getOperand(0), CurBB, PredBB, DT);
190 if (!PHIIn) return nullptr;
191 if (PHIIn == Cast->getOperand(0))
192 return Cast;
193
194 // Find an available version of this cast.
195
196 // Constants are trivial to find.
197 if (Constant *C = dyn_cast<Constant>(PHIIn))
198 return AddAsInput(ConstantExpr::getCast(Cast->getOpcode(),
199 C, Cast->getType()));
200
201 // Otherwise we have to see if a casted version of the incoming pointer
202 // is available. If so, we can use it, otherwise we have to fail.
203 for (User *U : PHIIn->users()) {
204 if (CastInst *CastI = dyn_cast<CastInst>(U))
205 if (CastI->getOpcode() == Cast->getOpcode() &&
206 CastI->getType() == Cast->getType() &&
207 (!DT || DT->dominates(CastI->getParent(), PredBB)))
208 return CastI;
209 }
210 return nullptr;
211 }
212
213 // Handle getelementptr with at least one PHI translatable operand.
214 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Inst)) {
215 SmallVector<Value*, 8> GEPOps;
216 bool AnyChanged = false;
217 for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) {
218 Value *GEPOp = PHITranslateSubExpr(GEP->getOperand(i), CurBB, PredBB, DT);
219 if (!GEPOp) return nullptr;
220
221 AnyChanged |= GEPOp != GEP->getOperand(i);
222 GEPOps.push_back(GEPOp);
223 }
224
225 if (!AnyChanged)
226 return GEP;
227
228 // Simplify the GEP to handle 'gep x, 0' -> x etc.
229 if (Value *V = simplifyGEPInst(GEP->getSourceElementType(), GEPOps[0],
230 ArrayRef<Value *>(GEPOps).slice(1),
231 GEP->isInBounds(), {DL, TLI, DT, AC})) {
232 for (unsigned i = 0, e = GEPOps.size(); i != e; ++i)
233 RemoveInstInputs(GEPOps[i], InstInputs);
234
235 return AddAsInput(V);
236 }
237
238 // Scan to see if we have this GEP available.
239 Value *APHIOp = GEPOps[0];
240 for (User *U : APHIOp->users()) {
241 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U))
242 if (GEPI->getType() == GEP->getType() &&
243 GEPI->getSourceElementType() == GEP->getSourceElementType() &&
244 GEPI->getNumOperands() == GEPOps.size() &&
245 GEPI->getParent()->getParent() == CurBB->getParent() &&
246 (!DT || DT->dominates(GEPI->getParent(), PredBB))) {
247 if (std::equal(GEPOps.begin(), GEPOps.end(), GEPI->op_begin()))
248 return GEPI;
249 }
250 }
251 return nullptr;
252 }
253
254 // Handle add with a constant RHS.
255 if (Inst->getOpcode() == Instruction::Add &&
256 isa<ConstantInt>(Inst->getOperand(1))) {
257 // PHI translate the LHS.
258 Constant *RHS = cast<ConstantInt>(Inst->getOperand(1));
259 bool isNSW = cast<BinaryOperator>(Inst)->hasNoSignedWrap();
260 bool isNUW = cast<BinaryOperator>(Inst)->hasNoUnsignedWrap();
261
262 Value *LHS = PHITranslateSubExpr(Inst->getOperand(0), CurBB, PredBB, DT);
263 if (!LHS) return nullptr;
264
265 // If the PHI translated LHS is an add of a constant, fold the immediates.
266 if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(LHS))
267 if (BOp->getOpcode() == Instruction::Add)
268 if (ConstantInt *CI = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
269 LHS = BOp->getOperand(0);
270 RHS = ConstantExpr::getAdd(RHS, CI);
271 isNSW = isNUW = false;
272
273 // If the old 'LHS' was an input, add the new 'LHS' as an input.
274 if (is_contained(InstInputs, BOp)) {
275 RemoveInstInputs(BOp, InstInputs);
276 AddAsInput(LHS);
277 }
278 }
279
280 // See if the add simplifies away.
281 if (Value *Res = simplifyAddInst(LHS, RHS, isNSW, isNUW, {DL, TLI, DT, AC})) {
282 // If we simplified the operands, the LHS is no longer an input, but Res
283 // is.
284 RemoveInstInputs(LHS, InstInputs);
285 return AddAsInput(Res);
286 }
287
288 // If we didn't modify the add, just return it.
289 if (LHS == Inst->getOperand(0) && RHS == Inst->getOperand(1))
290 return Inst;
291
292 // Otherwise, see if we have this add available somewhere.
293 for (User *U : LHS->users()) {
294 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U))
295 if (BO->getOpcode() == Instruction::Add &&
296 BO->getOperand(0) == LHS && BO->getOperand(1) == RHS &&
297 BO->getParent()->getParent() == CurBB->getParent() &&
298 (!DT || DT->dominates(BO->getParent(), PredBB)))
299 return BO;
300 }
301
302 return nullptr;
303 }
304
305 // Otherwise, we failed.
306 return nullptr;
307 }
308
309
310 /// PHITranslateValue - PHI translate the current address up the CFG from
311 /// CurBB to Pred, updating our state to reflect any needed changes. If
312 /// 'MustDominate' is true, the translated value must dominate
313 /// PredBB. This returns true on failure and sets Addr to null.
PHITranslateValue(BasicBlock * CurBB,BasicBlock * PredBB,const DominatorTree * DT,bool MustDominate)314 bool PHITransAddr::PHITranslateValue(BasicBlock *CurBB, BasicBlock *PredBB,
315 const DominatorTree *DT,
316 bool MustDominate) {
317 assert(DT || !MustDominate);
318 assert(Verify() && "Invalid PHITransAddr!");
319 if (DT && DT->isReachableFromEntry(PredBB))
320 Addr = PHITranslateSubExpr(Addr, CurBB, PredBB, DT);
321 else
322 Addr = nullptr;
323 assert(Verify() && "Invalid PHITransAddr!");
324
325 if (MustDominate)
326 // Make sure the value is live in the predecessor.
327 if (Instruction *Inst = dyn_cast_or_null<Instruction>(Addr))
328 if (!DT->dominates(Inst->getParent(), PredBB))
329 Addr = nullptr;
330
331 return Addr == nullptr;
332 }
333
334 /// PHITranslateWithInsertion - PHI translate this value into the specified
335 /// predecessor block, inserting a computation of the value if it is
336 /// unavailable.
337 ///
338 /// All newly created instructions are added to the NewInsts list. This
339 /// returns null on failure.
340 ///
341 Value *PHITransAddr::
PHITranslateWithInsertion(BasicBlock * CurBB,BasicBlock * PredBB,const DominatorTree & DT,SmallVectorImpl<Instruction * > & NewInsts)342 PHITranslateWithInsertion(BasicBlock *CurBB, BasicBlock *PredBB,
343 const DominatorTree &DT,
344 SmallVectorImpl<Instruction*> &NewInsts) {
345 unsigned NISize = NewInsts.size();
346
347 // Attempt to PHI translate with insertion.
348 Addr = InsertPHITranslatedSubExpr(Addr, CurBB, PredBB, DT, NewInsts);
349
350 // If successful, return the new value.
351 if (Addr) return Addr;
352
353 // If not, destroy any intermediate instructions inserted.
354 while (NewInsts.size() != NISize)
355 NewInsts.pop_back_val()->eraseFromParent();
356 return nullptr;
357 }
358
359
360 /// InsertPHITranslatedPointer - Insert a computation of the PHI translated
361 /// version of 'V' for the edge PredBB->CurBB into the end of the PredBB
362 /// block. All newly created instructions are added to the NewInsts list.
363 /// This returns null on failure.
364 ///
365 Value *PHITransAddr::
InsertPHITranslatedSubExpr(Value * InVal,BasicBlock * CurBB,BasicBlock * PredBB,const DominatorTree & DT,SmallVectorImpl<Instruction * > & NewInsts)366 InsertPHITranslatedSubExpr(Value *InVal, BasicBlock *CurBB,
367 BasicBlock *PredBB, const DominatorTree &DT,
368 SmallVectorImpl<Instruction*> &NewInsts) {
369 // See if we have a version of this value already available and dominating
370 // PredBB. If so, there is no need to insert a new instance of it.
371 PHITransAddr Tmp(InVal, DL, AC);
372 if (!Tmp.PHITranslateValue(CurBB, PredBB, &DT, /*MustDominate=*/true))
373 return Tmp.getAddr();
374
375 // We don't need to PHI translate values which aren't instructions.
376 auto *Inst = dyn_cast<Instruction>(InVal);
377 if (!Inst)
378 return nullptr;
379
380 // Handle cast of PHI translatable value.
381 if (CastInst *Cast = dyn_cast<CastInst>(Inst)) {
382 if (!isSafeToSpeculativelyExecute(Cast)) return nullptr;
383 Value *OpVal = InsertPHITranslatedSubExpr(Cast->getOperand(0),
384 CurBB, PredBB, DT, NewInsts);
385 if (!OpVal) return nullptr;
386
387 // Otherwise insert a cast at the end of PredBB.
388 CastInst *New = CastInst::Create(Cast->getOpcode(), OpVal, InVal->getType(),
389 InVal->getName() + ".phi.trans.insert",
390 PredBB->getTerminator());
391 New->setDebugLoc(Inst->getDebugLoc());
392 NewInsts.push_back(New);
393 return New;
394 }
395
396 // Handle getelementptr with at least one PHI operand.
397 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Inst)) {
398 SmallVector<Value*, 8> GEPOps;
399 BasicBlock *CurBB = GEP->getParent();
400 for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) {
401 Value *OpVal = InsertPHITranslatedSubExpr(GEP->getOperand(i),
402 CurBB, PredBB, DT, NewInsts);
403 if (!OpVal) return nullptr;
404 GEPOps.push_back(OpVal);
405 }
406
407 GetElementPtrInst *Result = GetElementPtrInst::Create(
408 GEP->getSourceElementType(), GEPOps[0], ArrayRef(GEPOps).slice(1),
409 InVal->getName() + ".phi.trans.insert", PredBB->getTerminator());
410 Result->setDebugLoc(Inst->getDebugLoc());
411 Result->setIsInBounds(GEP->isInBounds());
412 NewInsts.push_back(Result);
413 return Result;
414 }
415
416 // Handle add with a constant RHS.
417 if (EnableAddPhiTranslation && Inst->getOpcode() == Instruction::Add &&
418 isa<ConstantInt>(Inst->getOperand(1))) {
419
420 // FIXME: This code works, but it is unclear that we actually want to insert
421 // a big chain of computation in order to make a value available in a block.
422 // This needs to be evaluated carefully to consider its cost trade offs.
423
424 // PHI translate the LHS.
425 Value *OpVal = InsertPHITranslatedSubExpr(Inst->getOperand(0),
426 CurBB, PredBB, DT, NewInsts);
427 if (OpVal == nullptr)
428 return nullptr;
429
430 BinaryOperator *Res = BinaryOperator::CreateAdd(OpVal, Inst->getOperand(1),
431 InVal->getName()+".phi.trans.insert",
432 PredBB->getTerminator());
433 Res->setHasNoSignedWrap(cast<BinaryOperator>(Inst)->hasNoSignedWrap());
434 Res->setHasNoUnsignedWrap(cast<BinaryOperator>(Inst)->hasNoUnsignedWrap());
435 NewInsts.push_back(Res);
436 return Res;
437 }
438
439 return nullptr;
440 }
441