1 //===- lib/MC/WasmObjectWriter.cpp - Wasm File Writer ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements Wasm object file writer information.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "llvm/ADT/STLExtras.h"
14 #include "llvm/BinaryFormat/Wasm.h"
15 #include "llvm/BinaryFormat/WasmTraits.h"
16 #include "llvm/Config/llvm-config.h"
17 #include "llvm/MC/MCAsmBackend.h"
18 #include "llvm/MC/MCAsmLayout.h"
19 #include "llvm/MC/MCAssembler.h"
20 #include "llvm/MC/MCContext.h"
21 #include "llvm/MC/MCExpr.h"
22 #include "llvm/MC/MCFixupKindInfo.h"
23 #include "llvm/MC/MCObjectWriter.h"
24 #include "llvm/MC/MCSectionWasm.h"
25 #include "llvm/MC/MCSymbolWasm.h"
26 #include "llvm/MC/MCValue.h"
27 #include "llvm/MC/MCWasmObjectWriter.h"
28 #include "llvm/Support/Casting.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/Support/EndianStream.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Support/LEB128.h"
33 #include <vector>
34
35 using namespace llvm;
36
37 #define DEBUG_TYPE "mc"
38
39 namespace {
40
41 // When we create the indirect function table we start at 1, so that there is
42 // and empty slot at 0 and therefore calling a null function pointer will trap.
43 static const uint32_t InitialTableOffset = 1;
44
45 // For patching purposes, we need to remember where each section starts, both
46 // for patching up the section size field, and for patching up references to
47 // locations within the section.
48 struct SectionBookkeeping {
49 // Where the size of the section is written.
50 uint64_t SizeOffset;
51 // Where the section header ends (without custom section name).
52 uint64_t PayloadOffset;
53 // Where the contents of the section starts.
54 uint64_t ContentsOffset;
55 uint32_t Index;
56 };
57
58 // A wasm data segment. A wasm binary contains only a single data section
59 // but that can contain many segments, each with their own virtual location
60 // in memory. Each MCSection data created by llvm is modeled as its own
61 // wasm data segment.
62 struct WasmDataSegment {
63 MCSectionWasm *Section;
64 StringRef Name;
65 uint32_t InitFlags;
66 uint64_t Offset;
67 uint32_t Alignment;
68 uint32_t LinkingFlags;
69 SmallVector<char, 4> Data;
70 };
71
72 // A wasm function to be written into the function section.
73 struct WasmFunction {
74 uint32_t SigIndex;
75 MCSection *Section;
76 };
77
78 // A wasm global to be written into the global section.
79 struct WasmGlobal {
80 wasm::WasmGlobalType Type;
81 uint64_t InitialValue;
82 };
83
84 // Information about a single item which is part of a COMDAT. For each data
85 // segment or function which is in the COMDAT, there is a corresponding
86 // WasmComdatEntry.
87 struct WasmComdatEntry {
88 unsigned Kind;
89 uint32_t Index;
90 };
91
92 // Information about a single relocation.
93 struct WasmRelocationEntry {
94 uint64_t Offset; // Where is the relocation.
95 const MCSymbolWasm *Symbol; // The symbol to relocate with.
96 int64_t Addend; // A value to add to the symbol.
97 unsigned Type; // The type of the relocation.
98 const MCSectionWasm *FixupSection; // The section the relocation is targeting.
99
WasmRelocationEntry__anondaddfa680111::WasmRelocationEntry100 WasmRelocationEntry(uint64_t Offset, const MCSymbolWasm *Symbol,
101 int64_t Addend, unsigned Type,
102 const MCSectionWasm *FixupSection)
103 : Offset(Offset), Symbol(Symbol), Addend(Addend), Type(Type),
104 FixupSection(FixupSection) {}
105
hasAddend__anondaddfa680111::WasmRelocationEntry106 bool hasAddend() const { return wasm::relocTypeHasAddend(Type); }
107
print__anondaddfa680111::WasmRelocationEntry108 void print(raw_ostream &Out) const {
109 Out << wasm::relocTypetoString(Type) << " Off=" << Offset
110 << ", Sym=" << *Symbol << ", Addend=" << Addend
111 << ", FixupSection=" << FixupSection->getName();
112 }
113
114 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump__anondaddfa680111::WasmRelocationEntry115 LLVM_DUMP_METHOD void dump() const { print(dbgs()); }
116 #endif
117 };
118
119 static const uint32_t InvalidIndex = -1;
120
121 struct WasmCustomSection {
122
123 StringRef Name;
124 MCSectionWasm *Section;
125
126 uint32_t OutputContentsOffset = 0;
127 uint32_t OutputIndex = InvalidIndex;
128
WasmCustomSection__anondaddfa680111::WasmCustomSection129 WasmCustomSection(StringRef Name, MCSectionWasm *Section)
130 : Name(Name), Section(Section) {}
131 };
132
133 #if !defined(NDEBUG)
operator <<(raw_ostream & OS,const WasmRelocationEntry & Rel)134 raw_ostream &operator<<(raw_ostream &OS, const WasmRelocationEntry &Rel) {
135 Rel.print(OS);
136 return OS;
137 }
138 #endif
139
140 // Write Value as an (unsigned) LEB value at offset Offset in Stream, padded
141 // to allow patching.
142 template <typename T, int W>
writePatchableULEB(raw_pwrite_stream & Stream,T Value,uint64_t Offset)143 void writePatchableULEB(raw_pwrite_stream &Stream, T Value, uint64_t Offset) {
144 uint8_t Buffer[W];
145 unsigned SizeLen = encodeULEB128(Value, Buffer, W);
146 assert(SizeLen == W);
147 Stream.pwrite((char *)Buffer, SizeLen, Offset);
148 }
149
150 // Write Value as an signed LEB value at offset Offset in Stream, padded
151 // to allow patching.
152 template <typename T, int W>
writePatchableSLEB(raw_pwrite_stream & Stream,T Value,uint64_t Offset)153 void writePatchableSLEB(raw_pwrite_stream &Stream, T Value, uint64_t Offset) {
154 uint8_t Buffer[W];
155 unsigned SizeLen = encodeSLEB128(Value, Buffer, W);
156 assert(SizeLen == W);
157 Stream.pwrite((char *)Buffer, SizeLen, Offset);
158 }
159
writePatchableU32(raw_pwrite_stream & Stream,uint32_t Value,uint64_t Offset)160 static void writePatchableU32(raw_pwrite_stream &Stream, uint32_t Value,
161 uint64_t Offset) {
162 writePatchableULEB<uint32_t, 5>(Stream, Value, Offset);
163 }
164
writePatchableS32(raw_pwrite_stream & Stream,int32_t Value,uint64_t Offset)165 static void writePatchableS32(raw_pwrite_stream &Stream, int32_t Value,
166 uint64_t Offset) {
167 writePatchableSLEB<int32_t, 5>(Stream, Value, Offset);
168 }
169
writePatchableU64(raw_pwrite_stream & Stream,uint64_t Value,uint64_t Offset)170 static void writePatchableU64(raw_pwrite_stream &Stream, uint64_t Value,
171 uint64_t Offset) {
172 writePatchableSLEB<uint64_t, 10>(Stream, Value, Offset);
173 }
174
writePatchableS64(raw_pwrite_stream & Stream,int64_t Value,uint64_t Offset)175 static void writePatchableS64(raw_pwrite_stream &Stream, int64_t Value,
176 uint64_t Offset) {
177 writePatchableSLEB<int64_t, 10>(Stream, Value, Offset);
178 }
179
180 // Write Value as a plain integer value at offset Offset in Stream.
patchI32(raw_pwrite_stream & Stream,uint32_t Value,uint64_t Offset)181 static void patchI32(raw_pwrite_stream &Stream, uint32_t Value,
182 uint64_t Offset) {
183 uint8_t Buffer[4];
184 support::endian::write32le(Buffer, Value);
185 Stream.pwrite((char *)Buffer, sizeof(Buffer), Offset);
186 }
187
patchI64(raw_pwrite_stream & Stream,uint64_t Value,uint64_t Offset)188 static void patchI64(raw_pwrite_stream &Stream, uint64_t Value,
189 uint64_t Offset) {
190 uint8_t Buffer[8];
191 support::endian::write64le(Buffer, Value);
192 Stream.pwrite((char *)Buffer, sizeof(Buffer), Offset);
193 }
194
isDwoSection(const MCSection & Sec)195 bool isDwoSection(const MCSection &Sec) {
196 return Sec.getName().endswith(".dwo");
197 }
198
199 class WasmObjectWriter : public MCObjectWriter {
200 support::endian::Writer *W;
201
202 /// The target specific Wasm writer instance.
203 std::unique_ptr<MCWasmObjectTargetWriter> TargetObjectWriter;
204
205 // Relocations for fixing up references in the code section.
206 std::vector<WasmRelocationEntry> CodeRelocations;
207 // Relocations for fixing up references in the data section.
208 std::vector<WasmRelocationEntry> DataRelocations;
209
210 // Index values to use for fixing up call_indirect type indices.
211 // Maps function symbols to the index of the type of the function
212 DenseMap<const MCSymbolWasm *, uint32_t> TypeIndices;
213 // Maps function symbols to the table element index space. Used
214 // for TABLE_INDEX relocation types (i.e. address taken functions).
215 DenseMap<const MCSymbolWasm *, uint32_t> TableIndices;
216 // Maps function/global/table symbols to the
217 // function/global/table/tag/section index space.
218 DenseMap<const MCSymbolWasm *, uint32_t> WasmIndices;
219 DenseMap<const MCSymbolWasm *, uint32_t> GOTIndices;
220 // Maps data symbols to the Wasm segment and offset/size with the segment.
221 DenseMap<const MCSymbolWasm *, wasm::WasmDataReference> DataLocations;
222
223 // Stores output data (index, relocations, content offset) for custom
224 // section.
225 std::vector<WasmCustomSection> CustomSections;
226 std::unique_ptr<WasmCustomSection> ProducersSection;
227 std::unique_ptr<WasmCustomSection> TargetFeaturesSection;
228 // Relocations for fixing up references in the custom sections.
229 DenseMap<const MCSectionWasm *, std::vector<WasmRelocationEntry>>
230 CustomSectionsRelocations;
231
232 // Map from section to defining function symbol.
233 DenseMap<const MCSection *, const MCSymbol *> SectionFunctions;
234
235 DenseMap<wasm::WasmSignature, uint32_t> SignatureIndices;
236 SmallVector<wasm::WasmSignature, 4> Signatures;
237 SmallVector<WasmDataSegment, 4> DataSegments;
238 unsigned NumFunctionImports = 0;
239 unsigned NumGlobalImports = 0;
240 unsigned NumTableImports = 0;
241 unsigned NumTagImports = 0;
242 uint32_t SectionCount = 0;
243
244 enum class DwoMode {
245 AllSections,
246 NonDwoOnly,
247 DwoOnly,
248 };
249 bool IsSplitDwarf = false;
250 raw_pwrite_stream *OS = nullptr;
251 raw_pwrite_stream *DwoOS = nullptr;
252
253 // TargetObjectWriter wranppers.
is64Bit() const254 bool is64Bit() const { return TargetObjectWriter->is64Bit(); }
isEmscripten() const255 bool isEmscripten() const { return TargetObjectWriter->isEmscripten(); }
256
257 void startSection(SectionBookkeeping &Section, unsigned SectionId);
258 void startCustomSection(SectionBookkeeping &Section, StringRef Name);
259 void endSection(SectionBookkeeping &Section);
260
261 public:
WasmObjectWriter(std::unique_ptr<MCWasmObjectTargetWriter> MOTW,raw_pwrite_stream & OS_)262 WasmObjectWriter(std::unique_ptr<MCWasmObjectTargetWriter> MOTW,
263 raw_pwrite_stream &OS_)
264 : TargetObjectWriter(std::move(MOTW)), OS(&OS_) {}
265
WasmObjectWriter(std::unique_ptr<MCWasmObjectTargetWriter> MOTW,raw_pwrite_stream & OS_,raw_pwrite_stream & DwoOS_)266 WasmObjectWriter(std::unique_ptr<MCWasmObjectTargetWriter> MOTW,
267 raw_pwrite_stream &OS_, raw_pwrite_stream &DwoOS_)
268 : TargetObjectWriter(std::move(MOTW)), IsSplitDwarf(true), OS(&OS_),
269 DwoOS(&DwoOS_) {}
270
271 private:
reset()272 void reset() override {
273 CodeRelocations.clear();
274 DataRelocations.clear();
275 TypeIndices.clear();
276 WasmIndices.clear();
277 GOTIndices.clear();
278 TableIndices.clear();
279 DataLocations.clear();
280 CustomSections.clear();
281 ProducersSection.reset();
282 TargetFeaturesSection.reset();
283 CustomSectionsRelocations.clear();
284 SignatureIndices.clear();
285 Signatures.clear();
286 DataSegments.clear();
287 SectionFunctions.clear();
288 NumFunctionImports = 0;
289 NumGlobalImports = 0;
290 NumTableImports = 0;
291 MCObjectWriter::reset();
292 }
293
294 void writeHeader(const MCAssembler &Asm);
295
296 void recordRelocation(MCAssembler &Asm, const MCAsmLayout &Layout,
297 const MCFragment *Fragment, const MCFixup &Fixup,
298 MCValue Target, uint64_t &FixedValue) override;
299
300 void executePostLayoutBinding(MCAssembler &Asm,
301 const MCAsmLayout &Layout) override;
302 void prepareImports(SmallVectorImpl<wasm::WasmImport> &Imports,
303 MCAssembler &Asm, const MCAsmLayout &Layout);
304 uint64_t writeObject(MCAssembler &Asm, const MCAsmLayout &Layout) override;
305
306 uint64_t writeOneObject(MCAssembler &Asm, const MCAsmLayout &Layout,
307 DwoMode Mode);
308
writeString(const StringRef Str)309 void writeString(const StringRef Str) {
310 encodeULEB128(Str.size(), W->OS);
311 W->OS << Str;
312 }
313
314 void writeStringWithAlignment(const StringRef Str, unsigned Alignment);
315
writeI32(int32_t val)316 void writeI32(int32_t val) {
317 char Buffer[4];
318 support::endian::write32le(Buffer, val);
319 W->OS.write(Buffer, sizeof(Buffer));
320 }
321
writeI64(int64_t val)322 void writeI64(int64_t val) {
323 char Buffer[8];
324 support::endian::write64le(Buffer, val);
325 W->OS.write(Buffer, sizeof(Buffer));
326 }
327
writeValueType(wasm::ValType Ty)328 void writeValueType(wasm::ValType Ty) { W->OS << static_cast<char>(Ty); }
329
330 void writeTypeSection(ArrayRef<wasm::WasmSignature> Signatures);
331 void writeImportSection(ArrayRef<wasm::WasmImport> Imports, uint64_t DataSize,
332 uint32_t NumElements);
333 void writeFunctionSection(ArrayRef<WasmFunction> Functions);
334 void writeExportSection(ArrayRef<wasm::WasmExport> Exports);
335 void writeElemSection(const MCSymbolWasm *IndirectFunctionTable,
336 ArrayRef<uint32_t> TableElems);
337 void writeDataCountSection();
338 uint32_t writeCodeSection(const MCAssembler &Asm, const MCAsmLayout &Layout,
339 ArrayRef<WasmFunction> Functions);
340 uint32_t writeDataSection(const MCAsmLayout &Layout);
341 void writeTagSection(ArrayRef<uint32_t> TagTypes);
342 void writeGlobalSection(ArrayRef<wasm::WasmGlobal> Globals);
343 void writeTableSection(ArrayRef<wasm::WasmTable> Tables);
344 void writeRelocSection(uint32_t SectionIndex, StringRef Name,
345 std::vector<WasmRelocationEntry> &Relocations);
346 void writeLinkingMetaDataSection(
347 ArrayRef<wasm::WasmSymbolInfo> SymbolInfos,
348 ArrayRef<std::pair<uint16_t, uint32_t>> InitFuncs,
349 const std::map<StringRef, std::vector<WasmComdatEntry>> &Comdats);
350 void writeCustomSection(WasmCustomSection &CustomSection,
351 const MCAssembler &Asm, const MCAsmLayout &Layout);
352 void writeCustomRelocSections();
353
354 uint64_t getProvisionalValue(const WasmRelocationEntry &RelEntry,
355 const MCAsmLayout &Layout);
356 void applyRelocations(ArrayRef<WasmRelocationEntry> Relocations,
357 uint64_t ContentsOffset, const MCAsmLayout &Layout);
358
359 uint32_t getRelocationIndexValue(const WasmRelocationEntry &RelEntry);
360 uint32_t getFunctionType(const MCSymbolWasm &Symbol);
361 uint32_t getTagType(const MCSymbolWasm &Symbol);
362 void registerFunctionType(const MCSymbolWasm &Symbol);
363 void registerTagType(const MCSymbolWasm &Symbol);
364 };
365
366 } // end anonymous namespace
367
368 // Write out a section header and a patchable section size field.
startSection(SectionBookkeeping & Section,unsigned SectionId)369 void WasmObjectWriter::startSection(SectionBookkeeping &Section,
370 unsigned SectionId) {
371 LLVM_DEBUG(dbgs() << "startSection " << SectionId << "\n");
372 W->OS << char(SectionId);
373
374 Section.SizeOffset = W->OS.tell();
375
376 // The section size. We don't know the size yet, so reserve enough space
377 // for any 32-bit value; we'll patch it later.
378 encodeULEB128(0, W->OS, 5);
379
380 // The position where the section starts, for measuring its size.
381 Section.ContentsOffset = W->OS.tell();
382 Section.PayloadOffset = W->OS.tell();
383 Section.Index = SectionCount++;
384 }
385
386 // Write a string with extra paddings for trailing alignment
387 // TODO: support alignment at asm and llvm level?
writeStringWithAlignment(const StringRef Str,unsigned Alignment)388 void WasmObjectWriter::writeStringWithAlignment(const StringRef Str,
389 unsigned Alignment) {
390
391 // Calculate the encoded size of str length and add pads based on it and
392 // alignment.
393 raw_null_ostream NullOS;
394 uint64_t StrSizeLength = encodeULEB128(Str.size(), NullOS);
395 uint64_t Offset = W->OS.tell() + StrSizeLength + Str.size();
396 uint64_t Paddings = offsetToAlignment(Offset, Align(Alignment));
397 Offset += Paddings;
398
399 // LEB128 greater than 5 bytes is invalid
400 assert((StrSizeLength + Paddings) <= 5 && "too long string to align");
401
402 encodeSLEB128(Str.size(), W->OS, StrSizeLength + Paddings);
403 W->OS << Str;
404
405 assert(W->OS.tell() == Offset && "invalid padding");
406 }
407
startCustomSection(SectionBookkeeping & Section,StringRef Name)408 void WasmObjectWriter::startCustomSection(SectionBookkeeping &Section,
409 StringRef Name) {
410 LLVM_DEBUG(dbgs() << "startCustomSection " << Name << "\n");
411 startSection(Section, wasm::WASM_SEC_CUSTOM);
412
413 // The position where the section header ends, for measuring its size.
414 Section.PayloadOffset = W->OS.tell();
415
416 // Custom sections in wasm also have a string identifier.
417 if (Name != "__clangast") {
418 writeString(Name);
419 } else {
420 // The on-disk hashtable in clangast needs to be aligned by 4 bytes.
421 writeStringWithAlignment(Name, 4);
422 }
423
424 // The position where the custom section starts.
425 Section.ContentsOffset = W->OS.tell();
426 }
427
428 // Now that the section is complete and we know how big it is, patch up the
429 // section size field at the start of the section.
endSection(SectionBookkeeping & Section)430 void WasmObjectWriter::endSection(SectionBookkeeping &Section) {
431 uint64_t Size = W->OS.tell();
432 // /dev/null doesn't support seek/tell and can report offset of 0.
433 // Simply skip this patching in that case.
434 if (!Size)
435 return;
436
437 Size -= Section.PayloadOffset;
438 if (uint32_t(Size) != Size)
439 report_fatal_error("section size does not fit in a uint32_t");
440
441 LLVM_DEBUG(dbgs() << "endSection size=" << Size << "\n");
442
443 // Write the final section size to the payload_len field, which follows
444 // the section id byte.
445 writePatchableU32(static_cast<raw_pwrite_stream &>(W->OS), Size,
446 Section.SizeOffset);
447 }
448
449 // Emit the Wasm header.
writeHeader(const MCAssembler & Asm)450 void WasmObjectWriter::writeHeader(const MCAssembler &Asm) {
451 W->OS.write(wasm::WasmMagic, sizeof(wasm::WasmMagic));
452 W->write<uint32_t>(wasm::WasmVersion);
453 }
454
executePostLayoutBinding(MCAssembler & Asm,const MCAsmLayout & Layout)455 void WasmObjectWriter::executePostLayoutBinding(MCAssembler &Asm,
456 const MCAsmLayout &Layout) {
457 // Some compilation units require the indirect function table to be present
458 // but don't explicitly reference it. This is the case for call_indirect
459 // without the reference-types feature, and also function bitcasts in all
460 // cases. In those cases the __indirect_function_table has the
461 // WASM_SYMBOL_NO_STRIP attribute. Here we make sure this symbol makes it to
462 // the assembler, if needed.
463 if (auto *Sym = Asm.getContext().lookupSymbol("__indirect_function_table")) {
464 const auto *WasmSym = static_cast<const MCSymbolWasm *>(Sym);
465 if (WasmSym->isNoStrip())
466 Asm.registerSymbol(*Sym);
467 }
468
469 // Build a map of sections to the function that defines them, for use
470 // in recordRelocation.
471 for (const MCSymbol &S : Asm.symbols()) {
472 const auto &WS = static_cast<const MCSymbolWasm &>(S);
473 if (WS.isDefined() && WS.isFunction() && !WS.isVariable()) {
474 const auto &Sec = static_cast<const MCSectionWasm &>(S.getSection());
475 auto Pair = SectionFunctions.insert(std::make_pair(&Sec, &S));
476 if (!Pair.second)
477 report_fatal_error("section already has a defining function: " +
478 Sec.getName());
479 }
480 }
481 }
482
recordRelocation(MCAssembler & Asm,const MCAsmLayout & Layout,const MCFragment * Fragment,const MCFixup & Fixup,MCValue Target,uint64_t & FixedValue)483 void WasmObjectWriter::recordRelocation(MCAssembler &Asm,
484 const MCAsmLayout &Layout,
485 const MCFragment *Fragment,
486 const MCFixup &Fixup, MCValue Target,
487 uint64_t &FixedValue) {
488 // The WebAssembly backend should never generate FKF_IsPCRel fixups
489 assert(!(Asm.getBackend().getFixupKindInfo(Fixup.getKind()).Flags &
490 MCFixupKindInfo::FKF_IsPCRel));
491
492 const auto &FixupSection = cast<MCSectionWasm>(*Fragment->getParent());
493 uint64_t C = Target.getConstant();
494 uint64_t FixupOffset = Layout.getFragmentOffset(Fragment) + Fixup.getOffset();
495 MCContext &Ctx = Asm.getContext();
496 bool IsLocRel = false;
497
498 if (const MCSymbolRefExpr *RefB = Target.getSymB()) {
499
500 const auto &SymB = cast<MCSymbolWasm>(RefB->getSymbol());
501
502 if (FixupSection.getKind().isText()) {
503 Ctx.reportError(Fixup.getLoc(),
504 Twine("symbol '") + SymB.getName() +
505 "' unsupported subtraction expression used in "
506 "relocation in code section.");
507 return;
508 }
509
510 if (SymB.isUndefined()) {
511 Ctx.reportError(Fixup.getLoc(),
512 Twine("symbol '") + SymB.getName() +
513 "' can not be undefined in a subtraction expression");
514 return;
515 }
516 const MCSection &SecB = SymB.getSection();
517 if (&SecB != &FixupSection) {
518 Ctx.reportError(Fixup.getLoc(),
519 Twine("symbol '") + SymB.getName() +
520 "' can not be placed in a different section");
521 return;
522 }
523 IsLocRel = true;
524 C += FixupOffset - Layout.getSymbolOffset(SymB);
525 }
526
527 // We either rejected the fixup or folded B into C at this point.
528 const MCSymbolRefExpr *RefA = Target.getSymA();
529 const auto *SymA = cast<MCSymbolWasm>(&RefA->getSymbol());
530
531 // The .init_array isn't translated as data, so don't do relocations in it.
532 if (FixupSection.getName().startswith(".init_array")) {
533 SymA->setUsedInInitArray();
534 return;
535 }
536
537 if (SymA->isVariable()) {
538 const MCExpr *Expr = SymA->getVariableValue();
539 if (const auto *Inner = dyn_cast<MCSymbolRefExpr>(Expr))
540 if (Inner->getKind() == MCSymbolRefExpr::VK_WEAKREF)
541 llvm_unreachable("weakref used in reloc not yet implemented");
542 }
543
544 // Put any constant offset in an addend. Offsets can be negative, and
545 // LLVM expects wrapping, in contrast to wasm's immediates which can't
546 // be negative and don't wrap.
547 FixedValue = 0;
548
549 unsigned Type =
550 TargetObjectWriter->getRelocType(Target, Fixup, FixupSection, IsLocRel);
551
552 // Absolute offset within a section or a function.
553 // Currently only supported for for metadata sections.
554 // See: test/MC/WebAssembly/blockaddress.ll
555 if ((Type == wasm::R_WASM_FUNCTION_OFFSET_I32 ||
556 Type == wasm::R_WASM_FUNCTION_OFFSET_I64 ||
557 Type == wasm::R_WASM_SECTION_OFFSET_I32) &&
558 SymA->isDefined()) {
559 // SymA can be a temp data symbol that represents a function (in which case
560 // it needs to be replaced by the section symbol), [XXX and it apparently
561 // later gets changed again to a func symbol?] or it can be a real
562 // function symbol, in which case it can be left as-is.
563
564 if (!FixupSection.getKind().isMetadata())
565 report_fatal_error("relocations for function or section offsets are "
566 "only supported in metadata sections");
567
568 const MCSymbol *SectionSymbol = nullptr;
569 const MCSection &SecA = SymA->getSection();
570 if (SecA.getKind().isText()) {
571 auto SecSymIt = SectionFunctions.find(&SecA);
572 if (SecSymIt == SectionFunctions.end())
573 report_fatal_error("section doesn\'t have defining symbol");
574 SectionSymbol = SecSymIt->second;
575 } else {
576 SectionSymbol = SecA.getBeginSymbol();
577 }
578 if (!SectionSymbol)
579 report_fatal_error("section symbol is required for relocation");
580
581 C += Layout.getSymbolOffset(*SymA);
582 SymA = cast<MCSymbolWasm>(SectionSymbol);
583 }
584
585 if (Type == wasm::R_WASM_TABLE_INDEX_REL_SLEB ||
586 Type == wasm::R_WASM_TABLE_INDEX_REL_SLEB64 ||
587 Type == wasm::R_WASM_TABLE_INDEX_SLEB ||
588 Type == wasm::R_WASM_TABLE_INDEX_SLEB64 ||
589 Type == wasm::R_WASM_TABLE_INDEX_I32 ||
590 Type == wasm::R_WASM_TABLE_INDEX_I64) {
591 // TABLE_INDEX relocs implicitly use the default indirect function table.
592 // We require the function table to have already been defined.
593 auto TableName = "__indirect_function_table";
594 MCSymbolWasm *Sym = cast_or_null<MCSymbolWasm>(Ctx.lookupSymbol(TableName));
595 if (!Sym) {
596 report_fatal_error("missing indirect function table symbol");
597 } else {
598 if (!Sym->isFunctionTable())
599 report_fatal_error("__indirect_function_table symbol has wrong type");
600 // Ensure that __indirect_function_table reaches the output.
601 Sym->setNoStrip();
602 Asm.registerSymbol(*Sym);
603 }
604 }
605
606 // Relocation other than R_WASM_TYPE_INDEX_LEB are required to be
607 // against a named symbol.
608 if (Type != wasm::R_WASM_TYPE_INDEX_LEB) {
609 if (SymA->getName().empty())
610 report_fatal_error("relocations against un-named temporaries are not yet "
611 "supported by wasm");
612
613 SymA->setUsedInReloc();
614 }
615
616 switch (RefA->getKind()) {
617 case MCSymbolRefExpr::VK_GOT:
618 case MCSymbolRefExpr::VK_WASM_GOT_TLS:
619 SymA->setUsedInGOT();
620 break;
621 default:
622 break;
623 }
624
625 WasmRelocationEntry Rec(FixupOffset, SymA, C, Type, &FixupSection);
626 LLVM_DEBUG(dbgs() << "WasmReloc: " << Rec << "\n");
627
628 if (FixupSection.isWasmData()) {
629 DataRelocations.push_back(Rec);
630 } else if (FixupSection.getKind().isText()) {
631 CodeRelocations.push_back(Rec);
632 } else if (FixupSection.getKind().isMetadata()) {
633 CustomSectionsRelocations[&FixupSection].push_back(Rec);
634 } else {
635 llvm_unreachable("unexpected section type");
636 }
637 }
638
639 // Compute a value to write into the code at the location covered
640 // by RelEntry. This value isn't used by the static linker; it just serves
641 // to make the object format more readable and more likely to be directly
642 // useable.
643 uint64_t
getProvisionalValue(const WasmRelocationEntry & RelEntry,const MCAsmLayout & Layout)644 WasmObjectWriter::getProvisionalValue(const WasmRelocationEntry &RelEntry,
645 const MCAsmLayout &Layout) {
646 if ((RelEntry.Type == wasm::R_WASM_GLOBAL_INDEX_LEB ||
647 RelEntry.Type == wasm::R_WASM_GLOBAL_INDEX_I32) &&
648 !RelEntry.Symbol->isGlobal()) {
649 assert(GOTIndices.count(RelEntry.Symbol) > 0 && "symbol not found in GOT index space");
650 return GOTIndices[RelEntry.Symbol];
651 }
652
653 switch (RelEntry.Type) {
654 case wasm::R_WASM_TABLE_INDEX_REL_SLEB:
655 case wasm::R_WASM_TABLE_INDEX_REL_SLEB64:
656 case wasm::R_WASM_TABLE_INDEX_SLEB:
657 case wasm::R_WASM_TABLE_INDEX_SLEB64:
658 case wasm::R_WASM_TABLE_INDEX_I32:
659 case wasm::R_WASM_TABLE_INDEX_I64: {
660 // Provisional value is table address of the resolved symbol itself
661 const MCSymbolWasm *Base =
662 cast<MCSymbolWasm>(Layout.getBaseSymbol(*RelEntry.Symbol));
663 assert(Base->isFunction());
664 if (RelEntry.Type == wasm::R_WASM_TABLE_INDEX_REL_SLEB ||
665 RelEntry.Type == wasm::R_WASM_TABLE_INDEX_REL_SLEB64)
666 return TableIndices[Base] - InitialTableOffset;
667 else
668 return TableIndices[Base];
669 }
670 case wasm::R_WASM_TYPE_INDEX_LEB:
671 // Provisional value is same as the index
672 return getRelocationIndexValue(RelEntry);
673 case wasm::R_WASM_FUNCTION_INDEX_LEB:
674 case wasm::R_WASM_GLOBAL_INDEX_LEB:
675 case wasm::R_WASM_GLOBAL_INDEX_I32:
676 case wasm::R_WASM_TAG_INDEX_LEB:
677 case wasm::R_WASM_TABLE_NUMBER_LEB:
678 // Provisional value is function/global/tag Wasm index
679 assert(WasmIndices.count(RelEntry.Symbol) > 0 && "symbol not found in wasm index space");
680 return WasmIndices[RelEntry.Symbol];
681 case wasm::R_WASM_FUNCTION_OFFSET_I32:
682 case wasm::R_WASM_FUNCTION_OFFSET_I64:
683 case wasm::R_WASM_SECTION_OFFSET_I32: {
684 if (!RelEntry.Symbol->isDefined())
685 return 0;
686 const auto &Section =
687 static_cast<const MCSectionWasm &>(RelEntry.Symbol->getSection());
688 return Section.getSectionOffset() + RelEntry.Addend;
689 }
690 case wasm::R_WASM_MEMORY_ADDR_LEB:
691 case wasm::R_WASM_MEMORY_ADDR_LEB64:
692 case wasm::R_WASM_MEMORY_ADDR_SLEB:
693 case wasm::R_WASM_MEMORY_ADDR_SLEB64:
694 case wasm::R_WASM_MEMORY_ADDR_REL_SLEB:
695 case wasm::R_WASM_MEMORY_ADDR_REL_SLEB64:
696 case wasm::R_WASM_MEMORY_ADDR_I32:
697 case wasm::R_WASM_MEMORY_ADDR_I64:
698 case wasm::R_WASM_MEMORY_ADDR_TLS_SLEB:
699 case wasm::R_WASM_MEMORY_ADDR_TLS_SLEB64:
700 case wasm::R_WASM_MEMORY_ADDR_LOCREL_I32: {
701 // Provisional value is address of the global plus the offset
702 // For undefined symbols, use zero
703 if (!RelEntry.Symbol->isDefined())
704 return 0;
705 const wasm::WasmDataReference &SymRef = DataLocations[RelEntry.Symbol];
706 const WasmDataSegment &Segment = DataSegments[SymRef.Segment];
707 // Ignore overflow. LLVM allows address arithmetic to silently wrap.
708 return Segment.Offset + SymRef.Offset + RelEntry.Addend;
709 }
710 default:
711 llvm_unreachable("invalid relocation type");
712 }
713 }
714
addData(SmallVectorImpl<char> & DataBytes,MCSectionWasm & DataSection)715 static void addData(SmallVectorImpl<char> &DataBytes,
716 MCSectionWasm &DataSection) {
717 LLVM_DEBUG(errs() << "addData: " << DataSection.getName() << "\n");
718
719 DataBytes.resize(alignTo(DataBytes.size(), DataSection.getAlign()));
720
721 for (const MCFragment &Frag : DataSection) {
722 if (Frag.hasInstructions())
723 report_fatal_error("only data supported in data sections");
724
725 if (auto *Align = dyn_cast<MCAlignFragment>(&Frag)) {
726 if (Align->getValueSize() != 1)
727 report_fatal_error("only byte values supported for alignment");
728 // If nops are requested, use zeros, as this is the data section.
729 uint8_t Value = Align->hasEmitNops() ? 0 : Align->getValue();
730 uint64_t Size =
731 std::min<uint64_t>(alignTo(DataBytes.size(), Align->getAlignment()),
732 DataBytes.size() + Align->getMaxBytesToEmit());
733 DataBytes.resize(Size, Value);
734 } else if (auto *Fill = dyn_cast<MCFillFragment>(&Frag)) {
735 int64_t NumValues;
736 if (!Fill->getNumValues().evaluateAsAbsolute(NumValues))
737 llvm_unreachable("The fill should be an assembler constant");
738 DataBytes.insert(DataBytes.end(), Fill->getValueSize() * NumValues,
739 Fill->getValue());
740 } else if (auto *LEB = dyn_cast<MCLEBFragment>(&Frag)) {
741 const SmallVectorImpl<char> &Contents = LEB->getContents();
742 llvm::append_range(DataBytes, Contents);
743 } else {
744 const auto &DataFrag = cast<MCDataFragment>(Frag);
745 const SmallVectorImpl<char> &Contents = DataFrag.getContents();
746 llvm::append_range(DataBytes, Contents);
747 }
748 }
749
750 LLVM_DEBUG(dbgs() << "addData -> " << DataBytes.size() << "\n");
751 }
752
753 uint32_t
getRelocationIndexValue(const WasmRelocationEntry & RelEntry)754 WasmObjectWriter::getRelocationIndexValue(const WasmRelocationEntry &RelEntry) {
755 if (RelEntry.Type == wasm::R_WASM_TYPE_INDEX_LEB) {
756 if (!TypeIndices.count(RelEntry.Symbol))
757 report_fatal_error("symbol not found in type index space: " +
758 RelEntry.Symbol->getName());
759 return TypeIndices[RelEntry.Symbol];
760 }
761
762 return RelEntry.Symbol->getIndex();
763 }
764
765 // Apply the portions of the relocation records that we can handle ourselves
766 // directly.
applyRelocations(ArrayRef<WasmRelocationEntry> Relocations,uint64_t ContentsOffset,const MCAsmLayout & Layout)767 void WasmObjectWriter::applyRelocations(
768 ArrayRef<WasmRelocationEntry> Relocations, uint64_t ContentsOffset,
769 const MCAsmLayout &Layout) {
770 auto &Stream = static_cast<raw_pwrite_stream &>(W->OS);
771 for (const WasmRelocationEntry &RelEntry : Relocations) {
772 uint64_t Offset = ContentsOffset +
773 RelEntry.FixupSection->getSectionOffset() +
774 RelEntry.Offset;
775
776 LLVM_DEBUG(dbgs() << "applyRelocation: " << RelEntry << "\n");
777 uint64_t Value = getProvisionalValue(RelEntry, Layout);
778
779 switch (RelEntry.Type) {
780 case wasm::R_WASM_FUNCTION_INDEX_LEB:
781 case wasm::R_WASM_TYPE_INDEX_LEB:
782 case wasm::R_WASM_GLOBAL_INDEX_LEB:
783 case wasm::R_WASM_MEMORY_ADDR_LEB:
784 case wasm::R_WASM_TAG_INDEX_LEB:
785 case wasm::R_WASM_TABLE_NUMBER_LEB:
786 writePatchableU32(Stream, Value, Offset);
787 break;
788 case wasm::R_WASM_MEMORY_ADDR_LEB64:
789 writePatchableU64(Stream, Value, Offset);
790 break;
791 case wasm::R_WASM_TABLE_INDEX_I32:
792 case wasm::R_WASM_MEMORY_ADDR_I32:
793 case wasm::R_WASM_FUNCTION_OFFSET_I32:
794 case wasm::R_WASM_SECTION_OFFSET_I32:
795 case wasm::R_WASM_GLOBAL_INDEX_I32:
796 case wasm::R_WASM_MEMORY_ADDR_LOCREL_I32:
797 patchI32(Stream, Value, Offset);
798 break;
799 case wasm::R_WASM_TABLE_INDEX_I64:
800 case wasm::R_WASM_MEMORY_ADDR_I64:
801 case wasm::R_WASM_FUNCTION_OFFSET_I64:
802 patchI64(Stream, Value, Offset);
803 break;
804 case wasm::R_WASM_TABLE_INDEX_SLEB:
805 case wasm::R_WASM_TABLE_INDEX_REL_SLEB:
806 case wasm::R_WASM_MEMORY_ADDR_SLEB:
807 case wasm::R_WASM_MEMORY_ADDR_REL_SLEB:
808 case wasm::R_WASM_MEMORY_ADDR_TLS_SLEB:
809 writePatchableS32(Stream, Value, Offset);
810 break;
811 case wasm::R_WASM_TABLE_INDEX_SLEB64:
812 case wasm::R_WASM_TABLE_INDEX_REL_SLEB64:
813 case wasm::R_WASM_MEMORY_ADDR_SLEB64:
814 case wasm::R_WASM_MEMORY_ADDR_REL_SLEB64:
815 case wasm::R_WASM_MEMORY_ADDR_TLS_SLEB64:
816 writePatchableS64(Stream, Value, Offset);
817 break;
818 default:
819 llvm_unreachable("invalid relocation type");
820 }
821 }
822 }
823
writeTypeSection(ArrayRef<wasm::WasmSignature> Signatures)824 void WasmObjectWriter::writeTypeSection(
825 ArrayRef<wasm::WasmSignature> Signatures) {
826 if (Signatures.empty())
827 return;
828
829 SectionBookkeeping Section;
830 startSection(Section, wasm::WASM_SEC_TYPE);
831
832 encodeULEB128(Signatures.size(), W->OS);
833
834 for (const wasm::WasmSignature &Sig : Signatures) {
835 W->OS << char(wasm::WASM_TYPE_FUNC);
836 encodeULEB128(Sig.Params.size(), W->OS);
837 for (wasm::ValType Ty : Sig.Params)
838 writeValueType(Ty);
839 encodeULEB128(Sig.Returns.size(), W->OS);
840 for (wasm::ValType Ty : Sig.Returns)
841 writeValueType(Ty);
842 }
843
844 endSection(Section);
845 }
846
writeImportSection(ArrayRef<wasm::WasmImport> Imports,uint64_t DataSize,uint32_t NumElements)847 void WasmObjectWriter::writeImportSection(ArrayRef<wasm::WasmImport> Imports,
848 uint64_t DataSize,
849 uint32_t NumElements) {
850 if (Imports.empty())
851 return;
852
853 uint64_t NumPages = (DataSize + wasm::WasmPageSize - 1) / wasm::WasmPageSize;
854
855 SectionBookkeeping Section;
856 startSection(Section, wasm::WASM_SEC_IMPORT);
857
858 encodeULEB128(Imports.size(), W->OS);
859 for (const wasm::WasmImport &Import : Imports) {
860 writeString(Import.Module);
861 writeString(Import.Field);
862 W->OS << char(Import.Kind);
863
864 switch (Import.Kind) {
865 case wasm::WASM_EXTERNAL_FUNCTION:
866 encodeULEB128(Import.SigIndex, W->OS);
867 break;
868 case wasm::WASM_EXTERNAL_GLOBAL:
869 W->OS << char(Import.Global.Type);
870 W->OS << char(Import.Global.Mutable ? 1 : 0);
871 break;
872 case wasm::WASM_EXTERNAL_MEMORY:
873 encodeULEB128(Import.Memory.Flags, W->OS);
874 encodeULEB128(NumPages, W->OS); // initial
875 break;
876 case wasm::WASM_EXTERNAL_TABLE:
877 W->OS << char(Import.Table.ElemType);
878 encodeULEB128(0, W->OS); // flags
879 encodeULEB128(NumElements, W->OS); // initial
880 break;
881 case wasm::WASM_EXTERNAL_TAG:
882 W->OS << char(0); // Reserved 'attribute' field
883 encodeULEB128(Import.SigIndex, W->OS);
884 break;
885 default:
886 llvm_unreachable("unsupported import kind");
887 }
888 }
889
890 endSection(Section);
891 }
892
writeFunctionSection(ArrayRef<WasmFunction> Functions)893 void WasmObjectWriter::writeFunctionSection(ArrayRef<WasmFunction> Functions) {
894 if (Functions.empty())
895 return;
896
897 SectionBookkeeping Section;
898 startSection(Section, wasm::WASM_SEC_FUNCTION);
899
900 encodeULEB128(Functions.size(), W->OS);
901 for (const WasmFunction &Func : Functions)
902 encodeULEB128(Func.SigIndex, W->OS);
903
904 endSection(Section);
905 }
906
writeTagSection(ArrayRef<uint32_t> TagTypes)907 void WasmObjectWriter::writeTagSection(ArrayRef<uint32_t> TagTypes) {
908 if (TagTypes.empty())
909 return;
910
911 SectionBookkeeping Section;
912 startSection(Section, wasm::WASM_SEC_TAG);
913
914 encodeULEB128(TagTypes.size(), W->OS);
915 for (uint32_t Index : TagTypes) {
916 W->OS << char(0); // Reserved 'attribute' field
917 encodeULEB128(Index, W->OS);
918 }
919
920 endSection(Section);
921 }
922
writeGlobalSection(ArrayRef<wasm::WasmGlobal> Globals)923 void WasmObjectWriter::writeGlobalSection(ArrayRef<wasm::WasmGlobal> Globals) {
924 if (Globals.empty())
925 return;
926
927 SectionBookkeeping Section;
928 startSection(Section, wasm::WASM_SEC_GLOBAL);
929
930 encodeULEB128(Globals.size(), W->OS);
931 for (const wasm::WasmGlobal &Global : Globals) {
932 encodeULEB128(Global.Type.Type, W->OS);
933 W->OS << char(Global.Type.Mutable);
934 if (Global.InitExpr.Extended) {
935 llvm_unreachable("extected init expressions not supported");
936 } else {
937 W->OS << char(Global.InitExpr.Inst.Opcode);
938 switch (Global.Type.Type) {
939 case wasm::WASM_TYPE_I32:
940 encodeSLEB128(0, W->OS);
941 break;
942 case wasm::WASM_TYPE_I64:
943 encodeSLEB128(0, W->OS);
944 break;
945 case wasm::WASM_TYPE_F32:
946 writeI32(0);
947 break;
948 case wasm::WASM_TYPE_F64:
949 writeI64(0);
950 break;
951 case wasm::WASM_TYPE_EXTERNREF:
952 writeValueType(wasm::ValType::EXTERNREF);
953 break;
954 default:
955 llvm_unreachable("unexpected type");
956 }
957 }
958 W->OS << char(wasm::WASM_OPCODE_END);
959 }
960
961 endSection(Section);
962 }
963
writeTableSection(ArrayRef<wasm::WasmTable> Tables)964 void WasmObjectWriter::writeTableSection(ArrayRef<wasm::WasmTable> Tables) {
965 if (Tables.empty())
966 return;
967
968 SectionBookkeeping Section;
969 startSection(Section, wasm::WASM_SEC_TABLE);
970
971 encodeULEB128(Tables.size(), W->OS);
972 for (const wasm::WasmTable &Table : Tables) {
973 encodeULEB128(Table.Type.ElemType, W->OS);
974 encodeULEB128(Table.Type.Limits.Flags, W->OS);
975 encodeULEB128(Table.Type.Limits.Minimum, W->OS);
976 if (Table.Type.Limits.Flags & wasm::WASM_LIMITS_FLAG_HAS_MAX)
977 encodeULEB128(Table.Type.Limits.Maximum, W->OS);
978 }
979 endSection(Section);
980 }
981
writeExportSection(ArrayRef<wasm::WasmExport> Exports)982 void WasmObjectWriter::writeExportSection(ArrayRef<wasm::WasmExport> Exports) {
983 if (Exports.empty())
984 return;
985
986 SectionBookkeeping Section;
987 startSection(Section, wasm::WASM_SEC_EXPORT);
988
989 encodeULEB128(Exports.size(), W->OS);
990 for (const wasm::WasmExport &Export : Exports) {
991 writeString(Export.Name);
992 W->OS << char(Export.Kind);
993 encodeULEB128(Export.Index, W->OS);
994 }
995
996 endSection(Section);
997 }
998
writeElemSection(const MCSymbolWasm * IndirectFunctionTable,ArrayRef<uint32_t> TableElems)999 void WasmObjectWriter::writeElemSection(
1000 const MCSymbolWasm *IndirectFunctionTable, ArrayRef<uint32_t> TableElems) {
1001 if (TableElems.empty())
1002 return;
1003
1004 assert(IndirectFunctionTable);
1005
1006 SectionBookkeeping Section;
1007 startSection(Section, wasm::WASM_SEC_ELEM);
1008
1009 encodeULEB128(1, W->OS); // number of "segments"
1010
1011 assert(WasmIndices.count(IndirectFunctionTable));
1012 uint32_t TableNumber = WasmIndices.find(IndirectFunctionTable)->second;
1013 uint32_t Flags = 0;
1014 if (TableNumber)
1015 Flags |= wasm::WASM_ELEM_SEGMENT_HAS_TABLE_NUMBER;
1016 encodeULEB128(Flags, W->OS);
1017 if (Flags & wasm::WASM_ELEM_SEGMENT_HAS_TABLE_NUMBER)
1018 encodeULEB128(TableNumber, W->OS); // the table number
1019
1020 // init expr for starting offset
1021 W->OS << char(wasm::WASM_OPCODE_I32_CONST);
1022 encodeSLEB128(InitialTableOffset, W->OS);
1023 W->OS << char(wasm::WASM_OPCODE_END);
1024
1025 if (Flags & wasm::WASM_ELEM_SEGMENT_MASK_HAS_ELEM_KIND) {
1026 // We only write active function table initializers, for which the elem kind
1027 // is specified to be written as 0x00 and interpreted to mean "funcref".
1028 const uint8_t ElemKind = 0;
1029 W->OS << ElemKind;
1030 }
1031
1032 encodeULEB128(TableElems.size(), W->OS);
1033 for (uint32_t Elem : TableElems)
1034 encodeULEB128(Elem, W->OS);
1035
1036 endSection(Section);
1037 }
1038
writeDataCountSection()1039 void WasmObjectWriter::writeDataCountSection() {
1040 if (DataSegments.empty())
1041 return;
1042
1043 SectionBookkeeping Section;
1044 startSection(Section, wasm::WASM_SEC_DATACOUNT);
1045 encodeULEB128(DataSegments.size(), W->OS);
1046 endSection(Section);
1047 }
1048
writeCodeSection(const MCAssembler & Asm,const MCAsmLayout & Layout,ArrayRef<WasmFunction> Functions)1049 uint32_t WasmObjectWriter::writeCodeSection(const MCAssembler &Asm,
1050 const MCAsmLayout &Layout,
1051 ArrayRef<WasmFunction> Functions) {
1052 if (Functions.empty())
1053 return 0;
1054
1055 SectionBookkeeping Section;
1056 startSection(Section, wasm::WASM_SEC_CODE);
1057
1058 encodeULEB128(Functions.size(), W->OS);
1059
1060 for (const WasmFunction &Func : Functions) {
1061 auto *FuncSection = static_cast<MCSectionWasm *>(Func.Section);
1062
1063 int64_t Size = Layout.getSectionAddressSize(FuncSection);
1064 encodeULEB128(Size, W->OS);
1065 FuncSection->setSectionOffset(W->OS.tell() - Section.ContentsOffset);
1066 Asm.writeSectionData(W->OS, FuncSection, Layout);
1067 }
1068
1069 // Apply fixups.
1070 applyRelocations(CodeRelocations, Section.ContentsOffset, Layout);
1071
1072 endSection(Section);
1073 return Section.Index;
1074 }
1075
writeDataSection(const MCAsmLayout & Layout)1076 uint32_t WasmObjectWriter::writeDataSection(const MCAsmLayout &Layout) {
1077 if (DataSegments.empty())
1078 return 0;
1079
1080 SectionBookkeeping Section;
1081 startSection(Section, wasm::WASM_SEC_DATA);
1082
1083 encodeULEB128(DataSegments.size(), W->OS); // count
1084
1085 for (const WasmDataSegment &Segment : DataSegments) {
1086 encodeULEB128(Segment.InitFlags, W->OS); // flags
1087 if (Segment.InitFlags & wasm::WASM_DATA_SEGMENT_HAS_MEMINDEX)
1088 encodeULEB128(0, W->OS); // memory index
1089 if ((Segment.InitFlags & wasm::WASM_DATA_SEGMENT_IS_PASSIVE) == 0) {
1090 W->OS << char(is64Bit() ? wasm::WASM_OPCODE_I64_CONST
1091 : wasm::WASM_OPCODE_I32_CONST);
1092 encodeSLEB128(Segment.Offset, W->OS); // offset
1093 W->OS << char(wasm::WASM_OPCODE_END);
1094 }
1095 encodeULEB128(Segment.Data.size(), W->OS); // size
1096 Segment.Section->setSectionOffset(W->OS.tell() - Section.ContentsOffset);
1097 W->OS << Segment.Data; // data
1098 }
1099
1100 // Apply fixups.
1101 applyRelocations(DataRelocations, Section.ContentsOffset, Layout);
1102
1103 endSection(Section);
1104 return Section.Index;
1105 }
1106
writeRelocSection(uint32_t SectionIndex,StringRef Name,std::vector<WasmRelocationEntry> & Relocs)1107 void WasmObjectWriter::writeRelocSection(
1108 uint32_t SectionIndex, StringRef Name,
1109 std::vector<WasmRelocationEntry> &Relocs) {
1110 // See: https://github.com/WebAssembly/tool-conventions/blob/main/Linking.md
1111 // for descriptions of the reloc sections.
1112
1113 if (Relocs.empty())
1114 return;
1115
1116 // First, ensure the relocations are sorted in offset order. In general they
1117 // should already be sorted since `recordRelocation` is called in offset
1118 // order, but for the code section we combine many MC sections into single
1119 // wasm section, and this order is determined by the order of Asm.Symbols()
1120 // not the sections order.
1121 llvm::stable_sort(
1122 Relocs, [](const WasmRelocationEntry &A, const WasmRelocationEntry &B) {
1123 return (A.Offset + A.FixupSection->getSectionOffset()) <
1124 (B.Offset + B.FixupSection->getSectionOffset());
1125 });
1126
1127 SectionBookkeeping Section;
1128 startCustomSection(Section, std::string("reloc.") + Name.str());
1129
1130 encodeULEB128(SectionIndex, W->OS);
1131 encodeULEB128(Relocs.size(), W->OS);
1132 for (const WasmRelocationEntry &RelEntry : Relocs) {
1133 uint64_t Offset =
1134 RelEntry.Offset + RelEntry.FixupSection->getSectionOffset();
1135 uint32_t Index = getRelocationIndexValue(RelEntry);
1136
1137 W->OS << char(RelEntry.Type);
1138 encodeULEB128(Offset, W->OS);
1139 encodeULEB128(Index, W->OS);
1140 if (RelEntry.hasAddend())
1141 encodeSLEB128(RelEntry.Addend, W->OS);
1142 }
1143
1144 endSection(Section);
1145 }
1146
writeCustomRelocSections()1147 void WasmObjectWriter::writeCustomRelocSections() {
1148 for (const auto &Sec : CustomSections) {
1149 auto &Relocations = CustomSectionsRelocations[Sec.Section];
1150 writeRelocSection(Sec.OutputIndex, Sec.Name, Relocations);
1151 }
1152 }
1153
writeLinkingMetaDataSection(ArrayRef<wasm::WasmSymbolInfo> SymbolInfos,ArrayRef<std::pair<uint16_t,uint32_t>> InitFuncs,const std::map<StringRef,std::vector<WasmComdatEntry>> & Comdats)1154 void WasmObjectWriter::writeLinkingMetaDataSection(
1155 ArrayRef<wasm::WasmSymbolInfo> SymbolInfos,
1156 ArrayRef<std::pair<uint16_t, uint32_t>> InitFuncs,
1157 const std::map<StringRef, std::vector<WasmComdatEntry>> &Comdats) {
1158 SectionBookkeeping Section;
1159 startCustomSection(Section, "linking");
1160 encodeULEB128(wasm::WasmMetadataVersion, W->OS);
1161
1162 SectionBookkeeping SubSection;
1163 if (SymbolInfos.size() != 0) {
1164 startSection(SubSection, wasm::WASM_SYMBOL_TABLE);
1165 encodeULEB128(SymbolInfos.size(), W->OS);
1166 for (const wasm::WasmSymbolInfo &Sym : SymbolInfos) {
1167 encodeULEB128(Sym.Kind, W->OS);
1168 encodeULEB128(Sym.Flags, W->OS);
1169 switch (Sym.Kind) {
1170 case wasm::WASM_SYMBOL_TYPE_FUNCTION:
1171 case wasm::WASM_SYMBOL_TYPE_GLOBAL:
1172 case wasm::WASM_SYMBOL_TYPE_TAG:
1173 case wasm::WASM_SYMBOL_TYPE_TABLE:
1174 encodeULEB128(Sym.ElementIndex, W->OS);
1175 if ((Sym.Flags & wasm::WASM_SYMBOL_UNDEFINED) == 0 ||
1176 (Sym.Flags & wasm::WASM_SYMBOL_EXPLICIT_NAME) != 0)
1177 writeString(Sym.Name);
1178 break;
1179 case wasm::WASM_SYMBOL_TYPE_DATA:
1180 writeString(Sym.Name);
1181 if ((Sym.Flags & wasm::WASM_SYMBOL_UNDEFINED) == 0) {
1182 encodeULEB128(Sym.DataRef.Segment, W->OS);
1183 encodeULEB128(Sym.DataRef.Offset, W->OS);
1184 encodeULEB128(Sym.DataRef.Size, W->OS);
1185 }
1186 break;
1187 case wasm::WASM_SYMBOL_TYPE_SECTION: {
1188 const uint32_t SectionIndex =
1189 CustomSections[Sym.ElementIndex].OutputIndex;
1190 encodeULEB128(SectionIndex, W->OS);
1191 break;
1192 }
1193 default:
1194 llvm_unreachable("unexpected kind");
1195 }
1196 }
1197 endSection(SubSection);
1198 }
1199
1200 if (DataSegments.size()) {
1201 startSection(SubSection, wasm::WASM_SEGMENT_INFO);
1202 encodeULEB128(DataSegments.size(), W->OS);
1203 for (const WasmDataSegment &Segment : DataSegments) {
1204 writeString(Segment.Name);
1205 encodeULEB128(Segment.Alignment, W->OS);
1206 encodeULEB128(Segment.LinkingFlags, W->OS);
1207 }
1208 endSection(SubSection);
1209 }
1210
1211 if (!InitFuncs.empty()) {
1212 startSection(SubSection, wasm::WASM_INIT_FUNCS);
1213 encodeULEB128(InitFuncs.size(), W->OS);
1214 for (auto &StartFunc : InitFuncs) {
1215 encodeULEB128(StartFunc.first, W->OS); // priority
1216 encodeULEB128(StartFunc.second, W->OS); // function index
1217 }
1218 endSection(SubSection);
1219 }
1220
1221 if (Comdats.size()) {
1222 startSection(SubSection, wasm::WASM_COMDAT_INFO);
1223 encodeULEB128(Comdats.size(), W->OS);
1224 for (const auto &C : Comdats) {
1225 writeString(C.first);
1226 encodeULEB128(0, W->OS); // flags for future use
1227 encodeULEB128(C.second.size(), W->OS);
1228 for (const WasmComdatEntry &Entry : C.second) {
1229 encodeULEB128(Entry.Kind, W->OS);
1230 encodeULEB128(Entry.Index, W->OS);
1231 }
1232 }
1233 endSection(SubSection);
1234 }
1235
1236 endSection(Section);
1237 }
1238
writeCustomSection(WasmCustomSection & CustomSection,const MCAssembler & Asm,const MCAsmLayout & Layout)1239 void WasmObjectWriter::writeCustomSection(WasmCustomSection &CustomSection,
1240 const MCAssembler &Asm,
1241 const MCAsmLayout &Layout) {
1242 SectionBookkeeping Section;
1243 auto *Sec = CustomSection.Section;
1244 startCustomSection(Section, CustomSection.Name);
1245
1246 Sec->setSectionOffset(W->OS.tell() - Section.ContentsOffset);
1247 Asm.writeSectionData(W->OS, Sec, Layout);
1248
1249 CustomSection.OutputContentsOffset = Section.ContentsOffset;
1250 CustomSection.OutputIndex = Section.Index;
1251
1252 endSection(Section);
1253
1254 // Apply fixups.
1255 auto &Relocations = CustomSectionsRelocations[CustomSection.Section];
1256 applyRelocations(Relocations, CustomSection.OutputContentsOffset, Layout);
1257 }
1258
getFunctionType(const MCSymbolWasm & Symbol)1259 uint32_t WasmObjectWriter::getFunctionType(const MCSymbolWasm &Symbol) {
1260 assert(Symbol.isFunction());
1261 assert(TypeIndices.count(&Symbol));
1262 return TypeIndices[&Symbol];
1263 }
1264
getTagType(const MCSymbolWasm & Symbol)1265 uint32_t WasmObjectWriter::getTagType(const MCSymbolWasm &Symbol) {
1266 assert(Symbol.isTag());
1267 assert(TypeIndices.count(&Symbol));
1268 return TypeIndices[&Symbol];
1269 }
1270
registerFunctionType(const MCSymbolWasm & Symbol)1271 void WasmObjectWriter::registerFunctionType(const MCSymbolWasm &Symbol) {
1272 assert(Symbol.isFunction());
1273
1274 wasm::WasmSignature S;
1275
1276 if (auto *Sig = Symbol.getSignature()) {
1277 S.Returns = Sig->Returns;
1278 S.Params = Sig->Params;
1279 }
1280
1281 auto Pair = SignatureIndices.insert(std::make_pair(S, Signatures.size()));
1282 if (Pair.second)
1283 Signatures.push_back(S);
1284 TypeIndices[&Symbol] = Pair.first->second;
1285
1286 LLVM_DEBUG(dbgs() << "registerFunctionType: " << Symbol
1287 << " new:" << Pair.second << "\n");
1288 LLVM_DEBUG(dbgs() << " -> type index: " << Pair.first->second << "\n");
1289 }
1290
registerTagType(const MCSymbolWasm & Symbol)1291 void WasmObjectWriter::registerTagType(const MCSymbolWasm &Symbol) {
1292 assert(Symbol.isTag());
1293
1294 // TODO Currently we don't generate imported exceptions, but if we do, we
1295 // should have a way of infering types of imported exceptions.
1296 wasm::WasmSignature S;
1297 if (auto *Sig = Symbol.getSignature()) {
1298 S.Returns = Sig->Returns;
1299 S.Params = Sig->Params;
1300 }
1301
1302 auto Pair = SignatureIndices.insert(std::make_pair(S, Signatures.size()));
1303 if (Pair.second)
1304 Signatures.push_back(S);
1305 TypeIndices[&Symbol] = Pair.first->second;
1306
1307 LLVM_DEBUG(dbgs() << "registerTagType: " << Symbol << " new:" << Pair.second
1308 << "\n");
1309 LLVM_DEBUG(dbgs() << " -> type index: " << Pair.first->second << "\n");
1310 }
1311
isInSymtab(const MCSymbolWasm & Sym)1312 static bool isInSymtab(const MCSymbolWasm &Sym) {
1313 if (Sym.isUsedInReloc() || Sym.isUsedInInitArray())
1314 return true;
1315
1316 if (Sym.isComdat() && !Sym.isDefined())
1317 return false;
1318
1319 if (Sym.isTemporary())
1320 return false;
1321
1322 if (Sym.isSection())
1323 return false;
1324
1325 if (Sym.omitFromLinkingSection())
1326 return false;
1327
1328 return true;
1329 }
1330
prepareImports(SmallVectorImpl<wasm::WasmImport> & Imports,MCAssembler & Asm,const MCAsmLayout & Layout)1331 void WasmObjectWriter::prepareImports(
1332 SmallVectorImpl<wasm::WasmImport> &Imports, MCAssembler &Asm,
1333 const MCAsmLayout &Layout) {
1334 // For now, always emit the memory import, since loads and stores are not
1335 // valid without it. In the future, we could perhaps be more clever and omit
1336 // it if there are no loads or stores.
1337 wasm::WasmImport MemImport;
1338 MemImport.Module = "env";
1339 MemImport.Field = "__linear_memory";
1340 MemImport.Kind = wasm::WASM_EXTERNAL_MEMORY;
1341 MemImport.Memory.Flags = is64Bit() ? wasm::WASM_LIMITS_FLAG_IS_64
1342 : wasm::WASM_LIMITS_FLAG_NONE;
1343 Imports.push_back(MemImport);
1344
1345 // Populate SignatureIndices, and Imports and WasmIndices for undefined
1346 // symbols. This must be done before populating WasmIndices for defined
1347 // symbols.
1348 for (const MCSymbol &S : Asm.symbols()) {
1349 const auto &WS = static_cast<const MCSymbolWasm &>(S);
1350
1351 // Register types for all functions, including those with private linkage
1352 // (because wasm always needs a type signature).
1353 if (WS.isFunction()) {
1354 const auto *BS = Layout.getBaseSymbol(S);
1355 if (!BS)
1356 report_fatal_error(Twine(S.getName()) +
1357 ": absolute addressing not supported!");
1358 registerFunctionType(*cast<MCSymbolWasm>(BS));
1359 }
1360
1361 if (WS.isTag())
1362 registerTagType(WS);
1363
1364 if (WS.isTemporary())
1365 continue;
1366
1367 // If the symbol is not defined in this translation unit, import it.
1368 if (!WS.isDefined() && !WS.isComdat()) {
1369 if (WS.isFunction()) {
1370 wasm::WasmImport Import;
1371 Import.Module = WS.getImportModule();
1372 Import.Field = WS.getImportName();
1373 Import.Kind = wasm::WASM_EXTERNAL_FUNCTION;
1374 Import.SigIndex = getFunctionType(WS);
1375 Imports.push_back(Import);
1376 assert(WasmIndices.count(&WS) == 0);
1377 WasmIndices[&WS] = NumFunctionImports++;
1378 } else if (WS.isGlobal()) {
1379 if (WS.isWeak())
1380 report_fatal_error("undefined global symbol cannot be weak");
1381
1382 wasm::WasmImport Import;
1383 Import.Field = WS.getImportName();
1384 Import.Kind = wasm::WASM_EXTERNAL_GLOBAL;
1385 Import.Module = WS.getImportModule();
1386 Import.Global = WS.getGlobalType();
1387 Imports.push_back(Import);
1388 assert(WasmIndices.count(&WS) == 0);
1389 WasmIndices[&WS] = NumGlobalImports++;
1390 } else if (WS.isTag()) {
1391 if (WS.isWeak())
1392 report_fatal_error("undefined tag symbol cannot be weak");
1393
1394 wasm::WasmImport Import;
1395 Import.Module = WS.getImportModule();
1396 Import.Field = WS.getImportName();
1397 Import.Kind = wasm::WASM_EXTERNAL_TAG;
1398 Import.SigIndex = getTagType(WS);
1399 Imports.push_back(Import);
1400 assert(WasmIndices.count(&WS) == 0);
1401 WasmIndices[&WS] = NumTagImports++;
1402 } else if (WS.isTable()) {
1403 if (WS.isWeak())
1404 report_fatal_error("undefined table symbol cannot be weak");
1405
1406 wasm::WasmImport Import;
1407 Import.Module = WS.getImportModule();
1408 Import.Field = WS.getImportName();
1409 Import.Kind = wasm::WASM_EXTERNAL_TABLE;
1410 Import.Table = WS.getTableType();
1411 Imports.push_back(Import);
1412 assert(WasmIndices.count(&WS) == 0);
1413 WasmIndices[&WS] = NumTableImports++;
1414 }
1415 }
1416 }
1417
1418 // Add imports for GOT globals
1419 for (const MCSymbol &S : Asm.symbols()) {
1420 const auto &WS = static_cast<const MCSymbolWasm &>(S);
1421 if (WS.isUsedInGOT()) {
1422 wasm::WasmImport Import;
1423 if (WS.isFunction())
1424 Import.Module = "GOT.func";
1425 else
1426 Import.Module = "GOT.mem";
1427 Import.Field = WS.getName();
1428 Import.Kind = wasm::WASM_EXTERNAL_GLOBAL;
1429 Import.Global = {wasm::WASM_TYPE_I32, true};
1430 Imports.push_back(Import);
1431 assert(GOTIndices.count(&WS) == 0);
1432 GOTIndices[&WS] = NumGlobalImports++;
1433 }
1434 }
1435 }
1436
writeObject(MCAssembler & Asm,const MCAsmLayout & Layout)1437 uint64_t WasmObjectWriter::writeObject(MCAssembler &Asm,
1438 const MCAsmLayout &Layout) {
1439 support::endian::Writer MainWriter(*OS, support::little);
1440 W = &MainWriter;
1441 if (IsSplitDwarf) {
1442 uint64_t TotalSize = writeOneObject(Asm, Layout, DwoMode::NonDwoOnly);
1443 assert(DwoOS);
1444 support::endian::Writer DwoWriter(*DwoOS, support::little);
1445 W = &DwoWriter;
1446 return TotalSize + writeOneObject(Asm, Layout, DwoMode::DwoOnly);
1447 } else {
1448 return writeOneObject(Asm, Layout, DwoMode::AllSections);
1449 }
1450 }
1451
writeOneObject(MCAssembler & Asm,const MCAsmLayout & Layout,DwoMode Mode)1452 uint64_t WasmObjectWriter::writeOneObject(MCAssembler &Asm,
1453 const MCAsmLayout &Layout,
1454 DwoMode Mode) {
1455 uint64_t StartOffset = W->OS.tell();
1456 SectionCount = 0;
1457 CustomSections.clear();
1458
1459 LLVM_DEBUG(dbgs() << "WasmObjectWriter::writeObject\n");
1460
1461 // Collect information from the available symbols.
1462 SmallVector<WasmFunction, 4> Functions;
1463 SmallVector<uint32_t, 4> TableElems;
1464 SmallVector<wasm::WasmImport, 4> Imports;
1465 SmallVector<wasm::WasmExport, 4> Exports;
1466 SmallVector<uint32_t, 2> TagTypes;
1467 SmallVector<wasm::WasmGlobal, 1> Globals;
1468 SmallVector<wasm::WasmTable, 1> Tables;
1469 SmallVector<wasm::WasmSymbolInfo, 4> SymbolInfos;
1470 SmallVector<std::pair<uint16_t, uint32_t>, 2> InitFuncs;
1471 std::map<StringRef, std::vector<WasmComdatEntry>> Comdats;
1472 uint64_t DataSize = 0;
1473 if (Mode != DwoMode::DwoOnly) {
1474 prepareImports(Imports, Asm, Layout);
1475 }
1476
1477 // Populate DataSegments and CustomSections, which must be done before
1478 // populating DataLocations.
1479 for (MCSection &Sec : Asm) {
1480 auto &Section = static_cast<MCSectionWasm &>(Sec);
1481 StringRef SectionName = Section.getName();
1482
1483 if (Mode == DwoMode::NonDwoOnly && isDwoSection(Sec))
1484 continue;
1485 if (Mode == DwoMode::DwoOnly && !isDwoSection(Sec))
1486 continue;
1487
1488 LLVM_DEBUG(dbgs() << "Processing Section " << SectionName << " group "
1489 << Section.getGroup() << "\n";);
1490
1491 // .init_array sections are handled specially elsewhere.
1492 if (SectionName.startswith(".init_array"))
1493 continue;
1494
1495 // Code is handled separately
1496 if (Section.getKind().isText())
1497 continue;
1498
1499 if (Section.isWasmData()) {
1500 uint32_t SegmentIndex = DataSegments.size();
1501 DataSize = alignTo(DataSize, Section.getAlign());
1502 DataSegments.emplace_back();
1503 WasmDataSegment &Segment = DataSegments.back();
1504 Segment.Name = SectionName;
1505 Segment.InitFlags = Section.getPassive()
1506 ? (uint32_t)wasm::WASM_DATA_SEGMENT_IS_PASSIVE
1507 : 0;
1508 Segment.Offset = DataSize;
1509 Segment.Section = &Section;
1510 addData(Segment.Data, Section);
1511 Segment.Alignment = Log2(Section.getAlign());
1512 Segment.LinkingFlags = Section.getSegmentFlags();
1513 DataSize += Segment.Data.size();
1514 Section.setSegmentIndex(SegmentIndex);
1515
1516 if (const MCSymbolWasm *C = Section.getGroup()) {
1517 Comdats[C->getName()].emplace_back(
1518 WasmComdatEntry{wasm::WASM_COMDAT_DATA, SegmentIndex});
1519 }
1520 } else {
1521 // Create custom sections
1522 assert(Sec.getKind().isMetadata());
1523
1524 StringRef Name = SectionName;
1525
1526 // For user-defined custom sections, strip the prefix
1527 if (Name.startswith(".custom_section."))
1528 Name = Name.substr(strlen(".custom_section."));
1529
1530 MCSymbol *Begin = Sec.getBeginSymbol();
1531 if (Begin) {
1532 assert(WasmIndices.count(cast<MCSymbolWasm>(Begin)) == 0);
1533 WasmIndices[cast<MCSymbolWasm>(Begin)] = CustomSections.size();
1534 }
1535
1536 // Separate out the producers and target features sections
1537 if (Name == "producers") {
1538 ProducersSection = std::make_unique<WasmCustomSection>(Name, &Section);
1539 continue;
1540 }
1541 if (Name == "target_features") {
1542 TargetFeaturesSection =
1543 std::make_unique<WasmCustomSection>(Name, &Section);
1544 continue;
1545 }
1546
1547 // Custom sections can also belong to COMDAT groups. In this case the
1548 // decriptor's "index" field is the section index (in the final object
1549 // file), but that is not known until after layout, so it must be fixed up
1550 // later
1551 if (const MCSymbolWasm *C = Section.getGroup()) {
1552 Comdats[C->getName()].emplace_back(
1553 WasmComdatEntry{wasm::WASM_COMDAT_SECTION,
1554 static_cast<uint32_t>(CustomSections.size())});
1555 }
1556
1557 CustomSections.emplace_back(Name, &Section);
1558 }
1559 }
1560
1561 if (Mode != DwoMode::DwoOnly) {
1562 // Populate WasmIndices and DataLocations for defined symbols.
1563 for (const MCSymbol &S : Asm.symbols()) {
1564 // Ignore unnamed temporary symbols, which aren't ever exported, imported,
1565 // or used in relocations.
1566 if (S.isTemporary() && S.getName().empty())
1567 continue;
1568
1569 const auto &WS = static_cast<const MCSymbolWasm &>(S);
1570 LLVM_DEBUG(
1571 dbgs() << "MCSymbol: "
1572 << toString(WS.getType().value_or(wasm::WASM_SYMBOL_TYPE_DATA))
1573 << " '" << S << "'"
1574 << " isDefined=" << S.isDefined() << " isExternal="
1575 << S.isExternal() << " isTemporary=" << S.isTemporary()
1576 << " isWeak=" << WS.isWeak() << " isHidden=" << WS.isHidden()
1577 << " isVariable=" << WS.isVariable() << "\n");
1578
1579 if (WS.isVariable())
1580 continue;
1581 if (WS.isComdat() && !WS.isDefined())
1582 continue;
1583
1584 if (WS.isFunction()) {
1585 unsigned Index;
1586 if (WS.isDefined()) {
1587 if (WS.getOffset() != 0)
1588 report_fatal_error(
1589 "function sections must contain one function each");
1590
1591 // A definition. Write out the function body.
1592 Index = NumFunctionImports + Functions.size();
1593 WasmFunction Func;
1594 Func.SigIndex = getFunctionType(WS);
1595 Func.Section = &WS.getSection();
1596 assert(WasmIndices.count(&WS) == 0);
1597 WasmIndices[&WS] = Index;
1598 Functions.push_back(Func);
1599
1600 auto &Section = static_cast<MCSectionWasm &>(WS.getSection());
1601 if (const MCSymbolWasm *C = Section.getGroup()) {
1602 Comdats[C->getName()].emplace_back(
1603 WasmComdatEntry{wasm::WASM_COMDAT_FUNCTION, Index});
1604 }
1605
1606 if (WS.hasExportName()) {
1607 wasm::WasmExport Export;
1608 Export.Name = WS.getExportName();
1609 Export.Kind = wasm::WASM_EXTERNAL_FUNCTION;
1610 Export.Index = Index;
1611 Exports.push_back(Export);
1612 }
1613 } else {
1614 // An import; the index was assigned above.
1615 Index = WasmIndices.find(&WS)->second;
1616 }
1617
1618 LLVM_DEBUG(dbgs() << " -> function index: " << Index << "\n");
1619
1620 } else if (WS.isData()) {
1621 if (!isInSymtab(WS))
1622 continue;
1623
1624 if (!WS.isDefined()) {
1625 LLVM_DEBUG(dbgs() << " -> segment index: -1"
1626 << "\n");
1627 continue;
1628 }
1629
1630 if (!WS.getSize())
1631 report_fatal_error("data symbols must have a size set with .size: " +
1632 WS.getName());
1633
1634 int64_t Size = 0;
1635 if (!WS.getSize()->evaluateAsAbsolute(Size, Layout))
1636 report_fatal_error(".size expression must be evaluatable");
1637
1638 auto &DataSection = static_cast<MCSectionWasm &>(WS.getSection());
1639 if (!DataSection.isWasmData())
1640 report_fatal_error("data symbols must live in a data section: " +
1641 WS.getName());
1642
1643 // For each data symbol, export it in the symtab as a reference to the
1644 // corresponding Wasm data segment.
1645 wasm::WasmDataReference Ref = wasm::WasmDataReference{
1646 DataSection.getSegmentIndex(), Layout.getSymbolOffset(WS),
1647 static_cast<uint64_t>(Size)};
1648 assert(DataLocations.count(&WS) == 0);
1649 DataLocations[&WS] = Ref;
1650 LLVM_DEBUG(dbgs() << " -> segment index: " << Ref.Segment << "\n");
1651
1652 } else if (WS.isGlobal()) {
1653 // A "true" Wasm global (currently just __stack_pointer)
1654 if (WS.isDefined()) {
1655 wasm::WasmGlobal Global;
1656 Global.Type = WS.getGlobalType();
1657 Global.Index = NumGlobalImports + Globals.size();
1658 Global.InitExpr.Extended = false;
1659 switch (Global.Type.Type) {
1660 case wasm::WASM_TYPE_I32:
1661 Global.InitExpr.Inst.Opcode = wasm::WASM_OPCODE_I32_CONST;
1662 break;
1663 case wasm::WASM_TYPE_I64:
1664 Global.InitExpr.Inst.Opcode = wasm::WASM_OPCODE_I64_CONST;
1665 break;
1666 case wasm::WASM_TYPE_F32:
1667 Global.InitExpr.Inst.Opcode = wasm::WASM_OPCODE_F32_CONST;
1668 break;
1669 case wasm::WASM_TYPE_F64:
1670 Global.InitExpr.Inst.Opcode = wasm::WASM_OPCODE_F64_CONST;
1671 break;
1672 case wasm::WASM_TYPE_EXTERNREF:
1673 Global.InitExpr.Inst.Opcode = wasm::WASM_OPCODE_REF_NULL;
1674 break;
1675 default:
1676 llvm_unreachable("unexpected type");
1677 }
1678 assert(WasmIndices.count(&WS) == 0);
1679 WasmIndices[&WS] = Global.Index;
1680 Globals.push_back(Global);
1681 } else {
1682 // An import; the index was assigned above
1683 LLVM_DEBUG(dbgs() << " -> global index: "
1684 << WasmIndices.find(&WS)->second << "\n");
1685 }
1686 } else if (WS.isTable()) {
1687 if (WS.isDefined()) {
1688 wasm::WasmTable Table;
1689 Table.Index = NumTableImports + Tables.size();
1690 Table.Type = WS.getTableType();
1691 assert(WasmIndices.count(&WS) == 0);
1692 WasmIndices[&WS] = Table.Index;
1693 Tables.push_back(Table);
1694 }
1695 LLVM_DEBUG(dbgs() << " -> table index: "
1696 << WasmIndices.find(&WS)->second << "\n");
1697 } else if (WS.isTag()) {
1698 // C++ exception symbol (__cpp_exception) or longjmp symbol
1699 // (__c_longjmp)
1700 unsigned Index;
1701 if (WS.isDefined()) {
1702 Index = NumTagImports + TagTypes.size();
1703 uint32_t SigIndex = getTagType(WS);
1704 assert(WasmIndices.count(&WS) == 0);
1705 WasmIndices[&WS] = Index;
1706 TagTypes.push_back(SigIndex);
1707 } else {
1708 // An import; the index was assigned above.
1709 assert(WasmIndices.count(&WS) > 0);
1710 }
1711 LLVM_DEBUG(dbgs() << " -> tag index: " << WasmIndices.find(&WS)->second
1712 << "\n");
1713
1714 } else {
1715 assert(WS.isSection());
1716 }
1717 }
1718
1719 // Populate WasmIndices and DataLocations for aliased symbols. We need to
1720 // process these in a separate pass because we need to have processed the
1721 // target of the alias before the alias itself and the symbols are not
1722 // necessarily ordered in this way.
1723 for (const MCSymbol &S : Asm.symbols()) {
1724 if (!S.isVariable())
1725 continue;
1726
1727 assert(S.isDefined());
1728
1729 const auto *BS = Layout.getBaseSymbol(S);
1730 if (!BS)
1731 report_fatal_error(Twine(S.getName()) +
1732 ": absolute addressing not supported!");
1733 const MCSymbolWasm *Base = cast<MCSymbolWasm>(BS);
1734
1735 // Find the target symbol of this weak alias and export that index
1736 const auto &WS = static_cast<const MCSymbolWasm &>(S);
1737 LLVM_DEBUG(dbgs() << WS.getName() << ": weak alias of '" << *Base
1738 << "'\n");
1739
1740 if (Base->isFunction()) {
1741 assert(WasmIndices.count(Base) > 0);
1742 uint32_t WasmIndex = WasmIndices.find(Base)->second;
1743 assert(WasmIndices.count(&WS) == 0);
1744 WasmIndices[&WS] = WasmIndex;
1745 LLVM_DEBUG(dbgs() << " -> index:" << WasmIndex << "\n");
1746 } else if (Base->isData()) {
1747 auto &DataSection = static_cast<MCSectionWasm &>(WS.getSection());
1748 uint64_t Offset = Layout.getSymbolOffset(S);
1749 int64_t Size = 0;
1750 // For data symbol alias we use the size of the base symbol as the
1751 // size of the alias. When an offset from the base is involved this
1752 // can result in a offset + size goes past the end of the data section
1753 // which out object format doesn't support. So we must clamp it.
1754 if (!Base->getSize()->evaluateAsAbsolute(Size, Layout))
1755 report_fatal_error(".size expression must be evaluatable");
1756 const WasmDataSegment &Segment =
1757 DataSegments[DataSection.getSegmentIndex()];
1758 Size =
1759 std::min(static_cast<uint64_t>(Size), Segment.Data.size() - Offset);
1760 wasm::WasmDataReference Ref = wasm::WasmDataReference{
1761 DataSection.getSegmentIndex(),
1762 static_cast<uint32_t>(Layout.getSymbolOffset(S)),
1763 static_cast<uint32_t>(Size)};
1764 DataLocations[&WS] = Ref;
1765 LLVM_DEBUG(dbgs() << " -> index:" << Ref.Segment << "\n");
1766 } else {
1767 report_fatal_error("don't yet support global/tag aliases");
1768 }
1769 }
1770 }
1771
1772 // Finally, populate the symbol table itself, in its "natural" order.
1773 for (const MCSymbol &S : Asm.symbols()) {
1774 const auto &WS = static_cast<const MCSymbolWasm &>(S);
1775 if (!isInSymtab(WS)) {
1776 WS.setIndex(InvalidIndex);
1777 continue;
1778 }
1779 LLVM_DEBUG(dbgs() << "adding to symtab: " << WS << "\n");
1780
1781 uint32_t Flags = 0;
1782 if (WS.isWeak())
1783 Flags |= wasm::WASM_SYMBOL_BINDING_WEAK;
1784 if (WS.isHidden())
1785 Flags |= wasm::WASM_SYMBOL_VISIBILITY_HIDDEN;
1786 if (!WS.isExternal() && WS.isDefined())
1787 Flags |= wasm::WASM_SYMBOL_BINDING_LOCAL;
1788 if (WS.isUndefined())
1789 Flags |= wasm::WASM_SYMBOL_UNDEFINED;
1790 if (WS.isNoStrip()) {
1791 Flags |= wasm::WASM_SYMBOL_NO_STRIP;
1792 if (isEmscripten()) {
1793 Flags |= wasm::WASM_SYMBOL_EXPORTED;
1794 }
1795 }
1796 if (WS.hasImportName())
1797 Flags |= wasm::WASM_SYMBOL_EXPLICIT_NAME;
1798 if (WS.hasExportName())
1799 Flags |= wasm::WASM_SYMBOL_EXPORTED;
1800 if (WS.isTLS())
1801 Flags |= wasm::WASM_SYMBOL_TLS;
1802
1803 wasm::WasmSymbolInfo Info;
1804 Info.Name = WS.getName();
1805 Info.Kind = WS.getType().value_or(wasm::WASM_SYMBOL_TYPE_DATA);
1806 Info.Flags = Flags;
1807 if (!WS.isData()) {
1808 assert(WasmIndices.count(&WS) > 0);
1809 Info.ElementIndex = WasmIndices.find(&WS)->second;
1810 } else if (WS.isDefined()) {
1811 assert(DataLocations.count(&WS) > 0);
1812 Info.DataRef = DataLocations.find(&WS)->second;
1813 }
1814 WS.setIndex(SymbolInfos.size());
1815 SymbolInfos.emplace_back(Info);
1816 }
1817
1818 {
1819 auto HandleReloc = [&](const WasmRelocationEntry &Rel) {
1820 // Functions referenced by a relocation need to put in the table. This is
1821 // purely to make the object file's provisional values readable, and is
1822 // ignored by the linker, which re-calculates the relocations itself.
1823 if (Rel.Type != wasm::R_WASM_TABLE_INDEX_I32 &&
1824 Rel.Type != wasm::R_WASM_TABLE_INDEX_I64 &&
1825 Rel.Type != wasm::R_WASM_TABLE_INDEX_SLEB &&
1826 Rel.Type != wasm::R_WASM_TABLE_INDEX_SLEB64 &&
1827 Rel.Type != wasm::R_WASM_TABLE_INDEX_REL_SLEB &&
1828 Rel.Type != wasm::R_WASM_TABLE_INDEX_REL_SLEB64)
1829 return;
1830 assert(Rel.Symbol->isFunction());
1831 const MCSymbolWasm *Base =
1832 cast<MCSymbolWasm>(Layout.getBaseSymbol(*Rel.Symbol));
1833 uint32_t FunctionIndex = WasmIndices.find(Base)->second;
1834 uint32_t TableIndex = TableElems.size() + InitialTableOffset;
1835 if (TableIndices.try_emplace(Base, TableIndex).second) {
1836 LLVM_DEBUG(dbgs() << " -> adding " << Base->getName()
1837 << " to table: " << TableIndex << "\n");
1838 TableElems.push_back(FunctionIndex);
1839 registerFunctionType(*Base);
1840 }
1841 };
1842
1843 for (const WasmRelocationEntry &RelEntry : CodeRelocations)
1844 HandleReloc(RelEntry);
1845 for (const WasmRelocationEntry &RelEntry : DataRelocations)
1846 HandleReloc(RelEntry);
1847 }
1848
1849 // Translate .init_array section contents into start functions.
1850 for (const MCSection &S : Asm) {
1851 const auto &WS = static_cast<const MCSectionWasm &>(S);
1852 if (WS.getName().startswith(".fini_array"))
1853 report_fatal_error(".fini_array sections are unsupported");
1854 if (!WS.getName().startswith(".init_array"))
1855 continue;
1856 if (WS.getFragmentList().empty())
1857 continue;
1858
1859 // init_array is expected to contain a single non-empty data fragment
1860 if (WS.getFragmentList().size() != 3)
1861 report_fatal_error("only one .init_array section fragment supported");
1862
1863 auto IT = WS.begin();
1864 const MCFragment &EmptyFrag = *IT;
1865 if (EmptyFrag.getKind() != MCFragment::FT_Data)
1866 report_fatal_error(".init_array section should be aligned");
1867
1868 IT = std::next(IT);
1869 const MCFragment &AlignFrag = *IT;
1870 if (AlignFrag.getKind() != MCFragment::FT_Align)
1871 report_fatal_error(".init_array section should be aligned");
1872 if (cast<MCAlignFragment>(AlignFrag).getAlignment() !=
1873 Align(is64Bit() ? 8 : 4))
1874 report_fatal_error(".init_array section should be aligned for pointers");
1875
1876 const MCFragment &Frag = *std::next(IT);
1877 if (Frag.hasInstructions() || Frag.getKind() != MCFragment::FT_Data)
1878 report_fatal_error("only data supported in .init_array section");
1879
1880 uint16_t Priority = UINT16_MAX;
1881 unsigned PrefixLength = strlen(".init_array");
1882 if (WS.getName().size() > PrefixLength) {
1883 if (WS.getName()[PrefixLength] != '.')
1884 report_fatal_error(
1885 ".init_array section priority should start with '.'");
1886 if (WS.getName().substr(PrefixLength + 1).getAsInteger(10, Priority))
1887 report_fatal_error("invalid .init_array section priority");
1888 }
1889 const auto &DataFrag = cast<MCDataFragment>(Frag);
1890 const SmallVectorImpl<char> &Contents = DataFrag.getContents();
1891 for (const uint8_t *
1892 P = (const uint8_t *)Contents.data(),
1893 *End = (const uint8_t *)Contents.data() + Contents.size();
1894 P != End; ++P) {
1895 if (*P != 0)
1896 report_fatal_error("non-symbolic data in .init_array section");
1897 }
1898 for (const MCFixup &Fixup : DataFrag.getFixups()) {
1899 assert(Fixup.getKind() ==
1900 MCFixup::getKindForSize(is64Bit() ? 8 : 4, false));
1901 const MCExpr *Expr = Fixup.getValue();
1902 auto *SymRef = dyn_cast<MCSymbolRefExpr>(Expr);
1903 if (!SymRef)
1904 report_fatal_error("fixups in .init_array should be symbol references");
1905 const auto &TargetSym = cast<const MCSymbolWasm>(SymRef->getSymbol());
1906 if (TargetSym.getIndex() == InvalidIndex)
1907 report_fatal_error("symbols in .init_array should exist in symtab");
1908 if (!TargetSym.isFunction())
1909 report_fatal_error("symbols in .init_array should be for functions");
1910 InitFuncs.push_back(
1911 std::make_pair(Priority, TargetSym.getIndex()));
1912 }
1913 }
1914
1915 // Write out the Wasm header.
1916 writeHeader(Asm);
1917
1918 uint32_t CodeSectionIndex, DataSectionIndex;
1919 if (Mode != DwoMode::DwoOnly) {
1920 writeTypeSection(Signatures);
1921 writeImportSection(Imports, DataSize, TableElems.size());
1922 writeFunctionSection(Functions);
1923 writeTableSection(Tables);
1924 // Skip the "memory" section; we import the memory instead.
1925 writeTagSection(TagTypes);
1926 writeGlobalSection(Globals);
1927 writeExportSection(Exports);
1928 const MCSymbol *IndirectFunctionTable =
1929 Asm.getContext().lookupSymbol("__indirect_function_table");
1930 writeElemSection(cast_or_null<const MCSymbolWasm>(IndirectFunctionTable),
1931 TableElems);
1932 writeDataCountSection();
1933
1934 CodeSectionIndex = writeCodeSection(Asm, Layout, Functions);
1935 DataSectionIndex = writeDataSection(Layout);
1936 }
1937
1938 // The Sections in the COMDAT list have placeholder indices (their index among
1939 // custom sections, rather than among all sections). Fix them up here.
1940 for (auto &Group : Comdats) {
1941 for (auto &Entry : Group.second) {
1942 if (Entry.Kind == wasm::WASM_COMDAT_SECTION) {
1943 Entry.Index += SectionCount;
1944 }
1945 }
1946 }
1947 for (auto &CustomSection : CustomSections)
1948 writeCustomSection(CustomSection, Asm, Layout);
1949
1950 if (Mode != DwoMode::DwoOnly) {
1951 writeLinkingMetaDataSection(SymbolInfos, InitFuncs, Comdats);
1952
1953 writeRelocSection(CodeSectionIndex, "CODE", CodeRelocations);
1954 writeRelocSection(DataSectionIndex, "DATA", DataRelocations);
1955 }
1956 writeCustomRelocSections();
1957 if (ProducersSection)
1958 writeCustomSection(*ProducersSection, Asm, Layout);
1959 if (TargetFeaturesSection)
1960 writeCustomSection(*TargetFeaturesSection, Asm, Layout);
1961
1962 // TODO: Translate the .comment section to the output.
1963 return W->OS.tell() - StartOffset;
1964 }
1965
1966 std::unique_ptr<MCObjectWriter>
createWasmObjectWriter(std::unique_ptr<MCWasmObjectTargetWriter> MOTW,raw_pwrite_stream & OS)1967 llvm::createWasmObjectWriter(std::unique_ptr<MCWasmObjectTargetWriter> MOTW,
1968 raw_pwrite_stream &OS) {
1969 return std::make_unique<WasmObjectWriter>(std::move(MOTW), OS);
1970 }
1971
1972 std::unique_ptr<MCObjectWriter>
createWasmDwoObjectWriter(std::unique_ptr<MCWasmObjectTargetWriter> MOTW,raw_pwrite_stream & OS,raw_pwrite_stream & DwoOS)1973 llvm::createWasmDwoObjectWriter(std::unique_ptr<MCWasmObjectTargetWriter> MOTW,
1974 raw_pwrite_stream &OS,
1975 raw_pwrite_stream &DwoOS) {
1976 return std::make_unique<WasmObjectWriter>(std::move(MOTW), OS, DwoOS);
1977 }
1978