xref: /minix/common/dist/zlib/adler32.c (revision 44bedb31)
1 /*	$NetBSD: adler32.c,v 1.1.1.1 2006/01/14 20:10:24 christos Exp $	*/
2 
3 /* adler32.c -- compute the Adler-32 checksum of a data stream
4  * Copyright (C) 1995-2004 Mark Adler
5  * For conditions of distribution and use, see copyright notice in zlib.h
6  */
7 
8 /* @(#) Id */
9 
10 #define ZLIB_INTERNAL
11 #include "zlib.h"
12 
13 #define BASE 65521UL    /* largest prime smaller than 65536 */
14 #define NMAX 5552
15 /* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */
16 
17 #define DO1(buf,i)  {adler += (buf)[i]; sum2 += adler;}
18 #define DO2(buf,i)  DO1(buf,i); DO1(buf,i+1);
19 #define DO4(buf,i)  DO2(buf,i); DO2(buf,i+2);
20 #define DO8(buf,i)  DO4(buf,i); DO4(buf,i+4);
21 #define DO16(buf)   DO8(buf,0); DO8(buf,8);
22 
23 /* use NO_DIVIDE if your processor does not do division in hardware */
24 #ifdef NO_DIVIDE
25 #  define MOD(a) \
26     do { \
27         if (a >= (BASE << 16)) a -= (BASE << 16); \
28         if (a >= (BASE << 15)) a -= (BASE << 15); \
29         if (a >= (BASE << 14)) a -= (BASE << 14); \
30         if (a >= (BASE << 13)) a -= (BASE << 13); \
31         if (a >= (BASE << 12)) a -= (BASE << 12); \
32         if (a >= (BASE << 11)) a -= (BASE << 11); \
33         if (a >= (BASE << 10)) a -= (BASE << 10); \
34         if (a >= (BASE << 9)) a -= (BASE << 9); \
35         if (a >= (BASE << 8)) a -= (BASE << 8); \
36         if (a >= (BASE << 7)) a -= (BASE << 7); \
37         if (a >= (BASE << 6)) a -= (BASE << 6); \
38         if (a >= (BASE << 5)) a -= (BASE << 5); \
39         if (a >= (BASE << 4)) a -= (BASE << 4); \
40         if (a >= (BASE << 3)) a -= (BASE << 3); \
41         if (a >= (BASE << 2)) a -= (BASE << 2); \
42         if (a >= (BASE << 1)) a -= (BASE << 1); \
43         if (a >= BASE) a -= BASE; \
44     } while (0)
45 #  define MOD4(a) \
46     do { \
47         if (a >= (BASE << 4)) a -= (BASE << 4); \
48         if (a >= (BASE << 3)) a -= (BASE << 3); \
49         if (a >= (BASE << 2)) a -= (BASE << 2); \
50         if (a >= (BASE << 1)) a -= (BASE << 1); \
51         if (a >= BASE) a -= BASE; \
52     } while (0)
53 #else
54 #  define MOD(a) a %= BASE
55 #  define MOD4(a) a %= BASE
56 #endif
57 
58 /* ========================================================================= */
adler32(adler,buf,len)59 uLong ZEXPORT adler32(adler, buf, len)
60     uLong adler;
61     const Bytef *buf;
62     uInt len;
63 {
64     unsigned long sum2;
65     unsigned n;
66 
67     /* split Adler-32 into component sums */
68     sum2 = (adler >> 16) & 0xffff;
69     adler &= 0xffff;
70 
71     /* in case user likes doing a byte at a time, keep it fast */
72     if (len == 1) {
73         adler += buf[0];
74         if (adler >= BASE)
75             adler -= BASE;
76         sum2 += adler;
77         if (sum2 >= BASE)
78             sum2 -= BASE;
79         return adler | (sum2 << 16);
80     }
81 
82     /* initial Adler-32 value (deferred check for len == 1 speed) */
83     if (buf == Z_NULL)
84         return 1L;
85 
86     /* in case short lengths are provided, keep it somewhat fast */
87     if (len < 16) {
88         while (len--) {
89             adler += *buf++;
90             sum2 += adler;
91         }
92         if (adler >= BASE)
93             adler -= BASE;
94         MOD4(sum2);             /* only added so many BASE's */
95         return adler | (sum2 << 16);
96     }
97 
98     /* do length NMAX blocks -- requires just one modulo operation */
99     while (len >= NMAX) {
100         len -= NMAX;
101         n = NMAX / 16;          /* NMAX is divisible by 16 */
102         do {
103             DO16(buf);          /* 16 sums unrolled */
104             buf += 16;
105         } while (--n);
106         MOD(adler);
107         MOD(sum2);
108     }
109 
110     /* do remaining bytes (less than NMAX, still just one modulo) */
111     if (len) {                  /* avoid modulos if none remaining */
112         while (len >= 16) {
113             len -= 16;
114             DO16(buf);
115             buf += 16;
116         }
117         while (len--) {
118             adler += *buf++;
119             sum2 += adler;
120         }
121         MOD(adler);
122         MOD(sum2);
123     }
124 
125     /* return recombined sums */
126     return adler | (sum2 << 16);
127 }
128 
129 /* ========================================================================= */
adler32_combine(adler1,adler2,len2)130 uLong ZEXPORT adler32_combine(adler1, adler2, len2)
131     uLong adler1;
132     uLong adler2;
133     z_off_t len2;
134 {
135     unsigned long sum1;
136     unsigned long sum2;
137     unsigned rem;
138 
139     /* the derivation of this formula is left as an exercise for the reader */
140     rem = (unsigned)(len2 % BASE);
141     sum1 = adler1 & 0xffff;
142     sum2 = rem * sum1;
143     MOD(sum2);
144     sum1 += (adler2 & 0xffff) + BASE - 1;
145     sum2 += ((adler1 >> 16) & 0xffff) + ((adler2 >> 16) & 0xffff) + BASE - rem;
146     if (sum1 > BASE) sum1 -= BASE;
147     if (sum1 > BASE) sum1 -= BASE;
148     if (sum2 > (BASE << 1)) sum2 -= (BASE << 1);
149     if (sum2 > BASE) sum2 -= BASE;
150     return sum1 | (sum2 << 16);
151 }
152