1 /* $OpenBSD: aic79xx.c,v 1.69 2024/09/04 07:54:52 mglocker Exp $ */
2
3 /*
4 * Copyright (c) 2004 Milos Urbanek, Kenneth R. Westerback & Marco Peereboom
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE FOR
20 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 */
29
30 /*
31 * Core routines and tables shareable across OS platforms.
32 *
33 * Copyright (c) 1994-2002, 2004 Justin T. Gibbs.
34 * Copyright (c) 2000-2003 Adaptec Inc.
35 * All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions, and the following disclaimer,
42 * without modification.
43 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
44 * substantially similar to the "NO WARRANTY" disclaimer below
45 * ("Disclaimer") and any redistribution must be conditioned upon
46 * including a substantially similar Disclaimer requirement for further
47 * binary redistribution.
48 * 3. Neither the names of the above-listed copyright holders nor the names
49 * of any contributors may be used to endorse or promote products derived
50 * from this software without specific prior written permission.
51 *
52 * Alternatively, this software may be distributed under the terms of the
53 * GNU General Public License ("GPL") version 2 as published by the Free
54 * Software Foundation.
55 *
56 * NO WARRANTY
57 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
58 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
59 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
60 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
61 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
62 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
63 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
64 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
65 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
66 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
67 * POSSIBILITY OF SUCH DAMAGES.
68 *
69 * Id: //depot/aic7xxx/aic7xxx/aic79xx.c#246
70 *
71 * FreeBSD: src/sys/dev/aic7xxx/aic79xx.c,v 1.33 2004/11/18 20:22:30 gibbs Exp
72 */
73
74 #include <dev/ic/aic79xx_openbsd.h>
75 #include <dev/ic/aic79xx_inline.h>
76 #include <dev/ic/aic79xx.h>
77
78 #include <dev/microcode/aic7xxx/aicasm_insformat.h>
79
80 /******************************** Globals *************************************/
81 struct ahd_softc_tailq ahd_tailq = TAILQ_HEAD_INITIALIZER(ahd_tailq);
82 uint32_t ahd_attach_to_HostRAID_controllers = 1;
83
84 /***************************** Lookup Tables **********************************/
85 char *ahd_chip_names[] =
86 {
87 "NONE",
88 "aic7901",
89 "aic7902",
90 "aic7901A"
91 };
92
93 /*
94 * Hardware error codes.
95 */
96 struct ahd_hard_error_entry {
97 uint8_t errno;
98 char *errmesg;
99 };
100
101 static struct ahd_hard_error_entry ahd_hard_errors[] = {
102 { DSCTMOUT, "Discard Timer has timed out" },
103 { ILLOPCODE, "Illegal Opcode in sequencer program" },
104 { SQPARERR, "Sequencer Parity Error" },
105 { DPARERR, "Data-path Parity Error" },
106 { MPARERR, "Scratch or SCB Memory Parity Error" },
107 { CIOPARERR, "CIOBUS Parity Error" },
108 };
109 static const u_int num_errors = NUM_ELEMENTS(ahd_hard_errors);
110
111 static struct ahd_phase_table_entry ahd_phase_table[] =
112 {
113 { P_DATAOUT, MSG_NOOP, "in Data-out phase" },
114 { P_DATAIN, MSG_INITIATOR_DET_ERR, "in Data-in phase" },
115 { P_DATAOUT_DT, MSG_NOOP, "in DT Data-out phase" },
116 { P_DATAIN_DT, MSG_INITIATOR_DET_ERR, "in DT Data-in phase" },
117 { P_COMMAND, MSG_NOOP, "in Command phase" },
118 { P_MESGOUT, MSG_NOOP, "in Message-out phase" },
119 { P_STATUS, MSG_INITIATOR_DET_ERR, "in Status phase" },
120 { P_MESGIN, MSG_PARITY_ERROR, "in Message-in phase" },
121 { P_BUSFREE, MSG_NOOP, "while idle" },
122 { 0, MSG_NOOP, "in unknown phase" }
123 };
124
125 /*
126 * In most cases we only wish to iterate over real phases, so
127 * exclude the last element from the count.
128 */
129 static const u_int num_phases = NUM_ELEMENTS(ahd_phase_table) - 1;
130
131 /* Our Sequencer Program */
132 #include <dev/microcode/aic7xxx/aic79xx_seq.h>
133
134 /**************************** Function Declarations ***************************/
135 void ahd_handle_transmission_error(struct ahd_softc *ahd);
136 void ahd_handle_lqiphase_error(struct ahd_softc *ahd,
137 u_int lqistat1);
138 int ahd_handle_pkt_busfree(struct ahd_softc *ahd,
139 u_int busfreetime);
140 int ahd_handle_nonpkt_busfree(struct ahd_softc *ahd);
141 void ahd_handle_proto_violation(struct ahd_softc *ahd);
142 void ahd_force_renegotiation(struct ahd_softc *ahd,
143 struct ahd_devinfo *devinfo);
144
145 struct ahd_tmode_tstate*
146 ahd_alloc_tstate(struct ahd_softc *ahd,
147 u_int scsi_id, char channel);
148 #ifdef AHD_TARGET_MODE
149 void ahd_free_tstate(struct ahd_softc *ahd,
150 u_int scsi_id, char channel, int force);
151 #endif
152 void ahd_devlimited_syncrate(struct ahd_softc *ahd,
153 struct ahd_initiator_tinfo *,
154 u_int *period,
155 u_int *ppr_options,
156 role_t role);
157 void ahd_update_neg_table(struct ahd_softc *ahd,
158 struct ahd_devinfo *devinfo,
159 struct ahd_transinfo *tinfo);
160 void ahd_update_pending_scbs(struct ahd_softc *ahd);
161 void ahd_fetch_devinfo(struct ahd_softc *ahd,
162 struct ahd_devinfo *devinfo);
163 void ahd_scb_devinfo(struct ahd_softc *ahd,
164 struct ahd_devinfo *devinfo,
165 struct scb *scb);
166 void ahd_setup_initiator_msgout(struct ahd_softc *ahd,
167 struct ahd_devinfo *devinfo,
168 struct scb *scb);
169 void ahd_build_transfer_msg(struct ahd_softc *ahd,
170 struct ahd_devinfo *devinfo);
171 void ahd_construct_sdtr(struct ahd_softc *ahd,
172 struct ahd_devinfo *devinfo,
173 u_int period, u_int offset);
174 void ahd_construct_wdtr(struct ahd_softc *ahd,
175 struct ahd_devinfo *devinfo,
176 u_int bus_width);
177 void ahd_construct_ppr(struct ahd_softc *ahd,
178 struct ahd_devinfo *devinfo,
179 u_int period, u_int offset,
180 u_int bus_width, u_int ppr_options);
181 void ahd_clear_msg_state(struct ahd_softc *ahd);
182 void ahd_handle_message_phase(struct ahd_softc *ahd);
183 typedef enum {
184 AHDMSG_1B,
185 AHDMSG_2B,
186 AHDMSG_EXT
187 } ahd_msgtype;
188 int ahd_sent_msg(struct ahd_softc *ahd, ahd_msgtype type,
189 u_int msgval, int full);
190 int ahd_parse_msg(struct ahd_softc *ahd,
191 struct ahd_devinfo *devinfo);
192 int ahd_handle_msg_reject(struct ahd_softc *ahd,
193 struct ahd_devinfo *devinfo);
194 void ahd_handle_ign_wide_residue(struct ahd_softc *ahd,
195 struct ahd_devinfo *devinfo);
196 void ahd_reinitialize_dataptrs(struct ahd_softc *ahd);
197 void ahd_handle_devreset(struct ahd_softc *ahd,
198 struct ahd_devinfo *devinfo,
199 u_int lun, cam_status status,
200 char *message, int verbose_level);
201 #if AHD_TARGET_MODE
202 void ahd_setup_target_msgin(struct ahd_softc *ahd,
203 struct ahd_devinfo *devinfo,
204 struct scb *scb);
205 #endif
206
207 u_int ahd_sglist_size(struct ahd_softc *ahd);
208 u_int ahd_sglist_allocsize(struct ahd_softc *ahd);
209 void ahd_initialize_hscbs(struct ahd_softc *ahd);
210 int ahd_init_scbdata(struct ahd_softc *ahd);
211 struct scb * ahd_find_scb_by_tag(struct ahd_softc *, u_int);
212 void ahd_fini_scbdata(struct ahd_softc *ahd);
213 void ahd_setup_iocell_workaround(struct ahd_softc *ahd);
214 void ahd_iocell_first_selection(struct ahd_softc *ahd);
215 void ahd_chip_init(struct ahd_softc *ahd);
216 void ahd_qinfifo_requeue(struct ahd_softc *ahd,
217 struct scb *prev_scb,
218 struct scb *scb);
219 int ahd_qinfifo_count(struct ahd_softc *ahd);
220 int ahd_search_scb_list(struct ahd_softc *ahd, int target,
221 char channel, int lun, u_int tag,
222 role_t role, uint32_t status,
223 ahd_search_action action,
224 u_int *list_head, u_int *list_tail,
225 u_int tid);
226 void ahd_stitch_tid_list(struct ahd_softc *ahd,
227 u_int tid_prev, u_int tid_cur,
228 u_int tid_next);
229 void ahd_add_scb_to_free_list(struct ahd_softc *ahd,
230 u_int scbid);
231 u_int ahd_rem_wscb(struct ahd_softc *ahd, u_int scbid,
232 u_int prev, u_int next, u_int tid);
233 void ahd_reset_current_bus(struct ahd_softc *ahd);
234 ahd_callback_t ahd_reset_poll;
235 ahd_callback_t ahd_stat_timer;
236 #ifdef AHD_DUMP_SEQ
237 void ahd_dumpseq(struct ahd_softc *ahd);
238 #endif
239 void ahd_loadseq(struct ahd_softc *ahd);
240 int ahd_check_patch(struct ahd_softc *ahd,
241 const struct patch **start_patch,
242 u_int start_instr, u_int *skip_addr);
243 u_int ahd_resolve_seqaddr(struct ahd_softc *ahd,
244 u_int address);
245 void ahd_download_instr(struct ahd_softc *ahd,
246 u_int instrptr, uint8_t *dconsts);
247 int ahd_probe_stack_size(struct ahd_softc *ahd);
248 int ahd_scb_active_in_fifo(struct ahd_softc *ahd,
249 struct scb *scb);
250 void ahd_run_data_fifo(struct ahd_softc *ahd,
251 struct scb *scb);
252
253 #ifdef AHD_TARGET_MODE
254 void ahd_queue_lstate_event(struct ahd_softc *ahd,
255 struct ahd_tmode_lstate *lstate,
256 u_int initiator_id,
257 u_int event_type,
258 u_int event_arg);
259 void ahd_update_scsiid(struct ahd_softc *ahd,
260 u_int targid_mask);
261 int ahd_handle_target_cmd(struct ahd_softc *ahd,
262 struct target_cmd *cmd);
263 #endif
264
265 /************************** Added for porting to NetBSD ***********************/
266 int ahd_createdmamem(struct ahd_softc *, size_t, struct map_node *,
267 const char *);
268
269 void ahd_freedmamem(struct ahd_softc *, struct map_node *);
270
271 /******************************** Private Inlines *****************************/
272 int ahd_currently_packetized(struct ahd_softc *ahd);
273 int ahd_set_active_fifo(struct ahd_softc *ahd);
274
275 static inline void
ahd_assert_atn(struct ahd_softc * ahd)276 ahd_assert_atn(struct ahd_softc *ahd)
277 {
278 ahd_outb(ahd, SCSISIGO, ATNO);
279 }
280
281 /*
282 * Determine if the current connection has a packetized
283 * agreement. This does not necessarily mean that we
284 * are currently in a packetized transfer. We could
285 * just as easily be sending or receiving a message.
286 */
287 int
ahd_currently_packetized(struct ahd_softc * ahd)288 ahd_currently_packetized(struct ahd_softc *ahd)
289 {
290 ahd_mode_state saved_modes;
291 int packetized;
292
293 saved_modes = ahd_save_modes(ahd);
294 if ((ahd->bugs & AHD_PKTIZED_STATUS_BUG) != 0) {
295 /*
296 * The packetized bit refers to the last
297 * connection, not the current one. Check
298 * for non-zero LQISTATE instead.
299 */
300 ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
301 packetized = ahd_inb(ahd, LQISTATE) != 0;
302 } else {
303 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
304 packetized = ahd_inb(ahd, LQISTAT2) & PACKETIZED;
305 }
306 ahd_restore_modes(ahd, saved_modes);
307 return (packetized);
308 }
309
310 int
ahd_set_active_fifo(struct ahd_softc * ahd)311 ahd_set_active_fifo(struct ahd_softc *ahd)
312 {
313 u_int active_fifo;
314
315 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
316 active_fifo = ahd_inb(ahd, DFFSTAT) & CURRFIFO;
317 switch (active_fifo) {
318 case 0:
319 case 1:
320 ahd_set_modes(ahd, active_fifo, active_fifo);
321 return (1);
322 default:
323 return (0);
324 }
325 }
326
327 /************************* Sequencer Execution Control ************************/
328 /*
329 * Restart the sequencer program from address zero
330 */
331 void
ahd_restart(struct ahd_softc * ahd)332 ahd_restart(struct ahd_softc *ahd)
333 {
334
335 ahd_pause(ahd);
336
337 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
338
339 /* No more pending messages */
340 ahd_clear_msg_state(ahd);
341 ahd_outb(ahd, SCSISIGO, 0); /* De-assert BSY */
342 ahd_outb(ahd, MSG_OUT, MSG_NOOP); /* No message to send */
343 ahd_outb(ahd, SXFRCTL1, ahd_inb(ahd, SXFRCTL1) & ~BITBUCKET);
344 ahd_outb(ahd, SEQINTCTL, 0);
345 ahd_outb(ahd, LASTPHASE, P_BUSFREE);
346 ahd_outb(ahd, SEQ_FLAGS, 0);
347 ahd_outb(ahd, SAVED_SCSIID, 0xFF);
348 ahd_outb(ahd, SAVED_LUN, 0xFF);
349
350 /*
351 * Ensure that the sequencer's idea of TQINPOS
352 * matches our own. The sequencer increments TQINPOS
353 * only after it sees a DMA complete and a reset could
354 * occur before the increment leaving the kernel to believe
355 * the command arrived but the sequencer to not.
356 */
357 ahd_outb(ahd, TQINPOS, ahd->tqinfifonext);
358
359 /* Always allow reselection */
360 ahd_outb(ahd, SCSISEQ1,
361 ahd_inb(ahd, SCSISEQ_TEMPLATE) & (ENSELI|ENRSELI|ENAUTOATNP));
362 ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
363
364 /*
365 * Clear any pending sequencer interrupt. It is no
366 * longer relevant since we're resetting the Program
367 * Counter.
368 */
369 ahd_outb(ahd, CLRINT, CLRSEQINT);
370
371 ahd_outb(ahd, SEQCTL0, FASTMODE|SEQRESET);
372 ahd_unpause(ahd);
373 }
374
375 void
ahd_clear_fifo(struct ahd_softc * ahd,u_int fifo)376 ahd_clear_fifo(struct ahd_softc *ahd, u_int fifo)
377 {
378 ahd_mode_state saved_modes;
379
380 #ifdef AHD_DEBUG
381 if ((ahd_debug & AHD_SHOW_FIFOS) != 0)
382 printf("%s: Clearing FIFO %d\n", ahd_name(ahd), fifo);
383 #endif
384 saved_modes = ahd_save_modes(ahd);
385 ahd_set_modes(ahd, fifo, fifo);
386 ahd_outb(ahd, DFFSXFRCTL, RSTCHN|CLRSHCNT);
387 if ((ahd_inb(ahd, SG_STATE) & FETCH_INPROG) != 0)
388 ahd_outb(ahd, CCSGCTL, CCSGRESET);
389 ahd_outb(ahd, LONGJMP_ADDR + 1, INVALID_ADDR);
390 ahd_outb(ahd, SG_STATE, 0);
391 ahd_restore_modes(ahd, saved_modes);
392 }
393
394 /************************* Input/Output Queues ********************************/
395 /*
396 * Flush and completed commands that are sitting in the command
397 * complete queues down on the chip but have yet to be dma'ed back up.
398 */
399 void
ahd_flush_qoutfifo(struct ahd_softc * ahd)400 ahd_flush_qoutfifo(struct ahd_softc *ahd)
401 {
402 struct scb *scb;
403 ahd_mode_state saved_modes;
404 u_int saved_scbptr;
405 u_int ccscbctl;
406 u_int scbid;
407 u_int next_scbid;
408
409 saved_modes = ahd_save_modes(ahd);
410
411 /*
412 * Flush the good status FIFO for completed packetized commands.
413 */
414 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
415 saved_scbptr = ahd_get_scbptr(ahd);
416 while ((ahd_inb(ahd, LQISTAT2) & LQIGSAVAIL) != 0) {
417 u_int fifo_mode;
418 u_int i;
419
420 scbid = ahd_inw(ahd, GSFIFO);
421 scb = ahd_lookup_scb(ahd, scbid);
422 if (scb == NULL) {
423 printf("%s: Warning - GSFIFO SCB %d invalid\n",
424 ahd_name(ahd), scbid);
425 continue;
426 }
427 /*
428 * Determine if this transaction is still active in
429 * any FIFO. If it is, we must flush that FIFO to
430 * the host before completing the command.
431 */
432 fifo_mode = 0;
433 rescan_fifos:
434 for (i = 0; i < 2; i++) {
435 /* Toggle to the other mode. */
436 fifo_mode ^= 1;
437 ahd_set_modes(ahd, fifo_mode, fifo_mode);
438
439 if (ahd_scb_active_in_fifo(ahd, scb) == 0)
440 continue;
441
442 ahd_run_data_fifo(ahd, scb);
443
444 /*
445 * Running this FIFO may cause a CFG4DATA for
446 * this same transaction to assert in the other
447 * FIFO or a new snapshot SAVEPTRS interrupt
448 * in this FIFO. Even running a FIFO may not
449 * clear the transaction if we are still waiting
450 * for data to drain to the host. We must loop
451 * until the transaction is not active in either
452 * FIFO just to be sure. Reset our loop counter
453 * so we will visit both FIFOs again before
454 * declaring this transaction finished. We
455 * also delay a bit so that status has a chance
456 * to change before we look at this FIFO again.
457 */
458 aic_delay(200);
459 goto rescan_fifos;
460 }
461 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
462 ahd_set_scbptr(ahd, scbid);
463 if ((ahd_inb_scbram(ahd, SCB_SGPTR) & SG_LIST_NULL) == 0
464 && ((ahd_inb_scbram(ahd, SCB_SGPTR) & SG_FULL_RESID) != 0
465 || (ahd_inb_scbram(ahd, SCB_RESIDUAL_SGPTR)
466 & SG_LIST_NULL) != 0)) {
467 u_int comp_head;
468
469 /*
470 * The transfer completed with a residual.
471 * Place this SCB on the complete DMA list
472 * so that we update our in-core copy of the
473 * SCB before completing the command.
474 */
475 ahd_outb(ahd, SCB_SCSI_STATUS, 0);
476 ahd_outb(ahd, SCB_SGPTR,
477 ahd_inb_scbram(ahd, SCB_SGPTR)
478 | SG_STATUS_VALID);
479 ahd_outw(ahd, SCB_TAG, scbid);
480 ahd_outw(ahd, SCB_NEXT_COMPLETE, SCB_LIST_NULL);
481 comp_head = ahd_inw(ahd, COMPLETE_DMA_SCB_HEAD);
482 if (SCBID_IS_NULL(comp_head)) {
483 ahd_outw(ahd, COMPLETE_DMA_SCB_HEAD, scbid);
484 ahd_outw(ahd, COMPLETE_DMA_SCB_TAIL, scbid);
485 } else {
486 u_int tail;
487
488 tail = ahd_inw(ahd, COMPLETE_DMA_SCB_TAIL);
489 ahd_set_scbptr(ahd, tail);
490 ahd_outw(ahd, SCB_NEXT_COMPLETE, scbid);
491 ahd_outw(ahd, COMPLETE_DMA_SCB_TAIL, scbid);
492 ahd_set_scbptr(ahd, scbid);
493 }
494 } else
495 ahd_complete_scb(ahd, scb);
496 }
497 ahd_set_scbptr(ahd, saved_scbptr);
498
499 /*
500 * Setup for command channel portion of flush.
501 */
502 ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
503
504 /*
505 * Wait for any inprogress DMA to complete and clear DMA state
506 * if this if for an SCB in the qinfifo.
507 */
508 while (((ccscbctl = ahd_inb(ahd, CCSCBCTL)) & (CCARREN|CCSCBEN)) != 0) {
509
510 if ((ccscbctl & (CCSCBDIR|CCARREN)) == (CCSCBDIR|CCARREN)) {
511 if ((ccscbctl & ARRDONE) != 0)
512 break;
513 } else if ((ccscbctl & CCSCBDONE) != 0)
514 break;
515 aic_delay(200);
516 }
517 /*
518 * We leave the sequencer to cleanup in the case of DMA's to
519 * update the qoutfifo. In all other cases (DMA's to the
520 * chip or a push of an SCB from the COMPLETE_DMA_SCB list),
521 * we disable the DMA engine so that the sequencer will not
522 * attempt to handle the DMA completion.
523 */
524 if ((ccscbctl & CCSCBDIR) != 0 || (ccscbctl & ARRDONE) != 0)
525 ahd_outb(ahd, CCSCBCTL, ccscbctl & ~(CCARREN|CCSCBEN));
526
527 /*
528 * Complete any SCBs that just finished
529 * being DMA'ed into the qoutfifo.
530 */
531 ahd_run_qoutfifo(ahd);
532
533 saved_scbptr = ahd_get_scbptr(ahd);
534 /*
535 * Manually update/complete any completed SCBs that are waiting to be
536 * DMA'ed back up to the host.
537 */
538 scbid = ahd_inw(ahd, COMPLETE_DMA_SCB_HEAD);
539 while (!SCBID_IS_NULL(scbid)) {
540 uint8_t *hscb_ptr;
541 u_int i;
542
543 ahd_set_scbptr(ahd, scbid);
544 next_scbid = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
545 scb = ahd_lookup_scb(ahd, scbid);
546 if (scb == NULL) {
547 printf("%s: Warning - DMA-up and complete "
548 "SCB %d invalid\n", ahd_name(ahd), scbid);
549 continue;
550 }
551 hscb_ptr = (uint8_t *)scb->hscb;
552 for (i = 0; i < sizeof(struct hardware_scb); i++)
553 *hscb_ptr++ = ahd_inb_scbram(ahd, SCB_BASE + i);
554
555 ahd_complete_scb(ahd, scb);
556 scbid = next_scbid;
557 }
558 ahd_outw(ahd, COMPLETE_DMA_SCB_HEAD, SCB_LIST_NULL);
559 ahd_outw(ahd, COMPLETE_DMA_SCB_TAIL, SCB_LIST_NULL);
560
561 scbid = ahd_inw(ahd, COMPLETE_ON_QFREEZE_HEAD);
562 while (!SCBID_IS_NULL(scbid)) {
563
564 ahd_set_scbptr(ahd, scbid);
565 next_scbid = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
566 scb = ahd_lookup_scb(ahd, scbid);
567 if (scb == NULL) {
568 printf("%s: Warning - Complete Qfrz SCB %d invalid\n",
569 ahd_name(ahd), scbid);
570 continue;
571 }
572
573 ahd_complete_scb(ahd, scb);
574 scbid = next_scbid;
575 }
576 ahd_outw(ahd, COMPLETE_ON_QFREEZE_HEAD, SCB_LIST_NULL);
577
578 scbid = ahd_inw(ahd, COMPLETE_SCB_HEAD);
579 while (!SCBID_IS_NULL(scbid)) {
580
581 ahd_set_scbptr(ahd, scbid);
582 next_scbid = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
583 scb = ahd_lookup_scb(ahd, scbid);
584 if (scb == NULL) {
585 printf("%s: Warning - Complete SCB %d invalid\n",
586 ahd_name(ahd), scbid);
587 continue;
588 }
589
590 ahd_complete_scb(ahd, scb);
591 scbid = next_scbid;
592 }
593 ahd_outw(ahd, COMPLETE_SCB_HEAD, SCB_LIST_NULL);
594
595 /*
596 * Restore state.
597 */
598 ahd_set_scbptr(ahd, saved_scbptr);
599 ahd_restore_modes(ahd, saved_modes);
600 ahd->flags |= AHD_UPDATE_PEND_CMDS;
601 }
602
603 /*
604 * Determine if an SCB for a packetized transaction
605 * is active in a FIFO.
606 */
607 int
ahd_scb_active_in_fifo(struct ahd_softc * ahd,struct scb * scb)608 ahd_scb_active_in_fifo(struct ahd_softc *ahd, struct scb *scb)
609 {
610
611 /*
612 * The FIFO is only active for our transaction if
613 * the SCBPTR matches the SCB's ID and the firmware
614 * has installed a handler for the FIFO or we have
615 * a pending SAVEPTRS or CFG4DATA interrupt.
616 */
617 if (ahd_get_scbptr(ahd) != SCB_GET_TAG(scb)
618 || ((ahd_inb(ahd, LONGJMP_ADDR+1) & INVALID_ADDR) != 0
619 && (ahd_inb(ahd, SEQINTSRC) & (CFG4DATA|SAVEPTRS)) == 0))
620 return (0);
621
622 return (1);
623 }
624
625 /*
626 * Run a data fifo to completion for a transaction we know
627 * has completed across the SCSI bus (good status has been
628 * received). We are already set to the correct FIFO mode
629 * on entry to this routine.
630 *
631 * This function attempts to operate exactly as the firmware
632 * would when running this FIFO. Care must be taken to update
633 * this routine any time the firmware's FIFO algorithm is
634 * changed.
635 */
636 void
ahd_run_data_fifo(struct ahd_softc * ahd,struct scb * scb)637 ahd_run_data_fifo(struct ahd_softc *ahd, struct scb *scb)
638 {
639 u_int seqintsrc;
640
641 seqintsrc = ahd_inb(ahd, SEQINTSRC);
642 if ((seqintsrc & CFG4DATA) != 0) {
643 uint32_t datacnt;
644 uint32_t sgptr;
645
646 /*
647 * Clear full residual flag.
648 */
649 sgptr = ahd_inl_scbram(ahd, SCB_SGPTR) & ~SG_FULL_RESID;
650 ahd_outb(ahd, SCB_SGPTR, sgptr);
651
652 /*
653 * Load datacnt and address.
654 */
655 datacnt = ahd_inl_scbram(ahd, SCB_DATACNT);
656 if ((datacnt & AHD_DMA_LAST_SEG) != 0) {
657 sgptr |= LAST_SEG;
658 ahd_outb(ahd, SG_STATE, 0);
659 } else
660 ahd_outb(ahd, SG_STATE, LOADING_NEEDED);
661 ahd_outq(ahd, HADDR, ahd_inq_scbram(ahd, SCB_DATAPTR));
662 ahd_outl(ahd, HCNT, datacnt & AHD_SG_LEN_MASK);
663 ahd_outb(ahd, SG_CACHE_PRE, sgptr);
664 ahd_outb(ahd, DFCNTRL, PRELOADEN|SCSIEN|HDMAEN);
665
666 /*
667 * Initialize Residual Fields.
668 */
669 ahd_outb(ahd, SCB_RESIDUAL_DATACNT+3, datacnt >> 24);
670 ahd_outl(ahd, SCB_RESIDUAL_SGPTR, sgptr & SG_PTR_MASK);
671
672 /*
673 * Mark the SCB as having a FIFO in use.
674 */
675 ahd_outb(ahd, SCB_FIFO_USE_COUNT,
676 ahd_inb_scbram(ahd, SCB_FIFO_USE_COUNT) + 1);
677
678 /*
679 * Install a "fake" handler for this FIFO.
680 */
681 ahd_outw(ahd, LONGJMP_ADDR, 0);
682
683 /*
684 * Notify the hardware that we have satisfied
685 * this sequencer interrupt.
686 */
687 ahd_outb(ahd, CLRSEQINTSRC, CLRCFG4DATA);
688 } else if ((seqintsrc & SAVEPTRS) != 0) {
689 uint32_t sgptr;
690 uint32_t resid;
691
692 if ((ahd_inb(ahd, LONGJMP_ADDR+1)&INVALID_ADDR) != 0) {
693 /*
694 * Snapshot Save Pointers. All that
695 * is necessary to clear the snapshot
696 * is a CLRCHN.
697 */
698 goto clrchn;
699 }
700
701 /*
702 * Disable S/G fetch so the DMA engine
703 * is available to future users.
704 */
705 if ((ahd_inb(ahd, SG_STATE) & FETCH_INPROG) != 0)
706 ahd_outb(ahd, CCSGCTL, 0);
707 ahd_outb(ahd, SG_STATE, 0);
708
709 /*
710 * Flush the data FIFO. Strictly only
711 * necessary for Rev A parts.
712 */
713 ahd_outb(ahd, DFCNTRL, ahd_inb(ahd, DFCNTRL) | FIFOFLUSH);
714
715 /*
716 * Calculate residual.
717 */
718 sgptr = ahd_inl_scbram(ahd, SCB_RESIDUAL_SGPTR);
719 resid = ahd_inl(ahd, SHCNT);
720 resid |= ahd_inb_scbram(ahd, SCB_RESIDUAL_DATACNT+3) << 24;
721 ahd_outl(ahd, SCB_RESIDUAL_DATACNT, resid);
722 if ((ahd_inb(ahd, SG_CACHE_SHADOW) & LAST_SEG) == 0) {
723 /*
724 * Must back up to the correct S/G element.
725 * Typically this just means resetting our
726 * low byte to the offset in the SG_CACHE,
727 * but if we wrapped, we have to correct
728 * the other bytes of the sgptr too.
729 */
730 if ((ahd_inb(ahd, SG_CACHE_SHADOW) & 0x80) != 0
731 && (sgptr & 0x80) == 0)
732 sgptr -= 0x100;
733 sgptr &= ~0xFF;
734 sgptr |= ahd_inb(ahd, SG_CACHE_SHADOW)
735 & SG_ADDR_MASK;
736 ahd_outl(ahd, SCB_RESIDUAL_SGPTR, sgptr);
737 ahd_outb(ahd, SCB_RESIDUAL_DATACNT + 3, 0);
738 } else if ((resid & AHD_SG_LEN_MASK) == 0) {
739 ahd_outb(ahd, SCB_RESIDUAL_SGPTR,
740 sgptr | SG_LIST_NULL);
741 }
742 /*
743 * Save Pointers.
744 */
745 ahd_outq(ahd, SCB_DATAPTR, ahd_inq(ahd, SHADDR));
746 ahd_outl(ahd, SCB_DATACNT, resid);
747 ahd_outl(ahd, SCB_SGPTR, sgptr);
748 ahd_outb(ahd, CLRSEQINTSRC, CLRSAVEPTRS);
749 ahd_outb(ahd, SEQIMODE,
750 ahd_inb(ahd, SEQIMODE) | ENSAVEPTRS);
751 /*
752 * If the data is to the SCSI bus, we are
753 * done, otherwise wait for FIFOEMP.
754 */
755 if ((ahd_inb(ahd, DFCNTRL) & DIRECTION) != 0)
756 goto clrchn;
757 } else if ((ahd_inb(ahd, SG_STATE) & LOADING_NEEDED) != 0) {
758 uint32_t sgptr;
759 uint64_t data_addr;
760 uint32_t data_len;
761 u_int dfcntrl;
762
763 /*
764 * Disable S/G fetch so the DMA engine
765 * is available to future users. We won't
766 * be using the DMA engine to load segments.
767 */
768 if ((ahd_inb(ahd, SG_STATE) & FETCH_INPROG) != 0) {
769 ahd_outb(ahd, CCSGCTL, 0);
770 ahd_outb(ahd, SG_STATE, LOADING_NEEDED);
771 }
772
773 /*
774 * Wait for the DMA engine to notice that the
775 * host transfer is enabled and that there is
776 * space in the S/G FIFO for new segments before
777 * loading more segments.
778 */
779 if ((ahd_inb(ahd, DFSTATUS) & PRELOAD_AVAIL) != 0
780 && (ahd_inb(ahd, DFCNTRL) & HDMAENACK) != 0) {
781
782 /*
783 * Determine the offset of the next S/G
784 * element to load.
785 */
786 sgptr = ahd_inl_scbram(ahd, SCB_RESIDUAL_SGPTR);
787 sgptr &= SG_PTR_MASK;
788 if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
789 struct ahd_dma64_seg *sg;
790
791 sg = ahd_sg_bus_to_virt(ahd, scb, sgptr);
792 data_addr = sg->addr;
793 data_len = sg->len;
794 sgptr += sizeof(*sg);
795 } else {
796 struct ahd_dma_seg *sg;
797
798 sg = ahd_sg_bus_to_virt(ahd, scb, sgptr);
799 data_addr = sg->len & AHD_SG_HIGH_ADDR_MASK;
800 data_addr <<= 8;
801 data_addr |= sg->addr;
802 data_len = sg->len;
803 sgptr += sizeof(*sg);
804 }
805
806 /*
807 * Update residual information.
808 */
809 ahd_outb(ahd, SCB_RESIDUAL_DATACNT+3, data_len >> 24);
810 ahd_outl(ahd, SCB_RESIDUAL_SGPTR, sgptr);
811
812 /*
813 * Load the S/G.
814 */
815 if (data_len & AHD_DMA_LAST_SEG) {
816 sgptr |= LAST_SEG;
817 ahd_outb(ahd, SG_STATE, 0);
818 }
819 ahd_outq(ahd, HADDR, data_addr);
820 ahd_outl(ahd, HCNT, data_len & AHD_SG_LEN_MASK);
821 ahd_outb(ahd, SG_CACHE_PRE, sgptr & 0xFF);
822
823 /*
824 * Advertise the segment to the hardware.
825 */
826 dfcntrl = ahd_inb(ahd, DFCNTRL)|PRELOADEN|HDMAEN;
827 if ((ahd->features & AHD_NEW_DFCNTRL_OPTS) != 0) {
828 /*
829 * Use SCSIENWRDIS so that SCSIEN
830 * is never modified by this
831 * operation.
832 */
833 dfcntrl |= SCSIENWRDIS;
834 }
835 ahd_outb(ahd, DFCNTRL, dfcntrl);
836 }
837 } else if ((ahd_inb(ahd, SG_CACHE_SHADOW) & LAST_SEG_DONE) != 0) {
838
839 /*
840 * Transfer completed to the end of SG list
841 * and has flushed to the host.
842 */
843 ahd_outb(ahd, SCB_SGPTR,
844 ahd_inb_scbram(ahd, SCB_SGPTR) | SG_LIST_NULL);
845 goto clrchn;
846 } else if ((ahd_inb(ahd, DFSTATUS) & FIFOEMP) != 0) {
847 clrchn:
848 /*
849 * Clear any handler for this FIFO, decrement
850 * the FIFO use count for the SCB, and release
851 * the FIFO.
852 */
853 ahd_outb(ahd, LONGJMP_ADDR + 1, INVALID_ADDR);
854 ahd_outb(ahd, SCB_FIFO_USE_COUNT,
855 ahd_inb_scbram(ahd, SCB_FIFO_USE_COUNT) - 1);
856 ahd_outb(ahd, DFFSXFRCTL, CLRCHN);
857 }
858 }
859
860 /*
861 * Look for entries in the QoutFIFO that have completed.
862 * The valid_tag completion field indicates the validity
863 * of the entry - the valid value toggles each time through
864 * the queue. We use the sg_status field in the completion
865 * entry to avoid referencing the hscb if the completion
866 * occurred with no errors and no residual. sg_status is
867 * a copy of the first byte (little endian) of the sgptr
868 * hscb field.
869 */
870 void
ahd_run_qoutfifo(struct ahd_softc * ahd)871 ahd_run_qoutfifo(struct ahd_softc *ahd)
872 {
873 struct ahd_completion *completion;
874 struct scb *scb;
875 u_int scb_index;
876
877 if ((ahd->flags & AHD_RUNNING_QOUTFIFO) != 0)
878 panic("ahd_run_qoutfifo recursion");
879 ahd->flags |= AHD_RUNNING_QOUTFIFO;
880 ahd_sync_qoutfifo(ahd, BUS_DMASYNC_POSTREAD);
881 for (;;) {
882 completion = &ahd->qoutfifo[ahd->qoutfifonext];
883
884 if (completion->valid_tag != ahd->qoutfifonext_valid_tag)
885 break;
886
887 scb_index = aic_le16toh(completion->tag);
888 scb = ahd_lookup_scb(ahd, scb_index);
889 if (scb == NULL) {
890 printf("%s: WARNING no command for scb %d "
891 "(cmdcmplt)\nQOUTPOS = %d\n",
892 ahd_name(ahd), scb_index,
893 ahd->qoutfifonext);
894 ahd_dump_card_state(ahd);
895 } else if ((completion->sg_status & SG_STATUS_VALID) != 0) {
896 ahd_handle_scb_status(ahd, scb);
897 } else {
898 ahd_done(ahd, scb);
899 }
900
901 ahd->qoutfifonext = (ahd->qoutfifonext+1) & (AHD_QOUT_SIZE-1);
902 if (ahd->qoutfifonext == 0)
903 ahd->qoutfifonext_valid_tag ^= QOUTFIFO_ENTRY_VALID;
904 }
905 ahd->flags &= ~AHD_RUNNING_QOUTFIFO;
906 }
907
908 /************************* Interrupt Handling *********************************/
909 void
ahd_handle_hwerrint(struct ahd_softc * ahd)910 ahd_handle_hwerrint(struct ahd_softc *ahd)
911 {
912 /*
913 * Some catastrophic hardware error has occurred.
914 * Print it for the user and disable the controller.
915 */
916 int i;
917 int error;
918
919 error = ahd_inb(ahd, ERROR);
920 for (i = 0; i < num_errors; i++) {
921 if ((error & ahd_hard_errors[i].errno) != 0)
922 printf("%s: hwerrint, %s\n",
923 ahd_name(ahd), ahd_hard_errors[i].errmesg);
924 }
925
926 ahd_dump_card_state(ahd);
927 panic("BRKADRINT");
928
929 /* Tell everyone that this HBA is no longer available */
930 ahd_abort_scbs(ahd, CAM_TARGET_WILDCARD, ALL_CHANNELS,
931 CAM_LUN_WILDCARD, SCB_LIST_NULL, ROLE_UNKNOWN,
932 CAM_NO_HBA);
933
934 /* Tell the system that this controller has gone away. */
935 ahd_free(ahd);
936 }
937
938 void
ahd_handle_seqint(struct ahd_softc * ahd,u_int intstat)939 ahd_handle_seqint(struct ahd_softc *ahd, u_int intstat)
940 {
941 u_int seqintcode;
942
943 /*
944 * Save the sequencer interrupt code and clear the SEQINT
945 * bit. We will unpause the sequencer, if appropriate,
946 * after servicing the request.
947 */
948 seqintcode = ahd_inb(ahd, SEQINTCODE);
949 ahd_outb(ahd, CLRINT, CLRSEQINT);
950 if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) {
951 /*
952 * Unpause the sequencer and let it clear
953 * SEQINT by writing NO_SEQINT to it. This
954 * will cause the sequencer to be paused again,
955 * which is the expected state of this routine.
956 */
957 ahd_unpause(ahd);
958 while (!ahd_is_paused(ahd))
959 ;
960 ahd_outb(ahd, CLRINT, CLRSEQINT);
961 }
962 ahd_update_modes(ahd);
963 #ifdef AHD_DEBUG
964 if ((ahd_debug & AHD_SHOW_MISC) != 0)
965 printf("%s: Handle Seqint Called for code %d\n",
966 ahd_name(ahd), seqintcode);
967 #endif
968 switch (seqintcode) {
969 case ENTERING_NONPACK:
970 {
971 struct scb *scb;
972 u_int scbid;
973
974 AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
975 ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
976 scbid = ahd_get_scbptr(ahd);
977 scb = ahd_lookup_scb(ahd, scbid);
978 if (scb == NULL) {
979 /*
980 * Somehow need to know if this
981 * is from a selection or reselection.
982 * From that, we can determine target
983 * ID so we at least have an I_T nexus.
984 */
985 } else {
986 ahd_outb(ahd, SAVED_SCSIID, scb->hscb->scsiid);
987 ahd_outb(ahd, SAVED_LUN, scb->hscb->lun);
988 ahd_outb(ahd, SEQ_FLAGS, 0x0);
989 }
990 if ((ahd_inb(ahd, LQISTAT2) & LQIPHASE_OUTPKT) != 0
991 && (ahd_inb(ahd, SCSISIGO) & ATNO) != 0) {
992 /*
993 * Phase change after read stream with
994 * CRC error with P0 asserted on last
995 * packet.
996 */
997 #ifdef AHD_DEBUG
998 if ((ahd_debug & AHD_SHOW_RECOVERY) != 0)
999 printf("%s: Assuming LQIPHASE_NLQ with "
1000 "P0 assertion\n", ahd_name(ahd));
1001 #endif
1002 }
1003 #ifdef AHD_DEBUG
1004 if ((ahd_debug & AHD_SHOW_RECOVERY) != 0)
1005 printf("%s: Entering NONPACK\n", ahd_name(ahd));
1006 #endif
1007 break;
1008 }
1009 case INVALID_SEQINT:
1010 printf("%s: Invalid Sequencer interrupt occurred.\n",
1011 ahd_name(ahd));
1012 ahd_dump_card_state(ahd);
1013 ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
1014 break;
1015 case STATUS_OVERRUN:
1016 {
1017 struct scb *scb;
1018 u_int scbid;
1019
1020 scbid = ahd_get_scbptr(ahd);
1021 scb = ahd_lookup_scb(ahd, scbid);
1022 if (scb != NULL)
1023 ahd_print_path(ahd, scb);
1024 else
1025 printf("%s: ", ahd_name(ahd));
1026 printf("SCB %d Packetized Status Overrun", scbid);
1027 ahd_dump_card_state(ahd);
1028 ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
1029 break;
1030 }
1031 case CFG4ISTAT_INTR:
1032 {
1033 struct scb *scb;
1034 u_int scbid;
1035
1036 scbid = ahd_get_scbptr(ahd);
1037 scb = ahd_lookup_scb(ahd, scbid);
1038 if (scb == NULL) {
1039 ahd_dump_card_state(ahd);
1040 printf("CFG4ISTAT: Free SCB %d referenced", scbid);
1041 panic("For safety");
1042 }
1043 ahd_outq(ahd, HADDR, scb->sense_busaddr);
1044 ahd_outw(ahd, HCNT, AHD_SENSE_BUFSIZE);
1045 ahd_outb(ahd, HCNT + 2, 0);
1046 ahd_outb(ahd, SG_CACHE_PRE, SG_LAST_SEG);
1047 ahd_outb(ahd, DFCNTRL, PRELOADEN|SCSIEN|HDMAEN);
1048 break;
1049 }
1050 case ILLEGAL_PHASE:
1051 {
1052 u_int bus_phase;
1053
1054 bus_phase = ahd_inb(ahd, SCSISIGI) & PHASE_MASK;
1055 printf("%s: ILLEGAL_PHASE 0x%x\n",
1056 ahd_name(ahd), bus_phase);
1057
1058 switch (bus_phase) {
1059 case P_DATAOUT:
1060 case P_DATAIN:
1061 case P_DATAOUT_DT:
1062 case P_DATAIN_DT:
1063 case P_MESGOUT:
1064 case P_STATUS:
1065 case P_MESGIN:
1066 ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
1067 printf("%s: Issued Bus Reset.\n", ahd_name(ahd));
1068 break;
1069 case P_COMMAND:
1070 {
1071 struct ahd_devinfo devinfo;
1072 struct scb *scb;
1073 struct ahd_initiator_tinfo *targ_info;
1074 struct ahd_tmode_tstate *tstate;
1075 u_int scbid;
1076
1077 /*
1078 * If a target takes us into the command phase
1079 * assume that it has been externally reset and
1080 * has thus lost our previous packetized negotiation
1081 * agreement. Since we have not sent an identify
1082 * message and may not have fully qualified the
1083 * connection, we change our command to TUR, assert
1084 * ATN and ABORT the task when we go to message in
1085 * phase. The OSM will see the REQUEUE_REQUEST
1086 * status and retry the command.
1087 */
1088 scbid = ahd_get_scbptr(ahd);
1089 scb = ahd_lookup_scb(ahd, scbid);
1090 if (scb == NULL) {
1091 printf("Invalid phase with no valid SCB. "
1092 "Resetting bus.\n");
1093 ahd_reset_channel(ahd, 'A',
1094 /*Initiate Reset*/TRUE);
1095 break;
1096 }
1097 ahd_compile_devinfo(&devinfo, SCB_GET_OUR_ID(scb),
1098 SCB_GET_TARGET(ahd, scb),
1099 SCB_GET_LUN(scb),
1100 SCB_GET_CHANNEL(ahd, scb),
1101 ROLE_INITIATOR);
1102 targ_info = ahd_fetch_transinfo(ahd,
1103 devinfo.channel,
1104 devinfo.our_scsiid,
1105 devinfo.target,
1106 &tstate);
1107 ahd_set_width(ahd, &devinfo, MSG_EXT_WDTR_BUS_8_BIT,
1108 AHD_TRANS_ACTIVE, /*paused*/TRUE);
1109 ahd_set_syncrate(ahd, &devinfo, /*period*/0,
1110 /*offset*/0, /*ppr_options*/0,
1111 AHD_TRANS_ACTIVE, /*paused*/TRUE);
1112 ahd_outb(ahd, SCB_CDB_STORE, 0);
1113 ahd_outb(ahd, SCB_CDB_STORE+1, 0);
1114 ahd_outb(ahd, SCB_CDB_STORE+2, 0);
1115 ahd_outb(ahd, SCB_CDB_STORE+3, 0);
1116 ahd_outb(ahd, SCB_CDB_STORE+4, 0);
1117 ahd_outb(ahd, SCB_CDB_STORE+5, 0);
1118 ahd_outb(ahd, SCB_CDB_LEN, 6);
1119 scb->hscb->control &= ~(TAG_ENB|SCB_TAG_TYPE);
1120 scb->hscb->control |= MK_MESSAGE;
1121 ahd_outb(ahd, SCB_CONTROL, scb->hscb->control);
1122 ahd_outb(ahd, MSG_OUT, HOST_MSG);
1123 ahd_outb(ahd, SAVED_SCSIID, scb->hscb->scsiid);
1124 /*
1125 * The lun is 0, regardless of the SCB's lun
1126 * as we have not sent an identify message.
1127 */
1128 ahd_outb(ahd, SAVED_LUN, 0);
1129 ahd_outb(ahd, SEQ_FLAGS, 0);
1130 ahd_assert_atn(ahd);
1131 scb->flags &= ~SCB_PACKETIZED;
1132 scb->flags |= SCB_ABORT|SCB_CMDPHASE_ABORT;
1133 ahd_freeze_devq(ahd, scb);
1134 aic_set_transaction_status(scb, CAM_REQUEUE_REQ);
1135 aic_freeze_scb(scb);
1136
1137 /*
1138 * Allow the sequencer to continue with
1139 * non-pack processing.
1140 */
1141 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
1142 ahd_outb(ahd, CLRLQOINT1, CLRLQOPHACHGINPKT);
1143 if ((ahd->bugs & AHD_CLRLQO_AUTOCLR_BUG) != 0) {
1144 ahd_outb(ahd, CLRLQOINT1, 0);
1145 }
1146 #ifdef AHD_DEBUG
1147 if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) {
1148 ahd_print_path(ahd, scb);
1149 printf("Unexpected command phase from "
1150 "packetized target\n");
1151 }
1152 #endif
1153 break;
1154 }
1155 }
1156 break;
1157 }
1158 case CFG4OVERRUN:
1159 {
1160 struct scb *scb;
1161 u_int scb_index;
1162
1163 #ifdef AHD_DEBUG
1164 if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) {
1165 printf("%s: CFG4OVERRUN mode = %x\n", ahd_name(ahd),
1166 ahd_inb(ahd, MODE_PTR));
1167 }
1168 #endif
1169 scb_index = ahd_get_scbptr(ahd);
1170 scb = ahd_lookup_scb(ahd, scb_index);
1171 if (scb == NULL) {
1172 /*
1173 * Attempt to transfer to an SCB that is
1174 * not outstanding.
1175 */
1176 ahd_assert_atn(ahd);
1177 ahd_outb(ahd, MSG_OUT, HOST_MSG);
1178 ahd->msgout_buf[0] = MSG_ABORT_TASK;
1179 ahd->msgout_len = 1;
1180 ahd->msgout_index = 0;
1181 ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
1182 /*
1183 * Clear status received flag to prevent any
1184 * attempt to complete this bogus SCB.
1185 */
1186 ahd_outb(ahd, SCB_CONTROL,
1187 ahd_inb_scbram(ahd, SCB_CONTROL)
1188 & ~STATUS_RCVD);
1189 }
1190 break;
1191 }
1192 case DUMP_CARD_STATE:
1193 {
1194 ahd_dump_card_state(ahd);
1195 break;
1196 }
1197 case PDATA_REINIT:
1198 {
1199 #ifdef AHD_DEBUG
1200 if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) {
1201 printf("%s: PDATA_REINIT - DFCNTRL = 0x%x "
1202 "SG_CACHE_SHADOW = 0x%x\n",
1203 ahd_name(ahd), ahd_inb(ahd, DFCNTRL),
1204 ahd_inb(ahd, SG_CACHE_SHADOW));
1205 }
1206 #endif
1207 ahd_reinitialize_dataptrs(ahd);
1208 break;
1209 }
1210 case HOST_MSG_LOOP:
1211 {
1212 struct ahd_devinfo devinfo;
1213
1214 /*
1215 * The sequencer has encountered a message phase
1216 * that requires host assistance for completion.
1217 * While handling the message phase(s), we will be
1218 * notified by the sequencer after each byte is
1219 * transferred so we can track bus phase changes.
1220 *
1221 * If this is the first time we've seen a HOST_MSG_LOOP
1222 * interrupt, initialize the state of the host message
1223 * loop.
1224 */
1225 ahd_fetch_devinfo(ahd, &devinfo);
1226 if (ahd->msg_type == MSG_TYPE_NONE) {
1227 struct scb *scb;
1228 u_int scb_index;
1229 u_int bus_phase;
1230
1231 bus_phase = ahd_inb(ahd, SCSISIGI) & PHASE_MASK;
1232 if (bus_phase != P_MESGIN
1233 && bus_phase != P_MESGOUT) {
1234 printf("ahd_intr: HOST_MSG_LOOP bad "
1235 "phase 0x%x\n", bus_phase);
1236 /*
1237 * Probably transitioned to bus free before
1238 * we got here. Just punt the message.
1239 */
1240 ahd_dump_card_state(ahd);
1241 ahd_clear_intstat(ahd);
1242 ahd_restart(ahd);
1243 return;
1244 }
1245
1246 scb_index = ahd_get_scbptr(ahd);
1247 scb = ahd_lookup_scb(ahd, scb_index);
1248 if (devinfo.role == ROLE_INITIATOR) {
1249 if (bus_phase == P_MESGOUT)
1250 ahd_setup_initiator_msgout(ahd,
1251 &devinfo,
1252 scb);
1253 else {
1254 ahd->msg_type =
1255 MSG_TYPE_INITIATOR_MSGIN;
1256 ahd->msgin_index = 0;
1257 }
1258 }
1259 #if AHD_TARGET_MODE
1260 else {
1261 if (bus_phase == P_MESGOUT) {
1262 ahd->msg_type =
1263 MSG_TYPE_TARGET_MSGOUT;
1264 ahd->msgin_index = 0;
1265 }
1266 else
1267 ahd_setup_target_msgin(ahd,
1268 &devinfo,
1269 scb);
1270 }
1271 #endif
1272 }
1273
1274 ahd_handle_message_phase(ahd);
1275 break;
1276 }
1277 case NO_MATCH:
1278 {
1279 /* Ensure we don't leave the selection hardware on */
1280 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
1281 ahd_outb(ahd, SCSISEQ0, ahd_inb(ahd, SCSISEQ0) & ~ENSELO);
1282
1283 printf("%s:%c:%d: no active SCB for reconnecting "
1284 "target - issuing BUS DEVICE RESET\n",
1285 ahd_name(ahd), 'A', ahd_inb(ahd, SELID) >> 4);
1286 printf("SAVED_SCSIID == 0x%x, SAVED_LUN == 0x%x, "
1287 "REG0 == 0x%x ACCUM = 0x%x\n",
1288 ahd_inb(ahd, SAVED_SCSIID), ahd_inb(ahd, SAVED_LUN),
1289 ahd_inw(ahd, REG0), ahd_inb(ahd, ACCUM));
1290 printf("SEQ_FLAGS == 0x%x, SCBPTR == 0x%x, BTT == 0x%x, "
1291 "SINDEX == 0x%x\n",
1292 ahd_inb(ahd, SEQ_FLAGS), ahd_get_scbptr(ahd),
1293 ahd_find_busy_tcl(ahd,
1294 BUILD_TCL(ahd_inb(ahd, SAVED_SCSIID),
1295 ahd_inb(ahd, SAVED_LUN))),
1296 ahd_inw(ahd, SINDEX));
1297 printf("SELID == 0x%x, SCB_SCSIID == 0x%x, SCB_LUN == 0x%x, "
1298 "SCB_CONTROL == 0x%x\n",
1299 ahd_inb(ahd, SELID), ahd_inb_scbram(ahd, SCB_SCSIID),
1300 ahd_inb_scbram(ahd, SCB_LUN),
1301 ahd_inb_scbram(ahd, SCB_CONTROL));
1302 printf("SCSIBUS[0] == 0x%x, SCSISIGI == 0x%x\n",
1303 ahd_inb(ahd, SCSIBUS), ahd_inb(ahd, SCSISIGI));
1304 printf("SXFRCTL0 == 0x%x\n", ahd_inb(ahd, SXFRCTL0));
1305 printf("SEQCTL0 == 0x%x\n", ahd_inb(ahd, SEQCTL0));
1306 ahd_dump_card_state(ahd);
1307 ahd->msgout_buf[0] = MSG_BUS_DEV_RESET;
1308 ahd->msgout_len = 1;
1309 ahd->msgout_index = 0;
1310 ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
1311 ahd_outb(ahd, MSG_OUT, HOST_MSG);
1312 ahd_assert_atn(ahd);
1313 break;
1314 }
1315 case PROTO_VIOLATION:
1316 {
1317 ahd_handle_proto_violation(ahd);
1318 break;
1319 }
1320 case IGN_WIDE_RES:
1321 {
1322 struct ahd_devinfo devinfo;
1323
1324 ahd_fetch_devinfo(ahd, &devinfo);
1325 ahd_handle_ign_wide_residue(ahd, &devinfo);
1326 break;
1327 }
1328 case BAD_PHASE:
1329 {
1330 u_int lastphase;
1331
1332 lastphase = ahd_inb(ahd, LASTPHASE);
1333 printf("%s:%c:%d: unknown scsi bus phase %x, "
1334 "lastphase = 0x%x. Attempting to continue\n",
1335 ahd_name(ahd), 'A',
1336 SCSIID_TARGET(ahd, ahd_inb(ahd, SAVED_SCSIID)),
1337 lastphase, ahd_inb(ahd, SCSISIGI));
1338 break;
1339 }
1340 case MISSED_BUSFREE:
1341 {
1342 u_int lastphase;
1343
1344 lastphase = ahd_inb(ahd, LASTPHASE);
1345 printf("%s:%c:%d: Missed busfree. "
1346 "Lastphase = 0x%x, Curphase = 0x%x\n",
1347 ahd_name(ahd), 'A',
1348 SCSIID_TARGET(ahd, ahd_inb(ahd, SAVED_SCSIID)),
1349 lastphase, ahd_inb(ahd, SCSISIGI));
1350 ahd_restart(ahd);
1351 return;
1352 }
1353 case DATA_OVERRUN:
1354 {
1355 /*
1356 * When the sequencer detects an overrun, it
1357 * places the controller in "BITBUCKET" mode
1358 * and allows the target to complete its transfer.
1359 * Unfortunately, none of the counters get updated
1360 * when the controller is in this mode, so we have
1361 * no way of knowing how large the overrun was.
1362 */
1363 struct scb *scb;
1364 u_int scbindex;
1365 #ifdef AHD_DEBUG
1366 u_int lastphase;
1367 #endif
1368
1369 scbindex = ahd_get_scbptr(ahd);
1370 scb = ahd_lookup_scb(ahd, scbindex);
1371 #ifdef AHD_DEBUG
1372 lastphase = ahd_inb(ahd, LASTPHASE);
1373 if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) {
1374 ahd_print_path(ahd, scb);
1375 printf("data overrun detected %s. Tag == 0x%x.\n",
1376 ahd_lookup_phase_entry(lastphase)->phasemsg,
1377 SCB_GET_TAG(scb));
1378 ahd_print_path(ahd, scb);
1379 printf("%s seen Data Phase. Length = %d. "
1380 "NumSGs = %d.\n",
1381 ahd_inb(ahd, SEQ_FLAGS) & DPHASE
1382 ? "Have" : "Haven't",
1383 aic_get_transfer_length(scb), scb->sg_count);
1384 ahd_dump_sglist(scb);
1385 }
1386 #endif
1387
1388 /*
1389 * Set this and it will take effect when the
1390 * target does a command complete.
1391 */
1392 ahd_freeze_devq(ahd, scb);
1393 aic_set_transaction_status(scb, CAM_DATA_RUN_ERR);
1394 aic_freeze_scb(scb);
1395 break;
1396 }
1397 case MKMSG_FAILED:
1398 {
1399 struct ahd_devinfo devinfo;
1400 struct scb *scb;
1401 u_int scbid;
1402
1403 ahd_fetch_devinfo(ahd, &devinfo);
1404 printf("%s:%c:%d:%d: Attempt to issue message failed\n",
1405 ahd_name(ahd), devinfo.channel, devinfo.target,
1406 devinfo.lun);
1407 scbid = ahd_get_scbptr(ahd);
1408 scb = ahd_lookup_scb(ahd, scbid);
1409 if (scb != NULL)
1410 /*
1411 * Ensure that we didn't put a second instance of this
1412 * SCB into the QINFIFO.
1413 */
1414 ahd_search_qinfifo(ahd, SCB_GET_TARGET(ahd, scb),
1415 SCB_GET_CHANNEL(ahd, scb),
1416 SCB_GET_LUN(scb), SCB_GET_TAG(scb),
1417 ROLE_INITIATOR, /*status*/0,
1418 SEARCH_REMOVE);
1419 ahd_outb(ahd, SCB_CONTROL,
1420 ahd_inb_scbram(ahd, SCB_CONTROL) & ~MK_MESSAGE);
1421 break;
1422 }
1423 case TASKMGMT_FUNC_COMPLETE:
1424 {
1425 u_int scbid;
1426 struct scb *scb;
1427
1428 scbid = ahd_get_scbptr(ahd);
1429 scb = ahd_lookup_scb(ahd, scbid);
1430 if (scb != NULL) {
1431 u_int lun;
1432 u_int tag;
1433 cam_status error;
1434
1435 ahd_print_path(ahd, scb);
1436 printf("Task Management Func 0x%x Complete\n",
1437 scb->hscb->task_management);
1438 lun = CAM_LUN_WILDCARD;
1439 tag = SCB_LIST_NULL;
1440
1441 switch (scb->hscb->task_management) {
1442 case SIU_TASKMGMT_ABORT_TASK:
1443 tag = SCB_GET_TAG(scb);
1444 case SIU_TASKMGMT_ABORT_TASK_SET:
1445 case SIU_TASKMGMT_CLEAR_TASK_SET:
1446 lun = scb->hscb->lun;
1447 error = CAM_REQ_ABORTED;
1448 ahd_abort_scbs(ahd, SCB_GET_TARGET(ahd, scb),
1449 'A', lun, tag, ROLE_INITIATOR,
1450 error);
1451 break;
1452 case SIU_TASKMGMT_LUN_RESET:
1453 lun = scb->hscb->lun;
1454 case SIU_TASKMGMT_TARGET_RESET:
1455 {
1456 struct ahd_devinfo devinfo;
1457
1458 ahd_scb_devinfo(ahd, &devinfo, scb);
1459 error = CAM_BDR_SENT;
1460 ahd_handle_devreset(ahd, &devinfo, lun,
1461 CAM_BDR_SENT,
1462 lun != CAM_LUN_WILDCARD
1463 ? "Lun Reset"
1464 : "Target Reset",
1465 /*verbose_level*/0);
1466 break;
1467 }
1468 default:
1469 panic("Unexpected TaskMgmt Func");
1470 break;
1471 }
1472 }
1473 break;
1474 }
1475 case TASKMGMT_CMD_CMPLT_OKAY:
1476 {
1477 u_int scbid;
1478 struct scb *scb;
1479
1480 /*
1481 * An ABORT TASK TMF failed to be delivered before
1482 * the targeted command completed normally.
1483 */
1484 scbid = ahd_get_scbptr(ahd);
1485 scb = ahd_lookup_scb(ahd, scbid);
1486 if (scb != NULL) {
1487 /*
1488 * Remove the second instance of this SCB from
1489 * the QINFIFO if it is still there.
1490 */
1491 ahd_print_path(ahd, scb);
1492 printf("SCB completes before TMF\n");
1493 /*
1494 * Handle losing the race. Wait until any
1495 * current selection completes. We will then
1496 * set the TMF back to zero in this SCB so that
1497 * the sequencer doesn't bother to issue another
1498 * sequencer interrupt for its completion.
1499 */
1500 while ((ahd_inb(ahd, SCSISEQ0) & ENSELO) != 0
1501 && (ahd_inb(ahd, SSTAT0) & SELDO) == 0
1502 && (ahd_inb(ahd, SSTAT1) & SELTO) == 0)
1503 ;
1504 ahd_outb(ahd, SCB_TASK_MANAGEMENT, 0);
1505 ahd_search_qinfifo(ahd, SCB_GET_TARGET(ahd, scb),
1506 SCB_GET_CHANNEL(ahd, scb),
1507 SCB_GET_LUN(scb), SCB_GET_TAG(scb),
1508 ROLE_INITIATOR, /*status*/0,
1509 SEARCH_REMOVE);
1510 }
1511 break;
1512 }
1513 case TRACEPOINT0:
1514 case TRACEPOINT1:
1515 case TRACEPOINT2:
1516 case TRACEPOINT3:
1517 printf("%s: Tracepoint %d\n", ahd_name(ahd),
1518 seqintcode - TRACEPOINT0);
1519 break;
1520 case NO_SEQINT:
1521 break;
1522 case SAW_HWERR:
1523 ahd_handle_hwerrint(ahd);
1524 break;
1525 default:
1526 printf("%s: Unexpected SEQINTCODE %d\n", ahd_name(ahd),
1527 seqintcode);
1528 break;
1529 }
1530 /*
1531 * The sequencer is paused immediately on
1532 * a SEQINT, so we should restart it when
1533 * we're done.
1534 */
1535 ahd_unpause(ahd);
1536 }
1537
1538 void
ahd_handle_scsiint(struct ahd_softc * ahd,u_int intstat)1539 ahd_handle_scsiint(struct ahd_softc *ahd, u_int intstat)
1540 {
1541 struct scb *scb;
1542 u_int status0;
1543 u_int status3;
1544 u_int status;
1545 u_int lqistat1;
1546 u_int lqostat0;
1547 u_int scbid;
1548 u_int busfreetime;
1549
1550 ahd_update_modes(ahd);
1551 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
1552
1553 status3 = ahd_inb(ahd, SSTAT3) & (NTRAMPERR|OSRAMPERR);
1554 status0 = ahd_inb(ahd, SSTAT0) & (IOERR|OVERRUN|SELDI|SELDO);
1555 status = ahd_inb(ahd, SSTAT1) & (SELTO|SCSIRSTI|BUSFREE|SCSIPERR);
1556 lqistat1 = ahd_inb(ahd, LQISTAT1);
1557 lqostat0 = ahd_inb(ahd, LQOSTAT0);
1558 busfreetime = ahd_inb(ahd, SSTAT2) & BUSFREETIME;
1559 if ((status0 & (SELDI|SELDO)) != 0) {
1560 u_int simode0;
1561
1562 ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
1563 simode0 = ahd_inb(ahd, SIMODE0);
1564 status0 &= simode0 & (IOERR|OVERRUN|SELDI|SELDO);
1565 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
1566 }
1567 scbid = ahd_get_scbptr(ahd);
1568 scb = ahd_lookup_scb(ahd, scbid);
1569 if (scb != NULL
1570 && (ahd_inb(ahd, SEQ_FLAGS) & NOT_IDENTIFIED) != 0)
1571 scb = NULL;
1572
1573 if ((status0 & IOERR) != 0) {
1574 u_int now_lvd;
1575
1576 now_lvd = ahd_inb(ahd, SBLKCTL) & ENAB40;
1577 printf("%s: Transceiver State Has Changed to %s mode\n",
1578 ahd_name(ahd), now_lvd ? "LVD" : "SE");
1579 ahd_outb(ahd, CLRSINT0, CLRIOERR);
1580 /*
1581 * A change in I/O mode is equivalent to a bus reset.
1582 */
1583 ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
1584 ahd_pause(ahd);
1585 ahd_setup_iocell_workaround(ahd);
1586 ahd_unpause(ahd);
1587 } else if ((status0 & OVERRUN) != 0) {
1588
1589 printf("%s: SCSI offset overrun detected. Resetting bus.\n",
1590 ahd_name(ahd));
1591 ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
1592 } else if ((status & SCSIRSTI) != 0) {
1593
1594 printf("%s: Someone reset channel A\n", ahd_name(ahd));
1595 ahd_reset_channel(ahd, 'A', /*Initiate Reset*/FALSE);
1596 } else if ((status & SCSIPERR) != 0) {
1597
1598 /* Make sure the sequencer is in a safe location. */
1599 ahd_clear_critical_section(ahd);
1600
1601 ahd_handle_transmission_error(ahd);
1602 } else if (lqostat0 != 0) {
1603
1604 printf("%s: lqostat0 == 0x%x!\n", ahd_name(ahd), lqostat0);
1605 ahd_outb(ahd, CLRLQOINT0, lqostat0);
1606 if ((ahd->bugs & AHD_CLRLQO_AUTOCLR_BUG) != 0)
1607 ahd_outb(ahd, CLRLQOINT1, 0);
1608 } else if ((status & SELTO) != 0) {
1609
1610 /* Stop the selection */
1611 ahd_outb(ahd, SCSISEQ0, 0);
1612
1613 /* Make sure the sequencer is in a safe location. */
1614 ahd_clear_critical_section(ahd);
1615
1616 /* No more pending messages */
1617 ahd_clear_msg_state(ahd);
1618
1619 /* Clear interrupt state */
1620 ahd_outb(ahd, CLRSINT1, CLRSELTIMEO|CLRBUSFREE|CLRSCSIPERR);
1621
1622 /*
1623 * Although the driver does not care about the
1624 * 'Selection in Progress' status bit, the busy
1625 * LED does. SELINGO is only cleared by a successful
1626 * selection, so we must manually clear it to insure
1627 * the LED turns off just in case no future successful
1628 * selections occur (e.g. no devices on the bus).
1629 */
1630 ahd_outb(ahd, CLRSINT0, CLRSELINGO);
1631
1632 scbid = ahd_inw(ahd, WAITING_TID_HEAD);
1633 scb = ahd_lookup_scb(ahd, scbid);
1634 if (scb == NULL) {
1635 printf("%s: ahd_intr - referenced scb not "
1636 "valid during SELTO scb(0x%x)\n",
1637 ahd_name(ahd), scbid);
1638 ahd_dump_card_state(ahd);
1639 } else {
1640 struct ahd_devinfo devinfo;
1641 #ifdef AHD_DEBUG
1642 if ((ahd_debug & AHD_SHOW_SELTO) != 0) {
1643 ahd_print_path(ahd, scb);
1644 printf("Saw Selection Timeout for SCB 0x%x\n",
1645 scbid);
1646 }
1647 #endif
1648 ahd_scb_devinfo(ahd, &devinfo, scb);
1649 aic_set_transaction_status(scb, CAM_SEL_TIMEOUT);
1650 ahd_freeze_devq(ahd, scb);
1651
1652 /*
1653 * Cancel any pending transactions on the device
1654 * now that it seems to be missing. This will
1655 * also revert us to async/narrow transfers until
1656 * we can renegotiate with the device.
1657 */
1658 ahd_handle_devreset(ahd, &devinfo,
1659 CAM_LUN_WILDCARD,
1660 CAM_SEL_TIMEOUT,
1661 "Selection Timeout",
1662 /*verbose_level*/1);
1663 }
1664 ahd_outb(ahd, CLRINT, CLRSCSIINT);
1665 ahd_iocell_first_selection(ahd);
1666 ahd_unpause(ahd);
1667 } else if ((status0 & (SELDI|SELDO)) != 0) {
1668
1669 ahd_iocell_first_selection(ahd);
1670 ahd_unpause(ahd);
1671 } else if (status3 != 0) {
1672 printf("%s: SCSI Cell parity error SSTAT3 == 0x%x\n",
1673 ahd_name(ahd), status3);
1674 ahd_outb(ahd, CLRSINT3, status3);
1675 } else if ((lqistat1 & (LQIPHASE_LQ|LQIPHASE_NLQ)) != 0) {
1676
1677 /* Make sure the sequencer is in a safe location. */
1678 ahd_clear_critical_section(ahd);
1679
1680 ahd_handle_lqiphase_error(ahd, lqistat1);
1681 } else if ((lqistat1 & LQICRCI_NLQ) != 0) {
1682 /*
1683 * This status can be delayed during some
1684 * streaming operations. The SCSIPHASE
1685 * handler has already dealt with this case
1686 * so just clear the error.
1687 */
1688 ahd_outb(ahd, CLRLQIINT1, CLRLQICRCI_NLQ);
1689 } else if ((status & BUSFREE) != 0
1690 || (lqistat1 & LQOBUSFREE) != 0) {
1691 u_int lqostat1;
1692 int restart;
1693 int clear_fifo;
1694 int packetized;
1695 u_int mode;
1696
1697 /*
1698 * Clear our selection hardware as soon as possible.
1699 * We may have an entry in the waiting Q for this target,
1700 * that is affected by this busfree and we don't want to
1701 * go about selecting the target while we handle the event.
1702 */
1703 ahd_outb(ahd, SCSISEQ0, 0);
1704
1705 /* Make sure the sequencer is in a safe location. */
1706 ahd_clear_critical_section(ahd);
1707
1708 /*
1709 * Determine what we were up to at the time of
1710 * the busfree.
1711 */
1712 mode = AHD_MODE_SCSI;
1713 busfreetime = ahd_inb(ahd, SSTAT2) & BUSFREETIME;
1714 lqostat1 = ahd_inb(ahd, LQOSTAT1);
1715 switch (busfreetime) {
1716 case BUSFREE_DFF0:
1717 case BUSFREE_DFF1:
1718 mode = busfreetime == BUSFREE_DFF0
1719 ? AHD_MODE_DFF0 : AHD_MODE_DFF1;
1720 ahd_set_modes(ahd, mode, mode);
1721 scbid = ahd_get_scbptr(ahd);
1722 scb = ahd_lookup_scb(ahd, scbid);
1723 if (scb == NULL) {
1724 printf("%s: Invalid SCB %d in DFF%d "
1725 "during unexpected busfree\n",
1726 ahd_name(ahd), scbid, mode);
1727 packetized = 0;
1728 } else
1729 packetized = (scb->flags & SCB_PACKETIZED) != 0;
1730 clear_fifo = 1;
1731 break;
1732 case BUSFREE_LQO:
1733 clear_fifo = 0;
1734 packetized = 1;
1735 break;
1736 default:
1737 clear_fifo = 0;
1738 packetized = (lqostat1 & LQOBUSFREE) != 0;
1739 if (!packetized
1740 && ahd_inb(ahd, LASTPHASE) == P_BUSFREE
1741 && (ahd_inb(ahd, SSTAT0) & SELDI) == 0
1742 && ((ahd_inb(ahd, SSTAT0) & SELDO) == 0
1743 || (ahd_inb(ahd, SCSISEQ0) & ENSELO) == 0))
1744 /*
1745 * Assume packetized if we are not
1746 * on the bus in a non-packetized
1747 * capacity and any pending selection
1748 * was a packetized selection.
1749 */
1750 packetized = 1;
1751 break;
1752 }
1753
1754 #ifdef AHD_DEBUG
1755 if ((ahd_debug & AHD_SHOW_MISC) != 0)
1756 printf("Saw Busfree. Busfreetime = 0x%x.\n",
1757 busfreetime);
1758 #endif
1759 /*
1760 * Busfrees that occur in non-packetized phases are
1761 * handled by the nonpkt_busfree handler.
1762 */
1763 if (packetized && ahd_inb(ahd, LASTPHASE) == P_BUSFREE) {
1764 restart = ahd_handle_pkt_busfree(ahd, busfreetime);
1765 } else {
1766 packetized = 0;
1767 restart = ahd_handle_nonpkt_busfree(ahd);
1768 }
1769 /*
1770 * Clear the busfree interrupt status. The setting of
1771 * the interrupt is a pulse, so in a perfect world, we
1772 * would not need to muck with the ENBUSFREE logic. This
1773 * would ensure that if the bus moves on to another
1774 * connection, busfree protection is still in force. If
1775 * BUSFREEREV is broken, however, we must manually clear
1776 * the ENBUSFREE if the busfree occurred during a non-pack
1777 * connection so that we don't get false positives during
1778 * future, packetized, connections.
1779 */
1780 ahd_outb(ahd, CLRSINT1, CLRBUSFREE);
1781 if (packetized == 0
1782 && (ahd->bugs & AHD_BUSFREEREV_BUG) != 0)
1783 ahd_outb(ahd, SIMODE1,
1784 ahd_inb(ahd, SIMODE1) & ~ENBUSFREE);
1785
1786 if (clear_fifo)
1787 ahd_clear_fifo(ahd, mode);
1788
1789 ahd_clear_msg_state(ahd);
1790 ahd_outb(ahd, CLRINT, CLRSCSIINT);
1791 if (restart) {
1792 ahd_restart(ahd);
1793 } else {
1794 ahd_unpause(ahd);
1795 }
1796 } else {
1797 printf("%s: Missing case in ahd_handle_scsiint. status = %x\n",
1798 ahd_name(ahd), status);
1799 ahd_dump_card_state(ahd);
1800 ahd_clear_intstat(ahd);
1801 ahd_unpause(ahd);
1802 }
1803 }
1804
1805 void
ahd_handle_transmission_error(struct ahd_softc * ahd)1806 ahd_handle_transmission_error(struct ahd_softc *ahd)
1807 {
1808 struct scb *scb;
1809 u_int scbid;
1810 u_int lqistat1;
1811 u_int lqistat2;
1812 u_int msg_out;
1813 u_int curphase;
1814 u_int lastphase;
1815 u_int perrdiag;
1816 u_int cur_col;
1817 int silent;
1818
1819 scb = NULL;
1820 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
1821 lqistat1 = ahd_inb(ahd, LQISTAT1) & ~(LQIPHASE_LQ|LQIPHASE_NLQ);
1822 lqistat2 = ahd_inb(ahd, LQISTAT2);
1823 if ((lqistat1 & (LQICRCI_NLQ|LQICRCI_LQ)) == 0
1824 && (ahd->bugs & AHD_NLQICRC_DELAYED_BUG) != 0) {
1825 u_int lqistate;
1826
1827 ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
1828 lqistate = ahd_inb(ahd, LQISTATE);
1829 if ((lqistate >= 0x1E && lqistate <= 0x24)
1830 || (lqistate == 0x29)) {
1831 #ifdef AHD_DEBUG
1832 if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) {
1833 printf("%s: NLQCRC found via LQISTATE\n",
1834 ahd_name(ahd));
1835 }
1836 #endif
1837 lqistat1 |= LQICRCI_NLQ;
1838 }
1839 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
1840 }
1841
1842 ahd_outb(ahd, CLRLQIINT1, lqistat1);
1843 lastphase = ahd_inb(ahd, LASTPHASE);
1844 curphase = ahd_inb(ahd, SCSISIGI) & PHASE_MASK;
1845 perrdiag = ahd_inb(ahd, PERRDIAG);
1846 msg_out = MSG_INITIATOR_DET_ERR;
1847 ahd_outb(ahd, CLRSINT1, CLRSCSIPERR);
1848
1849 /*
1850 * Try to find the SCB associated with this error.
1851 */
1852 silent = FALSE;
1853 if (lqistat1 == 0
1854 || (lqistat1 & LQICRCI_NLQ) != 0) {
1855 if ((lqistat1 & (LQICRCI_NLQ|LQIOVERI_NLQ)) != 0)
1856 ahd_set_active_fifo(ahd);
1857 scbid = ahd_get_scbptr(ahd);
1858 scb = ahd_lookup_scb(ahd, scbid);
1859 if (scb != NULL && SCB_IS_SILENT(scb))
1860 silent = TRUE;
1861 }
1862
1863 cur_col = 0;
1864 if (silent == FALSE) {
1865 printf("%s: Transmission error detected\n", ahd_name(ahd));
1866 ahd_lqistat1_print(lqistat1, &cur_col, 50);
1867 ahd_lastphase_print(lastphase, &cur_col, 50);
1868 ahd_scsisigi_print(curphase, &cur_col, 50);
1869 ahd_perrdiag_print(perrdiag, &cur_col, 50);
1870 printf("\n");
1871 ahd_dump_card_state(ahd);
1872 }
1873
1874 if ((lqistat1 & (LQIOVERI_LQ|LQIOVERI_NLQ)) != 0) {
1875 if (silent == FALSE) {
1876 printf("%s: Gross protocol error during incoming "
1877 "packet. lqistat1 == 0x%x. Resetting bus.\n",
1878 ahd_name(ahd), lqistat1);
1879 }
1880 ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
1881 return;
1882 } else if ((lqistat1 & LQICRCI_LQ) != 0) {
1883 /*
1884 * A CRC error has been detected on an incoming LQ.
1885 * The bus is currently hung on the last ACK.
1886 * Hit LQIRETRY to release the last ack, and
1887 * wait for the sequencer to determine that ATNO
1888 * is asserted while in message out to take us
1889 * to our host message loop. No NONPACKREQ or
1890 * LQIPHASE type errors will occur in this
1891 * scenario. After this first LQIRETRY, the LQI
1892 * manager will be in ISELO where it will
1893 * happily sit until another packet phase begins.
1894 * Unexpected bus free detection is enabled
1895 * through any phases that occur after we release
1896 * this last ack until the LQI manager sees a
1897 * packet phase. This implies we may have to
1898 * ignore a perfectly valid "unexpected busfree"
1899 * after our "initiator detected error" message is
1900 * sent. A busfree is the expected response after
1901 * we tell the target that its L_Q was corrupted.
1902 * (SPI4R09 10.7.3.3.3)
1903 */
1904 ahd_outb(ahd, LQCTL2, LQIRETRY);
1905 printf("LQIRetry for LQICRCI_LQ to release ACK\n");
1906 } else if ((lqistat1 & LQICRCI_NLQ) != 0) {
1907 /*
1908 * We detected a CRC error in a NON-LQ packet.
1909 * The hardware has varying behavior in this situation
1910 * depending on whether this packet was part of a
1911 * stream or not.
1912 *
1913 * PKT by PKT mode:
1914 * The hardware has already acked the complete packet.
1915 * If the target honors our outstanding ATN condition,
1916 * we should be (or soon will be) in MSGOUT phase.
1917 * This will trigger the LQIPHASE_LQ status bit as the
1918 * hardware was expecting another LQ. Unexpected
1919 * busfree detection is enabled. Once LQIPHASE_LQ is
1920 * true (first entry into host message loop is much
1921 * the same), we must clear LQIPHASE_LQ and hit
1922 * LQIRETRY so the hardware is ready to handle
1923 * a future LQ. NONPACKREQ will not be asserted again
1924 * once we hit LQIRETRY until another packet is
1925 * processed. The target may either go busfree
1926 * or start another packet in response to our message.
1927 *
1928 * Read Streaming P0 asserted:
1929 * If we raise ATN and the target completes the entire
1930 * stream (P0 asserted during the last packet), the
1931 * hardware will ack all data and return to the ISTART
1932 * state. When the target responds to our ATN condition,
1933 * LQIPHASE_LQ will be asserted. We should respond to
1934 * this with an LQIRETRY to prepare for any future
1935 * packets. NONPACKREQ will not be asserted again
1936 * once we hit LQIRETRY until another packet is
1937 * processed. The target may either go busfree or
1938 * start another packet in response to our message.
1939 * Busfree detection is enabled.
1940 *
1941 * Read Streaming P0 not asserted:
1942 * If we raise ATN and the target transitions to
1943 * MSGOUT in or after a packet where P0 is not
1944 * asserted, the hardware will assert LQIPHASE_NLQ.
1945 * We should respond to the LQIPHASE_NLQ with an
1946 * LQIRETRY. Should the target stay in a non-pkt
1947 * phase after we send our message, the hardware
1948 * will assert LQIPHASE_LQ. Recovery is then just as
1949 * listed above for the read streaming with P0 asserted.
1950 * Busfree detection is enabled.
1951 */
1952 if (silent == FALSE)
1953 printf("LQICRC_NLQ\n");
1954 if (scb == NULL) {
1955 printf("%s: No SCB valid for LQICRC_NLQ. "
1956 "Resetting bus\n", ahd_name(ahd));
1957 ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
1958 return;
1959 }
1960 } else if ((lqistat1 & LQIBADLQI) != 0) {
1961 printf("Need to handle BADLQI!\n");
1962 ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
1963 return;
1964 } else if ((perrdiag & (PARITYERR|PREVPHASE)) == PARITYERR) {
1965 if ((curphase & ~P_DATAIN_DT) != 0) {
1966 /* Ack the byte. So we can continue. */
1967 if (silent == FALSE)
1968 printf("Acking %s to clear perror\n",
1969 ahd_lookup_phase_entry(curphase)->phasemsg);
1970 ahd_inb(ahd, SCSIDAT);
1971 }
1972
1973 if (curphase == P_MESGIN)
1974 msg_out = MSG_PARITY_ERROR;
1975 }
1976
1977 /*
1978 * We've set the hardware to assert ATN if we
1979 * get a parity error on "in" phases, so all we
1980 * need to do is stuff the message buffer with
1981 * the appropriate message. "In" phases have set
1982 * mesg_out to something other than MSG_NOP.
1983 */
1984 ahd->send_msg_perror = msg_out;
1985 if (scb != NULL && msg_out == MSG_INITIATOR_DET_ERR)
1986 scb->flags |= SCB_TRANSMISSION_ERROR;
1987 ahd_outb(ahd, MSG_OUT, HOST_MSG);
1988 ahd_outb(ahd, CLRINT, CLRSCSIINT);
1989 ahd_unpause(ahd);
1990 }
1991
1992 void
ahd_handle_lqiphase_error(struct ahd_softc * ahd,u_int lqistat1)1993 ahd_handle_lqiphase_error(struct ahd_softc *ahd, u_int lqistat1)
1994 {
1995 /*
1996 * Clear the sources of the interrupts.
1997 */
1998 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
1999 ahd_outb(ahd, CLRLQIINT1, lqistat1);
2000
2001 /*
2002 * If the "illegal" phase changes were in response
2003 * to our ATN to flag a CRC error, AND we ended up
2004 * on packet boundaries, clear the error, restart the
2005 * LQI manager as appropriate, and go on our merry
2006 * way toward sending the message. Otherwise, reset
2007 * the bus to clear the error.
2008 */
2009 ahd_set_active_fifo(ahd);
2010 if ((ahd_inb(ahd, SCSISIGO) & ATNO) != 0
2011 && (ahd_inb(ahd, MDFFSTAT) & DLZERO) != 0) {
2012 if ((lqistat1 & LQIPHASE_LQ) != 0) {
2013 printf("LQIRETRY for LQIPHASE_LQ\n");
2014 ahd_outb(ahd, LQCTL2, LQIRETRY);
2015 } else if ((lqistat1 & LQIPHASE_NLQ) != 0) {
2016 printf("LQIRETRY for LQIPHASE_NLQ\n");
2017 ahd_outb(ahd, LQCTL2, LQIRETRY);
2018 } else
2019 panic("ahd_handle_lqiphase_error: No phase errors");
2020 ahd_dump_card_state(ahd);
2021 ahd_outb(ahd, CLRINT, CLRSCSIINT);
2022 ahd_unpause(ahd);
2023 } else {
2024 printf("Resetting Channel for LQI Phase error\n");
2025 ahd_dump_card_state(ahd);
2026 ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
2027 }
2028 }
2029
2030 /*
2031 * Packetized unexpected or expected busfree.
2032 * Entered in mode based on busfreetime.
2033 */
2034 int
ahd_handle_pkt_busfree(struct ahd_softc * ahd,u_int busfreetime)2035 ahd_handle_pkt_busfree(struct ahd_softc *ahd, u_int busfreetime)
2036 {
2037 u_int lqostat1;
2038
2039 AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
2040 ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
2041 lqostat1 = ahd_inb(ahd, LQOSTAT1);
2042 if ((lqostat1 & LQOBUSFREE) != 0) {
2043 struct scb *scb;
2044 u_int scbid;
2045 u_int saved_scbptr;
2046 u_int waiting_h;
2047 u_int waiting_t;
2048 u_int next;
2049
2050 /*
2051 * The LQO manager detected an unexpected busfree
2052 * either:
2053 *
2054 * 1) During an outgoing LQ.
2055 * 2) After an outgoing LQ but before the first
2056 * REQ of the command packet.
2057 * 3) During an outgoing command packet.
2058 *
2059 * In all cases, CURRSCB is pointing to the
2060 * SCB that encountered the failure. Clean
2061 * up the queue, clear SELDO and LQOBUSFREE,
2062 * and allow the sequencer to restart the select
2063 * out at its leisure.
2064 */
2065 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
2066 scbid = ahd_inw(ahd, CURRSCB);
2067 scb = ahd_lookup_scb(ahd, scbid);
2068 if (scb == NULL)
2069 panic("SCB not valid during LQOBUSFREE");
2070 /*
2071 * Clear the status.
2072 */
2073 ahd_outb(ahd, CLRLQOINT1, CLRLQOBUSFREE);
2074 if ((ahd->bugs & AHD_CLRLQO_AUTOCLR_BUG) != 0)
2075 ahd_outb(ahd, CLRLQOINT1, 0);
2076 ahd_outb(ahd, SCSISEQ0, ahd_inb(ahd, SCSISEQ0) & ~ENSELO);
2077 ahd_flush_device_writes(ahd);
2078 ahd_outb(ahd, CLRSINT0, CLRSELDO);
2079
2080 /*
2081 * Return the LQO manager to its idle loop. It will
2082 * not do this automatically if the busfree occurs
2083 * after the first REQ of either the LQ or command
2084 * packet or between the LQ and command packet.
2085 */
2086 ahd_outb(ahd, LQCTL2, ahd_inb(ahd, LQCTL2) | LQOTOIDLE);
2087
2088 /*
2089 * Update the waiting for selection queue so
2090 * we restart on the correct SCB.
2091 */
2092 waiting_h = ahd_inw(ahd, WAITING_TID_HEAD);
2093 saved_scbptr = ahd_get_scbptr(ahd);
2094 if (waiting_h != scbid) {
2095
2096 ahd_outw(ahd, WAITING_TID_HEAD, scbid);
2097 waiting_t = ahd_inw(ahd, WAITING_TID_TAIL);
2098 if (waiting_t == waiting_h) {
2099 ahd_outw(ahd, WAITING_TID_TAIL, scbid);
2100 next = SCB_LIST_NULL;
2101 } else {
2102 ahd_set_scbptr(ahd, waiting_h);
2103 next = ahd_inw_scbram(ahd, SCB_NEXT2);
2104 }
2105 ahd_set_scbptr(ahd, scbid);
2106 ahd_outw(ahd, SCB_NEXT2, next);
2107 }
2108 ahd_set_scbptr(ahd, saved_scbptr);
2109 if (scb->crc_retry_count < AHD_MAX_LQ_CRC_ERRORS) {
2110 if (SCB_IS_SILENT(scb) == FALSE) {
2111 ahd_print_path(ahd, scb);
2112 printf("Probable outgoing LQ CRC error. "
2113 "Retrying command\n");
2114 }
2115 scb->crc_retry_count++;
2116 } else {
2117 aic_set_transaction_status(scb, CAM_UNCOR_PARITY);
2118 aic_freeze_scb(scb);
2119 ahd_freeze_devq(ahd, scb);
2120 }
2121 /* Return unpausing the sequencer. */
2122 return (0);
2123 } else if ((ahd_inb(ahd, PERRDIAG) & PARITYERR) != 0) {
2124 /*
2125 * Ignore what are really parity errors that
2126 * occur on the last REQ of a free running
2127 * clock prior to going busfree. Some drives
2128 * do not properly active negate just before
2129 * going busfree resulting in a parity glitch.
2130 */
2131 ahd_outb(ahd, CLRSINT1, CLRSCSIPERR|CLRBUSFREE);
2132 #ifdef AHD_DEBUG
2133 if ((ahd_debug & AHD_SHOW_MASKED_ERRORS) != 0)
2134 printf("%s: Parity on last REQ detected "
2135 "during busfree phase.\n",
2136 ahd_name(ahd));
2137 #endif
2138 /* Return unpausing the sequencer. */
2139 return (0);
2140 }
2141 if (ahd->src_mode != AHD_MODE_SCSI) {
2142 u_int scbid;
2143 struct scb *scb;
2144
2145 scbid = ahd_get_scbptr(ahd);
2146 scb = ahd_lookup_scb(ahd, scbid);
2147 ahd_print_path(ahd, scb);
2148 printf("Unexpected PKT busfree condition\n");
2149 ahd_dump_card_state(ahd);
2150 ahd_abort_scbs(ahd, SCB_GET_TARGET(ahd, scb), 'A',
2151 SCB_GET_LUN(scb), SCB_GET_TAG(scb),
2152 ROLE_INITIATOR, CAM_UNEXP_BUSFREE);
2153
2154 /* Return restarting the sequencer. */
2155 return (1);
2156 }
2157 printf("%s: Unexpected PKT busfree condition\n", ahd_name(ahd));
2158 ahd_dump_card_state(ahd);
2159 /* Restart the sequencer. */
2160 return (1);
2161 }
2162
2163 /*
2164 * Non-packetized unexpected or expected busfree.
2165 */
2166 int
ahd_handle_nonpkt_busfree(struct ahd_softc * ahd)2167 ahd_handle_nonpkt_busfree(struct ahd_softc *ahd)
2168 {
2169 struct ahd_devinfo devinfo;
2170 struct scb *scb;
2171 u_int lastphase;
2172 u_int saved_scsiid;
2173 u_int saved_lun;
2174 u_int target;
2175 u_int initiator_role_id;
2176 u_int scbid;
2177 u_int ppr_busfree;
2178 int printerror;
2179
2180 /*
2181 * Look at what phase we were last in. If its message out,
2182 * chances are pretty good that the busfree was in response
2183 * to one of our abort requests.
2184 */
2185 lastphase = ahd_inb(ahd, LASTPHASE);
2186 saved_scsiid = ahd_inb(ahd, SAVED_SCSIID);
2187 saved_lun = ahd_inb(ahd, SAVED_LUN);
2188 target = SCSIID_TARGET(ahd, saved_scsiid);
2189 initiator_role_id = SCSIID_OUR_ID(saved_scsiid);
2190 ahd_compile_devinfo(&devinfo, initiator_role_id,
2191 target, saved_lun, 'A', ROLE_INITIATOR);
2192 printerror = 1;
2193
2194 scbid = ahd_get_scbptr(ahd);
2195 scb = ahd_lookup_scb(ahd, scbid);
2196 if (scb != NULL
2197 && (ahd_inb(ahd, SEQ_FLAGS) & NOT_IDENTIFIED) != 0)
2198 scb = NULL;
2199
2200 ppr_busfree = (ahd->msg_flags & MSG_FLAG_EXPECT_PPR_BUSFREE) != 0;
2201 if (lastphase == P_MESGOUT) {
2202 u_int tag;
2203
2204 tag = SCB_LIST_NULL;
2205 if (ahd_sent_msg(ahd, AHDMSG_1B, MSG_ABORT_TAG, TRUE)
2206 || ahd_sent_msg(ahd, AHDMSG_1B, MSG_ABORT, TRUE)) {
2207 int found;
2208 int sent_msg;
2209
2210 if (scb == NULL) {
2211 ahd_print_devinfo(ahd, &devinfo);
2212 printf("Abort for unidentified "
2213 "connection completed.\n");
2214 /* restart the sequencer. */
2215 return (1);
2216 }
2217 sent_msg = ahd->msgout_buf[ahd->msgout_index - 1];
2218 ahd_print_path(ahd, scb);
2219 printf("SCB %d - Abort%s Completed.\n",
2220 SCB_GET_TAG(scb),
2221 sent_msg == MSG_ABORT_TAG ? "" : " Tag");
2222
2223 if (sent_msg == MSG_ABORT_TAG)
2224 tag = SCB_GET_TAG(scb);
2225
2226 if ((scb->flags & SCB_CMDPHASE_ABORT) != 0) {
2227 /*
2228 * This abort is in response to an
2229 * unexpected switch to command phase
2230 * for a packetized connection. Since
2231 * the identify message was never sent,
2232 * "saved lun" is 0. We really want to
2233 * abort only the SCB that encountered
2234 * this error, which could have a different
2235 * lun. The SCB will be retried so the OS
2236 * will see the UA after renegotiating to
2237 * packetized.
2238 */
2239 tag = SCB_GET_TAG(scb);
2240 saved_lun = scb->hscb->lun;
2241 }
2242 found = ahd_abort_scbs(ahd, target, 'A', saved_lun,
2243 tag, ROLE_INITIATOR,
2244 CAM_REQ_ABORTED);
2245 printerror = 0;
2246 } else if (ahd_sent_msg(ahd, AHDMSG_1B,
2247 MSG_BUS_DEV_RESET, TRUE)) {
2248 #ifdef __FreeBSD__
2249 /*
2250 * Don't mark the user's request for this BDR
2251 * as completing with CAM_BDR_SENT. CAM3
2252 * specifies CAM_REQ_CMP.
2253 */
2254 if (scb != NULL
2255 && scb->io_ctx->ccb_h.func_code== XPT_RESET_DEV
2256 && ahd_match_scb(ahd, scb, target, 'A',
2257 CAM_LUN_WILDCARD, SCB_LIST_NULL,
2258 ROLE_INITIATOR))
2259 aic_set_transaction_status(scb, CAM_REQ_CMP);
2260 #endif
2261 ahd_handle_devreset(ahd, &devinfo, CAM_LUN_WILDCARD,
2262 CAM_BDR_SENT, "Bus Device Reset",
2263 /*verbose_level*/0);
2264 printerror = 0;
2265 } else if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_PPR, FALSE)
2266 && ppr_busfree == 0) {
2267 struct ahd_initiator_tinfo *tinfo;
2268 struct ahd_tmode_tstate *tstate;
2269
2270 /*
2271 * PPR Rejected.
2272 *
2273 * If the previous negotiation was packetized,
2274 * this could be because the device has been
2275 * reset without our knowledge. Force our
2276 * current negotiation to async and retry the
2277 * negotiation. Otherwise retry the command
2278 * with non-ppr negotiation.
2279 */
2280 #ifdef AHD_DEBUG
2281 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
2282 printf("PPR negotiation rejected busfree.\n");
2283 #endif
2284 tinfo = ahd_fetch_transinfo(ahd, devinfo.channel,
2285 devinfo.our_scsiid,
2286 devinfo.target, &tstate);
2287 if ((tinfo->curr.ppr_options & MSG_EXT_PPR_IU_REQ)!=0) {
2288 ahd_set_width(ahd, &devinfo,
2289 MSG_EXT_WDTR_BUS_8_BIT,
2290 AHD_TRANS_CUR,
2291 /*paused*/TRUE);
2292 ahd_set_syncrate(ahd, &devinfo,
2293 /*period*/0, /*offset*/0,
2294 /*ppr_options*/0,
2295 AHD_TRANS_CUR,
2296 /*paused*/TRUE);
2297 /*
2298 * The expect PPR busfree handler below
2299 * will effect the retry and necessary
2300 * abort.
2301 */
2302 } else {
2303 tinfo->curr.transport_version = 2;
2304 tinfo->goal.transport_version = 2;
2305 tinfo->goal.ppr_options = 0;
2306 /*
2307 * Remove any SCBs in the waiting for selection
2308 * queue that may also be for this target so
2309 * that command ordering is preserved.
2310 */
2311 ahd_freeze_devq(ahd, scb);
2312 ahd_qinfifo_requeue_tail(ahd, scb);
2313 printerror = 0;
2314 }
2315 } else if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_WDTR, FALSE)
2316 && ppr_busfree == 0) {
2317 /*
2318 * Negotiation Rejected. Go-narrow and
2319 * retry command.
2320 */
2321 #ifdef AHD_DEBUG
2322 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
2323 printf("WDTR negotiation rejected busfree.\n");
2324 #endif
2325 ahd_set_width(ahd, &devinfo,
2326 MSG_EXT_WDTR_BUS_8_BIT,
2327 AHD_TRANS_CUR|AHD_TRANS_GOAL,
2328 /*paused*/TRUE);
2329 /*
2330 * Remove any SCBs in the waiting for selection
2331 * queue that may also be for this target so that
2332 * command ordering is preserved.
2333 */
2334 ahd_freeze_devq(ahd, scb);
2335 ahd_qinfifo_requeue_tail(ahd, scb);
2336 printerror = 0;
2337 } else if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_SDTR, FALSE)
2338 && ppr_busfree == 0) {
2339 /*
2340 * Negotiation Rejected. Go-async and
2341 * retry command.
2342 */
2343 #ifdef AHD_DEBUG
2344 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
2345 printf("SDTR negotiation rejected busfree.\n");
2346 #endif
2347 ahd_set_syncrate(ahd, &devinfo,
2348 /*period*/0, /*offset*/0,
2349 /*ppr_options*/0,
2350 AHD_TRANS_CUR|AHD_TRANS_GOAL,
2351 /*paused*/TRUE);
2352 /*
2353 * Remove any SCBs in the waiting for selection
2354 * queue that may also be for this target so that
2355 * command ordering is preserved.
2356 */
2357 ahd_freeze_devq(ahd, scb);
2358 ahd_qinfifo_requeue_tail(ahd, scb);
2359 printerror = 0;
2360 } else if ((ahd->msg_flags & MSG_FLAG_EXPECT_IDE_BUSFREE) != 0
2361 && ahd_sent_msg(ahd, AHDMSG_1B,
2362 MSG_INITIATOR_DET_ERR, TRUE)) {
2363
2364 #ifdef AHD_DEBUG
2365 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
2366 printf("Expected IDE Busfree\n");
2367 #endif
2368 printerror = 0;
2369 } else if ((ahd->msg_flags & MSG_FLAG_EXPECT_QASREJ_BUSFREE)
2370 && ahd_sent_msg(ahd, AHDMSG_1B,
2371 MSG_MESSAGE_REJECT, TRUE)) {
2372
2373 #ifdef AHD_DEBUG
2374 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
2375 printf("Expected QAS Reject Busfree\n");
2376 #endif
2377 printerror = 0;
2378 }
2379 }
2380
2381 /*
2382 * The busfree required flag is honored at the end of
2383 * the message phases. We check it last in case we
2384 * had to send some other message that caused a busfree.
2385 */
2386 if (printerror != 0
2387 && (lastphase == P_MESGIN || lastphase == P_MESGOUT)
2388 && ((ahd->msg_flags & MSG_FLAG_EXPECT_PPR_BUSFREE) != 0)
2389 && (scb != NULL)) {
2390
2391 ahd_freeze_devq(ahd, scb);
2392 aic_set_transaction_status(scb, CAM_REQUEUE_REQ);
2393 aic_freeze_scb(scb);
2394 if ((ahd->msg_flags & MSG_FLAG_IU_REQ_CHANGED) != 0) {
2395 ahd_abort_scbs(ahd, SCB_GET_TARGET(ahd, scb),
2396 SCB_GET_CHANNEL(ahd, scb),
2397 SCB_GET_LUN(scb), SCB_LIST_NULL,
2398 ROLE_INITIATOR, CAM_REQ_ABORTED);
2399 } else {
2400 #ifdef AHD_DEBUG
2401 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
2402 printf("PPR Negotiation Busfree.\n");
2403 #endif
2404 ahd_done(ahd, scb);
2405 }
2406 printerror = 0;
2407 }
2408 if (printerror != 0) {
2409 int aborted;
2410
2411 aborted = 0;
2412 if (scb != NULL) {
2413 u_int tag;
2414
2415 if ((scb->hscb->control & TAG_ENB) != 0)
2416 tag = SCB_GET_TAG(scb);
2417 else
2418 tag = SCB_LIST_NULL;
2419 ahd_print_path(ahd, scb);
2420 aborted = ahd_abort_scbs(ahd, target, 'A',
2421 SCB_GET_LUN(scb), tag,
2422 ROLE_INITIATOR,
2423 CAM_UNEXP_BUSFREE);
2424 } else {
2425 /*
2426 * We had not fully identified this connection,
2427 * so we cannot abort anything.
2428 */
2429 printf("%s: ", ahd_name(ahd));
2430 }
2431 printf("Unexpected busfree %s, %d SCBs aborted, "
2432 "PRGMCNT == 0x%x\n",
2433 ahd_lookup_phase_entry(lastphase)->phasemsg,
2434 aborted,
2435 ahd_inw(ahd, PRGMCNT));
2436 ahd_dump_card_state(ahd);
2437 if (lastphase != P_BUSFREE)
2438 ahd_force_renegotiation(ahd, &devinfo);
2439 }
2440 /* Always restart the sequencer. */
2441 return (1);
2442 }
2443
2444 void
ahd_handle_proto_violation(struct ahd_softc * ahd)2445 ahd_handle_proto_violation(struct ahd_softc *ahd)
2446 {
2447 struct ahd_devinfo devinfo;
2448 struct scb *scb;
2449 u_int scbid;
2450 u_int seq_flags;
2451 u_int curphase;
2452 u_int lastphase;
2453 int found;
2454
2455 ahd_fetch_devinfo(ahd, &devinfo);
2456 scbid = ahd_get_scbptr(ahd);
2457 scb = ahd_lookup_scb(ahd, scbid);
2458 seq_flags = ahd_inb(ahd, SEQ_FLAGS);
2459 curphase = ahd_inb(ahd, SCSISIGI) & PHASE_MASK;
2460 lastphase = ahd_inb(ahd, LASTPHASE);
2461 if ((seq_flags & NOT_IDENTIFIED) != 0) {
2462
2463 /*
2464 * The reconnecting target either did not send an
2465 * identify message, or did, but we didn't find an SCB
2466 * to match.
2467 */
2468 ahd_print_devinfo(ahd, &devinfo);
2469 printf("Target did not send an IDENTIFY message. "
2470 "LASTPHASE = 0x%x.\n", lastphase);
2471 scb = NULL;
2472 } else if (scb == NULL) {
2473 /*
2474 * We don't seem to have an SCB active for this
2475 * transaction. Print an error and reset the bus.
2476 */
2477 ahd_print_devinfo(ahd, &devinfo);
2478 printf("No SCB found during protocol violation\n");
2479 goto proto_violation_reset;
2480 } else {
2481 aic_set_transaction_status(scb, CAM_SEQUENCE_FAIL);
2482 if ((seq_flags & NO_CDB_SENT) != 0) {
2483 ahd_print_path(ahd, scb);
2484 printf("No or incomplete CDB sent to device.\n");
2485 } else if ((ahd_inb_scbram(ahd, SCB_CONTROL)
2486 & STATUS_RCVD) == 0) {
2487 /*
2488 * The target never bothered to provide status to
2489 * us prior to completing the command. Since we don't
2490 * know the disposition of this command, we must attempt
2491 * to abort it. Assert ATN and prepare to send an abort
2492 * message.
2493 */
2494 ahd_print_path(ahd, scb);
2495 printf("Completed command without status.\n");
2496 } else {
2497 ahd_print_path(ahd, scb);
2498 printf("Unknown protocol violation.\n");
2499 ahd_dump_card_state(ahd);
2500 }
2501 }
2502 if ((lastphase & ~P_DATAIN_DT) == 0
2503 || lastphase == P_COMMAND) {
2504 proto_violation_reset:
2505 /*
2506 * Target either went directly to data
2507 * phase or didn't respond to our ATN.
2508 * The only safe thing to do is to blow
2509 * it away with a bus reset.
2510 */
2511 found = ahd_reset_channel(ahd, 'A', TRUE);
2512 printf("%s: Issued Channel %c Bus Reset. "
2513 "%d SCBs aborted\n", ahd_name(ahd), 'A', found);
2514 } else {
2515 /*
2516 * Leave the selection hardware off in case
2517 * this abort attempt will affect yet to
2518 * be sent commands.
2519 */
2520 ahd_outb(ahd, SCSISEQ0,
2521 ahd_inb(ahd, SCSISEQ0) & ~ENSELO);
2522 ahd_assert_atn(ahd);
2523 ahd_outb(ahd, MSG_OUT, HOST_MSG);
2524 if (scb == NULL) {
2525 ahd_print_devinfo(ahd, &devinfo);
2526 ahd->msgout_buf[0] = MSG_ABORT_TASK;
2527 ahd->msgout_len = 1;
2528 ahd->msgout_index = 0;
2529 ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
2530 } else {
2531 ahd_print_path(ahd, scb);
2532 scb->flags |= SCB_ABORT;
2533 }
2534 printf("Protocol violation %s. Attempting to abort.\n",
2535 ahd_lookup_phase_entry(curphase)->phasemsg);
2536 }
2537 }
2538
2539 /*
2540 * Force renegotiation to occur the next time we initiate
2541 * a command to the current device.
2542 */
2543 void
ahd_force_renegotiation(struct ahd_softc * ahd,struct ahd_devinfo * devinfo)2544 ahd_force_renegotiation(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
2545 {
2546 struct ahd_initiator_tinfo *targ_info;
2547 struct ahd_tmode_tstate *tstate;
2548
2549 #ifdef AHD_DEBUG
2550 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
2551 ahd_print_devinfo(ahd, devinfo);
2552 printf("Forcing renegotiation\n");
2553 }
2554 #endif
2555 targ_info = ahd_fetch_transinfo(ahd,
2556 devinfo->channel,
2557 devinfo->our_scsiid,
2558 devinfo->target,
2559 &tstate);
2560 ahd_update_neg_request(ahd, devinfo, tstate,
2561 targ_info, AHD_NEG_IF_NON_ASYNC);
2562 }
2563
2564 #define AHD_MAX_STEPS 2000
2565 void
ahd_clear_critical_section(struct ahd_softc * ahd)2566 ahd_clear_critical_section(struct ahd_softc *ahd)
2567 {
2568 ahd_mode_state saved_modes;
2569 int stepping;
2570 int steps;
2571 int first_instr;
2572 u_int simode0;
2573 u_int simode1;
2574 u_int simode3;
2575 u_int lqimode0;
2576 u_int lqimode1;
2577 u_int lqomode0;
2578 u_int lqomode1;
2579
2580 if (ahd->num_critical_sections == 0)
2581 return;
2582
2583 stepping = FALSE;
2584 steps = 0;
2585 first_instr = 0;
2586 simode0 = 0;
2587 simode1 = 0;
2588 simode3 = 0;
2589 lqimode0 = 0;
2590 lqimode1 = 0;
2591 lqomode0 = 0;
2592 lqomode1 = 0;
2593 saved_modes = ahd_save_modes(ahd);
2594 for (;;) {
2595 struct cs *cs;
2596 u_int seqaddr;
2597 u_int i;
2598
2599 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
2600 seqaddr = ahd_inw(ahd, CURADDR);
2601
2602 cs = ahd->critical_sections;
2603 for (i = 0; i < ahd->num_critical_sections; i++, cs++) {
2604
2605 if (cs->begin < seqaddr && cs->end >= seqaddr)
2606 break;
2607 }
2608
2609 if (i == ahd->num_critical_sections)
2610 break;
2611
2612 if (steps > AHD_MAX_STEPS) {
2613 printf("%s: Infinite loop in critical section\n"
2614 "%s: First Instruction 0x%x now 0x%x\n",
2615 ahd_name(ahd), ahd_name(ahd), first_instr,
2616 seqaddr);
2617 ahd_dump_card_state(ahd);
2618 panic("critical section loop");
2619 }
2620
2621 steps++;
2622 #ifdef AHD_DEBUG
2623 if ((ahd_debug & AHD_SHOW_MISC) != 0)
2624 printf("%s: Single stepping at 0x%x\n", ahd_name(ahd),
2625 seqaddr);
2626 #endif
2627 if (stepping == FALSE) {
2628
2629 first_instr = seqaddr;
2630 ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
2631 simode0 = ahd_inb(ahd, SIMODE0);
2632 simode3 = ahd_inb(ahd, SIMODE3);
2633 lqimode0 = ahd_inb(ahd, LQIMODE0);
2634 lqimode1 = ahd_inb(ahd, LQIMODE1);
2635 lqomode0 = ahd_inb(ahd, LQOMODE0);
2636 lqomode1 = ahd_inb(ahd, LQOMODE1);
2637 ahd_outb(ahd, SIMODE0, 0);
2638 ahd_outb(ahd, SIMODE3, 0);
2639 ahd_outb(ahd, LQIMODE0, 0);
2640 ahd_outb(ahd, LQIMODE1, 0);
2641 ahd_outb(ahd, LQOMODE0, 0);
2642 ahd_outb(ahd, LQOMODE1, 0);
2643 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
2644 simode1 = ahd_inb(ahd, SIMODE1);
2645 /*
2646 * We don't clear ENBUSFREE. Unfortunately
2647 * we cannot re-enable busfree detection within
2648 * the current connection, so we must leave it
2649 * on while single stepping.
2650 */
2651 ahd_outb(ahd, SIMODE1, simode1 & ENBUSFREE);
2652 ahd_outb(ahd, SEQCTL0, ahd_inb(ahd, SEQCTL0) | STEP);
2653 stepping = TRUE;
2654 }
2655 ahd_outb(ahd, CLRSINT1, CLRBUSFREE);
2656 ahd_outb(ahd, CLRINT, CLRSCSIINT);
2657 ahd_set_modes(ahd, ahd->saved_src_mode, ahd->saved_dst_mode);
2658 ahd_outb(ahd, HCNTRL, ahd->unpause);
2659 while (!ahd_is_paused(ahd))
2660 aic_delay(200);
2661 ahd_update_modes(ahd);
2662 }
2663 if (stepping) {
2664 ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
2665 ahd_outb(ahd, SIMODE0, simode0);
2666 ahd_outb(ahd, SIMODE3, simode3);
2667 ahd_outb(ahd, LQIMODE0, lqimode0);
2668 ahd_outb(ahd, LQIMODE1, lqimode1);
2669 ahd_outb(ahd, LQOMODE0, lqomode0);
2670 ahd_outb(ahd, LQOMODE1, lqomode1);
2671 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
2672 ahd_outb(ahd, SEQCTL0, ahd_inb(ahd, SEQCTL0) & ~STEP);
2673 ahd_outb(ahd, SIMODE1, simode1);
2674 /*
2675 * SCSIINT seems to glitch occasionally when
2676 * the interrupt masks are restored. Clear SCSIINT
2677 * one more time so that only persistent errors
2678 * are seen as a real interrupt.
2679 */
2680 ahd_outb(ahd, CLRINT, CLRSCSIINT);
2681 }
2682 ahd_restore_modes(ahd, saved_modes);
2683 }
2684
2685 /*
2686 * Clear any pending interrupt status.
2687 */
2688 void
ahd_clear_intstat(struct ahd_softc * ahd)2689 ahd_clear_intstat(struct ahd_softc *ahd)
2690 {
2691 AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
2692 ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
2693 /* Clear any interrupt conditions this may have caused */
2694 ahd_outb(ahd, CLRLQIINT0, CLRLQIATNQAS|CLRLQICRCT1|CLRLQICRCT2
2695 |CLRLQIBADLQT|CLRLQIATNLQ|CLRLQIATNCMD);
2696 ahd_outb(ahd, CLRLQIINT1, CLRLQIPHASE_LQ|CLRLQIPHASE_NLQ|CLRLIQABORT
2697 |CLRLQICRCI_LQ|CLRLQICRCI_NLQ|CLRLQIBADLQI
2698 |CLRLQIOVERI_LQ|CLRLQIOVERI_NLQ|CLRNONPACKREQ);
2699 ahd_outb(ahd, CLRLQOINT0, CLRLQOTARGSCBPERR|CLRLQOSTOPT2|CLRLQOATNLQ
2700 |CLRLQOATNPKT|CLRLQOTCRC);
2701 ahd_outb(ahd, CLRLQOINT1, CLRLQOINITSCBPERR|CLRLQOSTOPI2|CLRLQOBADQAS
2702 |CLRLQOBUSFREE|CLRLQOPHACHGINPKT);
2703 if ((ahd->bugs & AHD_CLRLQO_AUTOCLR_BUG) != 0) {
2704 ahd_outb(ahd, CLRLQOINT0, 0);
2705 ahd_outb(ahd, CLRLQOINT1, 0);
2706 }
2707 ahd_outb(ahd, CLRSINT3, CLRNTRAMPERR|CLROSRAMPERR);
2708 ahd_outb(ahd, CLRSINT1, CLRSELTIMEO|CLRATNO|CLRSCSIRSTI
2709 |CLRBUSFREE|CLRSCSIPERR|CLRREQINIT);
2710 ahd_outb(ahd, CLRSINT0, CLRSELDO|CLRSELDI|CLRSELINGO
2711 |CLRIOERR|CLROVERRUN);
2712 ahd_outb(ahd, CLRINT, CLRSCSIINT);
2713 }
2714
2715 /**************************** Debugging Routines ******************************/
2716 #ifdef AHD_DEBUG
2717 uint32_t ahd_debug = AHD_DEBUG_OPTS;
2718 #endif
2719 void
ahd_print_scb(struct scb * scb)2720 ahd_print_scb(struct scb *scb)
2721 {
2722 struct hardware_scb *hscb;
2723 int i;
2724
2725 hscb = scb->hscb;
2726 printf("scb:%p control:0x%x scsiid:0x%x lun:%d cdb_len:%d\n",
2727 (void *)scb,
2728 hscb->control,
2729 hscb->scsiid,
2730 hscb->lun,
2731 hscb->cdb_len);
2732 printf("Shared Data: ");
2733 for (i = 0; i < sizeof(hscb->shared_data.idata.cdb); i++)
2734 printf("%#02x", hscb->shared_data.idata.cdb[i]);
2735 printf(" dataptr:%#x%x datacnt:%#x sgptr:%#x tag:%#x\n",
2736 (uint32_t)((aic_le64toh(hscb->dataptr) >> 32) & 0xFFFFFFFF),
2737 (uint32_t)(aic_le64toh(hscb->dataptr) & 0xFFFFFFFF),
2738 aic_le32toh(hscb->datacnt),
2739 aic_le32toh(hscb->sgptr),
2740 SCB_GET_TAG(scb));
2741 ahd_dump_sglist(scb);
2742 }
2743
2744 void
ahd_dump_sglist(struct scb * scb)2745 ahd_dump_sglist(struct scb *scb)
2746 {
2747 int i;
2748
2749 if (scb->sg_count > 0) {
2750 if ((scb->ahd_softc->flags & AHD_64BIT_ADDRESSING) != 0) {
2751 struct ahd_dma64_seg *sg_list;
2752
2753 sg_list = (struct ahd_dma64_seg*)scb->sg_list;
2754 for (i = 0; i < scb->sg_count; i++) {
2755 uint64_t addr;
2756 uint32_t len;
2757
2758 addr = aic_le64toh(sg_list[i].addr);
2759 len = aic_le32toh(sg_list[i].len);
2760 printf("sg[%d] - Addr 0x%x%x : Length %d%s\n",
2761 i,
2762 (uint32_t)((addr >> 32) & 0xFFFFFFFF),
2763 (uint32_t)(addr & 0xFFFFFFFF),
2764 sg_list[i].len & AHD_SG_LEN_MASK,
2765 (sg_list[i].len & AHD_DMA_LAST_SEG)
2766 ? " Last" : "");
2767 }
2768 } else {
2769 struct ahd_dma_seg *sg_list;
2770
2771 sg_list = (struct ahd_dma_seg*)scb->sg_list;
2772 for (i = 0; i < scb->sg_count; i++) {
2773 uint32_t len;
2774
2775 len = aic_le32toh(sg_list[i].len);
2776 printf("sg[%d] - Addr 0x%x%x : Length %d%s\n",
2777 i,
2778 (len & AHD_SG_HIGH_ADDR_MASK) >> 24,
2779 aic_le32toh(sg_list[i].addr),
2780 len & AHD_SG_LEN_MASK,
2781 len & AHD_DMA_LAST_SEG ? " Last" : "");
2782 }
2783 }
2784 }
2785 }
2786
2787 /************************* Transfer Negotiation *******************************/
2788 /*
2789 * Allocate per target mode instance (ID we respond to as a target)
2790 * transfer negotiation data structures.
2791 */
2792 struct ahd_tmode_tstate *
ahd_alloc_tstate(struct ahd_softc * ahd,u_int scsi_id,char channel)2793 ahd_alloc_tstate(struct ahd_softc *ahd, u_int scsi_id, char channel)
2794 {
2795 struct ahd_tmode_tstate *master_tstate;
2796 struct ahd_tmode_tstate *tstate;
2797 int i;
2798
2799 master_tstate = ahd->enabled_targets[ahd->our_id];
2800 if (ahd->enabled_targets[scsi_id] != NULL
2801 && ahd->enabled_targets[scsi_id] != master_tstate)
2802 panic("%s: ahd_alloc_tstate - Target already allocated",
2803 ahd_name(ahd));
2804 tstate = malloc(sizeof(*tstate), M_DEVBUF, M_NOWAIT | M_ZERO);
2805 if (tstate == NULL)
2806 return (NULL);
2807
2808 /*
2809 * If we have allocated a master tstate, copy user settings from
2810 * the master tstate (taken from SRAM or the EEPROM) for this
2811 * channel, but reset our current and goal settings to async/narrow
2812 * until an initiator talks to us.
2813 */
2814 if (master_tstate != NULL) {
2815 memcpy(tstate, master_tstate, sizeof(*tstate));
2816 memset(tstate->enabled_luns, 0, sizeof(tstate->enabled_luns));
2817 for (i = 0; i < 16; i++) {
2818 memset(&tstate->transinfo[i].curr, 0,
2819 sizeof(tstate->transinfo[i].curr));
2820 memset(&tstate->transinfo[i].goal, 0,
2821 sizeof(tstate->transinfo[i].goal));
2822 }
2823 }
2824 ahd->enabled_targets[scsi_id] = tstate;
2825 return (tstate);
2826 }
2827
2828 #ifdef AHD_TARGET_MODE
2829 /*
2830 * Free per target mode instance (ID we respond to as a target)
2831 * transfer negotiation data structures.
2832 */
2833 void
ahd_free_tstate(struct ahd_softc * ahd,u_int scsi_id,char channel,int force)2834 ahd_free_tstate(struct ahd_softc *ahd, u_int scsi_id, char channel, int force)
2835 {
2836 struct ahd_tmode_tstate *tstate;
2837
2838 /*
2839 * Don't clean up our "master" tstate.
2840 * It has our default user settings.
2841 */
2842 if (scsi_id == ahd->our_id
2843 && force == FALSE)
2844 return;
2845
2846 tstate = ahd->enabled_targets[scsi_id];
2847 if (tstate != NULL)
2848 free(tstate, M_DEVBUF, 0);
2849 ahd->enabled_targets[scsi_id] = NULL;
2850 }
2851 #endif
2852
2853 /*
2854 * Called when we have an active connection to a target on the bus,
2855 * this function finds the nearest period to the input period limited
2856 * by the capabilities of the bus connectivity of and sync settings for
2857 * the target.
2858 */
2859 void
ahd_devlimited_syncrate(struct ahd_softc * ahd,struct ahd_initiator_tinfo * tinfo,u_int * period,u_int * ppr_options,role_t role)2860 ahd_devlimited_syncrate(struct ahd_softc *ahd,
2861 struct ahd_initiator_tinfo *tinfo,
2862 u_int *period, u_int *ppr_options, role_t role)
2863 {
2864 struct ahd_transinfo *transinfo;
2865 u_int maxsync;
2866
2867 if ((ahd_inb(ahd, SBLKCTL) & ENAB40) != 0
2868 && (ahd_inb(ahd, SSTAT2) & EXP_ACTIVE) == 0) {
2869 maxsync = AHD_SYNCRATE_PACED;
2870 } else {
2871 maxsync = AHD_SYNCRATE_ULTRA;
2872 /* Can't do DT related options on an SE bus */
2873 *ppr_options &= MSG_EXT_PPR_QAS_REQ;
2874 }
2875 /*
2876 * Never allow a value higher than our current goal
2877 * period otherwise we may allow a target initiated
2878 * negotiation to go above the limit as set by the
2879 * user. In the case of an initiator initiated
2880 * sync negotiation, we limit based on the user
2881 * setting. This allows the system to still accept
2882 * incoming negotiations even if target initiated
2883 * negotiation is not performed.
2884 */
2885 if (role == ROLE_TARGET)
2886 transinfo = &tinfo->user;
2887 else
2888 transinfo = &tinfo->goal;
2889 *ppr_options &= (transinfo->ppr_options|MSG_EXT_PPR_PCOMP_EN);
2890 if (transinfo->width == MSG_EXT_WDTR_BUS_8_BIT) {
2891 maxsync = MAX(maxsync, AHD_SYNCRATE_ULTRA2);
2892 *ppr_options &= ~MSG_EXT_PPR_DT_REQ;
2893 }
2894 if (transinfo->period == 0) {
2895 *period = 0;
2896 *ppr_options = 0;
2897 } else {
2898 *period = MAX(*period, transinfo->period);
2899 ahd_find_syncrate(ahd, period, ppr_options, maxsync);
2900 }
2901 }
2902
2903 /*
2904 * Look up the valid period to SCSIRATE conversion in our table.
2905 * Return the period and offset that should be sent to the target
2906 * if this was the beginning of an SDTR.
2907 */
2908 void
ahd_find_syncrate(struct ahd_softc * ahd,u_int * period,u_int * ppr_options,u_int maxsync)2909 ahd_find_syncrate(struct ahd_softc *ahd, u_int *period,
2910 u_int *ppr_options, u_int maxsync)
2911 {
2912 if (*period < maxsync)
2913 *period = maxsync;
2914
2915 if ((*ppr_options & MSG_EXT_PPR_DT_REQ) != 0
2916 && *period > AHD_SYNCRATE_MIN_DT)
2917 *ppr_options &= ~MSG_EXT_PPR_DT_REQ;
2918
2919 if (*period > AHD_SYNCRATE_MIN)
2920 *period = 0;
2921
2922 /* Honor PPR option conformance rules. */
2923 if (*period > AHD_SYNCRATE_PACED)
2924 *ppr_options &= ~MSG_EXT_PPR_RTI;
2925
2926 if ((*ppr_options & MSG_EXT_PPR_IU_REQ) == 0)
2927 *ppr_options &= (MSG_EXT_PPR_DT_REQ|MSG_EXT_PPR_QAS_REQ);
2928
2929 if ((*ppr_options & MSG_EXT_PPR_DT_REQ) == 0)
2930 *ppr_options &= MSG_EXT_PPR_QAS_REQ;
2931
2932 /* Skip all PACED only entries if IU is not available */
2933 if ((*ppr_options & MSG_EXT_PPR_IU_REQ) == 0
2934 && *period < AHD_SYNCRATE_DT)
2935 *period = AHD_SYNCRATE_DT;
2936
2937 /* Skip all DT only entries if DT is not available */
2938 if ((*ppr_options & MSG_EXT_PPR_DT_REQ) == 0
2939 && *period < AHD_SYNCRATE_ULTRA2)
2940 *period = AHD_SYNCRATE_ULTRA2;
2941 }
2942
2943 /*
2944 * Truncate the given synchronous offset to a value the
2945 * current adapter type and syncrate are capable of.
2946 */
2947 void
ahd_validate_offset(struct ahd_softc * ahd,struct ahd_initiator_tinfo * tinfo,u_int period,u_int * offset,int wide,role_t role)2948 ahd_validate_offset(struct ahd_softc *ahd,
2949 struct ahd_initiator_tinfo *tinfo,
2950 u_int period, u_int *offset, int wide,
2951 role_t role)
2952 {
2953 u_int maxoffset;
2954
2955 /* Limit offset to what we can do */
2956 if (period == 0)
2957 maxoffset = 0;
2958 else if (period <= AHD_SYNCRATE_PACED) {
2959 if ((ahd->bugs & AHD_PACED_NEGTABLE_BUG) != 0)
2960 maxoffset = MAX_OFFSET_PACED_BUG;
2961 else
2962 maxoffset = MAX_OFFSET_PACED;
2963 } else
2964 maxoffset = MAX_OFFSET_NON_PACED;
2965 *offset = MIN(*offset, maxoffset);
2966 if (tinfo != NULL) {
2967 if (role == ROLE_TARGET)
2968 *offset = MIN(*offset, tinfo->user.offset);
2969 else
2970 *offset = MIN(*offset, tinfo->goal.offset);
2971 }
2972 }
2973
2974 /*
2975 * Truncate the given transfer width parameter to a value the
2976 * current adapter type is capable of.
2977 */
2978 void
ahd_validate_width(struct ahd_softc * ahd,struct ahd_initiator_tinfo * tinfo,u_int * bus_width,role_t role)2979 ahd_validate_width(struct ahd_softc *ahd, struct ahd_initiator_tinfo *tinfo,
2980 u_int *bus_width, role_t role)
2981 {
2982 switch (*bus_width) {
2983 default:
2984 if (ahd->features & AHD_WIDE) {
2985 /* Respond Wide */
2986 *bus_width = MSG_EXT_WDTR_BUS_16_BIT;
2987 break;
2988 }
2989 /* FALLTHROUGH */
2990 case MSG_EXT_WDTR_BUS_8_BIT:
2991 *bus_width = MSG_EXT_WDTR_BUS_8_BIT;
2992 break;
2993 }
2994 if (tinfo != NULL) {
2995 if (role == ROLE_TARGET)
2996 *bus_width = MIN(tinfo->user.width, *bus_width);
2997 else
2998 *bus_width = MIN(tinfo->goal.width, *bus_width);
2999 }
3000 }
3001
3002 /*
3003 * Update the bitmask of targets for which the controller should
3004 * negotiate with at the next convenient opportunity. This currently
3005 * means the next time we send the initial identify messages for
3006 * a new transaction.
3007 */
3008 int
ahd_update_neg_request(struct ahd_softc * ahd,struct ahd_devinfo * devinfo,struct ahd_tmode_tstate * tstate,struct ahd_initiator_tinfo * tinfo,ahd_neg_type neg_type)3009 ahd_update_neg_request(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
3010 struct ahd_tmode_tstate *tstate,
3011 struct ahd_initiator_tinfo *tinfo, ahd_neg_type neg_type)
3012 {
3013 u_int auto_negotiate_orig;
3014
3015 auto_negotiate_orig = tstate->auto_negotiate;
3016 if (neg_type == AHD_NEG_ALWAYS) {
3017 /*
3018 * Force our "current" settings to be
3019 * unknown so that unless a bus reset
3020 * occurs the need to renegotiate is
3021 * recorded persistently.
3022 */
3023 if ((ahd->features & AHD_WIDE) != 0)
3024 tinfo->curr.width = AHD_WIDTH_UNKNOWN;
3025 tinfo->curr.period = AHD_PERIOD_UNKNOWN;
3026 tinfo->curr.offset = AHD_OFFSET_UNKNOWN;
3027 }
3028 if (tinfo->curr.period != tinfo->goal.period
3029 || tinfo->curr.width != tinfo->goal.width
3030 || tinfo->curr.offset != tinfo->goal.offset
3031 || tinfo->curr.ppr_options != tinfo->goal.ppr_options
3032 || (neg_type == AHD_NEG_IF_NON_ASYNC
3033 && (tinfo->goal.offset != 0
3034 || tinfo->goal.width != MSG_EXT_WDTR_BUS_8_BIT
3035 || tinfo->goal.ppr_options != 0)))
3036 tstate->auto_negotiate |= devinfo->target_mask;
3037 else
3038 tstate->auto_negotiate &= ~devinfo->target_mask;
3039
3040 return (auto_negotiate_orig != tstate->auto_negotiate);
3041 }
3042
3043 /*
3044 * Update the user/goal/curr tables of synchronous negotiation
3045 * parameters as well as, in the case of a current or active update,
3046 * any data structures on the host controller. In the case of an
3047 * active update, the specified target is currently talking to us on
3048 * the bus, so the transfer parameter update must take effect
3049 * immediately.
3050 */
3051 void
ahd_set_syncrate(struct ahd_softc * ahd,struct ahd_devinfo * devinfo,u_int period,u_int offset,u_int ppr_options,u_int type,int paused)3052 ahd_set_syncrate(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
3053 u_int period, u_int offset, u_int ppr_options,
3054 u_int type, int paused)
3055 {
3056 struct ahd_initiator_tinfo *tinfo;
3057 struct ahd_tmode_tstate *tstate;
3058 u_int old_period;
3059 u_int old_offset;
3060 u_int old_ppr;
3061 int active;
3062 int update_needed;
3063
3064 active = (type & AHD_TRANS_ACTIVE) == AHD_TRANS_ACTIVE;
3065 update_needed = 0;
3066
3067 if (period == 0 || offset == 0) {
3068 period = 0;
3069 offset = 0;
3070 }
3071
3072 tinfo = ahd_fetch_transinfo(ahd, devinfo->channel, devinfo->our_scsiid,
3073 devinfo->target, &tstate);
3074
3075 if ((type & AHD_TRANS_USER) != 0) {
3076 tinfo->user.period = period;
3077 tinfo->user.offset = offset;
3078 tinfo->user.ppr_options = ppr_options;
3079 }
3080
3081 if ((type & AHD_TRANS_GOAL) != 0) {
3082 tinfo->goal.period = period;
3083 tinfo->goal.offset = offset;
3084 tinfo->goal.ppr_options = ppr_options;
3085 }
3086
3087 old_period = tinfo->curr.period;
3088 old_offset = tinfo->curr.offset;
3089 old_ppr = tinfo->curr.ppr_options;
3090
3091 if ((type & AHD_TRANS_CUR) != 0
3092 && (old_period != period
3093 || old_offset != offset
3094 || old_ppr != ppr_options)) {
3095
3096 update_needed++;
3097
3098 tinfo->curr.period = period;
3099 tinfo->curr.offset = offset;
3100 tinfo->curr.ppr_options = ppr_options;
3101 #if 0
3102 ahd_send_async(ahd, devinfo->channel, devinfo->target,
3103 CAM_LUN_WILDCARD, AC_TRANSFER_NEG, NULL);
3104 #endif
3105 if (1 /*bootverbose*/) {
3106 if (offset != 0) {
3107 int options;
3108
3109 printf("%s: target %d synchronous with "
3110 "period = 0x%x, offset = 0x%x",
3111 ahd_name(ahd), devinfo->target,
3112 period, offset);
3113 options = 0;
3114 if ((ppr_options & MSG_EXT_PPR_RD_STRM) != 0) {
3115 printf("(RDSTRM");
3116 options++;
3117 }
3118 if ((ppr_options & MSG_EXT_PPR_DT_REQ) != 0) {
3119 printf("%s", options ? "|DT" : "(DT");
3120 options++;
3121 }
3122 if ((ppr_options & MSG_EXT_PPR_IU_REQ) != 0) {
3123 printf("%s", options ? "|IU" : "(IU");
3124 options++;
3125 }
3126 if ((ppr_options & MSG_EXT_PPR_RTI) != 0) {
3127 printf("%s", options ? "|RTI" : "(RTI");
3128 options++;
3129 }
3130 if ((ppr_options & MSG_EXT_PPR_QAS_REQ) != 0) {
3131 printf("%s", options ? "|QAS" : "(QAS");
3132 options++;
3133 }
3134 if (options != 0)
3135 printf(")\n");
3136 else
3137 printf("\n");
3138 } else {
3139 printf("%s: target %d using "
3140 "asynchronous transfers%s\n",
3141 ahd_name(ahd), devinfo->target,
3142 (ppr_options & MSG_EXT_PPR_QAS_REQ) != 0
3143 ? "(QAS)" : "");
3144 }
3145 }
3146 }
3147 /*
3148 * Always refresh the neg-table to handle the case of the
3149 * sequencer setting the ENATNO bit for a MK_MESSAGE request.
3150 * We will always renegotiate in that case if this is a
3151 * packetized request. Also manage the busfree expected flag
3152 * from this common routine so that we catch changes due to
3153 * WDTR or SDTR messages.
3154 */
3155 if ((type & AHD_TRANS_CUR) != 0) {
3156 if (!paused)
3157 ahd_pause(ahd);
3158 ahd_update_neg_table(ahd, devinfo, &tinfo->curr);
3159 if (!paused)
3160 ahd_unpause(ahd);
3161 if (ahd->msg_type != MSG_TYPE_NONE) {
3162 if ((old_ppr & MSG_EXT_PPR_IU_REQ)
3163 != (ppr_options & MSG_EXT_PPR_IU_REQ)) {
3164 #ifdef AHD_DEBUG
3165 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
3166 ahd_print_devinfo(ahd, devinfo);
3167 printf("Expecting IU Change busfree\n");
3168 }
3169 #endif
3170 ahd->msg_flags |= MSG_FLAG_EXPECT_PPR_BUSFREE
3171 | MSG_FLAG_IU_REQ_CHANGED;
3172 }
3173 if ((old_ppr & MSG_EXT_PPR_IU_REQ) != 0) {
3174 #ifdef AHD_DEBUG
3175 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
3176 printf("PPR with IU_REQ outstanding\n");
3177 #endif
3178 ahd->msg_flags |= MSG_FLAG_EXPECT_PPR_BUSFREE;
3179 }
3180 }
3181 }
3182
3183 update_needed += ahd_update_neg_request(ahd, devinfo, tstate,
3184 tinfo, AHD_NEG_TO_GOAL);
3185
3186 if (update_needed && active)
3187 ahd_update_pending_scbs(ahd);
3188 }
3189
3190 /*
3191 * Update the user/goal/curr tables of wide negotiation
3192 * parameters as well as, in the case of a current or active update,
3193 * any data structures on the host controller. In the case of an
3194 * active update, the specified target is currently talking to us on
3195 * the bus, so the transfer parameter update must take effect
3196 * immediately.
3197 */
3198 void
ahd_set_width(struct ahd_softc * ahd,struct ahd_devinfo * devinfo,u_int width,u_int type,int paused)3199 ahd_set_width(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
3200 u_int width, u_int type, int paused)
3201 {
3202 struct ahd_initiator_tinfo *tinfo;
3203 struct ahd_tmode_tstate *tstate;
3204 u_int oldwidth;
3205 int active;
3206 int update_needed;
3207
3208 active = (type & AHD_TRANS_ACTIVE) == AHD_TRANS_ACTIVE;
3209 update_needed = 0;
3210 tinfo = ahd_fetch_transinfo(ahd, devinfo->channel, devinfo->our_scsiid,
3211 devinfo->target, &tstate);
3212
3213 if ((type & AHD_TRANS_USER) != 0)
3214 tinfo->user.width = width;
3215
3216 if ((type & AHD_TRANS_GOAL) != 0)
3217 tinfo->goal.width = width;
3218
3219 oldwidth = tinfo->curr.width;
3220 if ((type & AHD_TRANS_CUR) != 0 && oldwidth != width) {
3221
3222 update_needed++;
3223
3224 tinfo->curr.width = width;
3225 #if 0
3226 ahd_send_async(ahd, devinfo->channel, devinfo->target,
3227 CAM_LUN_WILDCARD, AC_TRANSFER_NEG, NULL);
3228 #endif
3229 if (bootverbose) {
3230 printf("%s: target %d using %dbit transfers\n",
3231 ahd_name(ahd), devinfo->target,
3232 8 * (0x01 << width));
3233 }
3234 }
3235
3236 if ((type & AHD_TRANS_CUR) != 0) {
3237 if (!paused)
3238 ahd_pause(ahd);
3239 ahd_update_neg_table(ahd, devinfo, &tinfo->curr);
3240 if (!paused)
3241 ahd_unpause(ahd);
3242 }
3243
3244 update_needed += ahd_update_neg_request(ahd, devinfo, tstate,
3245 tinfo, AHD_NEG_TO_GOAL);
3246 if (update_needed && active)
3247 ahd_update_pending_scbs(ahd);
3248
3249 }
3250
3251 /*
3252 * Update the current state of tagged queuing for a given target.
3253 */
3254 void
ahd_set_tags(struct ahd_softc * ahd,struct ahd_devinfo * devinfo,ahd_queue_alg alg)3255 ahd_set_tags(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
3256 ahd_queue_alg alg)
3257 {
3258 ahd_platform_set_tags(ahd, devinfo, alg);
3259 #if 0
3260 ahd_send_async(ahd, devinfo->channel, devinfo->target,
3261 devinfo->lun, AC_TRANSFER_NEG, &alg);
3262 #endif
3263 }
3264
3265 void
ahd_update_neg_table(struct ahd_softc * ahd,struct ahd_devinfo * devinfo,struct ahd_transinfo * tinfo)3266 ahd_update_neg_table(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
3267 struct ahd_transinfo *tinfo)
3268 {
3269 ahd_mode_state saved_modes;
3270 u_int period;
3271 u_int ppr_opts;
3272 u_int con_opts;
3273 u_int offset;
3274 u_int saved_negoaddr;
3275 uint8_t iocell_opts[sizeof(ahd->iocell_opts)];
3276
3277 saved_modes = ahd_save_modes(ahd);
3278 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
3279
3280 saved_negoaddr = ahd_inb(ahd, NEGOADDR);
3281 ahd_outb(ahd, NEGOADDR, devinfo->target);
3282 period = tinfo->period;
3283 offset = tinfo->offset;
3284 memcpy(iocell_opts, ahd->iocell_opts, sizeof(ahd->iocell_opts));
3285 ppr_opts = tinfo->ppr_options & (MSG_EXT_PPR_QAS_REQ|MSG_EXT_PPR_DT_REQ
3286 |MSG_EXT_PPR_IU_REQ|MSG_EXT_PPR_RTI);
3287 con_opts = 0;
3288 if (period == 0)
3289 period = AHD_SYNCRATE_ASYNC;
3290 if (period == AHD_SYNCRATE_160) {
3291
3292 if ((ahd->bugs & AHD_PACED_NEGTABLE_BUG) != 0) {
3293 /*
3294 * When the SPI4 spec was finalized, PACE transfers
3295 * was not made a configurable option in the PPR
3296 * message. Instead it is assumed to be enabled for
3297 * any syncrate faster than 80MHz. Nevertheless,
3298 * Harpoon2A4 allows this to be configurable.
3299 *
3300 * Harpoon2A4 also assumes at most 2 data bytes per
3301 * negotiated REQ/ACK offset. Paced transfers take
3302 * 4, so we must adjust our offset.
3303 */
3304 ppr_opts |= PPROPT_PACE;
3305 offset *= 2;
3306
3307 /*
3308 * Harpoon2A assumed that there would be a
3309 * fallback rate between 160MHz and 80MHz,
3310 * so 7 is used as the period factor rather
3311 * than 8 for 160MHz.
3312 */
3313 period = AHD_SYNCRATE_REVA_160;
3314 }
3315 if ((tinfo->ppr_options & MSG_EXT_PPR_PCOMP_EN) == 0)
3316 iocell_opts[AHD_PRECOMP_SLEW_INDEX] &=
3317 ~AHD_PRECOMP_MASK;
3318 } else {
3319 /*
3320 * Precomp should be disabled for non-paced transfers.
3321 */
3322 iocell_opts[AHD_PRECOMP_SLEW_INDEX] &= ~AHD_PRECOMP_MASK;
3323
3324 if ((ahd->features & AHD_NEW_IOCELL_OPTS) != 0
3325 && (ppr_opts & MSG_EXT_PPR_DT_REQ) != 0
3326 && (ppr_opts & MSG_EXT_PPR_IU_REQ) == 0) {
3327 /*
3328 * Slow down our CRC interval to be
3329 * compatible with non-packetized
3330 * U160 devices that can't handle a
3331 * CRC at full speed.
3332 */
3333 con_opts |= ENSLOWCRC;
3334 }
3335
3336 if ((ahd->bugs & AHD_PACED_NEGTABLE_BUG) != 0) {
3337 /*
3338 * On H2A4, revert to a slower slewrate
3339 * on non-paced transfers.
3340 */
3341 iocell_opts[AHD_PRECOMP_SLEW_INDEX] &=
3342 ~AHD_SLEWRATE_MASK;
3343 }
3344 }
3345
3346 ahd_outb(ahd, ANNEXCOL, AHD_ANNEXCOL_PRECOMP_SLEW);
3347 ahd_outb(ahd, ANNEXDAT, iocell_opts[AHD_PRECOMP_SLEW_INDEX]);
3348 ahd_outb(ahd, ANNEXCOL, AHD_ANNEXCOL_AMPLITUDE);
3349 ahd_outb(ahd, ANNEXDAT, iocell_opts[AHD_AMPLITUDE_INDEX]);
3350
3351 ahd_outb(ahd, NEGPERIOD, period);
3352 ahd_outb(ahd, NEGPPROPTS, ppr_opts);
3353 ahd_outb(ahd, NEGOFFSET, offset);
3354
3355 if (tinfo->width == MSG_EXT_WDTR_BUS_16_BIT)
3356 con_opts |= WIDEXFER;
3357
3358 /*
3359 * During packetized transfers, the target will
3360 * give us the opportunity to send command packets
3361 * without us asserting attention.
3362 */
3363 if ((tinfo->ppr_options & MSG_EXT_PPR_IU_REQ) == 0)
3364 con_opts |= ENAUTOATNO;
3365 ahd_outb(ahd, NEGCONOPTS, con_opts);
3366 ahd_outb(ahd, NEGOADDR, saved_negoaddr);
3367 ahd_restore_modes(ahd, saved_modes);
3368 }
3369
3370 /*
3371 * When the transfer settings for a connection change, setup for
3372 * negotiation in pending SCBs to effect the change as quickly as
3373 * possible. We also cancel any negotiations that are scheduled
3374 * for inflight SCBs that have not been started yet.
3375 */
3376 void
ahd_update_pending_scbs(struct ahd_softc * ahd)3377 ahd_update_pending_scbs(struct ahd_softc *ahd)
3378 {
3379 struct scb *pending_scb;
3380 int pending_scb_count;
3381 int paused;
3382 u_int saved_scbptr;
3383 ahd_mode_state saved_modes;
3384
3385 /*
3386 * Traverse the pending SCB list and ensure that all of the
3387 * SCBs there have the proper settings. We can only safely
3388 * clear the negotiation required flag (setting requires the
3389 * execution queue to be modified) and this is only possible
3390 * if we are not already attempting to select out for this
3391 * SCB. For this reason, all callers only call this routine
3392 * if we are changing the negotiation settings for the currently
3393 * active transaction on the bus.
3394 */
3395 pending_scb_count = 0;
3396 TAILQ_FOREACH(pending_scb, &ahd->pending_scbs, next) {
3397 struct ahd_devinfo devinfo;
3398 struct ahd_initiator_tinfo *tinfo;
3399 struct ahd_tmode_tstate *tstate;
3400
3401 ahd_scb_devinfo(ahd, &devinfo, pending_scb);
3402 tinfo = ahd_fetch_transinfo(ahd, devinfo.channel,
3403 devinfo.our_scsiid,
3404 devinfo.target, &tstate);
3405 if ((tstate->auto_negotiate & devinfo.target_mask) == 0
3406 && (pending_scb->flags & SCB_AUTO_NEGOTIATE) != 0) {
3407 pending_scb->flags &= ~SCB_AUTO_NEGOTIATE;
3408 pending_scb->hscb->control &= ~MK_MESSAGE;
3409 }
3410 ahd_sync_scb(ahd, pending_scb,
3411 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3412 pending_scb_count++;
3413 }
3414
3415 if (pending_scb_count == 0)
3416 return;
3417
3418 if (ahd_is_paused(ahd)) {
3419 paused = 1;
3420 } else {
3421 paused = 0;
3422 ahd_pause(ahd);
3423 }
3424
3425 /*
3426 * Force the sequencer to reinitialize the selection for
3427 * the command at the head of the execution queue if it
3428 * has already been setup. The negotiation changes may
3429 * effect whether we select-out with ATN. It is only
3430 * safe to clear ENSELO when the bus is not free and no
3431 * selection is in progress or completed.
3432 */
3433 saved_modes = ahd_save_modes(ahd);
3434 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
3435 if ((ahd_inb(ahd, SCSISIGI) & BSYI) != 0
3436 && (ahd_inb(ahd, SSTAT0) & (SELDO|SELINGO)) == 0)
3437 ahd_outb(ahd, SCSISEQ0, ahd_inb(ahd, SCSISEQ0) & ~ENSELO);
3438 saved_scbptr = ahd_get_scbptr(ahd);
3439 /* Ensure that the hscbs down on the card match the new information */
3440 TAILQ_FOREACH(pending_scb, &ahd->pending_scbs, next) {
3441 u_int scb_tag;
3442 u_int control;
3443
3444 scb_tag = SCB_GET_TAG(pending_scb);
3445 ahd_set_scbptr(ahd, scb_tag);
3446 control = ahd_inb_scbram(ahd, SCB_CONTROL);
3447 control &= ~MK_MESSAGE;
3448 control |= pending_scb->hscb->control & MK_MESSAGE;
3449 ahd_outb(ahd, SCB_CONTROL, control);
3450 }
3451 ahd_set_scbptr(ahd, saved_scbptr);
3452 ahd_restore_modes(ahd, saved_modes);
3453
3454 if (paused == 0)
3455 ahd_unpause(ahd);
3456 }
3457
3458 /**************************** Pathing Information *****************************/
3459 void
ahd_fetch_devinfo(struct ahd_softc * ahd,struct ahd_devinfo * devinfo)3460 ahd_fetch_devinfo(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
3461 {
3462 ahd_mode_state saved_modes;
3463 u_int saved_scsiid;
3464 role_t role;
3465 int our_id;
3466
3467 saved_modes = ahd_save_modes(ahd);
3468 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
3469
3470 if (ahd_inb(ahd, SSTAT0) & TARGET)
3471 role = ROLE_TARGET;
3472 else
3473 role = ROLE_INITIATOR;
3474
3475 if (role == ROLE_TARGET
3476 && (ahd_inb(ahd, SEQ_FLAGS) & CMDPHASE_PENDING) != 0) {
3477 /* We were selected, so pull our id from TARGIDIN */
3478 our_id = ahd_inb(ahd, TARGIDIN) & OID;
3479 } else if (role == ROLE_TARGET)
3480 our_id = ahd_inb(ahd, TOWNID);
3481 else
3482 our_id = ahd_inb(ahd, IOWNID);
3483
3484 saved_scsiid = ahd_inb(ahd, SAVED_SCSIID);
3485 ahd_compile_devinfo(devinfo,
3486 our_id,
3487 SCSIID_TARGET(ahd, saved_scsiid),
3488 ahd_inb(ahd, SAVED_LUN),
3489 SCSIID_CHANNEL(ahd, saved_scsiid),
3490 role);
3491 ahd_restore_modes(ahd, saved_modes);
3492 }
3493
3494 void
ahd_print_devinfo(struct ahd_softc * ahd,struct ahd_devinfo * devinfo)3495 ahd_print_devinfo(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
3496 {
3497 printf("%s:%c:%d:%d: ", ahd_name(ahd), 'A',
3498 devinfo->target, devinfo->lun);
3499 }
3500
3501 struct ahd_phase_table_entry*
ahd_lookup_phase_entry(int phase)3502 ahd_lookup_phase_entry(int phase)
3503 {
3504 struct ahd_phase_table_entry *entry;
3505 struct ahd_phase_table_entry *last_entry;
3506
3507 /*
3508 * num_phases doesn't include the default entry which
3509 * will be returned if the phase doesn't match.
3510 */
3511 last_entry = &ahd_phase_table[num_phases];
3512 for (entry = ahd_phase_table; entry < last_entry; entry++) {
3513 if (phase == entry->phase)
3514 break;
3515 }
3516 return (entry);
3517 }
3518
3519 void
ahd_compile_devinfo(struct ahd_devinfo * devinfo,u_int our_id,u_int target,u_int lun,char channel,role_t role)3520 ahd_compile_devinfo(struct ahd_devinfo *devinfo, u_int our_id, u_int target,
3521 u_int lun, char channel, role_t role)
3522 {
3523 devinfo->our_scsiid = our_id;
3524 devinfo->target = target;
3525 devinfo->lun = lun;
3526 devinfo->target_offset = target;
3527 devinfo->channel = channel;
3528 devinfo->role = role;
3529 if (channel == 'B')
3530 devinfo->target_offset += 8;
3531 devinfo->target_mask = (0x01 << devinfo->target_offset);
3532 }
3533
3534 void
ahd_scb_devinfo(struct ahd_softc * ahd,struct ahd_devinfo * devinfo,struct scb * scb)3535 ahd_scb_devinfo(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
3536 struct scb *scb)
3537 {
3538 role_t role;
3539 int our_id;
3540
3541 our_id = SCSIID_OUR_ID(scb->hscb->scsiid);
3542 role = ROLE_INITIATOR;
3543 if ((scb->hscb->control & TARGET_SCB) != 0)
3544 role = ROLE_TARGET;
3545 ahd_compile_devinfo(devinfo, our_id, SCB_GET_TARGET(ahd, scb),
3546 SCB_GET_LUN(scb), SCB_GET_CHANNEL(ahd, scb), role);
3547 }
3548
3549
3550 /************************ Message Phase Processing ****************************/
3551 /*
3552 * When an initiator transaction with the MK_MESSAGE flag either reconnects
3553 * or enters the initial message out phase, we are interrupted. Fill our
3554 * outgoing message buffer with the appropriate message and begin handing
3555 * the message phase(s) manually.
3556 */
3557 void
ahd_setup_initiator_msgout(struct ahd_softc * ahd,struct ahd_devinfo * devinfo,struct scb * scb)3558 ahd_setup_initiator_msgout(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
3559 struct scb *scb)
3560 {
3561 /*
3562 * To facilitate adding multiple messages together,
3563 * each routine should increment the index and len
3564 * variables instead of setting them explicitly.
3565 */
3566 ahd->msgout_index = 0;
3567 ahd->msgout_len = 0;
3568
3569 if (ahd_currently_packetized(ahd))
3570 ahd->msg_flags |= MSG_FLAG_PACKETIZED;
3571
3572 if (ahd->send_msg_perror
3573 && ahd_inb(ahd, MSG_OUT) == HOST_MSG) {
3574 ahd->msgout_buf[ahd->msgout_index++] = ahd->send_msg_perror;
3575 ahd->msgout_len++;
3576 ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
3577 #ifdef AHD_DEBUG
3578 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
3579 printf("Setting up for Parity Error delivery\n");
3580 #endif
3581 return;
3582 } else if (scb == NULL) {
3583 printf("%s: WARNING. No pending message for "
3584 "I_T msgin. Issuing NO-OP\n", ahd_name(ahd));
3585 ahd->msgout_buf[ahd->msgout_index++] = MSG_NOOP;
3586 ahd->msgout_len++;
3587 ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
3588 return;
3589 }
3590
3591 if ((scb->flags & SCB_DEVICE_RESET) == 0
3592 && (scb->flags & SCB_PACKETIZED) == 0
3593 && ahd_inb(ahd, MSG_OUT) == MSG_IDENTIFYFLAG) {
3594 u_int identify_msg;
3595
3596 identify_msg = MSG_IDENTIFYFLAG | SCB_GET_LUN(scb);
3597 if ((scb->hscb->control & DISCENB) != 0)
3598 identify_msg |= MSG_IDENTIFY_DISCFLAG;
3599 ahd->msgout_buf[ahd->msgout_index++] = identify_msg;
3600 ahd->msgout_len++;
3601
3602 if ((scb->hscb->control & TAG_ENB) != 0) {
3603 ahd->msgout_buf[ahd->msgout_index++] =
3604 scb->hscb->control & (TAG_ENB|SCB_TAG_TYPE);
3605 ahd->msgout_buf[ahd->msgout_index++] = SCB_GET_TAG(scb);
3606 ahd->msgout_len += 2;
3607 }
3608 }
3609
3610 if (scb->flags & SCB_DEVICE_RESET) {
3611 ahd->msgout_buf[ahd->msgout_index++] = MSG_BUS_DEV_RESET;
3612 ahd->msgout_len++;
3613 ahd_print_path(ahd, scb);
3614 printf("Bus Device Reset Message Sent\n");
3615 /*
3616 * Clear our selection hardware in advance of
3617 * the busfree. We may have an entry in the waiting
3618 * Q for this target, and we don't want to go about
3619 * selecting while we handle the busfree and blow it
3620 * away.
3621 */
3622 ahd_outb(ahd, SCSISEQ0, 0);
3623 } else if ((scb->flags & SCB_ABORT) != 0) {
3624
3625 if ((scb->hscb->control & TAG_ENB) != 0) {
3626 ahd->msgout_buf[ahd->msgout_index++] = MSG_ABORT_TAG;
3627 } else {
3628 ahd->msgout_buf[ahd->msgout_index++] = MSG_ABORT;
3629 }
3630 ahd->msgout_len++;
3631 ahd_print_path(ahd, scb);
3632 printf("Abort%s Message Sent\n",
3633 (scb->hscb->control & TAG_ENB) != 0 ? " Tag" : "");
3634 /*
3635 * Clear our selection hardware in advance of
3636 * the busfree. We may have an entry in the waiting
3637 * Q for this target, and we don't want to go about
3638 * selecting while we handle the busfree and blow it
3639 * away.
3640 */
3641 ahd_outb(ahd, SCSISEQ0, 0);
3642 } else if ((scb->flags & (SCB_AUTO_NEGOTIATE|SCB_NEGOTIATE)) != 0) {
3643 ahd_build_transfer_msg(ahd, devinfo);
3644 /*
3645 * Clear our selection hardware in advance of potential
3646 * PPR IU status change busfree. We may have an entry in
3647 * the waiting Q for this target, and we don't want to go
3648 * about selecting while we handle the busfree and blow
3649 * it away.
3650 */
3651 ahd_outb(ahd, SCSISEQ0, 0);
3652 } else {
3653 printf("ahd_intr: AWAITING_MSG for an SCB that "
3654 "does not have a waiting message\n");
3655 printf("SCSIID = %x, target_mask = %x\n", scb->hscb->scsiid,
3656 devinfo->target_mask);
3657 panic("SCB = %d, SCB Control = %x:%x, MSG_OUT = %x "
3658 "SCB flags = %x", SCB_GET_TAG(scb), scb->hscb->control,
3659 ahd_inb_scbram(ahd, SCB_CONTROL), ahd_inb(ahd, MSG_OUT),
3660 scb->flags);
3661 }
3662
3663 /*
3664 * Clear the MK_MESSAGE flag from the SCB so we aren't
3665 * asked to send this message again.
3666 */
3667 ahd_outb(ahd, SCB_CONTROL,
3668 ahd_inb_scbram(ahd, SCB_CONTROL) & ~MK_MESSAGE);
3669 scb->hscb->control &= ~MK_MESSAGE;
3670 ahd->msgout_index = 0;
3671 ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
3672 }
3673
3674 /*
3675 * Build an appropriate transfer negotiation message for the
3676 * currently active target.
3677 */
3678 void
ahd_build_transfer_msg(struct ahd_softc * ahd,struct ahd_devinfo * devinfo)3679 ahd_build_transfer_msg(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
3680 {
3681 /*
3682 * We need to initiate transfer negotiations.
3683 * If our current and goal settings are identical,
3684 * we want to renegotiate due to a check condition.
3685 */
3686 struct ahd_initiator_tinfo *tinfo;
3687 struct ahd_tmode_tstate *tstate;
3688 int dowide;
3689 int dosync;
3690 int doppr;
3691 u_int period;
3692 u_int ppr_options;
3693 u_int offset;
3694
3695 tinfo = ahd_fetch_transinfo(ahd, devinfo->channel, devinfo->our_scsiid,
3696 devinfo->target, &tstate);
3697 /*
3698 * Filter our period based on the current connection.
3699 * If we can't perform DT transfers on this segment (not in LVD
3700 * mode for instance), then our decision to issue a PPR message
3701 * may change.
3702 */
3703 period = tinfo->goal.period;
3704 offset = tinfo->goal.offset;
3705 ppr_options = tinfo->goal.ppr_options;
3706 /* Target initiated PPR is not allowed in the SCSI spec */
3707 if (devinfo->role == ROLE_TARGET)
3708 ppr_options = 0;
3709 ahd_devlimited_syncrate(ahd, tinfo, &period,
3710 &ppr_options, devinfo->role);
3711 dowide = tinfo->curr.width != tinfo->goal.width;
3712 dosync = tinfo->curr.offset != offset || tinfo->curr.period != period;
3713 /*
3714 * Only use PPR if we have options that need it, even if the device
3715 * claims to support it. There might be an expander in the way
3716 * that doesn't.
3717 */
3718 doppr = ppr_options != 0;
3719
3720 if (!dowide && !dosync && !doppr) {
3721 dowide = tinfo->goal.width != MSG_EXT_WDTR_BUS_8_BIT;
3722 dosync = tinfo->goal.offset != 0;
3723 }
3724
3725 if (!dowide && !dosync && !doppr) {
3726 /*
3727 * Force async with a WDTR message if we have a wide bus,
3728 * or just issue an SDTR with a 0 offset.
3729 */
3730 if ((ahd->features & AHD_WIDE) != 0)
3731 dowide = 1;
3732 else
3733 dosync = 1;
3734
3735 if (bootverbose) {
3736 ahd_print_devinfo(ahd, devinfo);
3737 printf("Ensuring async\n");
3738 }
3739 }
3740 /* Target initiated PPR is not allowed in the SCSI spec */
3741 if (devinfo->role == ROLE_TARGET)
3742 doppr = 0;
3743
3744 /*
3745 * Both the PPR message and SDTR message require the
3746 * goal syncrate to be limited to what the target device
3747 * is capable of handling (based on whether an LVD->SE
3748 * expander is on the bus), so combine these two cases.
3749 * Regardless, guarantee that if we are using WDTR and SDTR
3750 * messages that WDTR comes first.
3751 */
3752 if (doppr || (dosync && !dowide)) {
3753
3754 offset = tinfo->goal.offset;
3755 ahd_validate_offset(ahd, tinfo, period, &offset,
3756 doppr ? tinfo->goal.width
3757 : tinfo->curr.width,
3758 devinfo->role);
3759 if (doppr) {
3760 ahd_construct_ppr(ahd, devinfo, period, offset,
3761 tinfo->goal.width, ppr_options);
3762 } else {
3763 ahd_construct_sdtr(ahd, devinfo, period, offset);
3764 }
3765 } else {
3766 ahd_construct_wdtr(ahd, devinfo, tinfo->goal.width);
3767 }
3768 }
3769
3770 /*
3771 * Build a synchronous negotiation message in our message
3772 * buffer based on the input parameters.
3773 */
3774 void
ahd_construct_sdtr(struct ahd_softc * ahd,struct ahd_devinfo * devinfo,u_int period,u_int offset)3775 ahd_construct_sdtr(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
3776 u_int period, u_int offset)
3777 {
3778 if (offset == 0)
3779 period = AHD_ASYNC_XFER_PERIOD;
3780 ahd->msgout_buf[ahd->msgout_index++] = MSG_EXTENDED;
3781 ahd->msgout_buf[ahd->msgout_index++] = MSG_EXT_SDTR_LEN;
3782 ahd->msgout_buf[ahd->msgout_index++] = MSG_EXT_SDTR;
3783 ahd->msgout_buf[ahd->msgout_index++] = period;
3784 ahd->msgout_buf[ahd->msgout_index++] = offset;
3785 ahd->msgout_len += 5;
3786 if (bootverbose) {
3787 printf("(%s:%c:%d:%d): Sending SDTR period %x, offset %x\n",
3788 ahd_name(ahd), devinfo->channel, devinfo->target,
3789 devinfo->lun, period, offset);
3790 }
3791 }
3792
3793 /*
3794 * Build a wide negotiation message in our message
3795 * buffer based on the input parameters.
3796 */
3797 void
ahd_construct_wdtr(struct ahd_softc * ahd,struct ahd_devinfo * devinfo,u_int bus_width)3798 ahd_construct_wdtr(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
3799 u_int bus_width)
3800 {
3801 ahd->msgout_buf[ahd->msgout_index++] = MSG_EXTENDED;
3802 ahd->msgout_buf[ahd->msgout_index++] = MSG_EXT_WDTR_LEN;
3803 ahd->msgout_buf[ahd->msgout_index++] = MSG_EXT_WDTR;
3804 ahd->msgout_buf[ahd->msgout_index++] = bus_width;
3805 ahd->msgout_len += 4;
3806 if (bootverbose) {
3807 printf("(%s:%c:%d:%d): Sending WDTR %x\n",
3808 ahd_name(ahd), devinfo->channel, devinfo->target,
3809 devinfo->lun, bus_width);
3810 }
3811 }
3812
3813 /*
3814 * Build a parallel protocol request message in our message
3815 * buffer based on the input parameters.
3816 */
3817 void
ahd_construct_ppr(struct ahd_softc * ahd,struct ahd_devinfo * devinfo,u_int period,u_int offset,u_int bus_width,u_int ppr_options)3818 ahd_construct_ppr(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
3819 u_int period, u_int offset, u_int bus_width,
3820 u_int ppr_options)
3821 {
3822 /*
3823 * Always request precompensation from
3824 * the other target if we are running
3825 * at paced syncrates.
3826 */
3827 if (period <= AHD_SYNCRATE_PACED)
3828 ppr_options |= MSG_EXT_PPR_PCOMP_EN;
3829 if (offset == 0)
3830 period = AHD_ASYNC_XFER_PERIOD;
3831 ahd->msgout_buf[ahd->msgout_index++] = MSG_EXTENDED;
3832 ahd->msgout_buf[ahd->msgout_index++] = MSG_EXT_PPR_LEN;
3833 ahd->msgout_buf[ahd->msgout_index++] = MSG_EXT_PPR;
3834 ahd->msgout_buf[ahd->msgout_index++] = period;
3835 ahd->msgout_buf[ahd->msgout_index++] = 0;
3836 ahd->msgout_buf[ahd->msgout_index++] = offset;
3837 ahd->msgout_buf[ahd->msgout_index++] = bus_width;
3838 ahd->msgout_buf[ahd->msgout_index++] = ppr_options;
3839 ahd->msgout_len += 8;
3840 if (bootverbose) {
3841 printf("(%s:%c:%d:%d): Sending PPR bus_width %x, period %x, "
3842 "offset %x, ppr_options %x\n", ahd_name(ahd),
3843 devinfo->channel, devinfo->target, devinfo->lun,
3844 bus_width, period, offset, ppr_options);
3845 }
3846 }
3847
3848 /*
3849 * Clear any active message state.
3850 */
3851 void
ahd_clear_msg_state(struct ahd_softc * ahd)3852 ahd_clear_msg_state(struct ahd_softc *ahd)
3853 {
3854 ahd_mode_state saved_modes;
3855
3856 saved_modes = ahd_save_modes(ahd);
3857 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
3858 ahd->send_msg_perror = 0;
3859 ahd->msg_flags = MSG_FLAG_NONE;
3860 ahd->msgout_len = 0;
3861 ahd->msgin_index = 0;
3862 ahd->msg_type = MSG_TYPE_NONE;
3863 if ((ahd_inb(ahd, SCSISIGO) & ATNO) != 0) {
3864 /*
3865 * The target didn't care to respond to our
3866 * message request, so clear ATN.
3867 */
3868 ahd_outb(ahd, CLRSINT1, CLRATNO);
3869 }
3870 ahd_outb(ahd, MSG_OUT, MSG_NOOP);
3871 ahd_outb(ahd, SEQ_FLAGS2,
3872 ahd_inb(ahd, SEQ_FLAGS2) & ~TARGET_MSG_PENDING);
3873 ahd_restore_modes(ahd, saved_modes);
3874 }
3875
3876 /*
3877 * Manual message loop handler.
3878 */
3879 void
ahd_handle_message_phase(struct ahd_softc * ahd)3880 ahd_handle_message_phase(struct ahd_softc *ahd)
3881 {
3882 struct ahd_devinfo devinfo;
3883 u_int bus_phase;
3884 int end_session;
3885
3886 ahd_fetch_devinfo(ahd, &devinfo);
3887 end_session = FALSE;
3888 bus_phase = ahd_inb(ahd, LASTPHASE);
3889
3890 if ((ahd_inb(ahd, LQISTAT2) & LQIPHASE_OUTPKT) != 0) {
3891 printf("LQIRETRY for LQIPHASE_OUTPKT\n");
3892 ahd_outb(ahd, LQCTL2, LQIRETRY);
3893 }
3894 reswitch:
3895 switch (ahd->msg_type) {
3896 case MSG_TYPE_INITIATOR_MSGOUT:
3897 {
3898 int lastbyte;
3899 int phasemis;
3900 int msgdone;
3901
3902 if (ahd->msgout_len == 0 && ahd->send_msg_perror == 0)
3903 panic("HOST_MSG_LOOP interrupt with no active message");
3904
3905 #ifdef AHD_DEBUG
3906 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
3907 ahd_print_devinfo(ahd, &devinfo);
3908 printf("INITIATOR_MSG_OUT");
3909 }
3910 #endif
3911 phasemis = bus_phase != P_MESGOUT;
3912 if (phasemis) {
3913 #ifdef AHD_DEBUG
3914 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
3915 printf(" PHASEMIS %s\n",
3916 ahd_lookup_phase_entry(bus_phase)
3917 ->phasemsg);
3918 }
3919 #endif
3920 if (bus_phase == P_MESGIN) {
3921 /*
3922 * Change gears and see if
3923 * this messages is of interest to
3924 * us or should be passed back to
3925 * the sequencer.
3926 */
3927 ahd_outb(ahd, CLRSINT1, CLRATNO);
3928 ahd->send_msg_perror = 0;
3929 ahd->msg_type = MSG_TYPE_INITIATOR_MSGIN;
3930 ahd->msgin_index = 0;
3931 goto reswitch;
3932 }
3933 end_session = TRUE;
3934 break;
3935 }
3936
3937 if (ahd->send_msg_perror) {
3938 ahd_outb(ahd, CLRSINT1, CLRATNO);
3939 ahd_outb(ahd, CLRSINT1, CLRREQINIT);
3940 #ifdef AHD_DEBUG
3941 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
3942 printf(" byte 0x%x\n", ahd->send_msg_perror);
3943 #endif
3944 /*
3945 * If we are notifying the target of a CRC error
3946 * during packetized operations, the target is
3947 * within its rights to acknowledge our message
3948 * with a busfree.
3949 */
3950 if ((ahd->msg_flags & MSG_FLAG_PACKETIZED) != 0
3951 && ahd->send_msg_perror == MSG_INITIATOR_DET_ERR)
3952 ahd->msg_flags |= MSG_FLAG_EXPECT_IDE_BUSFREE;
3953
3954 ahd_outb(ahd, RETURN_2, ahd->send_msg_perror);
3955 ahd_outb(ahd, RETURN_1, CONT_MSG_LOOP_WRITE);
3956 break;
3957 }
3958
3959 msgdone = ahd->msgout_index == ahd->msgout_len;
3960 if (msgdone) {
3961 /*
3962 * The target has requested a retry.
3963 * Re-assert ATN, reset our message index to
3964 * 0, and try again.
3965 */
3966 ahd->msgout_index = 0;
3967 ahd_assert_atn(ahd);
3968 }
3969
3970 lastbyte = ahd->msgout_index == (ahd->msgout_len - 1);
3971 if (lastbyte) {
3972 /* Last byte is signified by dropping ATN */
3973 ahd_outb(ahd, CLRSINT1, CLRATNO);
3974 }
3975
3976 /*
3977 * Clear our interrupt status and present
3978 * the next byte on the bus.
3979 */
3980 ahd_outb(ahd, CLRSINT1, CLRREQINIT);
3981 #ifdef AHD_DEBUG
3982 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
3983 printf(" byte 0x%x\n",
3984 ahd->msgout_buf[ahd->msgout_index]);
3985 #endif
3986 ahd_outb(ahd, RETURN_2, ahd->msgout_buf[ahd->msgout_index++]);
3987 ahd_outb(ahd, RETURN_1, CONT_MSG_LOOP_WRITE);
3988 break;
3989 }
3990 case MSG_TYPE_INITIATOR_MSGIN:
3991 {
3992 int phasemis;
3993 int message_done;
3994
3995 #ifdef AHD_DEBUG
3996 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
3997 ahd_print_devinfo(ahd, &devinfo);
3998 printf("INITIATOR_MSG_IN");
3999 }
4000 #endif
4001 phasemis = bus_phase != P_MESGIN;
4002 if (phasemis) {
4003 #ifdef AHD_DEBUG
4004 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
4005 printf(" PHASEMIS %s\n",
4006 ahd_lookup_phase_entry(bus_phase)
4007 ->phasemsg);
4008 }
4009 #endif
4010 ahd->msgin_index = 0;
4011 if (bus_phase == P_MESGOUT
4012 && (ahd->send_msg_perror != 0
4013 || (ahd->msgout_len != 0
4014 && ahd->msgout_index == 0))) {
4015 ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
4016 goto reswitch;
4017 }
4018 end_session = TRUE;
4019 break;
4020 }
4021
4022 /* Pull the byte in without acking it */
4023 ahd->msgin_buf[ahd->msgin_index] = ahd_inb(ahd, SCSIBUS);
4024 #ifdef AHD_DEBUG
4025 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
4026 printf(" byte 0x%x\n",
4027 ahd->msgin_buf[ahd->msgin_index]);
4028 #endif
4029
4030 message_done = ahd_parse_msg(ahd, &devinfo);
4031
4032 if (message_done) {
4033 /*
4034 * Clear our incoming message buffer in case there
4035 * is another message following this one.
4036 */
4037 ahd->msgin_index = 0;
4038
4039 /*
4040 * If this message illicited a response,
4041 * assert ATN so the target takes us to the
4042 * message out phase.
4043 */
4044 if (ahd->msgout_len != 0) {
4045 #ifdef AHD_DEBUG
4046 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
4047 ahd_print_devinfo(ahd, &devinfo);
4048 printf("Asserting ATN for response\n");
4049 }
4050 #endif
4051 ahd_assert_atn(ahd);
4052 }
4053 } else
4054 ahd->msgin_index++;
4055
4056 if (message_done == MSGLOOP_TERMINATED) {
4057 end_session = TRUE;
4058 } else {
4059 /* Ack the byte */
4060 ahd_outb(ahd, CLRSINT1, CLRREQINIT);
4061 ahd_outb(ahd, RETURN_1, CONT_MSG_LOOP_READ);
4062 }
4063 break;
4064 }
4065 case MSG_TYPE_TARGET_MSGIN:
4066 {
4067 int msgdone;
4068 int msgout_request;
4069
4070 /*
4071 * By default, the message loop will continue.
4072 */
4073 ahd_outb(ahd, RETURN_1, CONT_MSG_LOOP_TARG);
4074
4075 if (ahd->msgout_len == 0)
4076 panic("Target MSGIN with no active message");
4077
4078 /*
4079 * If we interrupted a mesgout session, the initiator
4080 * will not know this until our first REQ. So, we
4081 * only honor mesgout requests after we've sent our
4082 * first byte.
4083 */
4084 if ((ahd_inb(ahd, SCSISIGI) & ATNI) != 0
4085 && ahd->msgout_index > 0)
4086 msgout_request = TRUE;
4087 else
4088 msgout_request = FALSE;
4089
4090 if (msgout_request) {
4091
4092 /*
4093 * Change gears and see if
4094 * this messages is of interest to
4095 * us or should be passed back to
4096 * the sequencer.
4097 */
4098 ahd->msg_type = MSG_TYPE_TARGET_MSGOUT;
4099 ahd_outb(ahd, SCSISIGO, P_MESGOUT | BSYO);
4100 ahd->msgin_index = 0;
4101 /* Dummy read to REQ for first byte */
4102 ahd_inb(ahd, SCSIDAT);
4103 ahd_outb(ahd, SXFRCTL0,
4104 ahd_inb(ahd, SXFRCTL0) | SPIOEN);
4105 break;
4106 }
4107
4108 msgdone = ahd->msgout_index == ahd->msgout_len;
4109 if (msgdone) {
4110 ahd_outb(ahd, SXFRCTL0,
4111 ahd_inb(ahd, SXFRCTL0) & ~SPIOEN);
4112 end_session = TRUE;
4113 break;
4114 }
4115
4116 /*
4117 * Present the next byte on the bus.
4118 */
4119 ahd_outb(ahd, SXFRCTL0, ahd_inb(ahd, SXFRCTL0) | SPIOEN);
4120 ahd_outb(ahd, SCSIDAT, ahd->msgout_buf[ahd->msgout_index++]);
4121 break;
4122 }
4123 case MSG_TYPE_TARGET_MSGOUT:
4124 {
4125 int lastbyte;
4126 int msgdone;
4127
4128 /*
4129 * By default, the message loop will continue.
4130 */
4131 ahd_outb(ahd, RETURN_1, CONT_MSG_LOOP_TARG);
4132
4133 /*
4134 * The initiator signals that this is
4135 * the last byte by dropping ATN.
4136 */
4137 lastbyte = (ahd_inb(ahd, SCSISIGI) & ATNI) == 0;
4138
4139 /*
4140 * Read the latched byte, but turn off SPIOEN first
4141 * so that we don't inadvertently cause a REQ for the
4142 * next byte.
4143 */
4144 ahd_outb(ahd, SXFRCTL0, ahd_inb(ahd, SXFRCTL0) & ~SPIOEN);
4145 ahd->msgin_buf[ahd->msgin_index] = ahd_inb(ahd, SCSIDAT);
4146 msgdone = ahd_parse_msg(ahd, &devinfo);
4147 if (msgdone == MSGLOOP_TERMINATED) {
4148 /*
4149 * The message is *really* done in that it caused
4150 * us to go to bus free. The sequencer has already
4151 * been reset at this point, so pull the ejection
4152 * handle.
4153 */
4154 return;
4155 }
4156
4157 ahd->msgin_index++;
4158
4159 /*
4160 * XXX Read spec about initiator dropping ATN too soon
4161 * and use msgdone to detect it.
4162 */
4163 if (msgdone == MSGLOOP_MSGCOMPLETE) {
4164 ahd->msgin_index = 0;
4165
4166 /*
4167 * If this message illicited a response, transition
4168 * to the Message in phase and send it.
4169 */
4170 if (ahd->msgout_len != 0) {
4171 ahd_outb(ahd, SCSISIGO, P_MESGIN | BSYO);
4172 ahd_outb(ahd, SXFRCTL0,
4173 ahd_inb(ahd, SXFRCTL0) | SPIOEN);
4174 ahd->msg_type = MSG_TYPE_TARGET_MSGIN;
4175 ahd->msgin_index = 0;
4176 break;
4177 }
4178 }
4179
4180 if (lastbyte)
4181 end_session = TRUE;
4182 else {
4183 /* Ask for the next byte. */
4184 ahd_outb(ahd, SXFRCTL0,
4185 ahd_inb(ahd, SXFRCTL0) | SPIOEN);
4186 }
4187
4188 break;
4189 }
4190 default:
4191 panic("Unknown REQINIT message type");
4192 }
4193
4194 if (end_session) {
4195 if ((ahd->msg_flags & MSG_FLAG_PACKETIZED) != 0) {
4196 printf("%s: Returning to Idle Loop\n",
4197 ahd_name(ahd));
4198 ahd_clear_msg_state(ahd);
4199
4200 /*
4201 * Perform the equivalent of a clear_target_state.
4202 */
4203 ahd_outb(ahd, LASTPHASE, P_BUSFREE);
4204 ahd_outb(ahd, SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT);
4205 ahd_outb(ahd, SEQCTL0, FASTMODE|SEQRESET);
4206 } else {
4207 ahd_clear_msg_state(ahd);
4208 ahd_outb(ahd, RETURN_1, EXIT_MSG_LOOP);
4209 }
4210 }
4211 }
4212
4213 /*
4214 * See if we sent a particular extended message to the target.
4215 * If "full" is true, return true only if the target saw the full
4216 * message. If "full" is false, return true if the target saw at
4217 * least the first byte of the message.
4218 */
4219 int
ahd_sent_msg(struct ahd_softc * ahd,ahd_msgtype type,u_int msgval,int full)4220 ahd_sent_msg(struct ahd_softc *ahd, ahd_msgtype type, u_int msgval, int full)
4221 {
4222 int found;
4223 u_int index;
4224
4225 found = FALSE;
4226 index = 0;
4227
4228 while (index < ahd->msgout_len) {
4229 if (ahd->msgout_buf[index] == MSG_EXTENDED) {
4230 u_int end_index;
4231
4232 end_index = index + 1 + ahd->msgout_buf[index + 1];
4233 if (ahd->msgout_buf[index+2] == msgval
4234 && type == AHDMSG_EXT) {
4235
4236 if (full) {
4237 if (ahd->msgout_index > end_index)
4238 found = TRUE;
4239 } else if (ahd->msgout_index > index)
4240 found = TRUE;
4241 }
4242 index = end_index;
4243 } else if (ahd->msgout_buf[index] >= MSG_SIMPLE_TASK
4244 && ahd->msgout_buf[index] <= MSG_IGN_WIDE_RESIDUE) {
4245
4246 /* Skip tag type and tag id or residue param*/
4247 index += 2;
4248 } else {
4249 /* Single byte message */
4250 if (type == AHDMSG_1B
4251 && ahd->msgout_index > index
4252 && (ahd->msgout_buf[index] == msgval
4253 || ((ahd->msgout_buf[index] & MSG_IDENTIFYFLAG) != 0
4254 && msgval == MSG_IDENTIFYFLAG)))
4255 found = TRUE;
4256 index++;
4257 }
4258
4259 if (found)
4260 break;
4261 }
4262 return (found);
4263 }
4264
4265 /*
4266 * Wait for a complete incoming message, parse it, and respond accordingly.
4267 */
4268 int
ahd_parse_msg(struct ahd_softc * ahd,struct ahd_devinfo * devinfo)4269 ahd_parse_msg(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
4270 {
4271 struct ahd_initiator_tinfo *tinfo;
4272 struct ahd_tmode_tstate *tstate;
4273 int reject;
4274 int done;
4275 int response;
4276
4277 done = MSGLOOP_IN_PROG;
4278 response = FALSE;
4279 reject = FALSE;
4280 tinfo = ahd_fetch_transinfo(ahd, devinfo->channel, devinfo->our_scsiid,
4281 devinfo->target, &tstate);
4282
4283 /*
4284 * Parse as much of the message as is available,
4285 * rejecting it if we don't support it. When
4286 * the entire message is available and has been
4287 * handled, return MSGLOOP_MSGCOMPLETE, indicating
4288 * that we have parsed an entire message.
4289 *
4290 * In the case of extended messages, we accept the length
4291 * byte outright and perform more checking once we know the
4292 * extended message type.
4293 */
4294 switch (ahd->msgin_buf[0]) {
4295 case MSG_DISCONNECT:
4296 case MSG_SAVEDATAPOINTER:
4297 case MSG_CMDCOMPLETE:
4298 case MSG_RESTOREPOINTERS:
4299 case MSG_IGN_WIDE_RESIDUE:
4300 /*
4301 * End our message loop as these are messages
4302 * the sequencer handles on its own.
4303 */
4304 done = MSGLOOP_TERMINATED;
4305 break;
4306 case MSG_MESSAGE_REJECT:
4307 response = ahd_handle_msg_reject(ahd, devinfo);
4308 /* FALLTHROUGH */
4309 case MSG_NOOP:
4310 done = MSGLOOP_MSGCOMPLETE;
4311 break;
4312 case MSG_EXTENDED:
4313 {
4314 /* Wait for enough of the message to begin validation */
4315 if (ahd->msgin_index < 2)
4316 break;
4317 switch (ahd->msgin_buf[2]) {
4318 case MSG_EXT_SDTR:
4319 {
4320 u_int period;
4321 u_int ppr_options;
4322 u_int offset;
4323 u_int saved_offset;
4324
4325 if (ahd->msgin_buf[1] != MSG_EXT_SDTR_LEN) {
4326 reject = TRUE;
4327 break;
4328 }
4329
4330 /*
4331 * Wait until we have both args before validating
4332 * and acting on this message.
4333 *
4334 * Add one to MSG_EXT_SDTR_LEN to account for
4335 * the extended message preamble.
4336 */
4337 if (ahd->msgin_index < (MSG_EXT_SDTR_LEN + 1))
4338 break;
4339
4340 period = ahd->msgin_buf[3];
4341 ppr_options = 0;
4342 saved_offset = offset = ahd->msgin_buf[4];
4343 ahd_devlimited_syncrate(ahd, tinfo, &period,
4344 &ppr_options, devinfo->role);
4345 ahd_validate_offset(ahd, tinfo, period, &offset,
4346 tinfo->curr.width, devinfo->role);
4347 if (bootverbose) {
4348 printf("(%s:%c:%d:%d): Received "
4349 "SDTR period %x, offset %x\n\t"
4350 "Filtered to period %x, offset %x\n",
4351 ahd_name(ahd), devinfo->channel,
4352 devinfo->target, devinfo->lun,
4353 ahd->msgin_buf[3], saved_offset,
4354 period, offset);
4355 }
4356 ahd_set_syncrate(ahd, devinfo, period,
4357 offset, ppr_options,
4358 AHD_TRANS_ACTIVE|AHD_TRANS_GOAL,
4359 /*paused*/TRUE);
4360
4361 /*
4362 * See if we initiated Sync Negotiation
4363 * and didn't have to fall down to async
4364 * transfers.
4365 */
4366 if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_SDTR, TRUE)) {
4367 /* We started it */
4368 if (saved_offset != offset) {
4369 /* Went too low - force async */
4370 reject = TRUE;
4371 }
4372 } else {
4373 /*
4374 * Send our own SDTR in reply
4375 */
4376 if (bootverbose
4377 && devinfo->role == ROLE_INITIATOR) {
4378 printf("(%s:%c:%d:%d): Target "
4379 "Initiated SDTR\n",
4380 ahd_name(ahd), devinfo->channel,
4381 devinfo->target, devinfo->lun);
4382 }
4383 ahd->msgout_index = 0;
4384 ahd->msgout_len = 0;
4385 ahd_construct_sdtr(ahd, devinfo,
4386 period, offset);
4387 ahd->msgout_index = 0;
4388 response = TRUE;
4389 }
4390 done = MSGLOOP_MSGCOMPLETE;
4391 break;
4392 }
4393 case MSG_EXT_WDTR:
4394 {
4395 u_int bus_width;
4396 u_int saved_width;
4397 u_int sending_reply;
4398
4399 sending_reply = FALSE;
4400 if (ahd->msgin_buf[1] != MSG_EXT_WDTR_LEN) {
4401 reject = TRUE;
4402 break;
4403 }
4404
4405 /*
4406 * Wait until we have our arg before validating
4407 * and acting on this message.
4408 *
4409 * Add one to MSG_EXT_WDTR_LEN to account for
4410 * the extended message preamble.
4411 */
4412 if (ahd->msgin_index < (MSG_EXT_WDTR_LEN + 1))
4413 break;
4414
4415 bus_width = ahd->msgin_buf[3];
4416 saved_width = bus_width;
4417 ahd_validate_width(ahd, tinfo, &bus_width,
4418 devinfo->role);
4419 if (bootverbose) {
4420 printf("(%s:%c:%d:%d): Received WDTR "
4421 "%x filtered to %x\n",
4422 ahd_name(ahd), devinfo->channel,
4423 devinfo->target, devinfo->lun,
4424 saved_width, bus_width);
4425 }
4426
4427 if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_WDTR, TRUE)) {
4428 /*
4429 * Don't send a WDTR back to the
4430 * target, since we asked first.
4431 * If the width went higher than our
4432 * request, reject it.
4433 */
4434 if (saved_width > bus_width) {
4435 reject = TRUE;
4436 printf("(%s:%c:%d:%d): requested %dBit "
4437 "transfers. Rejecting...\n",
4438 ahd_name(ahd), devinfo->channel,
4439 devinfo->target, devinfo->lun,
4440 8 * (0x01 << bus_width));
4441 bus_width = 0;
4442 }
4443 } else {
4444 /*
4445 * Send our own WDTR in reply
4446 */
4447 if (bootverbose
4448 && devinfo->role == ROLE_INITIATOR) {
4449 printf("(%s:%c:%d:%d): Target "
4450 "Initiated WDTR\n",
4451 ahd_name(ahd), devinfo->channel,
4452 devinfo->target, devinfo->lun);
4453 }
4454 ahd->msgout_index = 0;
4455 ahd->msgout_len = 0;
4456 ahd_construct_wdtr(ahd, devinfo, bus_width);
4457 ahd->msgout_index = 0;
4458 response = TRUE;
4459 sending_reply = TRUE;
4460 }
4461 /*
4462 * After a wide message, we are async, but
4463 * some devices don't seem to honor this portion
4464 * of the spec. Force a renegotiation of the
4465 * sync component of our transfer agreement even
4466 * if our goal is async. By updating our width
4467 * after forcing the negotiation, we avoid
4468 * renegotiating for width.
4469 */
4470 ahd_update_neg_request(ahd, devinfo, tstate,
4471 tinfo, AHD_NEG_ALWAYS);
4472 ahd_set_width(ahd, devinfo, bus_width,
4473 AHD_TRANS_ACTIVE|AHD_TRANS_GOAL,
4474 /*paused*/TRUE);
4475 if (sending_reply == FALSE && reject == FALSE) {
4476
4477 /*
4478 * We will always have an SDTR to send.
4479 */
4480 ahd->msgout_index = 0;
4481 ahd->msgout_len = 0;
4482 ahd_build_transfer_msg(ahd, devinfo);
4483 ahd->msgout_index = 0;
4484 response = TRUE;
4485 }
4486 done = MSGLOOP_MSGCOMPLETE;
4487 break;
4488 }
4489 case MSG_EXT_PPR:
4490 {
4491 u_int period;
4492 u_int offset;
4493 u_int bus_width;
4494 u_int ppr_options;
4495 u_int saved_width;
4496 u_int saved_offset;
4497 u_int saved_ppr_options;
4498
4499 if (ahd->msgin_buf[1] != MSG_EXT_PPR_LEN) {
4500 reject = TRUE;
4501 break;
4502 }
4503
4504 /*
4505 * Wait until we have all args before validating
4506 * and acting on this message.
4507 *
4508 * Add one to MSG_EXT_PPR_LEN to account for
4509 * the extended message preamble.
4510 */
4511 if (ahd->msgin_index < (MSG_EXT_PPR_LEN + 1))
4512 break;
4513
4514 period = ahd->msgin_buf[3];
4515 offset = ahd->msgin_buf[5];
4516 bus_width = ahd->msgin_buf[6];
4517 saved_width = bus_width;
4518 ppr_options = ahd->msgin_buf[7];
4519 /*
4520 * According to the spec, a DT only
4521 * period factor with no DT option
4522 * set implies async.
4523 */
4524 if ((ppr_options & MSG_EXT_PPR_DT_REQ) == 0
4525 && period <= 9)
4526 offset = 0;
4527 saved_ppr_options = ppr_options;
4528 saved_offset = offset;
4529
4530 /*
4531 * Transfer options are only available if we
4532 * are negotiating wide.
4533 */
4534 if (bus_width == 0)
4535 ppr_options &= MSG_EXT_PPR_QAS_REQ;
4536
4537 ahd_validate_width(ahd, tinfo, &bus_width,
4538 devinfo->role);
4539 ahd_devlimited_syncrate(ahd, tinfo, &period,
4540 &ppr_options, devinfo->role);
4541 ahd_validate_offset(ahd, tinfo, period, &offset,
4542 bus_width, devinfo->role);
4543
4544 if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_PPR, TRUE)) {
4545 /*
4546 * If we are unable to do any of the
4547 * requested options (we went too low),
4548 * then we'll have to reject the message.
4549 */
4550 if (saved_width > bus_width
4551 || saved_offset != offset
4552 || saved_ppr_options != ppr_options) {
4553 reject = TRUE;
4554 period = 0;
4555 offset = 0;
4556 bus_width = 0;
4557 ppr_options = 0;
4558 }
4559 } else {
4560 if (devinfo->role != ROLE_TARGET)
4561 printf("(%s:%c:%d:%d): Target "
4562 "Initiated PPR\n",
4563 ahd_name(ahd), devinfo->channel,
4564 devinfo->target, devinfo->lun);
4565 else
4566 printf("(%s:%c:%d:%d): Initiator "
4567 "Initiated PPR\n",
4568 ahd_name(ahd), devinfo->channel,
4569 devinfo->target, devinfo->lun);
4570 ahd->msgout_index = 0;
4571 ahd->msgout_len = 0;
4572 ahd_construct_ppr(ahd, devinfo, period, offset,
4573 bus_width, ppr_options);
4574 ahd->msgout_index = 0;
4575 response = TRUE;
4576 }
4577 if (bootverbose) {
4578 printf("(%s:%c:%d:%d): Received PPR width %x, "
4579 "period %x, offset %x,options %x\n"
4580 "\tFiltered to width %x, period %x, "
4581 "offset %x, options %x\n",
4582 ahd_name(ahd), devinfo->channel,
4583 devinfo->target, devinfo->lun,
4584 saved_width, ahd->msgin_buf[3],
4585 saved_offset, saved_ppr_options,
4586 bus_width, period, offset, ppr_options);
4587 }
4588 ahd_set_width(ahd, devinfo, bus_width,
4589 AHD_TRANS_ACTIVE|AHD_TRANS_GOAL,
4590 /*paused*/TRUE);
4591 ahd_set_syncrate(ahd, devinfo, period,
4592 offset, ppr_options,
4593 AHD_TRANS_ACTIVE|AHD_TRANS_GOAL,
4594 /*paused*/TRUE);
4595
4596 done = MSGLOOP_MSGCOMPLETE;
4597 break;
4598 }
4599 default:
4600 /* Unknown extended message. Reject it. */
4601 reject = TRUE;
4602 break;
4603 }
4604 break;
4605 }
4606 #ifdef AHD_TARGET_MODE
4607 case MSG_BUS_DEV_RESET:
4608 ahd_handle_devreset(ahd, devinfo, CAM_LUN_WILDCARD,
4609 CAM_BDR_SENT,
4610 "Bus Device Reset Received",
4611 /*verbose_level*/0);
4612 ahd_restart(ahd);
4613 done = MSGLOOP_TERMINATED;
4614 break;
4615 case MSG_ABORT_TAG:
4616 case MSG_ABORT:
4617 case MSG_CLEAR_QUEUE:
4618 {
4619 int tag;
4620
4621 /* Target mode messages */
4622 if (devinfo->role != ROLE_TARGET) {
4623 reject = TRUE;
4624 break;
4625 }
4626 tag = SCB_LIST_NULL;
4627 if (ahd->msgin_buf[0] == MSG_ABORT_TAG)
4628 tag = ahd_inb(ahd, INITIATOR_TAG);
4629 ahd_abort_scbs(ahd, devinfo->target, devinfo->channel,
4630 devinfo->lun, tag, ROLE_TARGET,
4631 CAM_REQ_ABORTED);
4632
4633 tstate = ahd->enabled_targets[devinfo->our_scsiid];
4634 if (tstate != NULL) {
4635 struct ahd_tmode_lstate* lstate;
4636
4637 lstate = tstate->enabled_luns[devinfo->lun];
4638 if (lstate != NULL) {
4639 ahd_queue_lstate_event(ahd, lstate,
4640 devinfo->our_scsiid,
4641 ahd->msgin_buf[0],
4642 /*arg*/tag);
4643 ahd_send_lstate_events(ahd, lstate);
4644 }
4645 }
4646 ahd_restart(ahd);
4647 done = MSGLOOP_TERMINATED;
4648 break;
4649 }
4650 #endif
4651 case MSG_QAS_REQUEST:
4652 #ifdef AHD_DEBUG
4653 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
4654 printf("%s: QAS request. SCSISIGI == 0x%x\n",
4655 ahd_name(ahd), ahd_inb(ahd, SCSISIGI));
4656 #endif
4657 ahd->msg_flags |= MSG_FLAG_EXPECT_QASREJ_BUSFREE;
4658 /* FALLTHROUGH */
4659 case MSG_TERM_IO_PROC:
4660 default:
4661 reject = TRUE;
4662 break;
4663 }
4664
4665 if (reject) {
4666 /*
4667 * Setup to reject the message.
4668 */
4669 ahd->msgout_index = 0;
4670 ahd->msgout_len = 1;
4671 ahd->msgout_buf[0] = MSG_MESSAGE_REJECT;
4672 done = MSGLOOP_MSGCOMPLETE;
4673 response = TRUE;
4674 }
4675
4676 if (done != MSGLOOP_IN_PROG && !response)
4677 /* Clear the outgoing message buffer */
4678 ahd->msgout_len = 0;
4679
4680 return (done);
4681 }
4682
4683 /*
4684 * Process a message reject message.
4685 */
4686 int
ahd_handle_msg_reject(struct ahd_softc * ahd,struct ahd_devinfo * devinfo)4687 ahd_handle_msg_reject(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
4688 {
4689 /*
4690 * What we care about here is if we had an
4691 * outstanding SDTR or WDTR message for this
4692 * target. If we did, this is a signal that
4693 * the target is refusing negotiation.
4694 */
4695 struct scb *scb;
4696 struct ahd_initiator_tinfo *tinfo;
4697 struct ahd_tmode_tstate *tstate;
4698 u_int scb_index;
4699 u_int last_msg;
4700 int response = 0;
4701
4702 scb_index = ahd_get_scbptr(ahd);
4703 scb = ahd_lookup_scb(ahd, scb_index);
4704 tinfo = ahd_fetch_transinfo(ahd, devinfo->channel,
4705 devinfo->our_scsiid,
4706 devinfo->target, &tstate);
4707 /* Might be necessary */
4708 last_msg = ahd_inb(ahd, LAST_MSG);
4709
4710 if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_PPR, /*full*/FALSE)) {
4711 if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_PPR, /*full*/TRUE)
4712 && tinfo->goal.period <= AHD_SYNCRATE_PACED) {
4713 /*
4714 * Target may not like our SPI-4 PPR Options.
4715 * Attempt to negotiate 80MHz which will turn
4716 * off these options.
4717 */
4718 if (bootverbose) {
4719 printf("(%s:%c:%d:%d): PPR Rejected. "
4720 "Trying simple U160 PPR\n",
4721 ahd_name(ahd), devinfo->channel,
4722 devinfo->target, devinfo->lun);
4723 }
4724 tinfo->goal.period = AHD_SYNCRATE_DT;
4725 tinfo->goal.ppr_options &= MSG_EXT_PPR_IU_REQ
4726 | MSG_EXT_PPR_QAS_REQ
4727 | MSG_EXT_PPR_DT_REQ;
4728 } else {
4729 /*
4730 * Target does not support the PPR message.
4731 * Attempt to negotiate SPI-2 style.
4732 */
4733 if (bootverbose) {
4734 printf("(%s:%c:%d:%d): PPR Rejected. "
4735 "Trying WDTR/SDTR\n",
4736 ahd_name(ahd), devinfo->channel,
4737 devinfo->target, devinfo->lun);
4738 }
4739 tinfo->goal.ppr_options = 0;
4740 tinfo->curr.transport_version = 2;
4741 tinfo->goal.transport_version = 2;
4742 }
4743 ahd->msgout_index = 0;
4744 ahd->msgout_len = 0;
4745 ahd_build_transfer_msg(ahd, devinfo);
4746 ahd->msgout_index = 0;
4747 response = 1;
4748 } else if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_WDTR, /*full*/FALSE)) {
4749
4750 /* note 8bit xfers */
4751 printf("(%s:%c:%d:%d): refuses WIDE negotiation. Using "
4752 "8bit transfers\n", ahd_name(ahd),
4753 devinfo->channel, devinfo->target, devinfo->lun);
4754 ahd_set_width(ahd, devinfo, MSG_EXT_WDTR_BUS_8_BIT,
4755 AHD_TRANS_ACTIVE|AHD_TRANS_GOAL,
4756 /*paused*/TRUE);
4757 /*
4758 * No need to clear the sync rate. If the target
4759 * did not accept the command, our syncrate is
4760 * unaffected. If the target started the negotiation,
4761 * but rejected our response, we already cleared the
4762 * sync rate before sending our WDTR.
4763 */
4764 if (tinfo->goal.offset != tinfo->curr.offset) {
4765
4766 /* Start the sync negotiation */
4767 ahd->msgout_index = 0;
4768 ahd->msgout_len = 0;
4769 ahd_build_transfer_msg(ahd, devinfo);
4770 ahd->msgout_index = 0;
4771 response = 1;
4772 }
4773 } else if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_SDTR, /*full*/FALSE)) {
4774 /* note asynch xfers and clear flag */
4775 ahd_set_syncrate(ahd, devinfo, /*period*/0,
4776 /*offset*/0, /*ppr_options*/0,
4777 AHD_TRANS_ACTIVE|AHD_TRANS_GOAL,
4778 /*paused*/TRUE);
4779 printf("(%s:%c:%d:%d): refuses synchronous negotiation. "
4780 "Using asynchronous transfers\n",
4781 ahd_name(ahd), devinfo->channel,
4782 devinfo->target, devinfo->lun);
4783 } else if ((scb->hscb->control & MSG_SIMPLE_TASK) != 0) {
4784 int tag_type;
4785 int mask;
4786
4787 tag_type = (scb->hscb->control & MSG_SIMPLE_TASK);
4788
4789 if (tag_type == MSG_SIMPLE_TASK) {
4790 printf("(%s:%c:%d:%d): refuses tagged commands. "
4791 "Performing non-tagged I/O\n", ahd_name(ahd),
4792 devinfo->channel, devinfo->target, devinfo->lun);
4793 ahd_set_tags(ahd, devinfo, AHD_QUEUE_NONE);
4794 mask = ~0x23;
4795 } else {
4796 printf("(%s:%c:%d:%d): refuses %s tagged commands. "
4797 "Performing simple queue tagged I/O only\n",
4798 ahd_name(ahd), devinfo->channel, devinfo->target,
4799 devinfo->lun, tag_type == MSG_ORDERED_TASK
4800 ? "ordered" : "head of queue");
4801 ahd_set_tags(ahd, devinfo, AHD_QUEUE_BASIC);
4802 mask = ~0x03;
4803 }
4804
4805 /*
4806 * Resend the identify for this CCB as the target
4807 * may believe that the selection is invalid otherwise.
4808 */
4809 ahd_outb(ahd, SCB_CONTROL,
4810 ahd_inb_scbram(ahd, SCB_CONTROL) & mask);
4811 scb->hscb->control &= mask;
4812 aic_set_transaction_tag(scb, /*enabled*/FALSE,
4813 /*type*/MSG_SIMPLE_TASK);
4814 ahd_outb(ahd, MSG_OUT, MSG_IDENTIFYFLAG);
4815 ahd_assert_atn(ahd);
4816 ahd_busy_tcl(ahd, BUILD_TCL(scb->hscb->scsiid, devinfo->lun),
4817 SCB_GET_TAG(scb));
4818
4819 /*
4820 * Requeue all tagged commands for this target
4821 * currently in our possession so they can be
4822 * converted to untagged commands.
4823 */
4824 ahd_search_qinfifo(ahd, SCB_GET_TARGET(ahd, scb),
4825 SCB_GET_CHANNEL(ahd, scb),
4826 SCB_GET_LUN(scb), /*tag*/SCB_LIST_NULL,
4827 ROLE_INITIATOR, CAM_REQUEUE_REQ,
4828 SEARCH_COMPLETE);
4829 } else if (ahd_sent_msg(ahd, AHDMSG_1B, MSG_IDENTIFYFLAG, TRUE)) {
4830 /*
4831 * Most likely the device believes that we had
4832 * previously negotiated packetized.
4833 */
4834 ahd->msg_flags |= MSG_FLAG_EXPECT_PPR_BUSFREE
4835 | MSG_FLAG_IU_REQ_CHANGED;
4836
4837 ahd_force_renegotiation(ahd, devinfo);
4838 ahd->msgout_index = 0;
4839 ahd->msgout_len = 0;
4840 ahd_build_transfer_msg(ahd, devinfo);
4841 ahd->msgout_index = 0;
4842 response = 1;
4843 } else {
4844 /*
4845 * Otherwise, we ignore it.
4846 */
4847 printf("%s:%c:%d: Message reject for %x -- ignored\n",
4848 ahd_name(ahd), devinfo->channel, devinfo->target,
4849 last_msg);
4850 }
4851 return (response);
4852 }
4853
4854 /*
4855 * Process an ignore wide residue message.
4856 */
4857 void
ahd_handle_ign_wide_residue(struct ahd_softc * ahd,struct ahd_devinfo * devinfo)4858 ahd_handle_ign_wide_residue(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
4859 {
4860 u_int scb_index;
4861 struct scb *scb;
4862
4863 scb_index = ahd_get_scbptr(ahd);
4864 scb = ahd_lookup_scb(ahd, scb_index);
4865 /*
4866 * XXX Actually check data direction in the sequencer?
4867 * Perhaps add datadir to some spare bits in the hscb?
4868 */
4869 if ((ahd_inb(ahd, SEQ_FLAGS) & DPHASE) == 0
4870 || aic_get_transfer_dir(scb) != CAM_DIR_IN) {
4871 /*
4872 * Ignore the message if we haven't
4873 * seen an appropriate data phase yet.
4874 */
4875 } else {
4876 /*
4877 * If the residual occurred on the last
4878 * transfer and the transfer request was
4879 * expected to end on an odd count, do
4880 * nothing. Otherwise, subtract a byte
4881 * and update the residual count accordingly.
4882 */
4883 uint32_t sgptr;
4884
4885 sgptr = ahd_inb_scbram(ahd, SCB_RESIDUAL_SGPTR);
4886 if ((sgptr & SG_LIST_NULL) != 0
4887 && (ahd_inb_scbram(ahd, SCB_TASK_ATTRIBUTE)
4888 & SCB_XFERLEN_ODD) != 0) {
4889 /*
4890 * If the residual occurred on the last
4891 * transfer and the transfer request was
4892 * expected to end on an odd count, do
4893 * nothing.
4894 */
4895 } else {
4896 uint32_t data_cnt;
4897 uint64_t data_addr;
4898 uint32_t sglen;
4899
4900 /* Pull in the rest of the sgptr */
4901 sgptr = ahd_inl_scbram(ahd, SCB_RESIDUAL_SGPTR);
4902 data_cnt = ahd_inl_scbram(ahd, SCB_RESIDUAL_DATACNT);
4903 if ((sgptr & SG_LIST_NULL) != 0) {
4904 /*
4905 * The residual data count is not updated
4906 * for the command run to completion case.
4907 * Explicitly zero the count.
4908 */
4909 data_cnt &= ~AHD_SG_LEN_MASK;
4910 }
4911 data_addr = ahd_inq(ahd, SHADDR);
4912 data_cnt += 1;
4913 data_addr -= 1;
4914 sgptr &= SG_PTR_MASK;
4915 if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
4916 struct ahd_dma64_seg *sg;
4917
4918 sg = ahd_sg_bus_to_virt(ahd, scb, sgptr);
4919
4920 /*
4921 * The residual sg ptr points to the next S/G
4922 * to load so we must go back one.
4923 */
4924 sg--;
4925 sglen = aic_le32toh(sg->len) & AHD_SG_LEN_MASK;
4926 if (sg != scb->sg_list
4927 && sglen < (data_cnt & AHD_SG_LEN_MASK)) {
4928
4929 sg--;
4930 sglen = aic_le32toh(sg->len);
4931 /*
4932 * Preserve High Address and SG_LIST
4933 * bits while setting the count to 1.
4934 */
4935 data_cnt = 1|(sglen&(~AHD_SG_LEN_MASK));
4936 data_addr = aic_le64toh(sg->addr)
4937 + (sglen & AHD_SG_LEN_MASK)
4938 - 1;
4939
4940 /*
4941 * Increment sg so it points to the
4942 * "next" sg.
4943 */
4944 sg++;
4945 sgptr = ahd_sg_virt_to_bus(ahd, scb,
4946 sg);
4947 }
4948 } else {
4949 struct ahd_dma_seg *sg;
4950
4951 sg = ahd_sg_bus_to_virt(ahd, scb, sgptr);
4952
4953 /*
4954 * The residual sg ptr points to the next S/G
4955 * to load so we must go back one.
4956 */
4957 sg--;
4958 sglen = aic_le32toh(sg->len) & AHD_SG_LEN_MASK;
4959 if (sg != scb->sg_list
4960 && sglen < (data_cnt & AHD_SG_LEN_MASK)) {
4961
4962 sg--;
4963 sglen = aic_le32toh(sg->len);
4964 /*
4965 * Preserve High Address and SG_LIST
4966 * bits while setting the count to 1.
4967 */
4968 data_cnt = 1|(sglen&(~AHD_SG_LEN_MASK));
4969 data_addr = aic_le32toh(sg->addr)
4970 + (sglen & AHD_SG_LEN_MASK)
4971 - 1;
4972
4973 /*
4974 * Increment sg so it points to the
4975 * "next" sg.
4976 */
4977 sg++;
4978 sgptr = ahd_sg_virt_to_bus(ahd, scb,
4979 sg);
4980 }
4981 }
4982 /*
4983 * Toggle the "oddness" of the transfer length
4984 * to handle this mid-transfer ignore wide
4985 * residue. This ensures that the oddness is
4986 * correct for subsequent data transfers.
4987 */
4988 ahd_outb(ahd, SCB_TASK_ATTRIBUTE,
4989 ahd_inb_scbram(ahd, SCB_TASK_ATTRIBUTE)
4990 ^ SCB_XFERLEN_ODD);
4991
4992 ahd_outl(ahd, SCB_RESIDUAL_SGPTR, sgptr);
4993 ahd_outl(ahd, SCB_RESIDUAL_DATACNT, data_cnt);
4994 /*
4995 * The FIFO's pointers will be updated if/when the
4996 * sequencer re-enters a data phase.
4997 */
4998 }
4999 }
5000 }
5001
5002
5003 /*
5004 * Reinitialize the data pointers for the active transfer
5005 * based on its current residual.
5006 */
5007 void
ahd_reinitialize_dataptrs(struct ahd_softc * ahd)5008 ahd_reinitialize_dataptrs(struct ahd_softc *ahd)
5009 {
5010 struct scb *scb;
5011 ahd_mode_state saved_modes;
5012 u_int scb_index;
5013 u_int wait;
5014 uint32_t sgptr;
5015 uint32_t resid;
5016 uint64_t dataptr;
5017
5018 AHD_ASSERT_MODES(ahd, AHD_MODE_DFF0_MSK|AHD_MODE_DFF1_MSK,
5019 AHD_MODE_DFF0_MSK|AHD_MODE_DFF1_MSK);
5020
5021 scb_index = ahd_get_scbptr(ahd);
5022 scb = ahd_lookup_scb(ahd, scb_index);
5023
5024 /*
5025 * Release and reacquire the FIFO so we
5026 * have a clean slate.
5027 */
5028 ahd_outb(ahd, DFFSXFRCTL, CLRCHN);
5029 wait = 1000;
5030 while (--wait && !(ahd_inb(ahd, MDFFSTAT) & FIFOFREE))
5031 aic_delay(100);
5032 if (wait == 0) {
5033 ahd_print_path(ahd, scb);
5034 printf("ahd_reinitialize_dataptrs: Forcing FIFO free.\n");
5035 ahd_outb(ahd, DFFSXFRCTL, RSTCHN|CLRSHCNT);
5036 }
5037 saved_modes = ahd_save_modes(ahd);
5038 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
5039 ahd_outb(ahd, DFFSTAT,
5040 ahd_inb(ahd, DFFSTAT)
5041 | (saved_modes == 0x11 ? CURRFIFO_1 : CURRFIFO_0));
5042
5043 /*
5044 * Determine initial values for data_addr and data_cnt
5045 * for resuming the data phase.
5046 */
5047 sgptr = ahd_inl_scbram(ahd, SCB_RESIDUAL_SGPTR);
5048 sgptr &= SG_PTR_MASK;
5049
5050 resid = (ahd_inb_scbram(ahd, SCB_RESIDUAL_DATACNT + 2) << 16)
5051 | (ahd_inb_scbram(ahd, SCB_RESIDUAL_DATACNT + 1) << 8)
5052 | ahd_inb_scbram(ahd, SCB_RESIDUAL_DATACNT);
5053
5054 if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
5055 struct ahd_dma64_seg *sg;
5056
5057 sg = ahd_sg_bus_to_virt(ahd, scb, sgptr);
5058
5059 /* The residual sg_ptr always points to the next sg */
5060 sg--;
5061
5062 dataptr = aic_le64toh(sg->addr)
5063 + (aic_le32toh(sg->len) & AHD_SG_LEN_MASK)
5064 - resid;
5065 ahd_outl(ahd, HADDR + 4, dataptr >> 32);
5066 } else {
5067 struct ahd_dma_seg *sg;
5068
5069 sg = ahd_sg_bus_to_virt(ahd, scb, sgptr);
5070
5071 /* The residual sg_ptr always points to the next sg */
5072 sg--;
5073
5074 dataptr = aic_le32toh(sg->addr)
5075 + (aic_le32toh(sg->len) & AHD_SG_LEN_MASK)
5076 - resid;
5077 ahd_outb(ahd, HADDR + 4,
5078 (aic_le32toh(sg->len) & ~AHD_SG_LEN_MASK) >> 24);
5079 }
5080 ahd_outl(ahd, HADDR, dataptr);
5081 ahd_outb(ahd, HCNT + 2, resid >> 16);
5082 ahd_outb(ahd, HCNT + 1, resid >> 8);
5083 ahd_outb(ahd, HCNT, resid);
5084 }
5085
5086 /*
5087 * Handle the effects of issuing a bus device reset message.
5088 */
5089 void
ahd_handle_devreset(struct ahd_softc * ahd,struct ahd_devinfo * devinfo,u_int lun,cam_status status,char * message,int verbose_level)5090 ahd_handle_devreset(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
5091 u_int lun, cam_status status, char *message,
5092 int verbose_level)
5093 {
5094 #ifdef AHD_TARGET_MODE
5095 struct ahd_tmode_tstate* tstate;
5096 #endif
5097 int found;
5098
5099 found = ahd_abort_scbs(ahd, devinfo->target, devinfo->channel,
5100 lun, SCB_LIST_NULL, devinfo->role,
5101 status);
5102
5103 #ifdef AHD_TARGET_MODE
5104 /*
5105 * Send an immediate notify ccb to all target mord peripheral
5106 * drivers affected by this action.
5107 */
5108 tstate = ahd->enabled_targets[devinfo->our_scsiid];
5109 if (tstate != NULL) {
5110 u_int cur_lun;
5111 u_int max_lun;
5112
5113 if (lun != CAM_LUN_WILDCARD) {
5114 cur_lun = 0;
5115 max_lun = AHD_NUM_LUNS - 1;
5116 } else {
5117 cur_lun = lun;
5118 max_lun = lun;
5119 }
5120 for (cur_lun <= max_lun; cur_lun++) {
5121 struct ahd_tmode_lstate* lstate;
5122
5123 lstate = tstate->enabled_luns[cur_lun];
5124 if (lstate == NULL)
5125 continue;
5126
5127 ahd_queue_lstate_event(ahd, lstate, devinfo->our_scsiid,
5128 MSG_BUS_DEV_RESET, /*arg*/0);
5129 ahd_send_lstate_events(ahd, lstate);
5130 }
5131 }
5132 #endif
5133
5134 /*
5135 * Go back to async/narrow transfers and renegotiate.
5136 */
5137 ahd_set_width(ahd, devinfo, MSG_EXT_WDTR_BUS_8_BIT,
5138 AHD_TRANS_CUR, /*paused*/TRUE);
5139 ahd_set_syncrate(ahd, devinfo, /*period*/0, /*offset*/0,
5140 /*ppr_options*/0, AHD_TRANS_CUR,
5141 /*paused*/TRUE);
5142
5143 #if 0
5144 if (status != CAM_SEL_TIMEOUT)
5145 ahd_send_async(ahd, devinfo->channel, devinfo->target,
5146 lun, AC_SENT_BDR, NULL);
5147 #endif
5148
5149 if (message != NULL
5150 && (verbose_level <= bootverbose))
5151 printf("%s: %s on %c:%d. %d SCBs aborted\n", ahd_name(ahd),
5152 message, devinfo->channel, devinfo->target, found);
5153 }
5154
5155 #ifdef AHD_TARGET_MODE
5156 void
ahd_setup_target_msgin(struct ahd_softc * ahd,struct ahd_devinfo * devinfo,struct scb * scb)5157 ahd_setup_target_msgin(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
5158 struct scb *scb)
5159 {
5160
5161 /*
5162 * To facilitate adding multiple messages together,
5163 * each routine should increment the index and len
5164 * variables instead of setting them explicitly.
5165 */
5166 ahd->msgout_index = 0;
5167 ahd->msgout_len = 0;
5168
5169 if (scb != NULL && (scb->flags & SCB_AUTO_NEGOTIATE) != 0)
5170 ahd_build_transfer_msg(ahd, devinfo);
5171 else
5172 panic("ahd_intr: AWAITING target message with no message");
5173
5174 ahd->msgout_index = 0;
5175 ahd->msg_type = MSG_TYPE_TARGET_MSGIN;
5176 }
5177 #endif
5178 /**************************** Initialization **********************************/
5179 u_int
ahd_sglist_size(struct ahd_softc * ahd)5180 ahd_sglist_size(struct ahd_softc *ahd)
5181 {
5182 bus_size_t list_size;
5183
5184 list_size = sizeof(struct ahd_dma_seg) * AHD_NSEG;
5185 if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0)
5186 list_size = sizeof(struct ahd_dma64_seg) * AHD_NSEG;
5187 return (list_size);
5188 }
5189
5190 /*
5191 * Calculate the optimum S/G List allocation size. S/G elements used
5192 * for a given transaction must be physically contiguous. Assume the
5193 * OS will allocate full pages to us, so it doesn't make sense to request
5194 * less than a page.
5195 */
5196 u_int
ahd_sglist_allocsize(struct ahd_softc * ahd)5197 ahd_sglist_allocsize(struct ahd_softc *ahd)
5198 {
5199 bus_size_t sg_list_increment;
5200 bus_size_t sg_list_size;
5201 bus_size_t max_list_size;
5202 bus_size_t best_list_size;
5203
5204 /* Start out with the minimum required for AHD_NSEG. */
5205 sg_list_increment = ahd_sglist_size(ahd);
5206 sg_list_size = sg_list_increment;
5207
5208 /* Get us as close as possible to a page in size. */
5209 while ((sg_list_size + sg_list_increment) <= PAGE_SIZE)
5210 sg_list_size += sg_list_increment;
5211
5212 /*
5213 * Try to reduce the amount of wastage by allocating
5214 * multiple pages.
5215 */
5216 best_list_size = sg_list_size;
5217 max_list_size = roundup(sg_list_increment, PAGE_SIZE);
5218 if (max_list_size < 4 * PAGE_SIZE)
5219 max_list_size = 4 * PAGE_SIZE;
5220 if (max_list_size > (AHD_SCB_MAX_ALLOC * sg_list_increment))
5221 max_list_size = (AHD_SCB_MAX_ALLOC * sg_list_increment);
5222 while ((sg_list_size + sg_list_increment) <= max_list_size
5223 && (sg_list_size % PAGE_SIZE) != 0) {
5224 bus_size_t new_mod;
5225 bus_size_t best_mod;
5226
5227 sg_list_size += sg_list_increment;
5228 new_mod = sg_list_size % PAGE_SIZE;
5229 best_mod = best_list_size % PAGE_SIZE;
5230 if (new_mod > best_mod || new_mod == 0) {
5231 best_list_size = sg_list_size;
5232 }
5233 }
5234 return (best_list_size);
5235 }
5236
5237 /*
5238 * Perform initial initialization for a controller structure.
5239 */
5240 struct ahd_softc *
ahd_alloc(void * platform_arg,char * name)5241 ahd_alloc(void *platform_arg, char *name)
5242 {
5243 struct ahd_softc *ahd = (struct ahd_softc *)platform_arg;
5244
5245 ahd->seep_config = malloc(sizeof(*ahd->seep_config),
5246 M_DEVBUF, M_NOWAIT);
5247 if (ahd->seep_config == NULL)
5248 return (NULL);
5249
5250 TAILQ_INIT(&ahd->pending_scbs);
5251 LIST_INIT(&ahd->timedout_scbs);
5252
5253 /* We don't know our unit number until the OSM sets it */
5254 ahd->name = name;
5255 ahd->unit = -1;
5256 ahd->bus_description = NULL;
5257 ahd->channel = 'A';
5258 ahd->chip = AHD_NONE;
5259 ahd->features = AHD_FENONE;
5260 ahd->bugs = AHD_BUGNONE;
5261 ahd->flags = AHD_SPCHK_ENB_A|AHD_RESET_BUS_A|AHD_TERM_ENB_A
5262 | AHD_EXTENDED_TRANS_A|AHD_STPWLEVEL_A;
5263 ahd->int_coalescing_timer = AHD_INT_COALESCING_TIMER_DEFAULT;
5264 ahd->int_coalescing_maxcmds = AHD_INT_COALESCING_MAXCMDS_DEFAULT;
5265 ahd->int_coalescing_mincmds = AHD_INT_COALESCING_MINCMDS_DEFAULT;
5266 ahd->int_coalescing_threshold = AHD_INT_COALESCING_THRESHOLD_DEFAULT;
5267 ahd->int_coalescing_stop_threshold =
5268 AHD_INT_COALESCING_STOP_THRESHOLD_DEFAULT;
5269
5270 #ifdef AHD_DEBUG
5271 if ((ahd_debug & AHD_SHOW_MEMORY) != 0) {
5272 printf("%s: scb size = 0x%x, hscb size = 0x%x\n",
5273 ahd_name(ahd), (u_int)sizeof(struct scb),
5274 (u_int)sizeof(struct hardware_scb));
5275 }
5276 #endif
5277 return (ahd);
5278 }
5279
5280 int
ahd_softc_init(struct ahd_softc * ahd)5281 ahd_softc_init(struct ahd_softc *ahd)
5282 {
5283
5284 ahd->unpause = 0;
5285 ahd->pause = PAUSE;
5286 return (0);
5287 }
5288
5289 void
ahd_softc_insert(struct ahd_softc * ahd)5290 ahd_softc_insert(struct ahd_softc *ahd)
5291 {
5292 struct ahd_softc *list_ahd;
5293
5294 #if AHD_PCI_CONFIG > 0
5295 /*
5296 * Second Function PCI devices need to inherit some
5297 * settings from function 0.
5298 */
5299 if ((ahd->features & AHD_MULTI_FUNC) != 0) {
5300 TAILQ_FOREACH(list_ahd, &ahd_tailq, links) {
5301 aic_dev_softc_t list_pci;
5302 aic_dev_softc_t pci;
5303
5304 list_pci = list_ahd->dev_softc;
5305 pci = ahd->dev_softc;
5306 if (aic_get_pci_slot(list_pci) == aic_get_pci_slot(pci)
5307 && aic_get_pci_bus(list_pci) == aic_get_pci_bus(pci)) {
5308 struct ahd_softc *master;
5309 struct ahd_softc *slave;
5310
5311 if (aic_get_pci_function(list_pci) == 0) {
5312 master = list_ahd;
5313 slave = ahd;
5314 } else {
5315 master = ahd;
5316 slave = list_ahd;
5317 }
5318 slave->flags &= ~AHD_BIOS_ENABLED;
5319 slave->flags |=
5320 master->flags & AHD_BIOS_ENABLED;
5321 break;
5322 }
5323 }
5324 }
5325 #endif
5326
5327 /*
5328 * Insertion sort into our list of softcs.
5329 */
5330 list_ahd = TAILQ_FIRST(&ahd_tailq);
5331 while (list_ahd != NULL
5332 && ahd_softc_comp(ahd, list_ahd) <= 0)
5333 list_ahd = TAILQ_NEXT(list_ahd, links);
5334 if (list_ahd != NULL)
5335 TAILQ_INSERT_BEFORE(list_ahd, ahd, links);
5336 else
5337 TAILQ_INSERT_TAIL(&ahd_tailq, ahd, links);
5338 ahd->init_level++;
5339 }
5340
5341 /*
5342 * Verify that the passed in softc pointer is for a
5343 * controller that is still configured.
5344 */
5345 struct ahd_softc *
ahd_find_softc(struct ahd_softc * ahd)5346 ahd_find_softc(struct ahd_softc *ahd)
5347 {
5348 struct ahd_softc *list_ahd;
5349
5350 TAILQ_FOREACH(list_ahd, &ahd_tailq, links) {
5351 if (list_ahd == ahd)
5352 return (ahd);
5353 }
5354 return (NULL);
5355 }
5356
5357 void
ahd_set_unit(struct ahd_softc * ahd,int unit)5358 ahd_set_unit(struct ahd_softc *ahd, int unit)
5359 {
5360 ahd->unit = unit;
5361 }
5362
5363 void
ahd_set_name(struct ahd_softc * ahd,char * name)5364 ahd_set_name(struct ahd_softc *ahd, char *name)
5365 {
5366 if (ahd->name != NULL)
5367 free(ahd->name, M_DEVBUF, 0);
5368 ahd->name = name;
5369 }
5370
5371 void
ahd_free(struct ahd_softc * ahd)5372 ahd_free(struct ahd_softc *ahd)
5373 {
5374 int i;
5375
5376 switch (ahd->init_level) {
5377 default:
5378 case 2:
5379 ahd_shutdown(ahd);
5380 TAILQ_REMOVE(&ahd_tailq, ahd, links);
5381 /* FALLTHROUGH */
5382 case 1:
5383 ahd_freedmamem(ahd, &ahd->shared_data_map);
5384 break;
5385 case 0:
5386 break;
5387 }
5388
5389 ahd_fini_scbdata(ahd);
5390 for (i = 0; i < AHD_NUM_TARGETS; i++) {
5391 struct ahd_tmode_tstate *tstate;
5392
5393 tstate = ahd->enabled_targets[i];
5394 if (tstate != NULL) {
5395 #if AHD_TARGET_MODE
5396 int j;
5397
5398 for (j = 0; j < AHD_NUM_LUNS; j++) {
5399 struct ahd_tmode_lstate *lstate;
5400
5401 lstate = tstate->enabled_luns[j];
5402 if (lstate != NULL) {
5403 xpt_free_path(lstate->path);
5404 free(lstate, M_DEVBUF, 0);
5405 }
5406 }
5407 #endif
5408 free(tstate, M_DEVBUF, 0);
5409 }
5410 }
5411 #if AHD_TARGET_MODE
5412 if (ahd->black_hole != NULL) {
5413 xpt_free_path(ahd->black_hole->path);
5414 free(ahd->black_hole, M_DEVBUF, 0);
5415 }
5416 #endif
5417 if (ahd->seep_config != NULL)
5418 free(ahd->seep_config, M_DEVBUF, 0);
5419 if (ahd->saved_stack != NULL)
5420 free(ahd->saved_stack, M_DEVBUF, 0);
5421 return;
5422 }
5423
5424 void
ahd_shutdown(void * arg)5425 ahd_shutdown(void *arg)
5426 {
5427 struct ahd_softc *ahd;
5428
5429 ahd = (struct ahd_softc *)arg;
5430
5431 /*
5432 * Stop periodic timer callbacks.
5433 */
5434 aic_timer_stop(&ahd->reset_timer);
5435 aic_timer_stop(&ahd->stat_timer);
5436
5437 /* This will reset most registers to 0, but not all */
5438 ahd_reset(ahd, /*reinit*/FALSE);
5439 }
5440
5441 /*
5442 * Reset the controller and record some information about it
5443 * that is only available just after a reset. If "reinit" is
5444 * non-zero, this reset occurred after initial configuration
5445 * and the caller requests that the chip be fully reinitialized
5446 * to a runable state. Chip interrupts are *not* enabled after
5447 * a reinitialization. The caller must enable interrupts via
5448 * ahd_intr_enable().
5449 */
5450 int
ahd_reset(struct ahd_softc * ahd,int reinit)5451 ahd_reset(struct ahd_softc *ahd, int reinit)
5452 {
5453 const pci_chipset_tag_t pc = ahd->dev_softc->pa_pc;
5454 const pcitag_t tag = ahd->dev_softc->pa_tag;
5455 u_int sxfrctl1;
5456 int wait;
5457 pcireg_t cmd;
5458
5459 /*
5460 * Preserve the value of the SXFRCTL1 register for all channels.
5461 * It contains settings that affect termination and we don't want
5462 * to disturb the integrity of the bus.
5463 */
5464 ahd_pause(ahd);
5465 ahd_update_modes(ahd);
5466 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
5467 sxfrctl1 = ahd_inb(ahd, SXFRCTL1);
5468
5469 cmd = pci_conf_read(pc, tag, PCI_COMMAND_STATUS_REG);
5470
5471 if ((ahd->bugs & AHD_PCIX_CHIPRST_BUG) != 0) {
5472 pcireg_t mod_cmd;
5473
5474 /*
5475 * A4 Razor #632
5476 * During the assertion of CHIPRST, the chip
5477 * does not disable its parity logic prior to
5478 * the start of the reset. This may cause a
5479 * parity error to be detected and thus a
5480 * spurious SERR or PERR assertion. Disable
5481 * PERR and SERR responses during the CHIPRST.
5482 */
5483 mod_cmd = cmd & ~(PCI_COMMAND_PARITY_ENABLE|PCI_COMMAND_SERR_ENABLE);
5484 pci_conf_write(pc, tag, PCI_COMMAND_STATUS_REG, mod_cmd);
5485 }
5486 ahd_outb(ahd, HCNTRL, CHIPRST | ahd->pause);
5487
5488 /*
5489 * Ensure that the reset has finished. We delay 1000us
5490 * prior to reading the register to make sure the chip
5491 * has sufficiently completed its reset to handle register
5492 * accesses.
5493 */
5494 wait = 1000;
5495 do {
5496 aic_delay(1000);
5497 } while (--wait && !(ahd_inb(ahd, HCNTRL) & CHIPRSTACK));
5498
5499 if (wait == 0) {
5500 printf("%s: WARNING - Failed chip reset! "
5501 "Trying to initialize anyway.\n", ahd_name(ahd));
5502 }
5503 ahd_outb(ahd, HCNTRL, ahd->pause);
5504
5505 if ((ahd->bugs & AHD_PCIX_CHIPRST_BUG) != 0) {
5506 /*
5507 * Clear any latched PCI error status and restore
5508 * previous SERR and PERR response enables.
5509 */
5510 pci_conf_write(pc, tag, PCI_COMMAND_STATUS_REG, cmd |
5511 (PCI_STATUS_PARITY_ERROR | PCI_STATUS_TARGET_TARGET_ABORT |
5512 PCI_STATUS_MASTER_TARGET_ABORT | PCI_STATUS_MASTER_ABORT |
5513 PCI_STATUS_SPECIAL_ERROR));
5514
5515 }
5516
5517 /*
5518 * Mode should be SCSI after a chip reset, but lets
5519 * set it just to be safe. We touch the MODE_PTR
5520 * register directly so as to bypass the lazy update
5521 * code in ahd_set_modes().
5522 */
5523 ahd_known_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
5524 ahd_outb(ahd, MODE_PTR,
5525 ahd_build_mode_state(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI));
5526
5527 /*
5528 * Restore SXFRCTL1.
5529 *
5530 * We must always initialize STPWEN to 1 before we
5531 * restore the saved values. STPWEN is initialized
5532 * to a tri-state condition which can only be cleared
5533 * by turning it on.
5534 */
5535 ahd_outb(ahd, SXFRCTL1, sxfrctl1|STPWEN);
5536 ahd_outb(ahd, SXFRCTL1, sxfrctl1);
5537
5538 /* Determine chip configuration */
5539 ahd->features &= ~AHD_WIDE;
5540 if ((ahd_inb(ahd, SBLKCTL) & SELWIDE) != 0)
5541 ahd->features |= AHD_WIDE;
5542
5543 /*
5544 * If a recovery action has forced a chip reset,
5545 * re-initialize the chip to our liking.
5546 */
5547 if (reinit != 0)
5548 ahd_chip_init(ahd);
5549
5550 return (0);
5551 }
5552
5553 /*
5554 * Determine the number of SCBs available on the controller
5555 */
5556 int
ahd_probe_scbs(struct ahd_softc * ahd)5557 ahd_probe_scbs(struct ahd_softc *ahd) {
5558 int i;
5559
5560 AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
5561 ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
5562 for (i = 0; i < AHD_SCB_MAX; i++) {
5563 int j;
5564
5565 ahd_set_scbptr(ahd, i);
5566 ahd_outw(ahd, SCB_BASE, i);
5567 for (j = 2; j < 64; j++)
5568 ahd_outb(ahd, SCB_BASE+j, 0);
5569 /* Start out life as unallocated (needing an abort) */
5570 ahd_outb(ahd, SCB_CONTROL, MK_MESSAGE);
5571 if (ahd_inw_scbram(ahd, SCB_BASE) != i)
5572 break;
5573 ahd_set_scbptr(ahd, 0);
5574 if (ahd_inw_scbram(ahd, SCB_BASE) != 0)
5575 break;
5576 }
5577 return (i);
5578 }
5579
5580 void
ahd_initialize_hscbs(struct ahd_softc * ahd)5581 ahd_initialize_hscbs(struct ahd_softc *ahd)
5582 {
5583 int i;
5584
5585 for (i = 0; i < ahd->scb_data.maxhscbs; i++) {
5586 ahd_set_scbptr(ahd, i);
5587
5588 /* Clear the control byte. */
5589 ahd_outb(ahd, SCB_CONTROL, 0);
5590
5591 /* Set the next pointer */
5592 ahd_outw(ahd, SCB_NEXT, SCB_LIST_NULL);
5593 }
5594 }
5595
5596 int
ahd_init_scbdata(struct ahd_softc * ahd)5597 ahd_init_scbdata(struct ahd_softc *ahd)
5598 {
5599 struct scb_data *scb_data;
5600 int i;
5601
5602 scb_data = &ahd->scb_data;
5603 TAILQ_INIT(&scb_data->free_scbs);
5604 SLIST_INIT(&scb_data->hscb_maps);
5605 SLIST_INIT(&scb_data->sg_maps);
5606 SLIST_INIT(&scb_data->sense_maps);
5607 mtx_init(&ahd->sc_scb_mtx, IPL_BIO);
5608 scsi_iopool_init(&ahd->sc_iopool, ahd, ahd_scb_alloc, ahd_scb_free);
5609
5610 /* Determine the number of hardware SCBs and initialize them */
5611 scb_data->maxhscbs = ahd_probe_scbs(ahd);
5612 if (scb_data->maxhscbs == 0) {
5613 printf("%s: No SCB space found\n", ahd_name(ahd));
5614 return (ENXIO);
5615 }
5616
5617 ahd_initialize_hscbs(ahd);
5618
5619 /*
5620 * Create our DMA tags. These tags define the kinds of device
5621 * accessible memory allocations and memory mappings we will
5622 * need to perform during normal operation.
5623 *
5624 * Unless we need to further restrict the allocation, we rely
5625 * on the restrictions of the parent dmat, hence the common
5626 * use of MAXADDR and MAXSIZE.
5627 */
5628
5629 /* Perform initial CCB allocation */
5630 do {
5631 i = scb_data->numscbs;
5632 ahd_alloc_scbs(ahd);
5633 } while ((i != scb_data->numscbs) &&
5634 (scb_data->numscbs < AHD_SCB_MAX_ALLOC));
5635
5636 if (scb_data->numscbs != AHD_SCB_MAX_ALLOC) {
5637 printf("%s: ahd_init_scbdata - "
5638 "Unable to allocate initial scbs\n",
5639 ahd_name(ahd));
5640 goto error_exit;
5641 }
5642
5643 /*
5644 * Note that we were successful
5645 */
5646 return (0);
5647
5648 error_exit:
5649
5650 return (ENOMEM);
5651 }
5652
5653 struct scb *
ahd_find_scb_by_tag(struct ahd_softc * ahd,u_int tag)5654 ahd_find_scb_by_tag(struct ahd_softc *ahd, u_int tag)
5655 {
5656 struct scb *scb;
5657
5658 /*
5659 * Look on the pending list.
5660 */
5661 TAILQ_FOREACH(scb, &ahd->pending_scbs, next) {
5662 if (SCB_GET_TAG(scb) == tag)
5663 return (scb);
5664 }
5665
5666 /*
5667 * And finally on the generic free list.
5668 */
5669 TAILQ_FOREACH(scb, &ahd->scb_data.free_scbs, next) {
5670 if (SCB_GET_TAG(scb) == tag)
5671 return (scb);
5672 }
5673
5674 return (NULL);
5675 }
5676
5677 void
ahd_fini_scbdata(struct ahd_softc * ahd)5678 ahd_fini_scbdata(struct ahd_softc *ahd)
5679 {
5680 struct scb_data *scb_data;
5681
5682 scb_data = &ahd->scb_data;
5683 if (scb_data == NULL)
5684 return;
5685
5686 switch (scb_data->init_level) {
5687 default:
5688 case 3:
5689 {
5690 struct map_node *sns_map;
5691
5692 while ((sns_map = SLIST_FIRST(&scb_data->sense_maps)) != NULL) {
5693 SLIST_REMOVE_HEAD(&scb_data->sense_maps, links);
5694 ahd_freedmamem(ahd, sns_map);
5695 free(sns_map, M_DEVBUF, 0);
5696 }
5697 /* FALLTHROUGH */
5698 }
5699 case 2:
5700 {
5701 struct map_node *sg_map;
5702
5703 while ((sg_map = SLIST_FIRST(&scb_data->sg_maps)) != NULL) {
5704 SLIST_REMOVE_HEAD(&scb_data->sg_maps, links);
5705 ahd_freedmamem(ahd, sg_map);
5706 free(sg_map, M_DEVBUF, 0);
5707 }
5708 /* FALLTHROUGH */
5709 }
5710 case 1:
5711 {
5712 struct map_node *hscb_map;
5713
5714 while ((hscb_map = SLIST_FIRST(&scb_data->hscb_maps)) != NULL) {
5715 SLIST_REMOVE_HEAD(&scb_data->hscb_maps, links);
5716 ahd_freedmamem(ahd, hscb_map);
5717 free(hscb_map, M_DEVBUF, 0);
5718 }
5719 /* FALLTHROUGH */
5720 }
5721 case 0:
5722 break;
5723 }
5724 }
5725
5726 /*
5727 * DSP filter Bypass must be enabled until the first selection
5728 * after a change in bus mode (Razor #491 and #493).
5729 */
5730 void
ahd_setup_iocell_workaround(struct ahd_softc * ahd)5731 ahd_setup_iocell_workaround(struct ahd_softc *ahd)
5732 {
5733 ahd_mode_state saved_modes;
5734
5735 saved_modes = ahd_save_modes(ahd);
5736 ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
5737 ahd_outb(ahd, DSPDATACTL, ahd_inb(ahd, DSPDATACTL)
5738 | BYPASSENAB | RCVROFFSTDIS | XMITOFFSTDIS);
5739 ahd_outb(ahd, SIMODE0, ahd_inb(ahd, SIMODE0) | (ENSELDO|ENSELDI));
5740 #ifdef AHD_DEBUG
5741 if ((ahd_debug & AHD_SHOW_MISC) != 0)
5742 printf("%s: Setting up iocell workaround\n", ahd_name(ahd));
5743 #endif
5744 ahd_restore_modes(ahd, saved_modes);
5745 ahd->flags &= ~AHD_HAD_FIRST_SEL;
5746 }
5747
5748 void
ahd_iocell_first_selection(struct ahd_softc * ahd)5749 ahd_iocell_first_selection(struct ahd_softc *ahd)
5750 {
5751 ahd_mode_state saved_modes;
5752 u_int sblkctl;
5753
5754 if ((ahd->flags & AHD_HAD_FIRST_SEL) != 0)
5755 return;
5756 saved_modes = ahd_save_modes(ahd);
5757 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
5758 sblkctl = ahd_inb(ahd, SBLKCTL);
5759 ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
5760 #ifdef AHD_DEBUG
5761 if ((ahd_debug & AHD_SHOW_MISC) != 0)
5762 printf("%s: iocell first selection\n", ahd_name(ahd));
5763 #endif
5764 if ((sblkctl & ENAB40) != 0) {
5765 ahd_outb(ahd, DSPDATACTL,
5766 ahd_inb(ahd, DSPDATACTL) & ~BYPASSENAB);
5767 #ifdef AHD_DEBUG
5768 if ((ahd_debug & AHD_SHOW_MISC) != 0)
5769 printf("%s: BYPASS now disabled\n", ahd_name(ahd));
5770 #endif
5771 }
5772 ahd_outb(ahd, SIMODE0, ahd_inb(ahd, SIMODE0) & ~(ENSELDO|ENSELDI));
5773 ahd_outb(ahd, CLRINT, CLRSCSIINT);
5774 ahd_restore_modes(ahd, saved_modes);
5775 ahd->flags |= AHD_HAD_FIRST_SEL;
5776 }
5777
5778 /*
5779 * Get a free scb. If there are none, see if we can allocate a new SCB.
5780 */
5781 void *
ahd_scb_alloc(void * xahd)5782 ahd_scb_alloc(void *xahd)
5783 {
5784 struct ahd_softc *ahd = xahd;
5785 struct scb *scb;
5786
5787 mtx_enter(&ahd->sc_scb_mtx);
5788 scb = TAILQ_FIRST(&ahd->scb_data.free_scbs);
5789 if (scb) {
5790 TAILQ_REMOVE(&ahd->scb_data.free_scbs, scb, next);
5791 scb->flags |= SCB_ACTIVE;
5792 }
5793 mtx_leave(&ahd->sc_scb_mtx);
5794
5795 return (scb);
5796 }
5797
5798 /*
5799 * Return an SCB resource to the free list.
5800 */
5801 void
ahd_scb_free(void * xahd,void * xscb)5802 ahd_scb_free(void *xahd, void *xscb)
5803 {
5804 struct ahd_softc *ahd = xahd;
5805 struct scb *scb = xscb;
5806
5807 /* Clean up for the next user */
5808 scb->flags = SCB_FLAG_NONE;
5809 scb->hscb->control = 0;
5810 ahd->scb_data.scbindex[SCB_GET_TAG(scb)] = NULL;
5811
5812 mtx_enter(&ahd->sc_scb_mtx);
5813 TAILQ_INSERT_HEAD(&ahd->scb_data.free_scbs, scb, next);
5814 aic_platform_scb_free(ahd, scb);
5815 mtx_leave(&ahd->sc_scb_mtx);
5816 }
5817
5818 void
ahd_alloc_scbs(struct ahd_softc * ahd)5819 ahd_alloc_scbs(struct ahd_softc *ahd)
5820 {
5821 struct scb_data *scb_data;
5822 struct scb *next_scb;
5823 struct hardware_scb *hscb;
5824 struct map_node *hscb_map;
5825 struct map_node *sg_map;
5826 struct map_node *sense_map;
5827 uint8_t *segs;
5828 uint8_t *sense_data;
5829 bus_addr_t hscb_busaddr;
5830 bus_addr_t sg_busaddr;
5831 bus_addr_t sense_busaddr;
5832 int newcount;
5833 int i;
5834
5835 scb_data = &ahd->scb_data;
5836 if (scb_data->numscbs >= AHD_SCB_MAX_ALLOC)
5837 /* Can't allocate any more */
5838 return;
5839
5840 KASSERT(scb_data->scbs_left >= 0);
5841 if (scb_data->scbs_left != 0) {
5842 int offset;
5843
5844 offset = (PAGE_SIZE / sizeof(*hscb)) - scb_data->scbs_left;
5845 hscb_map = SLIST_FIRST(&scb_data->hscb_maps);
5846 hscb = &((struct hardware_scb *)hscb_map->vaddr)[offset];
5847 hscb_busaddr = hscb_map->busaddr + (offset * sizeof(*hscb));
5848 } else {
5849 hscb_map = malloc(sizeof(*hscb_map), M_DEVBUF, M_NOWAIT);
5850
5851 if (hscb_map == NULL)
5852 return;
5853
5854 /* Allocate the next batch of hardware SCBs */
5855 if (ahd_createdmamem(ahd, PAGE_SIZE, hscb_map,
5856 "hardware SCB structures") < 0) {
5857 free(hscb_map, M_DEVBUF, 0);
5858 return;
5859 }
5860
5861 SLIST_INSERT_HEAD(&scb_data->hscb_maps, hscb_map, links);
5862
5863 hscb = (struct hardware_scb *)hscb_map->vaddr;
5864 hscb_busaddr = hscb_map->busaddr;
5865 scb_data->scbs_left = PAGE_SIZE / sizeof(*hscb);
5866 }
5867
5868 scb_data->init_level++;
5869
5870 if (scb_data->sgs_left != 0) {
5871 int offset;
5872
5873 offset = ((ahd_sglist_allocsize(ahd) / ahd_sglist_size(ahd))
5874 - scb_data->sgs_left) * ahd_sglist_size(ahd);
5875 sg_map = SLIST_FIRST(&scb_data->sg_maps);
5876 segs = sg_map->vaddr + offset;
5877 sg_busaddr = sg_map->busaddr + offset;
5878 } else {
5879 sg_map = malloc(sizeof(*sg_map), M_DEVBUF, M_NOWAIT);
5880
5881 if (sg_map == NULL)
5882 return;
5883
5884 /* Allocate the next batch of S/G lists */
5885 if (ahd_createdmamem(ahd, ahd_sglist_allocsize(ahd), sg_map,
5886 "SG data structures") < 0) {
5887 free(sg_map, M_DEVBUF, 0);
5888 return;
5889 }
5890
5891 SLIST_INSERT_HEAD(&scb_data->sg_maps, sg_map, links);
5892
5893 segs = sg_map->vaddr;
5894 sg_busaddr = sg_map->busaddr;
5895 scb_data->sgs_left =
5896 ahd_sglist_allocsize(ahd) / ahd_sglist_size(ahd);
5897 #ifdef AHD_DEBUG
5898 if (ahd_debug & AHD_SHOW_MEMORY)
5899 printf("%s: ahd_alloc_scbs - Mapped SG data\n", ahd_name(ahd));
5900 #endif
5901 }
5902
5903 scb_data->init_level++;
5904
5905 if (scb_data->sense_left != 0) {
5906 int offset;
5907
5908 offset = PAGE_SIZE - (AHD_SENSE_BUFSIZE * scb_data->sense_left);
5909 sense_map = SLIST_FIRST(&scb_data->sense_maps);
5910 sense_data = sense_map->vaddr + offset;
5911 sense_busaddr = sense_map->busaddr + offset;
5912 } else {
5913 sense_map = malloc(sizeof(*sense_map), M_DEVBUF, M_NOWAIT);
5914
5915 if (sense_map == NULL)
5916 return;
5917
5918 /* Allocate the next batch of sense buffers */
5919 if (ahd_createdmamem(ahd, PAGE_SIZE, sense_map,
5920 "Sense Data structures") < 0) {
5921 free(sense_map, M_DEVBUF, 0);
5922 return;
5923 }
5924
5925 SLIST_INSERT_HEAD(&scb_data->sense_maps, sense_map, links);
5926
5927 sense_data = sense_map->vaddr;
5928 sense_busaddr = sense_map->busaddr;
5929 scb_data->sense_left = PAGE_SIZE / AHD_SENSE_BUFSIZE;
5930 #ifdef AHD_DEBUG
5931 if (ahd_debug & AHD_SHOW_MEMORY)
5932 printf("%s: ahd_alloc_scbs - Mapped sense data\n", ahd_name(ahd));
5933 #endif
5934 }
5935
5936 scb_data->init_level++;
5937
5938 newcount = MIN(scb_data->sense_left, scb_data->scbs_left);
5939 newcount = MIN(newcount, scb_data->sgs_left);
5940 newcount = MIN(newcount, (AHD_SCB_MAX_ALLOC - scb_data->numscbs));
5941 scb_data->sense_left -= newcount;
5942 scb_data->scbs_left -= newcount;
5943 scb_data->sgs_left -= newcount;
5944 for (i = 0; i < newcount; i++) {
5945 int error;
5946
5947 next_scb = (struct scb *)malloc(sizeof(*next_scb),
5948 M_DEVBUF, M_NOWAIT);
5949 if (next_scb == NULL)
5950 break;
5951
5952 next_scb->hscb_map = hscb_map;
5953 next_scb->sg_map = sg_map;
5954 next_scb->sense_map = sense_map;
5955 next_scb->sg_list = segs;
5956 next_scb->sense_data = sense_data;
5957 next_scb->sense_busaddr = sense_busaddr;
5958 memset(hscb, 0, sizeof(*hscb));
5959 next_scb->hscb = hscb;
5960 KASSERT((vaddr_t)hscb >= (vaddr_t)hscb_map->vaddr &&
5961 (vaddr_t)hscb < (vaddr_t)hscb_map->vaddr + PAGE_SIZE);
5962 hscb->hscb_busaddr = aic_htole32(hscb_busaddr);
5963
5964 /*
5965 * The sequencer always starts with the second entry.
5966 * The first entry is embedded in the scb.
5967 */
5968 next_scb->sg_list_busaddr = sg_busaddr;
5969 if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0)
5970 next_scb->sg_list_busaddr
5971 += sizeof(struct ahd_dma64_seg);
5972 else
5973 next_scb->sg_list_busaddr += sizeof(struct ahd_dma_seg);
5974 next_scb->ahd_softc = ahd;
5975 next_scb->flags = SCB_FLAG_NONE;
5976
5977 error = bus_dmamap_create(ahd->parent_dmat,
5978 AHD_MAXTRANSFER_SIZE, AHD_NSEG, MAXBSIZE, 0,
5979 BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW, &next_scb->dmamap);
5980
5981 if (error != 0) {
5982 free(next_scb, M_DEVBUF, 0);
5983 break;
5984 }
5985 next_scb->hscb->tag = aic_htole16(scb_data->numscbs);
5986 ahd_scb_free(ahd, next_scb);
5987 hscb++;
5988 hscb_busaddr += sizeof(*hscb);
5989 segs += ahd_sglist_size(ahd);
5990 sg_busaddr += ahd_sglist_size(ahd);
5991 sense_data += AHD_SENSE_BUFSIZE;
5992 sense_busaddr += AHD_SENSE_BUFSIZE;
5993 scb_data->numscbs++;
5994 }
5995 }
5996
5997 void
ahd_controller_info(struct ahd_softc * ahd,char * buf,size_t bufsz)5998 ahd_controller_info(struct ahd_softc *ahd, char *buf, size_t bufsz)
5999 {
6000 snprintf(buf, bufsz, "%s: %s, U320 %s Channel %c, %s, %d SCBs",
6001 ahd_name(ahd), ahd_chip_names[ahd->chip & AHD_CHIPID_MASK],
6002 ((ahd->features & AHD_WIDE) != 0) ? "Wide" : "Single",
6003 ahd->channel, ahd->bus_description, ahd->scb_data.maxhscbs);
6004 }
6005
6006 static const char *channel_strings[] = {
6007 "Primary Low",
6008 "Primary High",
6009 "Secondary Low",
6010 "Secondary High"
6011 };
6012
6013 static const char *termstat_strings[] = {
6014 "Terminated Correctly",
6015 "Over Terminated",
6016 "Under Terminated",
6017 "Not Configured"
6018 };
6019
6020 /*
6021 * Start the board, ready for normal operation
6022 */
6023 int
ahd_init(struct ahd_softc * ahd)6024 ahd_init(struct ahd_softc *ahd)
6025 {
6026 uint8_t *next_vaddr;
6027 bus_addr_t next_baddr;
6028 size_t driver_data_size;
6029 int i;
6030 int error;
6031 u_int warn_user;
6032 uint8_t current_sensing;
6033 uint8_t fstat;
6034
6035 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
6036
6037 ahd->stack_size = ahd_probe_stack_size(ahd);
6038 ahd->saved_stack = mallocarray(ahd->stack_size, sizeof(uint16_t),
6039 M_DEVBUF, M_NOWAIT | M_ZERO);
6040 if (ahd->saved_stack == NULL)
6041 return (ENOMEM);
6042
6043 /*
6044 * Verify that the compiler hasn't over-aggressively
6045 * padded important structures.
6046 */
6047 if (sizeof(struct hardware_scb) != 64)
6048 panic("Hardware SCB size is incorrect");
6049
6050 #ifdef AHD_DEBUG
6051 if ((ahd_debug & AHD_DEBUG_SEQUENCER) != 0)
6052 ahd->flags |= AHD_SEQUENCER_DEBUG;
6053 #endif
6054
6055 /*
6056 * Default to allowing initiator operations.
6057 */
6058 ahd->flags |= AHD_INITIATORROLE;
6059
6060 /*
6061 * Only allow target mode features if this unit has them enabled.
6062 */
6063 if ((AHD_TMODE_ENABLE & (0x1 << ahd->unit)) == 0)
6064 ahd->features &= ~AHD_TARGETMODE;
6065
6066 /*
6067 * DMA tag for our command fifos and other data in system memory
6068 * the card's sequencer must be able to access. For initiator
6069 * roles, we need to allocate space for the qoutfifo. When providing
6070 * for the target mode role, we must additionally provide space for
6071 * the incoming target command fifo.
6072 */
6073 driver_data_size = AHD_SCB_MAX * sizeof(*ahd->qoutfifo)
6074 + sizeof(struct hardware_scb);
6075 if ((ahd->features & AHD_TARGETMODE) != 0)
6076 driver_data_size += AHD_TMODE_CMDS * sizeof(struct target_cmd);
6077 if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) != 0)
6078 driver_data_size += PKT_OVERRUN_BUFSIZE;
6079 if (ahd_createdmamem(ahd, driver_data_size, &ahd->shared_data_map,
6080 "shared data") < 0)
6081 return (ENOMEM);
6082
6083 ahd->qoutfifo = (struct ahd_completion *)ahd->shared_data_map.vaddr;
6084
6085 ahd->init_level++;
6086
6087 next_vaddr = (uint8_t *)&ahd->qoutfifo[AHD_QOUT_SIZE];
6088 next_baddr = ahd->shared_data_map.busaddr
6089 + AHD_QOUT_SIZE*sizeof(struct ahd_completion);
6090 if ((ahd->features & AHD_TARGETMODE) != 0) {
6091 ahd->targetcmds = (struct target_cmd *)next_vaddr;
6092 next_vaddr += AHD_TMODE_CMDS * sizeof(struct target_cmd);
6093 next_baddr += AHD_TMODE_CMDS * sizeof(struct target_cmd);
6094 }
6095
6096 if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) != 0) {
6097 ahd->overrun_buf = next_vaddr;
6098 next_vaddr += PKT_OVERRUN_BUFSIZE;
6099 next_baddr += PKT_OVERRUN_BUFSIZE;
6100 }
6101
6102 /*
6103 * We need one SCB to serve as the "next SCB". Since the
6104 * tag identifier in this SCB will never be used, there is
6105 * no point in using a valid HSCB tag from an SCB pulled from
6106 * the standard free pool. So, we allocate this "sentinel"
6107 * specially from the DMA safe memory chunk used for the QOUTFIFO.
6108 */
6109 ahd->next_queued_hscb = (struct hardware_scb *)next_vaddr;
6110 ahd->next_queued_hscb_map = &ahd->shared_data_map;
6111 ahd->next_queued_hscb->hscb_busaddr = aic_htole32(next_baddr);
6112
6113 /* Allocate SCB data now that buffer_dmat is initialized */
6114 if (ahd_init_scbdata(ahd) != 0)
6115 return (ENOMEM);
6116
6117 if ((ahd->flags & AHD_INITIATORROLE) == 0)
6118 ahd->flags &= ~AHD_RESET_BUS_A;
6119
6120 /* Bring up the chip. */
6121 ahd_chip_init(ahd);
6122
6123 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
6124
6125 if ((ahd->flags & AHD_CURRENT_SENSING) == 0)
6126 goto init_done;
6127
6128 /*
6129 * Verify termination based on current draw and
6130 * warn user if the bus is over/under terminated.
6131 */
6132 error = ahd_write_flexport(ahd, FLXADDR_ROMSTAT_CURSENSECTL,
6133 CURSENSE_ENB);
6134 if (error != 0) {
6135 printf("%s: current sensing timeout 1\n", ahd_name(ahd));
6136 goto init_done;
6137 }
6138 for (i = 20, fstat = FLX_FSTAT_BUSY;
6139 (fstat & FLX_FSTAT_BUSY) != 0 && i; i--) {
6140 error = ahd_read_flexport(ahd, FLXADDR_FLEXSTAT, &fstat);
6141 if (error != 0) {
6142 printf("%s: current sensing timeout 2\n",
6143 ahd_name(ahd));
6144 goto init_done;
6145 }
6146 }
6147 if (i == 0) {
6148 printf("%s: Timeout during current-sensing test\n",
6149 ahd_name(ahd));
6150 goto init_done;
6151 }
6152
6153 /* Latch Current Sensing status. */
6154 error = ahd_read_flexport(ahd, FLXADDR_CURRENT_STAT, ¤t_sensing);
6155 if (error != 0) {
6156 printf("%s: current sensing timeout 3\n", ahd_name(ahd));
6157 goto init_done;
6158 }
6159
6160 /* Disable current sensing. */
6161 ahd_write_flexport(ahd, FLXADDR_ROMSTAT_CURSENSECTL, 0);
6162
6163 #ifdef AHD_DEBUG
6164 if ((ahd_debug & AHD_SHOW_TERMCTL) != 0) {
6165 printf("%s: current_sensing == 0x%x\n",
6166 ahd_name(ahd), current_sensing);
6167 }
6168 #endif
6169 warn_user = 0;
6170 for (i = 0; i < 4; i++, current_sensing >>= FLX_CSTAT_SHIFT) {
6171 u_int term_stat;
6172
6173 term_stat = (current_sensing & FLX_CSTAT_MASK);
6174 switch (term_stat) {
6175 case FLX_CSTAT_OVER:
6176 case FLX_CSTAT_UNDER:
6177 warn_user++;
6178 case FLX_CSTAT_INVALID:
6179 case FLX_CSTAT_OKAY:
6180 if (warn_user == 0 && bootverbose == 0)
6181 break;
6182 printf("%s: %s Channel %s\n", ahd_name(ahd),
6183 channel_strings[i], termstat_strings[term_stat]);
6184 break;
6185 }
6186 }
6187 if (warn_user) {
6188 printf("%s: WARNING. Termination is not configured correctly.\n"
6189 "%s: WARNING. SCSI bus operations may FAIL.\n",
6190 ahd_name(ahd), ahd_name(ahd));
6191 }
6192 init_done:
6193 ahd_reset_current_bus(ahd);
6194 ahd_restart(ahd);
6195 aic_timer_reset(&ahd->stat_timer, AHD_STAT_UPDATE_MS,
6196 ahd_stat_timer, ahd);
6197 return (0);
6198 }
6199
6200 /*
6201 * (Re)initialize chip state after a chip reset.
6202 */
6203 void
ahd_chip_init(struct ahd_softc * ahd)6204 ahd_chip_init(struct ahd_softc *ahd)
6205 {
6206 uint32_t busaddr;
6207 u_int sxfrctl1;
6208 u_int scsiseq_template;
6209 u_int wait;
6210 u_int i;
6211 u_int target;
6212
6213 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
6214 /*
6215 * Take the LED out of diagnostic mode
6216 */
6217 ahd_outb(ahd, SBLKCTL, ahd_inb(ahd, SBLKCTL) & ~(DIAGLEDEN|DIAGLEDON));
6218
6219 /*
6220 * Return HS_MAILBOX to its default value.
6221 */
6222 ahd->hs_mailbox = 0;
6223 ahd_outb(ahd, HS_MAILBOX, 0);
6224
6225 /* Set the SCSI Id, SXFRCTL0, SXFRCTL1, and SIMODE1. */
6226 ahd_outb(ahd, IOWNID, ahd->our_id);
6227 ahd_outb(ahd, TOWNID, ahd->our_id);
6228 sxfrctl1 = (ahd->flags & AHD_TERM_ENB_A) != 0 ? STPWEN : 0;
6229 sxfrctl1 |= (ahd->flags & AHD_SPCHK_ENB_A) != 0 ? ENSPCHK : 0;
6230 if ((ahd->bugs & AHD_LONG_SETIMO_BUG)
6231 && (ahd->seltime != STIMESEL_MIN)) {
6232 /*
6233 * The selection timer duration is twice as long
6234 * as it should be. Halve it by adding "1" to
6235 * the user specified setting.
6236 */
6237 sxfrctl1 |= ahd->seltime + STIMESEL_BUG_ADJ;
6238 } else {
6239 sxfrctl1 |= ahd->seltime;
6240 }
6241
6242 ahd_outb(ahd, SXFRCTL0, DFON);
6243 ahd_outb(ahd, SXFRCTL1, sxfrctl1|ahd->seltime|ENSTIMER|ACTNEGEN);
6244 ahd_outb(ahd, SIMODE1, ENSELTIMO|ENSCSIRST|ENSCSIPERR);
6245
6246 /*
6247 * Now that termination is set, wait for up
6248 * to 500ms for our transceivers to settle. If
6249 * the adapter does not have a cable attached,
6250 * the transceivers may never settle, so don't
6251 * complain if we fail here.
6252 */
6253 for (wait = 10000;
6254 (ahd_inb(ahd, SBLKCTL) & (ENAB40|ENAB20)) == 0 && wait;
6255 wait--)
6256 aic_delay(100);
6257
6258 /* Clear any false bus resets due to the transceivers settling */
6259 ahd_outb(ahd, CLRSINT1, CLRSCSIRSTI);
6260 ahd_outb(ahd, CLRINT, CLRSCSIINT);
6261
6262 /* Initialize mode specific S/G state. */
6263 for (i = 0; i < 2; i++) {
6264 ahd_set_modes(ahd, AHD_MODE_DFF0 + i, AHD_MODE_DFF0 + i);
6265 ahd_outb(ahd, LONGJMP_ADDR + 1, INVALID_ADDR);
6266 ahd_outb(ahd, SG_STATE, 0);
6267 ahd_outb(ahd, CLRSEQINTSRC, 0xFF);
6268 ahd_outb(ahd, SEQIMODE,
6269 ENSAVEPTRS|ENCFG4DATA|ENCFG4ISTAT
6270 |ENCFG4TSTAT|ENCFG4ICMD|ENCFG4TCMD);
6271 }
6272
6273 ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
6274 ahd_outb(ahd, DSCOMMAND0, ahd_inb(ahd, DSCOMMAND0)|MPARCKEN|CACHETHEN);
6275 ahd_outb(ahd, DFF_THRSH, RD_DFTHRSH_75|WR_DFTHRSH_75);
6276 ahd_outb(ahd, SIMODE0, ENIOERR|ENOVERRUN);
6277 ahd_outb(ahd, SIMODE3, ENNTRAMPERR|ENOSRAMPERR);
6278 if ((ahd->bugs & AHD_BUSFREEREV_BUG) != 0) {
6279 ahd_outb(ahd, OPTIONMODE, AUTOACKEN|AUTO_MSGOUT_DE);
6280 } else {
6281 ahd_outb(ahd, OPTIONMODE, AUTOACKEN|BUSFREEREV|AUTO_MSGOUT_DE);
6282 }
6283 ahd_outb(ahd, SCSCHKN, CURRFIFODEF|WIDERESEN|SHVALIDSTDIS);
6284 if ((ahd->chip & AHD_BUS_MASK) == AHD_PCIX)
6285 /*
6286 * Do not issue a target abort when a split completion
6287 * error occurs. Let our PCIX interrupt handler deal
6288 * with it instead. H2A4 Razor #625
6289 */
6290 ahd_outb(ahd, PCIXCTL, ahd_inb(ahd, PCIXCTL) | SPLTSTADIS);
6291
6292 if ((ahd->bugs & AHD_LQOOVERRUN_BUG) != 0)
6293 ahd_outb(ahd, LQOSCSCTL, LQONOCHKOVER);
6294
6295 /*
6296 * Tweak IOCELL settings.
6297 */
6298 if ((ahd->flags & AHD_HP_BOARD) != 0) {
6299 for (i = 0; i < NUMDSPS; i++) {
6300 ahd_outb(ahd, DSPSELECT, i);
6301 ahd_outb(ahd, WRTBIASCTL, WRTBIASCTL_HP_DEFAULT);
6302 }
6303 #ifdef AHD_DEBUG
6304 if ((ahd_debug & AHD_SHOW_MISC) != 0)
6305 printf("%s: WRTBIASCTL now 0x%x\n", ahd_name(ahd),
6306 WRTBIASCTL_HP_DEFAULT);
6307 #endif
6308 }
6309 ahd_setup_iocell_workaround(ahd);
6310
6311 /*
6312 * Enable LQI Manager interrupts.
6313 */
6314 ahd_outb(ahd, LQIMODE1, ENLQIPHASE_LQ|ENLQIPHASE_NLQ|ENLIQABORT
6315 | ENLQICRCI_LQ|ENLQICRCI_NLQ|ENLQIBADLQI
6316 | ENLQIOVERI_LQ|ENLQIOVERI_NLQ);
6317 ahd_outb(ahd, LQOMODE0, ENLQOATNLQ|ENLQOATNPKT|ENLQOTCRC);
6318 /*
6319 * We choose to have the sequencer catch LQOPHCHGINPKT errors
6320 * manually for the command phase at the start of a packetized
6321 * selection case. ENLQOBUSFREE should be made redundant by
6322 * the BUSFREE interrupt, but it seems that some LQOBUSFREE
6323 * events fail to assert the BUSFREE interrupt so we must
6324 * also enable LQOBUSFREE interrupts.
6325 */
6326 ahd_outb(ahd, LQOMODE1, ENLQOBUSFREE);
6327
6328 /*
6329 * Setup sequencer interrupt handlers.
6330 */
6331 ahd_outw(ahd, INTVEC1_ADDR, ahd_resolve_seqaddr(ahd, LABEL_seq_isr));
6332 ahd_outw(ahd, INTVEC2_ADDR, ahd_resolve_seqaddr(ahd, LABEL_timer_isr));
6333
6334 /*
6335 * Setup SCB Offset registers.
6336 */
6337 if ((ahd->bugs & AHD_PKT_LUN_BUG) != 0) {
6338 ahd_outb(ahd, LUNPTR, offsetof(struct hardware_scb,
6339 pkt_long_lun));
6340 } else {
6341 ahd_outb(ahd, LUNPTR, offsetof(struct hardware_scb, lun));
6342 }
6343 ahd_outb(ahd, CMDLENPTR, offsetof(struct hardware_scb, cdb_len));
6344 ahd_outb(ahd, ATTRPTR, offsetof(struct hardware_scb, task_attribute));
6345 ahd_outb(ahd, FLAGPTR, offsetof(struct hardware_scb, task_management));
6346 ahd_outb(ahd, CMDPTR, offsetof(struct hardware_scb,
6347 shared_data.idata.cdb));
6348 ahd_outb(ahd, QNEXTPTR,
6349 offsetof(struct hardware_scb, next_hscb_busaddr));
6350 ahd_outb(ahd, ABRTBITPTR, MK_MESSAGE_BIT_OFFSET);
6351 ahd_outb(ahd, ABRTBYTEPTR, offsetof(struct hardware_scb, control));
6352 if ((ahd->bugs & AHD_PKT_LUN_BUG) != 0) {
6353 ahd_outb(ahd, LUNLEN,
6354 sizeof(ahd->next_queued_hscb->pkt_long_lun) - 1);
6355 } else {
6356 ahd_outb(ahd, LUNLEN, LUNLEN_SINGLE_LEVEL_LUN);
6357 }
6358 ahd_outb(ahd, CDBLIMIT, SCB_CDB_LEN_PTR - 1);
6359 ahd_outb(ahd, MAXCMD, 0xFF);
6360 ahd_outb(ahd, SCBAUTOPTR,
6361 AUSCBPTR_EN | offsetof(struct hardware_scb, tag));
6362
6363 /* We haven't been enabled for target mode yet. */
6364 ahd_outb(ahd, MULTARGID, 0);
6365 ahd_outb(ahd, MULTARGID + 1, 0);
6366
6367 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
6368 /* Initialize the negotiation table. */
6369 if ((ahd->features & AHD_NEW_IOCELL_OPTS) == 0) {
6370 /*
6371 * Clear the spare bytes in the neg table to avoid
6372 * spurious parity errors.
6373 */
6374 for (target = 0; target < AHD_NUM_TARGETS; target++) {
6375 ahd_outb(ahd, NEGOADDR, target);
6376 ahd_outb(ahd, ANNEXCOL, AHD_ANNEXCOL_PER_DEV0);
6377 for (i = 0; i < AHD_NUM_PER_DEV_ANNEXCOLS; i++)
6378 ahd_outb(ahd, ANNEXDAT, 0);
6379 }
6380 }
6381 for (target = 0; target < AHD_NUM_TARGETS; target++) {
6382 struct ahd_devinfo devinfo;
6383 struct ahd_initiator_tinfo *tinfo;
6384 struct ahd_tmode_tstate *tstate;
6385
6386 tinfo = ahd_fetch_transinfo(ahd, 'A', ahd->our_id,
6387 target, &tstate);
6388 ahd_compile_devinfo(&devinfo, ahd->our_id,
6389 target, CAM_LUN_WILDCARD,
6390 'A', ROLE_INITIATOR);
6391 ahd_update_neg_table(ahd, &devinfo, &tinfo->curr);
6392 }
6393
6394 ahd_outb(ahd, CLRSINT3, NTRAMPERR|OSRAMPERR);
6395 ahd_outb(ahd, CLRINT, CLRSCSIINT);
6396
6397 #if NEEDS_MORE_TESTING
6398 /*
6399 * Always enable abort on incoming L_Qs if this feature is
6400 * supported. We use this to catch invalid SCB references.
6401 */
6402 if ((ahd->bugs & AHD_ABORT_LQI_BUG) == 0)
6403 ahd_outb(ahd, LQCTL1, ABORTPENDING);
6404 else
6405 #endif
6406 ahd_outb(ahd, LQCTL1, 0);
6407
6408 /* All of our queues are empty */
6409 ahd->qoutfifonext = 0;
6410 ahd->qoutfifonext_valid_tag = QOUTFIFO_ENTRY_VALID;
6411 ahd_outb(ahd, QOUTFIFO_ENTRY_VALID_TAG, QOUTFIFO_ENTRY_VALID);
6412 for (i = 0; i < AHD_QOUT_SIZE; i++)
6413 ahd->qoutfifo[i].valid_tag = 0;
6414 ahd_sync_qoutfifo(ahd, BUS_DMASYNC_PREREAD);
6415
6416 ahd->qinfifonext = 0;
6417 for (i = 0; i < AHD_QIN_SIZE; i++)
6418 ahd->qinfifo[i] = SCB_LIST_NULL;
6419
6420 if ((ahd->features & AHD_TARGETMODE) != 0) {
6421 /* All target command blocks start out invalid. */
6422 for (i = 0; i < AHD_TMODE_CMDS; i++)
6423 ahd->targetcmds[i].cmd_valid = 0;
6424 ahd_sync_tqinfifo(ahd, BUS_DMASYNC_PREREAD);
6425 ahd->tqinfifonext = 1;
6426 ahd_outb(ahd, KERNEL_TQINPOS, ahd->tqinfifonext - 1);
6427 ahd_outb(ahd, TQINPOS, ahd->tqinfifonext);
6428 }
6429
6430 /* Initialize Scratch Ram. */
6431 ahd_outb(ahd, SEQ_FLAGS, 0);
6432 ahd_outb(ahd, SEQ_FLAGS2, 0);
6433
6434 /* We don't have any waiting selections */
6435 ahd_outw(ahd, WAITING_TID_HEAD, SCB_LIST_NULL);
6436 ahd_outw(ahd, WAITING_TID_TAIL, SCB_LIST_NULL);
6437 ahd_outw(ahd, MK_MESSAGE_SCB, SCB_LIST_NULL);
6438 ahd_outw(ahd, MK_MESSAGE_SCSIID, 0xFF);
6439 for (i = 0; i < AHD_NUM_TARGETS; i++)
6440 ahd_outw(ahd, WAITING_SCB_TAILS + (2 * i), SCB_LIST_NULL);
6441
6442 /*
6443 * Nobody is waiting to be DMAed into the QOUTFIFO.
6444 */
6445 ahd_outw(ahd, COMPLETE_SCB_HEAD, SCB_LIST_NULL);
6446 ahd_outw(ahd, COMPLETE_SCB_DMAINPROG_HEAD, SCB_LIST_NULL);
6447 ahd_outw(ahd, COMPLETE_DMA_SCB_HEAD, SCB_LIST_NULL);
6448 ahd_outw(ahd, COMPLETE_DMA_SCB_TAIL, SCB_LIST_NULL);
6449 ahd_outw(ahd, COMPLETE_ON_QFREEZE_HEAD, SCB_LIST_NULL);
6450
6451 /*
6452 * The Freeze Count is 0.
6453 */
6454 ahd->qfreeze_cnt = 0;
6455 ahd_outw(ahd, QFREEZE_COUNT, 0);
6456 ahd_outw(ahd, KERNEL_QFREEZE_COUNT, 0);
6457
6458 /*
6459 * Tell the sequencer where it can find our arrays in memory.
6460 */
6461 busaddr = ahd->shared_data_map.busaddr;
6462 ahd_outl(ahd, SHARED_DATA_ADDR, busaddr);
6463 ahd_outl(ahd, QOUTFIFO_NEXT_ADDR, busaddr);
6464
6465 /*
6466 * Setup the allowed SCSI Sequences based on operational mode.
6467 * If we are a target, we'll enable select in operations once
6468 * we've had a lun enabled.
6469 */
6470 scsiseq_template = ENAUTOATNP;
6471 if ((ahd->flags & AHD_INITIATORROLE) != 0)
6472 scsiseq_template |= ENRSELI;
6473 ahd_outb(ahd, SCSISEQ_TEMPLATE, scsiseq_template);
6474
6475 /* There are no busy SCBs yet. */
6476 for (target = 0; target < AHD_NUM_TARGETS; target++) {
6477 int lun;
6478
6479 for (lun = 0; lun < AHD_NUM_LUNS_NONPKT; lun++)
6480 ahd_unbusy_tcl(ahd, BUILD_TCL_RAW(target, 'A', lun));
6481 }
6482
6483 /*
6484 * Initialize the group code to command length table.
6485 * Vendor Unique codes are set to 0 so we only capture
6486 * the first byte of the cdb. These can be overridden
6487 * when target mode is enabled.
6488 */
6489 ahd_outb(ahd, CMDSIZE_TABLE, 5);
6490 ahd_outb(ahd, CMDSIZE_TABLE + 1, 9);
6491 ahd_outb(ahd, CMDSIZE_TABLE + 2, 9);
6492 ahd_outb(ahd, CMDSIZE_TABLE + 3, 0);
6493 ahd_outb(ahd, CMDSIZE_TABLE + 4, 15);
6494 ahd_outb(ahd, CMDSIZE_TABLE + 5, 11);
6495 ahd_outb(ahd, CMDSIZE_TABLE + 6, 0);
6496 ahd_outb(ahd, CMDSIZE_TABLE + 7, 0);
6497
6498 /* Tell the sequencer of our initial queue positions */
6499 ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
6500 ahd_outb(ahd, QOFF_CTLSTA, SCB_QSIZE_512);
6501 ahd->qinfifonext = 0;
6502 ahd_set_hnscb_qoff(ahd, ahd->qinfifonext);
6503 ahd_set_hescb_qoff(ahd, 0);
6504 ahd_set_snscb_qoff(ahd, 0);
6505 ahd_set_sescb_qoff(ahd, 0);
6506 ahd_set_sdscb_qoff(ahd, 0);
6507
6508 /*
6509 * Tell the sequencer which SCB will be the next one it receives.
6510 */
6511 busaddr = aic_le32toh(ahd->next_queued_hscb->hscb_busaddr);
6512 ahd_outl(ahd, NEXT_QUEUED_SCB_ADDR, busaddr);
6513
6514 /*
6515 * Default to coalescing disabled.
6516 */
6517 ahd_outw(ahd, INT_COALESCING_CMDCOUNT, 0);
6518 ahd_outw(ahd, CMDS_PENDING, 0);
6519 ahd_update_coalescing_values(ahd, ahd->int_coalescing_timer,
6520 ahd->int_coalescing_maxcmds,
6521 ahd->int_coalescing_mincmds);
6522 ahd_enable_coalescing(ahd, FALSE);
6523
6524 ahd_loadseq(ahd);
6525 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
6526 }
6527
6528 /*
6529 * Setup default device and controller settings.
6530 * This should only be called if our probe has
6531 * determined that no configuration data is available.
6532 */
6533 int
ahd_default_config(struct ahd_softc * ahd)6534 ahd_default_config(struct ahd_softc *ahd)
6535 {
6536 int targ;
6537
6538 ahd->our_id = 7;
6539
6540 /*
6541 * Allocate a tstate to house information for our
6542 * initiator presence on the bus as well as the user
6543 * data for any target mode initiator.
6544 */
6545 if (ahd_alloc_tstate(ahd, ahd->our_id, 'A') == NULL) {
6546 printf("%s: unable to allocate ahd_tmode_tstate. "
6547 "Failing attach\n", ahd_name(ahd));
6548 return (ENOMEM);
6549 }
6550
6551 for (targ = 0; targ < AHD_NUM_TARGETS; targ++) {
6552 struct ahd_devinfo devinfo;
6553 struct ahd_initiator_tinfo *tinfo;
6554 struct ahd_tmode_tstate *tstate;
6555 uint16_t target_mask;
6556
6557 tinfo = ahd_fetch_transinfo(ahd, 'A', ahd->our_id,
6558 targ, &tstate);
6559 /*
6560 * We support SPC2 and SPI4.
6561 */
6562 tinfo->user.protocol_version = 4;
6563 tinfo->user.transport_version = 4;
6564
6565 target_mask = 0x01 << targ;
6566 ahd->user_discenable |= target_mask;
6567 tstate->discenable |= target_mask;
6568 ahd->user_tagenable |= target_mask;
6569 #ifdef AHD_FORCE_160
6570 tinfo->user.period = AHD_SYNCRATE_DT;
6571 #else
6572 tinfo->user.period = AHD_SYNCRATE_160;
6573 #endif
6574 tinfo->user.offset = MAX_OFFSET;
6575 tinfo->user.ppr_options = MSG_EXT_PPR_RD_STRM
6576 | MSG_EXT_PPR_WR_FLOW
6577 | MSG_EXT_PPR_HOLD_MCS
6578 | MSG_EXT_PPR_IU_REQ
6579 | MSG_EXT_PPR_QAS_REQ
6580 | MSG_EXT_PPR_DT_REQ;
6581 if ((ahd->features & AHD_RTI) != 0)
6582 tinfo->user.ppr_options |= MSG_EXT_PPR_RTI;
6583
6584 tinfo->user.width = MSG_EXT_WDTR_BUS_16_BIT;
6585
6586 /*
6587 * Start out Async/Narrow/Untagged and with
6588 * conservative protocol support.
6589 */
6590 tinfo->goal.protocol_version = 2;
6591 tinfo->goal.transport_version = 2;
6592 tinfo->curr.protocol_version = 2;
6593 tinfo->curr.transport_version = 2;
6594 ahd_compile_devinfo(&devinfo, ahd->our_id,
6595 targ, CAM_LUN_WILDCARD,
6596 'A', ROLE_INITIATOR);
6597 tstate->tagenable &= ~target_mask;
6598 ahd_set_width(ahd, &devinfo, MSG_EXT_WDTR_BUS_8_BIT,
6599 AHD_TRANS_CUR|AHD_TRANS_GOAL, /*paused*/TRUE);
6600 ahd_set_syncrate(ahd, &devinfo, /*period*/0, /*offset*/0,
6601 /*ppr_options*/0, AHD_TRANS_CUR|AHD_TRANS_GOAL,
6602 /*paused*/TRUE);
6603 }
6604 return (0);
6605 }
6606
6607 /*
6608 * Parse device configuration information.
6609 */
6610 int
ahd_parse_cfgdata(struct ahd_softc * ahd,struct seeprom_config * sc)6611 ahd_parse_cfgdata(struct ahd_softc *ahd, struct seeprom_config *sc)
6612 {
6613 int targ;
6614 int max_targ;
6615
6616 max_targ = sc->max_targets & CFMAXTARG;
6617 ahd->our_id = sc->brtime_id & CFSCSIID;
6618
6619 /*
6620 * Allocate a tstate to house information for our
6621 * initiator presence on the bus as well as the user
6622 * data for any target mode initiator.
6623 */
6624 if (ahd_alloc_tstate(ahd, ahd->our_id, 'A') == NULL) {
6625 printf("%s: unable to allocate ahd_tmode_tstate. "
6626 "Failing attach\n", ahd_name(ahd));
6627 return (ENOMEM);
6628 }
6629
6630 for (targ = 0; targ < max_targ; targ++) {
6631 struct ahd_devinfo devinfo;
6632 struct ahd_initiator_tinfo *tinfo;
6633 struct ahd_transinfo *user_tinfo;
6634 struct ahd_tmode_tstate *tstate;
6635 uint16_t target_mask;
6636
6637 tinfo = ahd_fetch_transinfo(ahd, 'A', ahd->our_id,
6638 targ, &tstate);
6639 user_tinfo = &tinfo->user;
6640
6641 /*
6642 * We support SPC2 and SPI4.
6643 */
6644 tinfo->user.protocol_version = 4;
6645 tinfo->user.transport_version = 4;
6646
6647 target_mask = 0x01 << targ;
6648 ahd->user_discenable &= ~target_mask;
6649 tstate->discenable &= ~target_mask;
6650 ahd->user_tagenable &= ~target_mask;
6651 if (sc->device_flags[targ] & CFDISC) {
6652 tstate->discenable |= target_mask;
6653 ahd->user_discenable |= target_mask;
6654 ahd->user_tagenable |= target_mask;
6655 } else {
6656 /*
6657 * Cannot be packetized without disconnection.
6658 */
6659 sc->device_flags[targ] &= ~CFPACKETIZED;
6660 }
6661
6662 user_tinfo->ppr_options = 0;
6663 user_tinfo->period = (sc->device_flags[targ] & CFXFER);
6664 if (user_tinfo->period < CFXFER_ASYNC) {
6665 if (user_tinfo->period <= AHD_PERIOD_10MHz)
6666 user_tinfo->ppr_options |= MSG_EXT_PPR_DT_REQ;
6667 user_tinfo->offset = MAX_OFFSET;
6668 } else {
6669 user_tinfo->offset = 0;
6670 user_tinfo->period = AHD_ASYNC_XFER_PERIOD;
6671 }
6672 #ifdef AHD_FORCE_160
6673 if (user_tinfo->period <= AHD_SYNCRATE_160)
6674 user_tinfo->period = AHD_SYNCRATE_DT;
6675 #endif
6676
6677 if ((sc->device_flags[targ] & CFPACKETIZED) != 0) {
6678 user_tinfo->ppr_options |= MSG_EXT_PPR_RD_STRM
6679 | MSG_EXT_PPR_WR_FLOW
6680 | MSG_EXT_PPR_HOLD_MCS
6681 | MSG_EXT_PPR_IU_REQ;
6682 if ((ahd->features & AHD_RTI) != 0)
6683 user_tinfo->ppr_options |= MSG_EXT_PPR_RTI;
6684 }
6685
6686 if ((sc->device_flags[targ] & CFQAS) != 0)
6687 user_tinfo->ppr_options |= MSG_EXT_PPR_QAS_REQ;
6688
6689 if ((sc->device_flags[targ] & CFWIDEB) != 0)
6690 user_tinfo->width = MSG_EXT_WDTR_BUS_16_BIT;
6691 else
6692 user_tinfo->width = MSG_EXT_WDTR_BUS_8_BIT;
6693 #ifdef AHD_DEBUG
6694 if ((ahd_debug & AHD_SHOW_MISC) != 0)
6695 printf("(%d): %x:%x:%x:%x\n", targ, user_tinfo->width,
6696 user_tinfo->period, user_tinfo->offset,
6697 user_tinfo->ppr_options);
6698 #endif
6699 /*
6700 * Start out Async/Narrow/Untagged and with
6701 * conservative protocol support.
6702 */
6703 tstate->tagenable &= ~target_mask;
6704 tinfo->goal.protocol_version = 2;
6705 tinfo->goal.transport_version = 2;
6706 tinfo->curr.protocol_version = 2;
6707 tinfo->curr.transport_version = 2;
6708 ahd_compile_devinfo(&devinfo, ahd->our_id,
6709 targ, CAM_LUN_WILDCARD,
6710 'A', ROLE_INITIATOR);
6711 ahd_set_width(ahd, &devinfo, MSG_EXT_WDTR_BUS_8_BIT,
6712 AHD_TRANS_CUR|AHD_TRANS_GOAL, /*paused*/TRUE);
6713 ahd_set_syncrate(ahd, &devinfo, /*period*/0, /*offset*/0,
6714 /*ppr_options*/0, AHD_TRANS_CUR|AHD_TRANS_GOAL,
6715 /*paused*/TRUE);
6716 }
6717
6718 ahd->flags &= ~AHD_SPCHK_ENB_A;
6719 if (sc->bios_control & CFSPARITY)
6720 ahd->flags |= AHD_SPCHK_ENB_A;
6721
6722 ahd->flags &= ~AHD_RESET_BUS_A;
6723 if (sc->bios_control & CFRESETB)
6724 ahd->flags |= AHD_RESET_BUS_A;
6725
6726 ahd->flags &= ~AHD_EXTENDED_TRANS_A;
6727 if (sc->bios_control & CFEXTEND)
6728 ahd->flags |= AHD_EXTENDED_TRANS_A;
6729
6730 ahd->flags &= ~AHD_BIOS_ENABLED;
6731 if ((sc->bios_control & CFBIOSSTATE) == CFBS_ENABLED)
6732 ahd->flags |= AHD_BIOS_ENABLED;
6733
6734 ahd->flags &= ~AHD_STPWLEVEL_A;
6735 if ((sc->adapter_control & CFSTPWLEVEL) != 0)
6736 ahd->flags |= AHD_STPWLEVEL_A;
6737
6738 return (0);
6739 }
6740
6741 /*
6742 * Parse device configuration information.
6743 */
6744 int
ahd_parse_vpddata(struct ahd_softc * ahd,struct vpd_config * vpd)6745 ahd_parse_vpddata(struct ahd_softc *ahd, struct vpd_config *vpd)
6746 {
6747 int error;
6748
6749 error = ahd_verify_vpd_cksum(vpd);
6750 if (error == 0)
6751 return (EINVAL);
6752 if ((vpd->bios_flags & VPDBOOTHOST) != 0)
6753 ahd->flags |= AHD_BOOT_CHANNEL;
6754 return (0);
6755 }
6756
6757 void
ahd_intr_enable(struct ahd_softc * ahd,int enable)6758 ahd_intr_enable(struct ahd_softc *ahd, int enable)
6759 {
6760 u_int hcntrl;
6761
6762 hcntrl = ahd_inb(ahd, HCNTRL);
6763 hcntrl &= ~INTEN;
6764 ahd->pause &= ~INTEN;
6765 ahd->unpause &= ~INTEN;
6766 if (enable) {
6767 hcntrl |= INTEN;
6768 ahd->pause |= INTEN;
6769 ahd->unpause |= INTEN;
6770 }
6771 ahd_outb(ahd, HCNTRL, hcntrl);
6772 }
6773
6774 void
ahd_update_coalescing_values(struct ahd_softc * ahd,u_int timer,u_int maxcmds,u_int mincmds)6775 ahd_update_coalescing_values(struct ahd_softc *ahd, u_int timer, u_int maxcmds,
6776 u_int mincmds)
6777 {
6778 if (timer > AHD_TIMER_MAX_US)
6779 timer = AHD_TIMER_MAX_US;
6780 ahd->int_coalescing_timer = timer;
6781
6782 if (maxcmds > AHD_INT_COALESCING_MAXCMDS_MAX)
6783 maxcmds = AHD_INT_COALESCING_MAXCMDS_MAX;
6784 if (mincmds > AHD_INT_COALESCING_MINCMDS_MAX)
6785 mincmds = AHD_INT_COALESCING_MINCMDS_MAX;
6786 ahd->int_coalescing_maxcmds = maxcmds;
6787 ahd_outw(ahd, INT_COALESCING_TIMER, timer / AHD_TIMER_US_PER_TICK);
6788 ahd_outb(ahd, INT_COALESCING_MAXCMDS, -maxcmds);
6789 ahd_outb(ahd, INT_COALESCING_MINCMDS, -mincmds);
6790 }
6791
6792 void
ahd_enable_coalescing(struct ahd_softc * ahd,int enable)6793 ahd_enable_coalescing(struct ahd_softc *ahd, int enable)
6794 {
6795
6796 ahd->hs_mailbox &= ~ENINT_COALESCE;
6797 if (enable)
6798 ahd->hs_mailbox |= ENINT_COALESCE;
6799 ahd_outb(ahd, HS_MAILBOX, ahd->hs_mailbox);
6800 ahd_flush_device_writes(ahd);
6801 ahd_run_qoutfifo(ahd);
6802 }
6803
6804 /*
6805 * Ensure that the card is paused in a location
6806 * outside of all critical sections and that all
6807 * pending work is completed prior to returning.
6808 * This routine should only be called from outside
6809 * an interrupt context.
6810 */
6811 void
ahd_pause_and_flushwork(struct ahd_softc * ahd)6812 ahd_pause_and_flushwork(struct ahd_softc *ahd)
6813 {
6814 u_int intstat;
6815 u_int maxloops;
6816
6817 maxloops = 1000;
6818 ahd->flags |= AHD_ALL_INTERRUPTS;
6819 ahd_pause(ahd);
6820 /*
6821 * Freeze the outgoing selections. We do this only
6822 * until we are safely paused without further selections
6823 * pending.
6824 */
6825 ahd->qfreeze_cnt--;
6826 ahd_outw(ahd, KERNEL_QFREEZE_COUNT, ahd->qfreeze_cnt);
6827 ahd_outb(ahd, SEQ_FLAGS2, ahd_inb(ahd, SEQ_FLAGS2) | SELECTOUT_QFROZEN);
6828 do {
6829
6830 ahd_unpause(ahd);
6831 /*
6832 * Give the sequencer some time to service
6833 * any active selections.
6834 */
6835 aic_delay(500);
6836
6837 ahd_intr(ahd);
6838 ahd_pause(ahd);
6839 intstat = ahd_inb(ahd, INTSTAT);
6840 if ((intstat & INT_PEND) == 0) {
6841 ahd_clear_critical_section(ahd);
6842 intstat = ahd_inb(ahd, INTSTAT);
6843 }
6844 } while (--maxloops
6845 && (intstat != 0xFF || (ahd->features & AHD_REMOVABLE) == 0)
6846 && ((intstat & INT_PEND) != 0
6847 || (ahd_inb(ahd, SCSISEQ0) & ENSELO) != 0
6848 || (ahd_inb(ahd, SSTAT0) & (SELDO|SELINGO)) != 0));
6849
6850 if (maxloops == 0) {
6851 printf("Infinite interrupt loop, INTSTAT = %x",
6852 ahd_inb(ahd, INTSTAT));
6853 }
6854 ahd->qfreeze_cnt++;
6855 ahd_outw(ahd, KERNEL_QFREEZE_COUNT, ahd->qfreeze_cnt);
6856
6857 ahd_flush_qoutfifo(ahd);
6858
6859 ahd->flags &= ~AHD_ALL_INTERRUPTS;
6860 }
6861
6862 int
ahd_suspend(struct ahd_softc * ahd)6863 ahd_suspend(struct ahd_softc *ahd)
6864 {
6865
6866 ahd_pause_and_flushwork(ahd);
6867
6868 if (!TAILQ_EMPTY(&ahd->pending_scbs)) {
6869 ahd_unpause(ahd);
6870 return (EBUSY);
6871 }
6872 ahd_shutdown(ahd);
6873 return (0);
6874 }
6875
6876 int
ahd_resume(struct ahd_softc * ahd)6877 ahd_resume(struct ahd_softc *ahd)
6878 {
6879
6880 ahd_reset(ahd, /*reinit*/TRUE);
6881 ahd_intr_enable(ahd, TRUE);
6882 ahd_restart(ahd);
6883 return (0);
6884 }
6885
6886 /************************** Busy Target Table *********************************/
6887 /*
6888 * Set SCBPTR to the SCB that contains the busy
6889 * table entry for TCL. Return the offset into
6890 * the SCB that contains the entry for TCL.
6891 * saved_scbid is dereferenced and set to the
6892 * scbid that should be restored once manipulation
6893 * of the TCL entry is complete.
6894 */
6895 u_int ahd_index_busy_tcl(struct ahd_softc *, u_int *, u_int);
6896 u_int
ahd_index_busy_tcl(struct ahd_softc * ahd,u_int * saved_scbid,u_int tcl)6897 ahd_index_busy_tcl(struct ahd_softc *ahd, u_int *saved_scbid, u_int tcl)
6898 {
6899 /*
6900 * Index to the SCB that contains the busy entry.
6901 */
6902 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
6903 *saved_scbid = ahd_get_scbptr(ahd);
6904 ahd_set_scbptr(ahd, TCL_LUN(tcl)
6905 | ((TCL_TARGET_OFFSET(tcl) & 0xC) << 4));
6906
6907 /*
6908 * And now calculate the SCB offset to the entry.
6909 * Each entry is 2 bytes wide, hence the
6910 * multiplication by 2.
6911 */
6912 return (((TCL_TARGET_OFFSET(tcl) & 0x3) << 1) + SCB_DISCONNECTED_LISTS);
6913 }
6914
6915 /*
6916 * Return the untagged transaction id for a given target/channel lun.
6917 */
6918 u_int
ahd_find_busy_tcl(struct ahd_softc * ahd,u_int tcl)6919 ahd_find_busy_tcl(struct ahd_softc *ahd, u_int tcl)
6920 {
6921 u_int scbid;
6922 u_int scb_offset;
6923 u_int saved_scbptr;
6924
6925 scb_offset = ahd_index_busy_tcl(ahd, &saved_scbptr, tcl);
6926 scbid = ahd_inw_scbram(ahd, scb_offset);
6927 ahd_set_scbptr(ahd, saved_scbptr);
6928 return (scbid);
6929 }
6930
6931 void
ahd_busy_tcl(struct ahd_softc * ahd,u_int tcl,u_int scbid)6932 ahd_busy_tcl(struct ahd_softc *ahd, u_int tcl, u_int scbid)
6933 {
6934 u_int scb_offset;
6935 u_int saved_scbptr;
6936
6937 scb_offset = ahd_index_busy_tcl(ahd, &saved_scbptr, tcl);
6938 ahd_outw(ahd, scb_offset, scbid);
6939 ahd_set_scbptr(ahd, saved_scbptr);
6940 }
6941
6942 /************************** SCB and SCB queue management **********************/
6943 int
ahd_match_scb(struct ahd_softc * ahd,struct scb * scb,int target,char channel,int lun,u_int tag,role_t role)6944 ahd_match_scb(struct ahd_softc *ahd, struct scb *scb, int target,
6945 char channel, int lun, u_int tag, role_t role)
6946 {
6947 int targ = SCB_GET_TARGET(ahd, scb);
6948 char chan = SCB_GET_CHANNEL(ahd, scb);
6949 int slun = SCB_GET_LUN(scb);
6950 int match;
6951
6952 match = ((chan == channel) || (channel == ALL_CHANNELS));
6953 if (match != 0)
6954 match = ((targ == target) || (target == CAM_TARGET_WILDCARD));
6955 if (match != 0)
6956 match = ((lun == slun) || (lun == CAM_LUN_WILDCARD));
6957 if (match != 0) {
6958 #if AHD_TARGET_MODE
6959 int group;
6960
6961 group = XPT_FC_GROUP(scb->io_ctx->ccb_h.func_code);
6962 if (role == ROLE_INITIATOR) {
6963 match = (group != XPT_FC_GROUP_TMODE)
6964 && ((tag == SCB_GET_TAG(scb))
6965 || (tag == SCB_LIST_NULL));
6966 } else if (role == ROLE_TARGET) {
6967 match = (group == XPT_FC_GROUP_TMODE)
6968 && ((tag == scb->io_ctx->csio.tag_id)
6969 || (tag == SCB_LIST_NULL));
6970 }
6971 #else /* !AHD_TARGET_MODE */
6972 match = ((tag == SCB_GET_TAG(scb)) || (tag == SCB_LIST_NULL));
6973 #endif /* AHD_TARGET_MODE */
6974 }
6975
6976 return match;
6977 }
6978
6979 void
ahd_freeze_devq(struct ahd_softc * ahd,struct scb * scb)6980 ahd_freeze_devq(struct ahd_softc *ahd, struct scb *scb)
6981 {
6982 int target;
6983 char channel;
6984 int lun;
6985
6986 target = SCB_GET_TARGET(ahd, scb);
6987 lun = SCB_GET_LUN(scb);
6988 channel = SCB_GET_CHANNEL(ahd, scb);
6989
6990 ahd_search_qinfifo(ahd, target, channel, lun,
6991 /*tag*/SCB_LIST_NULL, ROLE_UNKNOWN,
6992 CAM_REQUEUE_REQ, SEARCH_COMPLETE);
6993 }
6994
6995 void
ahd_qinfifo_requeue_tail(struct ahd_softc * ahd,struct scb * scb)6996 ahd_qinfifo_requeue_tail(struct ahd_softc *ahd, struct scb *scb)
6997 {
6998 struct scb *prev_scb;
6999 ahd_mode_state saved_modes;
7000
7001 saved_modes = ahd_save_modes(ahd);
7002 ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
7003 prev_scb = NULL;
7004 if (ahd_qinfifo_count(ahd) != 0) {
7005 u_int prev_tag;
7006 u_int prev_pos;
7007
7008 prev_pos = AHD_QIN_WRAP(ahd->qinfifonext - 1);
7009 prev_tag = ahd->qinfifo[prev_pos];
7010 prev_scb = ahd_lookup_scb(ahd, prev_tag);
7011 }
7012 ahd_qinfifo_requeue(ahd, prev_scb, scb);
7013 ahd_set_hnscb_qoff(ahd, ahd->qinfifonext);
7014 ahd_restore_modes(ahd, saved_modes);
7015 }
7016
7017 void
ahd_qinfifo_requeue(struct ahd_softc * ahd,struct scb * prev_scb,struct scb * scb)7018 ahd_qinfifo_requeue(struct ahd_softc *ahd, struct scb *prev_scb,
7019 struct scb *scb)
7020 {
7021 if (prev_scb == NULL) {
7022 uint32_t busaddr;
7023
7024 busaddr = aic_le32toh(scb->hscb->hscb_busaddr);
7025 ahd_outl(ahd, NEXT_QUEUED_SCB_ADDR, busaddr);
7026 } else {
7027 prev_scb->hscb->next_hscb_busaddr = scb->hscb->hscb_busaddr;
7028 ahd_sync_scb(ahd, prev_scb,
7029 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
7030 }
7031 ahd->qinfifo[AHD_QIN_WRAP(ahd->qinfifonext)] = SCB_GET_TAG(scb);
7032 ahd->qinfifonext++;
7033 scb->hscb->next_hscb_busaddr = ahd->next_queued_hscb->hscb_busaddr;
7034 ahd_sync_scb(ahd, scb, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
7035 }
7036
7037 int
ahd_qinfifo_count(struct ahd_softc * ahd)7038 ahd_qinfifo_count(struct ahd_softc *ahd)
7039 {
7040 u_int qinpos;
7041 u_int wrap_qinpos;
7042 u_int wrap_qinfifonext;
7043
7044 AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
7045 qinpos = ahd_get_snscb_qoff(ahd);
7046 wrap_qinpos = AHD_QIN_WRAP(qinpos);
7047 wrap_qinfifonext = AHD_QIN_WRAP(ahd->qinfifonext);
7048 if (wrap_qinfifonext >= wrap_qinpos)
7049 return (wrap_qinfifonext - wrap_qinpos);
7050 else
7051 return (wrap_qinfifonext
7052 + NUM_ELEMENTS(ahd->qinfifo) - wrap_qinpos);
7053 }
7054
7055 void
ahd_reset_cmds_pending(struct ahd_softc * ahd)7056 ahd_reset_cmds_pending(struct ahd_softc *ahd)
7057 {
7058 struct scb *scb;
7059 ahd_mode_state saved_modes;
7060 u_int pending_cmds;
7061
7062 saved_modes = ahd_save_modes(ahd);
7063 ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
7064
7065 /*
7066 * Don't count any commands as outstanding that the
7067 * sequencer has already marked for completion.
7068 */
7069 ahd_flush_qoutfifo(ahd);
7070
7071 pending_cmds = 0;
7072 TAILQ_FOREACH(scb, &ahd->pending_scbs, next) {
7073 pending_cmds++;
7074 }
7075 ahd_outw(ahd, CMDS_PENDING, pending_cmds - ahd_qinfifo_count(ahd));
7076 ahd_restore_modes(ahd, saved_modes);
7077 ahd->flags &= ~AHD_UPDATE_PEND_CMDS;
7078 }
7079
7080 void
ahd_done_with_status(struct ahd_softc * ahd,struct scb * scb,uint32_t status)7081 ahd_done_with_status(struct ahd_softc *ahd, struct scb *scb, uint32_t status)
7082 {
7083 cam_status ostat;
7084 cam_status cstat;
7085
7086 ostat = aic_get_transaction_status(scb);
7087 if (ostat == CAM_REQ_INPROG)
7088 aic_set_transaction_status(scb, status);
7089 cstat = aic_get_transaction_status(scb);
7090 if (cstat != CAM_REQ_CMP)
7091 aic_freeze_scb(scb);
7092 ahd_done(ahd, scb);
7093 }
7094
7095 int
ahd_search_qinfifo(struct ahd_softc * ahd,int target,char channel,int lun,u_int tag,role_t role,uint32_t status,ahd_search_action action)7096 ahd_search_qinfifo(struct ahd_softc *ahd, int target, char channel,
7097 int lun, u_int tag, role_t role, uint32_t status,
7098 ahd_search_action action)
7099 {
7100 struct scb *scb;
7101 struct scb *mk_msg_scb;
7102 struct scb *prev_scb;
7103 ahd_mode_state saved_modes;
7104 u_int qinstart;
7105 u_int qinpos;
7106 u_int qintail;
7107 u_int tid_next;
7108 u_int tid_prev;
7109 u_int scbid;
7110 u_int seq_flags2;
7111 u_int savedscbptr;
7112 uint32_t busaddr;
7113 int found;
7114 int targets;
7115
7116 /* Must be in CCHAN mode */
7117 saved_modes = ahd_save_modes(ahd);
7118 ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
7119
7120 /*
7121 * Halt any pending SCB DMA. The sequencer will reinitiate
7122 * this dma if the qinfifo is not empty once we unpause.
7123 */
7124 if ((ahd_inb(ahd, CCSCBCTL) & (CCARREN|CCSCBEN|CCSCBDIR))
7125 == (CCARREN|CCSCBEN|CCSCBDIR)) {
7126 ahd_outb(ahd, CCSCBCTL,
7127 ahd_inb(ahd, CCSCBCTL) & ~(CCARREN|CCSCBEN));
7128 while ((ahd_inb(ahd, CCSCBCTL) & (CCARREN|CCSCBEN)) != 0)
7129 ;
7130 }
7131 /* Determine sequencer's position in the qinfifo. */
7132 qintail = AHD_QIN_WRAP(ahd->qinfifonext);
7133 qinstart = ahd_get_snscb_qoff(ahd);
7134 qinpos = AHD_QIN_WRAP(qinstart);
7135 found = 0;
7136 prev_scb = NULL;
7137
7138 if (action == SEARCH_PRINT) {
7139 printf("qinstart = %d qinfifonext = %d\nQINFIFO:",
7140 qinstart, ahd->qinfifonext);
7141 }
7142
7143 /*
7144 * Start with an empty queue. Entries that are not chosen
7145 * for removal will be re-added to the queue as we go.
7146 */
7147 ahd->qinfifonext = qinstart;
7148 busaddr = aic_le32toh(ahd->next_queued_hscb->hscb_busaddr);
7149 ahd_outl(ahd, NEXT_QUEUED_SCB_ADDR, busaddr);
7150
7151 while (qinpos != qintail) {
7152 scb = ahd_lookup_scb(ahd, ahd->qinfifo[qinpos]);
7153 if (scb == NULL) {
7154 printf("qinpos = %d, SCB index = %d\n",
7155 qinpos, ahd->qinfifo[qinpos]);
7156 panic("Loop 1");
7157 }
7158
7159 if (ahd_match_scb(ahd, scb, target, channel, lun, tag, role)) {
7160 /*
7161 * We found an scb that needs to be acted on.
7162 */
7163 found++;
7164 switch (action) {
7165 case SEARCH_COMPLETE:
7166 if ((scb->flags & SCB_ACTIVE) == 0)
7167 printf("Inactive SCB in qinfifo\n");
7168 ahd_done_with_status(ahd, scb, status);
7169 /* FALLTHROUGH */
7170 case SEARCH_REMOVE:
7171 break;
7172 case SEARCH_PRINT:
7173 printf(" 0x%x", ahd->qinfifo[qinpos]);
7174 /* FALLTHROUGH */
7175 case SEARCH_COUNT:
7176 ahd_qinfifo_requeue(ahd, prev_scb, scb);
7177 prev_scb = scb;
7178 break;
7179 }
7180 } else {
7181 ahd_qinfifo_requeue(ahd, prev_scb, scb);
7182 prev_scb = scb;
7183 }
7184 qinpos = AHD_QIN_WRAP(qinpos+1);
7185 }
7186
7187 ahd_set_hnscb_qoff(ahd, ahd->qinfifonext);
7188
7189 if (action == SEARCH_PRINT)
7190 printf("\nWAITING_TID_QUEUES:\n");
7191
7192 /*
7193 * Search waiting for selection lists. We traverse the
7194 * list of "their ids" waiting for selection and, if
7195 * appropriate, traverse the SCBs of each "their id"
7196 * looking for matches.
7197 */
7198 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
7199 seq_flags2 = ahd_inb(ahd, SEQ_FLAGS2);
7200 if ((seq_flags2 & PENDING_MK_MESSAGE) != 0) {
7201 scbid = ahd_inw(ahd, MK_MESSAGE_SCB);
7202 mk_msg_scb = ahd_lookup_scb(ahd, scbid);
7203 } else
7204 mk_msg_scb = NULL;
7205 savedscbptr = ahd_get_scbptr(ahd);
7206 tid_next = ahd_inw(ahd, WAITING_TID_HEAD);
7207 tid_prev = SCB_LIST_NULL;
7208 targets = 0;
7209 for (scbid = tid_next; !SCBID_IS_NULL(scbid); scbid = tid_next) {
7210 u_int tid_head;
7211 u_int tid_tail;
7212
7213 targets++;
7214 if (targets > AHD_NUM_TARGETS)
7215 panic("TID LIST LOOP");
7216
7217 if (scbid >= ahd->scb_data.numscbs) {
7218 printf("%s: Waiting TID List inconsistency. "
7219 "SCB index == 0x%x, yet numscbs == 0x%x.",
7220 ahd_name(ahd), scbid, ahd->scb_data.numscbs);
7221 ahd_dump_card_state(ahd);
7222 panic("for safety");
7223 }
7224 scb = ahd_lookup_scb(ahd, scbid);
7225 if (scb == NULL) {
7226 printf("%s: SCB = 0x%x Not Active!\n",
7227 ahd_name(ahd), scbid);
7228 panic("Waiting TID List traversal");
7229 }
7230 ahd_set_scbptr(ahd, scbid);
7231 tid_next = ahd_inw_scbram(ahd, SCB_NEXT2);
7232 if (ahd_match_scb(ahd, scb, target, channel, CAM_LUN_WILDCARD,
7233 SCB_LIST_NULL, ROLE_UNKNOWN) == 0) {
7234 tid_prev = scbid;
7235 continue;
7236 }
7237
7238 /*
7239 * We found a list of scbs that needs to be searched.
7240 */
7241 if (action == SEARCH_PRINT)
7242 printf(" %d ( ", SCB_GET_TARGET(ahd, scb));
7243 tid_head = scbid;
7244 found += ahd_search_scb_list(ahd, target, channel,
7245 lun, tag, role, status,
7246 action, &tid_head, &tid_tail,
7247 SCB_GET_TARGET(ahd, scb));
7248 /*
7249 * Check any MK_MESSAGE SCB that is still waiting to
7250 * enter this target's waiting for selection queue.
7251 */
7252 if (mk_msg_scb != NULL
7253 && ahd_match_scb(ahd, mk_msg_scb, target, channel,
7254 lun, tag, role)) {
7255
7256 /*
7257 * We found an scb that needs to be acted on.
7258 */
7259 found++;
7260 switch (action) {
7261 case SEARCH_COMPLETE:
7262 if ((mk_msg_scb->flags & SCB_ACTIVE) == 0)
7263 printf("Inactive SCB pending MK_MSG\n");
7264 ahd_done_with_status(ahd, mk_msg_scb, status);
7265 /* FALLTHROUGH */
7266 case SEARCH_REMOVE:
7267 {
7268 u_int tail_offset;
7269
7270 printf("Removing MK_MSG scb\n");
7271
7272 /*
7273 * Reset our tail to the tail of the
7274 * main per-target list.
7275 */
7276 tail_offset = WAITING_SCB_TAILS
7277 + (2 * SCB_GET_TARGET(ahd, mk_msg_scb));
7278 ahd_outw(ahd, tail_offset, tid_tail);
7279
7280 seq_flags2 &= ~PENDING_MK_MESSAGE;
7281 ahd_outb(ahd, SEQ_FLAGS2, seq_flags2);
7282 ahd_outw(ahd, CMDS_PENDING,
7283 ahd_inw(ahd, CMDS_PENDING)-1);
7284 mk_msg_scb = NULL;
7285 break;
7286 }
7287 case SEARCH_PRINT:
7288 printf(" 0x%x", SCB_GET_TAG(scb));
7289 /* FALLTHROUGH */
7290 case SEARCH_COUNT:
7291 break;
7292 }
7293 }
7294
7295 if (mk_msg_scb != NULL
7296 && SCBID_IS_NULL(tid_head)
7297 && ahd_match_scb(ahd, scb, target, channel, CAM_LUN_WILDCARD,
7298 SCB_LIST_NULL, ROLE_UNKNOWN)) {
7299
7300 /*
7301 * When removing the last SCB for a target
7302 * queue with a pending MK_MESSAGE scb, we
7303 * must queue the MK_MESSAGE scb.
7304 */
7305 printf("Queueing mk_msg_scb\n");
7306 tid_head = ahd_inw(ahd, MK_MESSAGE_SCB);
7307 seq_flags2 &= ~PENDING_MK_MESSAGE;
7308 ahd_outb(ahd, SEQ_FLAGS2, seq_flags2);
7309 mk_msg_scb = NULL;
7310 }
7311 if (tid_head != scbid)
7312 ahd_stitch_tid_list(ahd, tid_prev, tid_head, tid_next);
7313 if (!SCBID_IS_NULL(tid_head))
7314 tid_prev = tid_head;
7315 if (action == SEARCH_PRINT)
7316 printf(")\n");
7317 }
7318
7319 /* Restore saved state. */
7320 ahd_set_scbptr(ahd, savedscbptr);
7321 ahd_restore_modes(ahd, saved_modes);
7322 return (found);
7323 }
7324
7325 int
ahd_search_scb_list(struct ahd_softc * ahd,int target,char channel,int lun,u_int tag,role_t role,uint32_t status,ahd_search_action action,u_int * list_head,u_int * list_tail,u_int tid)7326 ahd_search_scb_list(struct ahd_softc *ahd, int target, char channel,
7327 int lun, u_int tag, role_t role, uint32_t status,
7328 ahd_search_action action, u_int *list_head,
7329 u_int *list_tail, u_int tid)
7330 {
7331 struct scb *scb;
7332 u_int scbid;
7333 u_int next;
7334 u_int prev;
7335 int found;
7336
7337 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
7338 found = 0;
7339 prev = SCB_LIST_NULL;
7340 next = *list_head;
7341 *list_tail = SCB_LIST_NULL;
7342 for (scbid = next; !SCBID_IS_NULL(scbid); scbid = next) {
7343 if (scbid >= ahd->scb_data.numscbs) {
7344 printf("%s:SCB List inconsistency. "
7345 "SCB == 0x%x, yet numscbs == 0x%x.",
7346 ahd_name(ahd), scbid, ahd->scb_data.numscbs);
7347 ahd_dump_card_state(ahd);
7348 panic("for safety");
7349 }
7350 scb = ahd_lookup_scb(ahd, scbid);
7351 if (scb == NULL) {
7352 printf("%s: SCB = %d Not Active!\n",
7353 ahd_name(ahd), scbid);
7354 panic("Waiting List traversal");
7355 }
7356 ahd_set_scbptr(ahd, scbid);
7357 *list_tail = scbid;
7358 next = ahd_inw_scbram(ahd, SCB_NEXT);
7359 if (ahd_match_scb(ahd, scb, target, channel,
7360 lun, SCB_LIST_NULL, role) == 0) {
7361 prev = scbid;
7362 continue;
7363 }
7364 found++;
7365 switch (action) {
7366 case SEARCH_COMPLETE:
7367 if ((scb->flags & SCB_ACTIVE) == 0)
7368 printf("Inactive SCB in Waiting List\n");
7369 ahd_done_with_status(ahd, scb, status);
7370 /* FALLTHROUGH */
7371 case SEARCH_REMOVE:
7372 ahd_rem_wscb(ahd, scbid, prev, next, tid);
7373 *list_tail = prev;
7374 if (SCBID_IS_NULL(prev))
7375 *list_head = next;
7376 break;
7377 case SEARCH_PRINT:
7378 printf("0x%x ", scbid);
7379 case SEARCH_COUNT:
7380 prev = scbid;
7381 break;
7382 }
7383 if (found > AHD_SCB_MAX)
7384 panic("SCB LIST LOOP");
7385 }
7386 if (action == SEARCH_COMPLETE
7387 || action == SEARCH_REMOVE)
7388 ahd_outw(ahd, CMDS_PENDING, ahd_inw(ahd, CMDS_PENDING) - found);
7389 return (found);
7390 }
7391
7392 void
ahd_stitch_tid_list(struct ahd_softc * ahd,u_int tid_prev,u_int tid_cur,u_int tid_next)7393 ahd_stitch_tid_list(struct ahd_softc *ahd, u_int tid_prev,
7394 u_int tid_cur, u_int tid_next)
7395 {
7396 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
7397
7398 if (SCBID_IS_NULL(tid_cur)) {
7399
7400 /* Bypass current TID list */
7401 if (SCBID_IS_NULL(tid_prev)) {
7402 ahd_outw(ahd, WAITING_TID_HEAD, tid_next);
7403 } else {
7404 ahd_set_scbptr(ahd, tid_prev);
7405 ahd_outw(ahd, SCB_NEXT2, tid_next);
7406 }
7407 if (SCBID_IS_NULL(tid_next))
7408 ahd_outw(ahd, WAITING_TID_TAIL, tid_prev);
7409 } else {
7410
7411 /* Stitch through tid_cur */
7412 if (SCBID_IS_NULL(tid_prev)) {
7413 ahd_outw(ahd, WAITING_TID_HEAD, tid_cur);
7414 } else {
7415 ahd_set_scbptr(ahd, tid_prev);
7416 ahd_outw(ahd, SCB_NEXT2, tid_cur);
7417 }
7418 ahd_set_scbptr(ahd, tid_cur);
7419 ahd_outw(ahd, SCB_NEXT2, tid_next);
7420
7421 if (SCBID_IS_NULL(tid_next))
7422 ahd_outw(ahd, WAITING_TID_TAIL, tid_cur);
7423 }
7424 }
7425
7426 /*
7427 * Manipulate the waiting for selection list and return the
7428 * scb that follows the one that we remove.
7429 */
7430 u_int
ahd_rem_wscb(struct ahd_softc * ahd,u_int scbid,u_int prev,u_int next,u_int tid)7431 ahd_rem_wscb(struct ahd_softc *ahd, u_int scbid,
7432 u_int prev, u_int next, u_int tid)
7433 {
7434 u_int tail_offset;
7435
7436 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
7437 if (!SCBID_IS_NULL(prev)) {
7438 ahd_set_scbptr(ahd, prev);
7439 ahd_outw(ahd, SCB_NEXT, next);
7440 }
7441
7442 /*
7443 * SCBs that have MK_MESSAGE set in them may
7444 * cause the tail pointer to be updated without
7445 * setting the next pointer of the previous tail.
7446 * Only clear the tail if the removed SCB was
7447 * the tail.
7448 */
7449 tail_offset = WAITING_SCB_TAILS + (2 * tid);
7450 if (SCBID_IS_NULL(next)
7451 && ahd_inw(ahd, tail_offset) == scbid)
7452 ahd_outw(ahd, tail_offset, prev);
7453
7454 ahd_add_scb_to_free_list(ahd, scbid);
7455 return (next);
7456 }
7457
7458 /*
7459 * Add the SCB as selected by SCBPTR onto the on chip list of
7460 * free hardware SCBs. This list is empty/unused if we are not
7461 * performing SCB paging.
7462 */
7463 void
ahd_add_scb_to_free_list(struct ahd_softc * ahd,u_int scbid)7464 ahd_add_scb_to_free_list(struct ahd_softc *ahd, u_int scbid)
7465 {
7466 /* XXX Need some other mechanism to designate "free". */
7467 /*
7468 * Invalidate the tag so that our abort
7469 * routines don't think it's active.
7470 ahd_outb(ahd, SCB_TAG, SCB_LIST_NULL);
7471 */
7472 }
7473
7474 /******************************** Error Handling ******************************/
7475 /*
7476 * Abort all SCBs that match the given description (target/channel/lun/tag),
7477 * setting their status to the passed in status if the status has not already
7478 * been modified from CAM_REQ_INPROG. This routine assumes that the sequencer
7479 * is paused before it is called.
7480 */
7481 int
ahd_abort_scbs(struct ahd_softc * ahd,int target,char channel,int lun,u_int tag,role_t role,uint32_t status)7482 ahd_abort_scbs(struct ahd_softc *ahd, int target, char channel,
7483 int lun, u_int tag, role_t role, uint32_t status)
7484 {
7485 struct scb *scbp;
7486 struct scb *scbp_next;
7487 u_int i, j;
7488 u_int maxtarget;
7489 u_int minlun;
7490 u_int maxlun;
7491 int found;
7492 ahd_mode_state saved_modes;
7493
7494 /* restore this when we're done */
7495 saved_modes = ahd_save_modes(ahd);
7496 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
7497
7498 found = ahd_search_qinfifo(ahd, target, channel, lun, SCB_LIST_NULL,
7499 role, CAM_REQUEUE_REQ, SEARCH_COMPLETE);
7500
7501 /*
7502 * Clean out the busy target table for any untagged commands.
7503 */
7504 i = 0;
7505 maxtarget = 16;
7506 if (target != CAM_TARGET_WILDCARD) {
7507 i = target;
7508 if (channel == 'B')
7509 i += 8;
7510 maxtarget = i + 1;
7511 }
7512
7513 if (lun == CAM_LUN_WILDCARD) {
7514 minlun = 0;
7515 maxlun = AHD_NUM_LUNS_NONPKT;
7516 } else if (lun >= AHD_NUM_LUNS_NONPKT) {
7517 minlun = maxlun = 0;
7518 } else {
7519 minlun = lun;
7520 maxlun = lun + 1;
7521 }
7522
7523 if (role != ROLE_TARGET) {
7524 for (;i < maxtarget; i++) {
7525 for (j = minlun;j < maxlun; j++) {
7526 u_int scbid;
7527 u_int tcl;
7528
7529 tcl = BUILD_TCL_RAW(i, 'A', j);
7530 scbid = ahd_find_busy_tcl(ahd, tcl);
7531 scbp = ahd_lookup_scb(ahd, scbid);
7532 if (scbp == NULL
7533 || ahd_match_scb(ahd, scbp, target, channel,
7534 lun, tag, role) == 0)
7535 continue;
7536 ahd_unbusy_tcl(ahd, BUILD_TCL_RAW(i, 'A', j));
7537 }
7538 }
7539 }
7540
7541 /*
7542 * Don't abort commands that have already completed,
7543 * but haven't quite made it up to the host yet.
7544 */
7545 ahd_flush_qoutfifo(ahd);
7546
7547 /*
7548 * Go through the pending CCB list and look for
7549 * commands for this target that are still active.
7550 * These are other tagged commands that were
7551 * disconnected when the reset occurred.
7552 */
7553 scbp_next = TAILQ_FIRST(&ahd->pending_scbs);
7554 while (scbp_next != NULL) {
7555 scbp = scbp_next;
7556 scbp_next = TAILQ_NEXT(scbp, next);
7557 if (ahd_match_scb(ahd, scbp, target, channel, lun, tag, role)) {
7558 cam_status ostat;
7559
7560 ostat = aic_get_transaction_status(scbp);
7561 if (ostat == CAM_REQ_INPROG)
7562 aic_set_transaction_status(scbp, status);
7563 if (aic_get_transaction_status(scbp) != CAM_REQ_CMP)
7564 aic_freeze_scb(scbp);
7565 if ((scbp->flags & SCB_ACTIVE) == 0)
7566 printf("Inactive SCB on pending list\n");
7567 ahd_done(ahd, scbp);
7568 found++;
7569 }
7570 }
7571 ahd_restore_modes(ahd, saved_modes);
7572 ahd->flags |= AHD_UPDATE_PEND_CMDS;
7573 return found;
7574 }
7575
7576 void
ahd_reset_current_bus(struct ahd_softc * ahd)7577 ahd_reset_current_bus(struct ahd_softc *ahd)
7578 {
7579 uint8_t scsiseq;
7580
7581 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
7582 ahd_outb(ahd, SIMODE1, ahd_inb(ahd, SIMODE1) & ~ENSCSIRST);
7583 scsiseq = ahd_inb(ahd, SCSISEQ0) & ~(ENSELO|ENARBO|SCSIRSTO);
7584 ahd_outb(ahd, SCSISEQ0, scsiseq | SCSIRSTO);
7585 ahd_flush_device_writes(ahd);
7586 aic_delay(AHD_BUSRESET_DELAY);
7587 /* Turn off the bus reset */
7588 ahd_outb(ahd, SCSISEQ0, scsiseq);
7589 ahd_flush_device_writes(ahd);
7590 aic_delay(AHD_BUSRESET_DELAY);
7591 if ((ahd->bugs & AHD_SCSIRST_BUG) != 0) {
7592 /*
7593 * 2A Razor #474
7594 * Certain chip state is not cleared for
7595 * SCSI bus resets that we initiate, so
7596 * we must reset the chip.
7597 */
7598 ahd_reset(ahd, /*reinit*/TRUE);
7599 ahd_intr_enable(ahd, /*enable*/TRUE);
7600 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
7601 }
7602
7603 ahd_clear_intstat(ahd);
7604 }
7605
7606 int
ahd_reset_channel(struct ahd_softc * ahd,char channel,int initiate_reset)7607 ahd_reset_channel(struct ahd_softc *ahd, char channel, int initiate_reset)
7608 {
7609 u_int initiator;
7610 u_int target;
7611 u_int max_scsiid;
7612 int found;
7613 u_int fifo;
7614 u_int next_fifo;
7615
7616 ahd->pending_device = NULL;
7617
7618 ahd_pause(ahd);
7619
7620 /* Make sure the sequencer is in a safe location. */
7621 ahd_clear_critical_section(ahd);
7622
7623 #if AHD_TARGET_MODE
7624 if ((ahd->flags & AHD_TARGETROLE) != 0) {
7625 ahd_run_tqinfifo(ahd, /*paused*/TRUE);
7626 }
7627 #endif
7628 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
7629
7630 /*
7631 * Disable selections so no automatic hardware
7632 * functions will modify chip state.
7633 */
7634 ahd_outb(ahd, SCSISEQ0, 0);
7635 ahd_outb(ahd, SCSISEQ1, 0);
7636
7637 /*
7638 * Safely shut down our DMA engines. Always start with
7639 * the FIFO that is not currently active (if any are
7640 * actively connected).
7641 */
7642 next_fifo = fifo = ahd_inb(ahd, DFFSTAT) & CURRFIFO;
7643 if (next_fifo > CURRFIFO_1)
7644 /* If disconnected, arbitrarily start with FIFO1. */
7645 next_fifo = fifo = 0;
7646 do {
7647 next_fifo ^= CURRFIFO_1;
7648 ahd_set_modes(ahd, next_fifo, next_fifo);
7649 ahd_outb(ahd, DFCNTRL,
7650 ahd_inb(ahd, DFCNTRL) & ~(SCSIEN|HDMAEN));
7651 while ((ahd_inb(ahd, DFCNTRL) & HDMAENACK) != 0)
7652 aic_delay(10);
7653 /*
7654 * Set CURRFIFO to the now inactive channel.
7655 */
7656 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
7657 ahd_outb(ahd, DFFSTAT, next_fifo);
7658 } while (next_fifo != fifo);
7659
7660 /*
7661 * Reset the bus if we are initiating this reset
7662 */
7663 ahd_clear_msg_state(ahd);
7664 ahd_outb(ahd, SIMODE1,
7665 ahd_inb(ahd, SIMODE1) & ~(ENBUSFREE|ENSCSIRST));
7666
7667 if (initiate_reset)
7668 ahd_reset_current_bus(ahd);
7669
7670 ahd_clear_intstat(ahd);
7671
7672 /*
7673 * Clean up all the state information for the
7674 * pending transactions on this bus.
7675 */
7676 found = ahd_abort_scbs(ahd, CAM_TARGET_WILDCARD, channel,
7677 CAM_LUN_WILDCARD, SCB_LIST_NULL,
7678 ROLE_UNKNOWN, CAM_SCSI_BUS_RESET);
7679
7680 /*
7681 * Cleanup anything left in the FIFOs.
7682 */
7683 ahd_clear_fifo(ahd, 0);
7684 ahd_clear_fifo(ahd, 1);
7685
7686 /*
7687 * Revert to async/narrow transfers until we renegotiate.
7688 */
7689 max_scsiid = (ahd->features & AHD_WIDE) ? 15 : 7;
7690 for (target = 0; target <= max_scsiid; target++) {
7691
7692 if (ahd->enabled_targets[target] == NULL)
7693 continue;
7694 for (initiator = 0; initiator <= max_scsiid; initiator++) {
7695 struct ahd_devinfo devinfo;
7696
7697 ahd_compile_devinfo(&devinfo, target, initiator,
7698 CAM_LUN_WILDCARD,
7699 'A', ROLE_UNKNOWN);
7700 ahd_set_width(ahd, &devinfo, MSG_EXT_WDTR_BUS_8_BIT,
7701 AHD_TRANS_CUR, /*paused*/TRUE);
7702 ahd_set_syncrate(ahd, &devinfo, /*period*/0,
7703 /*offset*/0, /*ppr_options*/0,
7704 AHD_TRANS_CUR, /*paused*/TRUE);
7705 }
7706 }
7707
7708 #ifdef AHD_TARGET_MODE
7709 max_scsiid = (ahd->features & AHD_WIDE) ? 15 : 7;
7710
7711 /*
7712 * Send an immediate notify ccb to all target more peripheral
7713 * drivers affected by this action.
7714 */
7715 for (target = 0; target <= max_scsiid; target++) {
7716 struct ahd_tmode_tstate* tstate;
7717 u_int lun;
7718
7719 tstate = ahd->enabled_targets[target];
7720 if (tstate == NULL)
7721 continue;
7722 for (lun = 0; lun < AHD_NUM_LUNS; lun++) {
7723 struct ahd_tmode_lstate* lstate;
7724
7725 lstate = tstate->enabled_luns[lun];
7726 if (lstate == NULL)
7727 continue;
7728
7729 ahd_queue_lstate_event(ahd, lstate, CAM_TARGET_WILDCARD,
7730 EVENT_TYPE_BUS_RESET, /*arg*/0);
7731 ahd_send_lstate_events(ahd, lstate);
7732 }
7733 }
7734 #endif
7735 #if 0
7736 /* Notify the XPT that a bus reset occurred */
7737 ahd_send_async(ahd, devinfo.channel, CAM_TARGET_WILDCARD,
7738 CAM_LUN_WILDCARD, AC_BUS_RESET, NULL);
7739 #endif
7740 ahd_restart(ahd);
7741 /*
7742 * Freeze the SIMQ until our poller can determine that
7743 * the bus reset has really gone away. We set the initial
7744 * timer to 0 to have the check performed as soon as possible
7745 * from the timer context.
7746 */
7747 if ((ahd->flags & AHD_RESET_POLL_ACTIVE) == 0) {
7748 ahd->flags |= AHD_RESET_POLL_ACTIVE;
7749 aic_freeze_simq(ahd);
7750 aic_timer_reset(&ahd->reset_timer, 0, ahd_reset_poll, ahd);
7751 }
7752 return (found);
7753 }
7754
7755
7756 #define AHD_RESET_POLL_MS 1
7757 void
ahd_reset_poll(void * arg)7758 ahd_reset_poll(void *arg)
7759 {
7760 struct ahd_softc *ahd;
7761 u_int scsiseq1;
7762 int l;
7763 int s;
7764
7765 ahd_list_lock(&l);
7766 ahd = ahd_find_softc((struct ahd_softc *)arg);
7767 if (ahd == NULL) {
7768 printf("ahd_reset_poll: Instance %p no longer exists\n", arg);
7769 ahd_list_unlock(&l);
7770 return;
7771 }
7772 ahd_lock(ahd, &s);
7773 ahd_pause(ahd);
7774 ahd_update_modes(ahd);
7775 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
7776 ahd_outb(ahd, CLRSINT1, CLRSCSIRSTI);
7777 if ((ahd_inb(ahd, SSTAT1) & SCSIRSTI) != 0) {
7778 aic_timer_reset(&ahd->reset_timer, AHD_RESET_POLL_MS,
7779 ahd_reset_poll, ahd);
7780 ahd_unpause(ahd);
7781 ahd_unlock(ahd, &s);
7782 ahd_list_unlock(&l);
7783 return;
7784 }
7785
7786 /* Reset is now low. Complete chip reinitialization. */
7787 ahd_outb(ahd, SIMODE1, ahd_inb(ahd, SIMODE1) | ENSCSIRST);
7788 scsiseq1 = ahd_inb(ahd, SCSISEQ_TEMPLATE);
7789 ahd_outb(ahd, SCSISEQ1, scsiseq1 & (ENSELI|ENRSELI|ENAUTOATNP));
7790 ahd_unpause(ahd);
7791 ahd->flags &= ~AHD_RESET_POLL_ACTIVE;
7792 ahd_unlock(ahd, &s);
7793 aic_release_simq(ahd);
7794 ahd_list_unlock(&l);
7795 }
7796
7797 /**************************** Statistics Processing ***************************/
7798 void
ahd_stat_timer(void * arg)7799 ahd_stat_timer(void *arg)
7800 {
7801 struct ahd_softc *ahd;
7802 int l;
7803 int s;
7804 int enint_coal;
7805
7806 ahd_list_lock(&l);
7807 ahd = ahd_find_softc((struct ahd_softc *)arg);
7808 if (ahd == NULL) {
7809 printf("ahd_stat_timer: Instance %p no longer exists\n", arg);
7810 ahd_list_unlock(&l);
7811 return;
7812 }
7813 ahd_lock(ahd, &s);
7814
7815 enint_coal = ahd->hs_mailbox & ENINT_COALESCE;
7816 if (ahd->cmdcmplt_total > ahd->int_coalescing_threshold)
7817 enint_coal |= ENINT_COALESCE;
7818 else if (ahd->cmdcmplt_total < ahd->int_coalescing_stop_threshold)
7819 enint_coal &= ~ENINT_COALESCE;
7820
7821 if (enint_coal != (ahd->hs_mailbox & ENINT_COALESCE)) {
7822 ahd_enable_coalescing(ahd, enint_coal);
7823 #ifdef AHD_DEBUG
7824 if ((ahd_debug & AHD_SHOW_INT_COALESCING) != 0)
7825 printf("%s: Interrupt coalescing "
7826 "now %sabled. Cmds %d\n",
7827 ahd_name(ahd),
7828 (enint_coal & ENINT_COALESCE) ? "en" : "dis",
7829 ahd->cmdcmplt_total);
7830 #endif
7831 }
7832
7833 ahd->cmdcmplt_bucket = (ahd->cmdcmplt_bucket+1) & (AHD_STAT_BUCKETS-1);
7834 ahd->cmdcmplt_total -= ahd->cmdcmplt_counts[ahd->cmdcmplt_bucket];
7835 ahd->cmdcmplt_counts[ahd->cmdcmplt_bucket] = 0;
7836 aic_timer_reset(&ahd->stat_timer, AHD_STAT_UPDATE_MS,
7837 ahd_stat_timer, ahd);
7838 ahd_unlock(ahd, &s);
7839 ahd_list_unlock(&l);
7840 }
7841
7842 /****************************** Status Processing *****************************/
7843 void
ahd_handle_scb_status(struct ahd_softc * ahd,struct scb * scb)7844 ahd_handle_scb_status(struct ahd_softc *ahd, struct scb *scb)
7845 {
7846 if (scb->hscb->shared_data.istatus.scsi_status != 0) {
7847 ahd_handle_scsi_status(ahd, scb);
7848 } else {
7849 ahd_calc_residual(ahd, scb);
7850 ahd_done(ahd, scb);
7851 }
7852 }
7853
7854 void
ahd_handle_scsi_status(struct ahd_softc * ahd,struct scb * scb)7855 ahd_handle_scsi_status(struct ahd_softc *ahd, struct scb *scb)
7856 {
7857 struct hardware_scb *hscb;
7858 int paused;
7859
7860 /*
7861 * The sequencer freezes its select-out queue
7862 * anytime a SCSI status error occurs. We must
7863 * handle the error and increment our qfreeze count
7864 * to allow the sequencer to continue. We don't
7865 * bother clearing critical sections here since all
7866 * operations are on data structures that the sequencer
7867 * is not touching once the queue is frozen.
7868 */
7869 hscb = scb->hscb;
7870
7871 if (ahd_is_paused(ahd)) {
7872 paused = 1;
7873 } else {
7874 paused = 0;
7875 ahd_pause(ahd);
7876 }
7877
7878 /* Freeze the queue until the client sees the error. */
7879 ahd_freeze_devq(ahd, scb);
7880 aic_freeze_scb(scb);
7881 ahd->qfreeze_cnt++;
7882 ahd_outw(ahd, KERNEL_QFREEZE_COUNT, ahd->qfreeze_cnt);
7883
7884 if (paused == 0)
7885 ahd_unpause(ahd);
7886
7887 /* Don't want to clobber the original sense code */
7888 if ((scb->flags & SCB_SENSE) != 0) {
7889 /*
7890 * Clear the SCB_SENSE Flag and perform
7891 * a normal command completion.
7892 */
7893 scb->flags &= ~SCB_SENSE;
7894 aic_set_transaction_status(scb, CAM_AUTOSENSE_FAIL);
7895 ahd_done(ahd, scb);
7896 return;
7897 }
7898 aic_set_transaction_status(scb, CAM_SCSI_STATUS_ERROR);
7899 aic_set_scsi_status(scb, hscb->shared_data.istatus.scsi_status);
7900 switch (hscb->shared_data.istatus.scsi_status) {
7901 case STATUS_PKT_SENSE:
7902 {
7903 struct scsi_status_iu_header *siu;
7904
7905 ahd_sync_sense(ahd, scb, BUS_DMASYNC_POSTREAD);
7906 siu = (struct scsi_status_iu_header *)scb->sense_data;
7907 aic_set_scsi_status(scb, siu->status);
7908 #ifdef AHD_DEBUG
7909 if ((ahd_debug & AHD_SHOW_SENSE) != 0) {
7910 ahd_print_path(ahd, scb);
7911 printf("SCB 0x%x Received PKT Status of 0x%x\n",
7912 SCB_GET_TAG(scb), siu->status);
7913 printf("\tflags = 0x%x, sense len = 0x%x, "
7914 "pktfail = 0x%x\n",
7915 siu->flags, scsi_4btoul(siu->sense_length),
7916 scsi_4btoul(siu->pkt_failures_length));
7917 }
7918 #endif
7919 if ((siu->flags & SIU_RSPVALID) != 0) {
7920 ahd_print_path(ahd, scb);
7921 if (scsi_4btoul(siu->pkt_failures_length) < 4) {
7922 printf("Unable to parse pkt_failures\n");
7923 } else {
7924
7925 switch (SIU_PKTFAIL_CODE(siu)) {
7926 case SIU_PFC_NONE:
7927 printf("No packet failure found\n");
7928 break;
7929 case SIU_PFC_CIU_FIELDS_INVALID:
7930 printf("Invalid Command IU Field\n");
7931 break;
7932 case SIU_PFC_TMF_NOT_SUPPORTED:
7933 printf("TMF not supported\n");
7934 break;
7935 case SIU_PFC_TMF_FAILED:
7936 printf("TMF failed\n");
7937 break;
7938 case SIU_PFC_INVALID_TYPE_CODE:
7939 printf("Invalid L_Q Type code\n");
7940 break;
7941 case SIU_PFC_ILLEGAL_REQUEST:
7942 printf("Illegal request\n");
7943 default:
7944 break;
7945 }
7946 }
7947 if (siu->status == SCSI_STATUS_OK)
7948 aic_set_transaction_status(scb,
7949 CAM_REQ_CMP_ERR);
7950 }
7951 if ((siu->flags & SIU_SNSVALID) != 0) {
7952 scb->flags |= SCB_PKT_SENSE;
7953 #ifdef AHD_DEBUG
7954 if ((ahd_debug & AHD_SHOW_SENSE) != 0)
7955 printf("Sense data available\n");
7956 #endif
7957 }
7958 ahd_done(ahd, scb);
7959 break;
7960 }
7961 case SCSI_STATUS_CMD_TERMINATED:
7962 case SCSI_STATUS_CHECK_COND:
7963 {
7964 struct ahd_devinfo devinfo;
7965 struct ahd_dma_seg *sg;
7966 struct scsi_sense *sc;
7967 struct ahd_initiator_tinfo *targ_info;
7968 struct ahd_tmode_tstate *tstate;
7969 struct ahd_transinfo *tinfo;
7970 #ifdef AHD_DEBUG
7971 if (ahd_debug & AHD_SHOW_SENSE) {
7972 ahd_print_path(ahd, scb);
7973 printf("SCB %d: requests Check Status\n",
7974 SCB_GET_TAG(scb));
7975 }
7976 #endif
7977
7978 if (aic_perform_autosense(scb) == 0)
7979 break;
7980
7981 ahd_compile_devinfo(&devinfo, SCB_GET_OUR_ID(scb),
7982 SCB_GET_TARGET(ahd, scb),
7983 SCB_GET_LUN(scb),
7984 SCB_GET_CHANNEL(ahd, scb),
7985 ROLE_INITIATOR);
7986 targ_info = ahd_fetch_transinfo(ahd,
7987 devinfo.channel,
7988 devinfo.our_scsiid,
7989 devinfo.target,
7990 &tstate);
7991 tinfo = &targ_info->curr;
7992 sg = scb->sg_list;
7993 sc = (struct scsi_sense *)hscb->shared_data.idata.cdb;
7994 /*
7995 * Save off the residual if there is one.
7996 */
7997 ahd_update_residual(ahd, scb);
7998 #ifdef AHD_DEBUG
7999 if (ahd_debug & AHD_SHOW_SENSE) {
8000 ahd_print_path(ahd, scb);
8001 printf("Sending Sense\n");
8002 }
8003 #endif
8004 scb->sg_count = 0;
8005 sg = ahd_sg_setup(ahd, scb, sg, ahd_get_sense_bufaddr(ahd, scb),
8006 aic_get_sense_bufsize(ahd, scb),
8007 /*last*/TRUE);
8008 sc->opcode = REQUEST_SENSE;
8009 sc->byte2 = 0;
8010 if (tinfo->protocol_version <= SCSI_REV_2
8011 && SCB_GET_LUN(scb) < 8)
8012 sc->byte2 = SCB_GET_LUN(scb) << 5;
8013 sc->unused[0] = 0;
8014 sc->unused[1] = 0;
8015 sc->length = aic_get_sense_bufsize(ahd, scb);
8016 sc->control = 0;
8017
8018 /*
8019 * We can't allow the target to disconnect.
8020 * This will be an untagged transaction and
8021 * having the target disconnect will make this
8022 * transaction indistinguishable from outstanding
8023 * tagged transactions.
8024 */
8025 hscb->control = 0;
8026
8027 /*
8028 * This request sense could be because the
8029 * the device lost power or in some other
8030 * way has lost our transfer negotiations.
8031 * Renegotiate if appropriate. Unit attention
8032 * errors will be reported before any data
8033 * phases occur.
8034 */
8035 if (aic_get_residual(scb) == aic_get_transfer_length(scb)) {
8036 ahd_update_neg_request(ahd, &devinfo,
8037 tstate, targ_info,
8038 AHD_NEG_IF_NON_ASYNC);
8039 }
8040 if (tstate->auto_negotiate & devinfo.target_mask) {
8041 hscb->control |= MK_MESSAGE;
8042 scb->flags &=
8043 ~(SCB_NEGOTIATE|SCB_ABORT|SCB_DEVICE_RESET);
8044 scb->flags |= SCB_AUTO_NEGOTIATE;
8045 }
8046 hscb->cdb_len = sizeof(*sc);
8047 ahd_setup_data_scb(ahd, scb);
8048 scb->flags |= SCB_SENSE;
8049 ahd_queue_scb(ahd, scb);
8050 /*
8051 * Ensure we have enough time to actually
8052 * retrieve the sense, but only schedule
8053 * the timer if we are not in recovery or
8054 * this is a recovery SCB that is allowed
8055 * to have an active timer.
8056 */
8057 aic_scb_timer_reset(scb, 5 * 1000);
8058 break;
8059 }
8060 case SCSI_STATUS_OK:
8061 printf("%s: Interrupted for status of 0???\n",
8062 ahd_name(ahd));
8063 /* FALLTHROUGH */
8064 default:
8065 ahd_done(ahd, scb);
8066 break;
8067 }
8068 }
8069
8070 /*
8071 * Calculate the residual for a just completed SCB.
8072 */
8073 void
ahd_calc_residual(struct ahd_softc * ahd,struct scb * scb)8074 ahd_calc_residual(struct ahd_softc *ahd, struct scb *scb)
8075 {
8076 struct hardware_scb *hscb;
8077 struct initiator_status *spkt;
8078 uint32_t sgptr;
8079 uint32_t resid_sgptr;
8080 uint32_t resid;
8081
8082 /*
8083 * 5 cases.
8084 * 1) No residual.
8085 * SG_STATUS_VALID clear in sgptr.
8086 * 2) Transferless command
8087 * 3) Never performed any transfers.
8088 * sgptr has SG_FULL_RESID set.
8089 * 4) No residual but target did not
8090 * save data pointers after the
8091 * last transfer, so sgptr was
8092 * never updated.
8093 * 5) We have a partial residual.
8094 * Use residual_sgptr to determine
8095 * where we are.
8096 */
8097
8098 hscb = scb->hscb;
8099 sgptr = aic_le32toh(hscb->sgptr);
8100 if ((sgptr & SG_STATUS_VALID) == 0)
8101 /* Case 1 */
8102 return;
8103 sgptr &= ~SG_STATUS_VALID;
8104
8105 if ((sgptr & SG_LIST_NULL) != 0)
8106 /* Case 2 */
8107 return;
8108
8109 /*
8110 * Residual fields are the same in both
8111 * target and initiator status packets,
8112 * so we can always use the initiator fields
8113 * regardless of the role for this SCB.
8114 */
8115 spkt = &hscb->shared_data.istatus;
8116 resid_sgptr = aic_le32toh(spkt->residual_sgptr);
8117 if ((sgptr & SG_FULL_RESID) != 0) {
8118 /* Case 3 */
8119 resid = aic_get_transfer_length(scb);
8120 } else if ((resid_sgptr & SG_LIST_NULL) != 0) {
8121 /* Case 4 */
8122 return;
8123 } else if ((resid_sgptr & SG_OVERRUN_RESID) != 0) {
8124 ahd_print_path(ahd, scb);
8125 printf("data overrun detected Tag == 0x%x.\n",
8126 SCB_GET_TAG(scb));
8127 ahd_freeze_devq(ahd, scb);
8128 aic_set_transaction_status(scb, CAM_DATA_RUN_ERR);
8129 aic_freeze_scb(scb);
8130 return;
8131 } else if ((resid_sgptr & ~SG_PTR_MASK) != 0) {
8132 panic("Bogus resid sgptr value 0x%x", resid_sgptr);
8133 /* NOTREACHED */
8134 } else {
8135 struct ahd_dma_seg *sg;
8136
8137 /*
8138 * Remainder of the SG where the transfer
8139 * stopped.
8140 */
8141 resid = aic_le32toh(spkt->residual_datacnt) & AHD_SG_LEN_MASK;
8142 sg = ahd_sg_bus_to_virt(ahd, scb, resid_sgptr & SG_PTR_MASK);
8143
8144 /* The residual sg_ptr always points to the next sg */
8145 sg--;
8146
8147 /*
8148 * Add up the contents of all residual
8149 * SG segments that are after the SG where
8150 * the transfer stopped.
8151 */
8152 while ((aic_le32toh(sg->len) & AHD_DMA_LAST_SEG) == 0) {
8153 sg++;
8154 resid += aic_le32toh(sg->len) & AHD_SG_LEN_MASK;
8155 }
8156 }
8157 if ((scb->flags & SCB_SENSE) == 0)
8158 aic_set_residual(scb, resid);
8159 else
8160 aic_set_sense_residual(scb, resid);
8161
8162 #ifdef AHD_DEBUG
8163 if ((ahd_debug & AHD_SHOW_MISC) != 0) {
8164 ahd_print_path(ahd, scb);
8165 printf("Handled %sResidual of %d bytes\n",
8166 (scb->flags & SCB_SENSE) ? "Sense " : "", resid);
8167 }
8168 #endif
8169 }
8170
8171 /******************************* Target Mode **********************************/
8172 #ifdef AHD_TARGET_MODE
8173 /*
8174 * Add a target mode event to this lun's queue
8175 */
8176 void
ahd_queue_lstate_event(struct ahd_softc * ahd,struct ahd_tmode_lstate * lstate,u_int initiator_id,u_int event_type,u_int event_arg)8177 ahd_queue_lstate_event(struct ahd_softc *ahd, struct ahd_tmode_lstate *lstate,
8178 u_int initiator_id, u_int event_type, u_int event_arg)
8179 {
8180 struct ahd_tmode_event *event;
8181 int pending;
8182
8183 xpt_freeze_devq(lstate->path, /*count*/1);
8184 if (lstate->event_w_idx >= lstate->event_r_idx)
8185 pending = lstate->event_w_idx - lstate->event_r_idx;
8186 else
8187 pending = AHD_TMODE_EVENT_BUFFER_SIZE + 1
8188 - (lstate->event_r_idx - lstate->event_w_idx);
8189
8190 if (event_type == EVENT_TYPE_BUS_RESET
8191 || event_type == MSG_BUS_DEV_RESET) {
8192 /*
8193 * Any earlier events are irrelevant, so reset our buffer.
8194 * This has the effect of allowing us to deal with reset
8195 * floods (an external device holding down the reset line)
8196 * without losing the event that is really interesting.
8197 */
8198 lstate->event_r_idx = 0;
8199 lstate->event_w_idx = 0;
8200 xpt_release_devq(lstate->path, pending, /*runqueue*/FALSE);
8201 }
8202
8203 if (pending == AHD_TMODE_EVENT_BUFFER_SIZE) {
8204 xpt_print_path(lstate->path);
8205 printf("immediate event %x:%x lost\n",
8206 lstate->event_buffer[lstate->event_r_idx].event_type,
8207 lstate->event_buffer[lstate->event_r_idx].event_arg);
8208 lstate->event_r_idx++;
8209 if (lstate->event_r_idx == AHD_TMODE_EVENT_BUFFER_SIZE)
8210 lstate->event_r_idx = 0;
8211 xpt_release_devq(lstate->path, /*count*/1, /*runqueue*/FALSE);
8212 }
8213
8214 event = &lstate->event_buffer[lstate->event_w_idx];
8215 event->initiator_id = initiator_id;
8216 event->event_type = event_type;
8217 event->event_arg = event_arg;
8218 lstate->event_w_idx++;
8219 if (lstate->event_w_idx == AHD_TMODE_EVENT_BUFFER_SIZE)
8220 lstate->event_w_idx = 0;
8221 }
8222
8223 /*
8224 * Send any target mode events queued up waiting
8225 * for immediate notify resources.
8226 */
8227 void
ahd_send_lstate_events(struct ahd_softc * ahd,struct ahd_tmode_lstate * lstate)8228 ahd_send_lstate_events(struct ahd_softc *ahd, struct ahd_tmode_lstate *lstate)
8229 {
8230 struct ccb_hdr *ccbh;
8231 struct ccb_immed_notify *inot;
8232
8233 while (lstate->event_r_idx != lstate->event_w_idx
8234 && (ccbh = SLIST_FIRST(&lstate->immed_notifies)) != NULL) {
8235 struct ahd_tmode_event *event;
8236
8237 event = &lstate->event_buffer[lstate->event_r_idx];
8238 SLIST_REMOVE_HEAD(&lstate->immed_notifies, sim_links.sle);
8239 inot = (struct ccb_immed_notify *)ccbh;
8240 switch (event->event_type) {
8241 case EVENT_TYPE_BUS_RESET:
8242 ccbh->status = CAM_SCSI_BUS_RESET|CAM_DEV_QFRZN;
8243 break;
8244 default:
8245 ccbh->status = CAM_MESSAGE_RECV|CAM_DEV_QFRZN;
8246 inot->message_args[0] = event->event_type;
8247 inot->message_args[1] = event->event_arg;
8248 break;
8249 }
8250 inot->initiator_id = event->initiator_id;
8251 inot->sense_len = 0;
8252 xpt_done((union ccb *)inot);
8253 lstate->event_r_idx++;
8254 if (lstate->event_r_idx == AHD_TMODE_EVENT_BUFFER_SIZE)
8255 lstate->event_r_idx = 0;
8256 }
8257 }
8258 #endif
8259
8260 /******************** Sequencer Program Patching/Download *********************/
8261
8262 #ifdef AHD_DUMP_SEQ
8263 void
ahd_dumpseq(struct ahd_softc * ahd)8264 ahd_dumpseq(struct ahd_softc* ahd)
8265 {
8266 int i;
8267 int max_prog;
8268
8269 max_prog = 2048;
8270
8271 ahd_outb(ahd, SEQCTL0, PERRORDIS|FAILDIS|FASTMODE|LOADRAM);
8272 ahd_outw(ahd, PRGMCNT, 0);
8273 for (i = 0; i < max_prog; i++) {
8274 uint8_t ins_bytes[4];
8275
8276 ahd_insb(ahd, SEQRAM, ins_bytes, 4);
8277 printf("0x%08x\n", ins_bytes[0] << 24
8278 | ins_bytes[1] << 16
8279 | ins_bytes[2] << 8
8280 | ins_bytes[3]);
8281 }
8282 }
8283 #endif
8284
8285 void
ahd_loadseq(struct ahd_softc * ahd)8286 ahd_loadseq(struct ahd_softc *ahd)
8287 {
8288 struct cs cs_table[NUM_CRITICAL_SECTIONS];
8289 u_int begin_set[NUM_CRITICAL_SECTIONS];
8290 u_int end_set[NUM_CRITICAL_SECTIONS];
8291 const struct patch *cur_patch;
8292 u_int cs_count;
8293 u_int cur_cs;
8294 u_int i;
8295 int downloaded;
8296 u_int skip_addr;
8297 u_int sg_prefetch_cnt;
8298 u_int sg_prefetch_cnt_limit;
8299 u_int sg_prefetch_align;
8300 u_int sg_size;
8301 u_int cacheline_mask;
8302 uint8_t download_consts[DOWNLOAD_CONST_COUNT];
8303
8304 if (bootverbose)
8305 printf("%s: Downloading Sequencer Program...",
8306 ahd_name(ahd));
8307
8308 #if DOWNLOAD_CONST_COUNT != 8
8309 #error "Download Const Mismatch"
8310 #endif
8311 /*
8312 * Start out with 0 critical sections
8313 * that apply to this firmware load.
8314 */
8315 cs_count = 0;
8316 cur_cs = 0;
8317 memset(begin_set, 0, sizeof(begin_set));
8318 memset(end_set, 0, sizeof(end_set));
8319
8320 /*
8321 * Setup downloadable constant table.
8322 *
8323 * The computation for the S/G prefetch variables is
8324 * a bit complicated. We would like to always fetch
8325 * in terms of cachelined sized increments. However,
8326 * if the cacheline is not an even multiple of the
8327 * SG element size or is larger than our SG RAM, using
8328 * just the cache size might leave us with only a portion
8329 * of an SG element at the tail of a prefetch. If the
8330 * cacheline is larger than our S/G prefetch buffer less
8331 * the size of an SG element, we may round down to a cacheline
8332 * that doesn't contain any or all of the S/G of interest
8333 * within the bounds of our S/G ram. Provide variables to
8334 * the sequencer that will allow it to handle these edge
8335 * cases.
8336 */
8337 /* Start by aligning to the nearest cacheline. */
8338 sg_prefetch_align = ahd->pci_cachesize;
8339 if (sg_prefetch_align == 0)
8340 sg_prefetch_align = 8;
8341 /* Round down to the nearest power of 2. */
8342 while (powerof2(sg_prefetch_align) == 0)
8343 sg_prefetch_align--;
8344
8345 cacheline_mask = sg_prefetch_align - 1;
8346
8347 /*
8348 * If the cacheline boundary is greater than half our prefetch RAM
8349 * we risk not being able to fetch even a single complete S/G
8350 * segment if we align to that boundary.
8351 */
8352 if (sg_prefetch_align > CCSGADDR_MAX/2)
8353 sg_prefetch_align = CCSGADDR_MAX/2;
8354 /* Start by fetching a single cacheline. */
8355 sg_prefetch_cnt = sg_prefetch_align;
8356 /*
8357 * Increment the prefetch count by cachelines until
8358 * at least one S/G element will fit.
8359 */
8360 sg_size = sizeof(struct ahd_dma_seg);
8361 if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0)
8362 sg_size = sizeof(struct ahd_dma64_seg);
8363 while (sg_prefetch_cnt < sg_size)
8364 sg_prefetch_cnt += sg_prefetch_align;
8365 /*
8366 * If the cacheline is not an even multiple of
8367 * the S/G size, we may only get a partial S/G when
8368 * we align. Add a cacheline if this is the case.
8369 */
8370 if ((sg_prefetch_align % sg_size) != 0
8371 && (sg_prefetch_cnt < CCSGADDR_MAX))
8372 sg_prefetch_cnt += sg_prefetch_align;
8373 /*
8374 * Lastly, compute a value that the sequencer can use
8375 * to determine if the remainder of the CCSGRAM buffer
8376 * has a full S/G element in it.
8377 */
8378 sg_prefetch_cnt_limit = -(sg_prefetch_cnt - sg_size + 1);
8379 download_consts[SG_PREFETCH_CNT] = sg_prefetch_cnt;
8380 download_consts[SG_PREFETCH_CNT_LIMIT] = sg_prefetch_cnt_limit;
8381 download_consts[SG_PREFETCH_ALIGN_MASK] = ~(sg_prefetch_align - 1);
8382 download_consts[SG_PREFETCH_ADDR_MASK] = (sg_prefetch_align - 1);
8383 download_consts[SG_SIZEOF] = sg_size;
8384 download_consts[PKT_OVERRUN_BUFOFFSET] =
8385 (ahd->overrun_buf - (uint8_t *)ahd->qoutfifo) / 256;
8386 download_consts[SCB_TRANSFER_SIZE] = SCB_TRANSFER_SIZE_1BYTE_LUN;
8387 download_consts[CACHELINE_MASK] = cacheline_mask;
8388 cur_patch = patches;
8389 downloaded = 0;
8390 skip_addr = 0;
8391 ahd_outb(ahd, SEQCTL0, PERRORDIS|FAILDIS|FASTMODE|LOADRAM);
8392 ahd_outw(ahd, PRGMCNT, 0);
8393
8394 for (i = 0; i < sizeof(seqprog)/4; i++) {
8395 if (ahd_check_patch(ahd, &cur_patch, i, &skip_addr) == 0) {
8396 /*
8397 * Don't download this instruction as it
8398 * is in a patch that was removed.
8399 */
8400 continue;
8401 }
8402 /*
8403 * Move through the CS table until we find a CS
8404 * that might apply to this instruction.
8405 */
8406 for (; cur_cs < NUM_CRITICAL_SECTIONS; cur_cs++) {
8407 if (critical_sections[cur_cs].end <= i) {
8408 if (begin_set[cs_count] == TRUE
8409 && end_set[cs_count] == FALSE) {
8410 cs_table[cs_count].end = downloaded;
8411 end_set[cs_count] = TRUE;
8412 cs_count++;
8413 }
8414 continue;
8415 }
8416 if (critical_sections[cur_cs].begin <= i
8417 && begin_set[cs_count] == FALSE) {
8418 cs_table[cs_count].begin = downloaded;
8419 begin_set[cs_count] = TRUE;
8420 }
8421 break;
8422 }
8423 ahd_download_instr(ahd, i, download_consts);
8424 downloaded++;
8425 }
8426
8427 ahd->num_critical_sections = cs_count;
8428 if (cs_count != 0) {
8429 ahd->critical_sections = mallocarray(cs_count,
8430 sizeof(struct cs), M_DEVBUF, M_NOWAIT);
8431 if (ahd->critical_sections == NULL)
8432 panic("ahd_loadseq: Could not malloc");
8433 cs_count *= sizeof(struct cs);
8434
8435 memcpy(ahd->critical_sections, cs_table, cs_count);
8436 }
8437 ahd_outb(ahd, SEQCTL0, PERRORDIS|FAILDIS|FASTMODE);
8438
8439 if (bootverbose) {
8440 printf(" %d instructions downloaded\n", downloaded);
8441 printf("%s: Features 0x%x, Bugs 0x%x, Flags 0x%x\n",
8442 ahd_name(ahd), ahd->features, ahd->bugs, ahd->flags);
8443 }
8444 }
8445
8446 int
ahd_check_patch(struct ahd_softc * ahd,const struct patch ** start_patch,u_int start_instr,u_int * skip_addr)8447 ahd_check_patch(struct ahd_softc *ahd, const struct patch **start_patch,
8448 u_int start_instr, u_int *skip_addr)
8449 {
8450 const struct patch *cur_patch;
8451 const struct patch *last_patch;
8452 u_int num_patches;
8453
8454 num_patches = sizeof(patches)/sizeof(struct patch);
8455 last_patch = &patches[num_patches];
8456 cur_patch = *start_patch;
8457
8458 while (cur_patch < last_patch && start_instr == cur_patch->begin) {
8459
8460 if (cur_patch->patch_func(ahd) == 0) {
8461
8462 /* Start rejecting code */
8463 *skip_addr = start_instr + cur_patch->skip_instr;
8464 cur_patch += cur_patch->skip_patch;
8465 } else {
8466 /* Accepted this patch. Advance to the next
8467 * one and wait for our instruction pointer to
8468 * hit this point.
8469 */
8470 cur_patch++;
8471 }
8472 }
8473
8474 *start_patch = cur_patch;
8475 if (start_instr < *skip_addr)
8476 /* Still skipping */
8477 return (0);
8478
8479 return (1);
8480 }
8481
8482 u_int
ahd_resolve_seqaddr(struct ahd_softc * ahd,u_int address)8483 ahd_resolve_seqaddr(struct ahd_softc *ahd, u_int address)
8484 {
8485 const struct patch *cur_patch;
8486 int address_offset;
8487 u_int skip_addr;
8488 u_int i;
8489
8490 address_offset = 0;
8491 cur_patch = patches;
8492 skip_addr = 0;
8493
8494 for (i = 0; i < address;) {
8495
8496 ahd_check_patch(ahd, &cur_patch, i, &skip_addr);
8497
8498 if (skip_addr > i) {
8499 int end_addr;
8500
8501 end_addr = MIN(address, skip_addr);
8502 address_offset += end_addr - i;
8503 i = skip_addr;
8504 } else {
8505 i++;
8506 }
8507 }
8508 return (address - address_offset);
8509 }
8510
8511 void
ahd_download_instr(struct ahd_softc * ahd,u_int instrptr,uint8_t * dconsts)8512 ahd_download_instr(struct ahd_softc *ahd, u_int instrptr, uint8_t *dconsts)
8513 {
8514 union ins_formats instr;
8515 struct ins_format1 *fmt1_ins;
8516 struct ins_format3 *fmt3_ins;
8517 u_int opcode;
8518
8519 /*
8520 * The firmware is always compiled into a little endian format.
8521 */
8522 instr.integer = aic_le32toh(*(uint32_t*)&seqprog[instrptr * 4]);
8523
8524 fmt1_ins = &instr.format1;
8525 fmt3_ins = NULL;
8526
8527 /* Pull the opcode */
8528 opcode = instr.format1.opcode;
8529 switch (opcode) {
8530 case AIC_OP_JMP:
8531 case AIC_OP_JC:
8532 case AIC_OP_JNC:
8533 case AIC_OP_CALL:
8534 case AIC_OP_JNE:
8535 case AIC_OP_JNZ:
8536 case AIC_OP_JE:
8537 case AIC_OP_JZ:
8538 {
8539 fmt3_ins = &instr.format3;
8540 fmt3_ins->address = ahd_resolve_seqaddr(ahd, fmt3_ins->address);
8541 /* FALLTHROUGH */
8542 }
8543 case AIC_OP_OR:
8544 case AIC_OP_AND:
8545 case AIC_OP_XOR:
8546 case AIC_OP_ADD:
8547 case AIC_OP_ADC:
8548 case AIC_OP_BMOV:
8549 if (fmt1_ins->parity != 0) {
8550 fmt1_ins->immediate = dconsts[fmt1_ins->immediate];
8551 }
8552 fmt1_ins->parity = 0;
8553 /* FALLTHROUGH */
8554 case AIC_OP_ROL:
8555 {
8556 int i, count;
8557
8558 /* Calculate odd parity for the instruction */
8559 for (i = 0, count = 0; i < 31; i++) {
8560 uint32_t mask;
8561
8562 mask = 0x01 << i;
8563 if ((instr.integer & mask) != 0)
8564 count++;
8565 }
8566 if ((count & 0x01) == 0)
8567 instr.format1.parity = 1;
8568
8569 /* The sequencer is a little endian cpu */
8570 instr.integer = aic_htole32(instr.integer);
8571 ahd_outsb(ahd, SEQRAM, instr.bytes, 4);
8572 break;
8573 }
8574 default:
8575 panic("Unknown opcode encountered in seq program");
8576 break;
8577 }
8578 }
8579
8580 int
ahd_probe_stack_size(struct ahd_softc * ahd)8581 ahd_probe_stack_size(struct ahd_softc *ahd)
8582 {
8583 int last_probe;
8584
8585 last_probe = 0;
8586 while (1) {
8587 int i;
8588
8589 /*
8590 * We avoid using 0 as a pattern to avoid
8591 * confusion if the stack implementation
8592 * "back-fills" with zeros when "poping'
8593 * entries.
8594 */
8595 for (i = 1; i <= last_probe+1; i++) {
8596 ahd_outb(ahd, STACK, i & 0xFF);
8597 ahd_outb(ahd, STACK, (i >> 8) & 0xFF);
8598 }
8599
8600 /* Verify */
8601 for (i = last_probe+1; i > 0; i--) {
8602 u_int stack_entry;
8603
8604 stack_entry = ahd_inb(ahd, STACK)
8605 |(ahd_inb(ahd, STACK) << 8);
8606 if (stack_entry != i)
8607 goto sized;
8608 }
8609 last_probe++;
8610 }
8611 sized:
8612 return (last_probe);
8613 }
8614
8615 void
ahd_dump_all_cards_state(void)8616 ahd_dump_all_cards_state(void)
8617 {
8618 struct ahd_softc *list_ahd;
8619
8620 TAILQ_FOREACH(list_ahd, &ahd_tailq, links) {
8621 ahd_dump_card_state(list_ahd);
8622 }
8623 }
8624
8625 int
ahd_print_register(ahd_reg_parse_entry_t * table,u_int num_entries,const char * name,u_int address,u_int value,u_int * cur_column,u_int wrap_point)8626 ahd_print_register(ahd_reg_parse_entry_t *table, u_int num_entries,
8627 const char *name, u_int address, u_int value,
8628 u_int *cur_column, u_int wrap_point)
8629 {
8630 u_int printed_mask;
8631 int entry, printed;
8632
8633 if (cur_column != NULL && *cur_column >= wrap_point) {
8634 printf("\n");
8635 *cur_column = 0;
8636 }
8637 printed = printf("%s[0x%x]", name, value);
8638 if (table == NULL) {
8639 printed += printf(" ");
8640 if (cur_column != NULL)
8641 *cur_column += printed;
8642 return (printed);
8643 }
8644
8645 printed_mask = 0;
8646 while (printed_mask != 0xFF) {
8647 for (entry = 0; entry < num_entries; entry++) {
8648 if (((value & table[entry].mask) != table[entry].value)
8649 || ((printed_mask & table[entry].mask) ==
8650 table[entry].mask))
8651 continue;
8652
8653 printed += printf("%s%s",
8654 printed_mask == 0 ? ":(" : "|",
8655 table[entry].name);
8656 printed_mask |= table[entry].mask;
8657
8658 break;
8659 }
8660 if (entry >= num_entries)
8661 break;
8662 }
8663
8664 printed += printf("%s", printed_mask == 0 ? " " : ") ");
8665 if (cur_column != NULL)
8666 *cur_column += printed;
8667
8668 return (printed);
8669 }
8670
8671 void
ahd_dump_card_state(struct ahd_softc * ahd)8672 ahd_dump_card_state(struct ahd_softc *ahd)
8673 {
8674 struct scb *scb;
8675 ahd_mode_state saved_modes;
8676 u_int dffstat;
8677 int paused;
8678 u_int scb_index;
8679 u_int saved_scb_index;
8680 u_int cur_col;
8681 int i;
8682
8683 if (ahd_is_paused(ahd)) {
8684 paused = 1;
8685 } else {
8686 paused = 0;
8687 ahd_pause(ahd);
8688 }
8689 saved_modes = ahd_save_modes(ahd);
8690 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
8691 printf("================== Dump Card State Begins =================\n"
8692 "%s: Dumping Card State at program address 0x%x Mode 0x%x\n",
8693 ahd_name(ahd),
8694 ahd_inw(ahd, CURADDR),
8695 ahd_build_mode_state(ahd, ahd->saved_src_mode,
8696 ahd->saved_dst_mode));
8697 if (paused)
8698 printf("Card was paused\n");
8699
8700 if (ahd_check_cmdcmpltqueues(ahd))
8701 printf("Completions are pending\n");
8702
8703 /*
8704 * Mode independent registers.
8705 */
8706 cur_col = 0;
8707 ahd_intstat_print(ahd_inb(ahd, INTSTAT), &cur_col, 50);
8708 ahd_seloid_print(ahd_inb(ahd, SELOID), &cur_col, 50);
8709 ahd_selid_print(ahd_inb(ahd, SELID), &cur_col, 50);
8710 ahd_hs_mailbox_print(ahd_inb(ahd, LOCAL_HS_MAILBOX), &cur_col, 50);
8711 ahd_intctl_print(ahd_inb(ahd, INTCTL), &cur_col, 50);
8712 ahd_seqintstat_print(ahd_inb(ahd, SEQINTSTAT), &cur_col, 50);
8713 ahd_saved_mode_print(ahd_inb(ahd, SAVED_MODE), &cur_col, 50);
8714 ahd_dffstat_print(ahd_inb(ahd, DFFSTAT), &cur_col, 50);
8715 ahd_scsisigi_print(ahd_inb(ahd, SCSISIGI), &cur_col, 50);
8716 ahd_scsiphase_print(ahd_inb(ahd, SCSIPHASE), &cur_col, 50);
8717 ahd_scsibus_print(ahd_inb(ahd, SCSIBUS), &cur_col, 50);
8718 ahd_lastphase_print(ahd_inb(ahd, LASTPHASE), &cur_col, 50);
8719 ahd_scsiseq0_print(ahd_inb(ahd, SCSISEQ0), &cur_col, 50);
8720 ahd_scsiseq1_print(ahd_inb(ahd, SCSISEQ1), &cur_col, 50);
8721 ahd_seqctl0_print(ahd_inb(ahd, SEQCTL0), &cur_col, 50);
8722 ahd_seqintctl_print(ahd_inb(ahd, SEQINTCTL), &cur_col, 50);
8723 ahd_seq_flags_print(ahd_inb(ahd, SEQ_FLAGS), &cur_col, 50);
8724 ahd_seq_flags2_print(ahd_inb(ahd, SEQ_FLAGS2), &cur_col, 50);
8725 ahd_qfreeze_count_print(ahd_inw(ahd, QFREEZE_COUNT), &cur_col, 50);
8726 ahd_kernel_qfreeze_count_print(ahd_inw(ahd, KERNEL_QFREEZE_COUNT),
8727 &cur_col, 50);
8728 ahd_mk_message_scb_print(ahd_inw(ahd, MK_MESSAGE_SCB), &cur_col, 50);
8729 ahd_mk_message_scsiid_print(ahd_inb(ahd, MK_MESSAGE_SCSIID),
8730 &cur_col, 50);
8731 ahd_sstat0_print(ahd_inb(ahd, SSTAT0), &cur_col, 50);
8732 ahd_sstat1_print(ahd_inb(ahd, SSTAT1), &cur_col, 50);
8733 ahd_sstat2_print(ahd_inb(ahd, SSTAT2), &cur_col, 50);
8734 ahd_sstat3_print(ahd_inb(ahd, SSTAT3), &cur_col, 50);
8735 ahd_perrdiag_print(ahd_inb(ahd, PERRDIAG), &cur_col, 50);
8736 ahd_simode1_print(ahd_inb(ahd, SIMODE1), &cur_col, 50);
8737 ahd_lqistat0_print(ahd_inb(ahd, LQISTAT0), &cur_col, 50);
8738 ahd_lqistat1_print(ahd_inb(ahd, LQISTAT1), &cur_col, 50);
8739 ahd_lqistat2_print(ahd_inb(ahd, LQISTAT2), &cur_col, 50);
8740 ahd_lqostat0_print(ahd_inb(ahd, LQOSTAT0), &cur_col, 50);
8741 ahd_lqostat1_print(ahd_inb(ahd, LQOSTAT1), &cur_col, 50);
8742 ahd_lqostat2_print(ahd_inb(ahd, LQOSTAT2), &cur_col, 50);
8743 printf("\n");
8744 printf("\nSCB Count = %d CMDS_PENDING = %d LASTSCB 0x%x "
8745 "CURRSCB 0x%x NEXTSCB 0x%x\n",
8746 ahd->scb_data.numscbs, ahd_inw(ahd, CMDS_PENDING),
8747 ahd_inw(ahd, LASTSCB), ahd_inw(ahd, CURRSCB),
8748 ahd_inw(ahd, NEXTSCB));
8749 cur_col = 0;
8750 /* QINFIFO */
8751 ahd_search_qinfifo(ahd, CAM_TARGET_WILDCARD, ALL_CHANNELS,
8752 CAM_LUN_WILDCARD, SCB_LIST_NULL,
8753 ROLE_UNKNOWN, /*status*/0, SEARCH_PRINT);
8754 saved_scb_index = ahd_get_scbptr(ahd);
8755 printf("Pending list:");
8756 i = 0;
8757 TAILQ_FOREACH(scb, &ahd->pending_scbs, next) {
8758 if (i++ > AHD_SCB_MAX)
8759 break;
8760 cur_col = printf("\n%3d FIFO_USE[0x%x] ", SCB_GET_TAG(scb),
8761 ahd_inb_scbram(ahd, SCB_FIFO_USE_COUNT));
8762 ahd_set_scbptr(ahd, SCB_GET_TAG(scb));
8763 ahd_scb_control_print(ahd_inb_scbram(ahd, SCB_CONTROL),
8764 &cur_col, 60);
8765 ahd_scb_scsiid_print(ahd_inb_scbram(ahd, SCB_SCSIID),
8766 &cur_col, 60);
8767 }
8768 printf("\nTotal %d\n", i);
8769
8770 printf("Kernel Free SCB list: ");
8771 i = 0;
8772 TAILQ_FOREACH(scb, &ahd->scb_data.free_scbs, next) {
8773 printf("%d ", SCB_GET_TAG(scb));
8774 }
8775 printf("\n");
8776
8777 printf("Sequencer Complete DMA-inprog list: ");
8778 scb_index = ahd_inw(ahd, COMPLETE_SCB_DMAINPROG_HEAD);
8779 i = 0;
8780 while (!SCBID_IS_NULL(scb_index) && i++ < AHD_SCB_MAX) {
8781 ahd_set_scbptr(ahd, scb_index);
8782 printf("%d ", scb_index);
8783 scb_index = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
8784 }
8785 printf("\n");
8786
8787 printf("Sequencer Complete list: ");
8788 scb_index = ahd_inw(ahd, COMPLETE_SCB_HEAD);
8789 i = 0;
8790 while (!SCBID_IS_NULL(scb_index) && i++ < AHD_SCB_MAX) {
8791 ahd_set_scbptr(ahd, scb_index);
8792 printf("%d ", scb_index);
8793 scb_index = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
8794 }
8795 printf("\n");
8796
8797
8798 printf("Sequencer DMA-Up and Complete list: ");
8799 scb_index = ahd_inw(ahd, COMPLETE_DMA_SCB_HEAD);
8800 i = 0;
8801 while (!SCBID_IS_NULL(scb_index) && i++ < AHD_SCB_MAX) {
8802 ahd_set_scbptr(ahd, scb_index);
8803 printf("%d ", scb_index);
8804 scb_index = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
8805 }
8806 printf("\n");
8807 printf("Sequencer On QFreeze and Complete list: ");
8808 scb_index = ahd_inw(ahd, COMPLETE_ON_QFREEZE_HEAD);
8809 i = 0;
8810 while (!SCBID_IS_NULL(scb_index) && i++ < AHD_SCB_MAX) {
8811 ahd_set_scbptr(ahd, scb_index);
8812 printf("%d ", scb_index);
8813 scb_index = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
8814 }
8815 printf("\n");
8816 ahd_set_scbptr(ahd, saved_scb_index);
8817 dffstat = ahd_inb(ahd, DFFSTAT);
8818 for (i = 0; i < 2; i++) {
8819 #ifdef AHD_DEBUG
8820 struct scb *fifo_scb;
8821 #endif
8822 u_int fifo_scbptr;
8823
8824 ahd_set_modes(ahd, AHD_MODE_DFF0 + i, AHD_MODE_DFF0 + i);
8825 fifo_scbptr = ahd_get_scbptr(ahd);
8826 printf("\n\n%s: FIFO%d %s, LONGJMP == 0x%x, SCB 0x%x\n",
8827 ahd_name(ahd), i,
8828 (dffstat & (FIFO0FREE << i)) ? "Free" : "Active",
8829 ahd_inw(ahd, LONGJMP_ADDR), fifo_scbptr);
8830 cur_col = 0;
8831 ahd_seqimode_print(ahd_inb(ahd, SEQIMODE), &cur_col, 50);
8832 ahd_seqintsrc_print(ahd_inb(ahd, SEQINTSRC), &cur_col, 50);
8833 ahd_dfcntrl_print(ahd_inb(ahd, DFCNTRL), &cur_col, 50);
8834 ahd_dfstatus_print(ahd_inb(ahd, DFSTATUS), &cur_col, 50);
8835 ahd_sg_cache_shadow_print(ahd_inb(ahd, SG_CACHE_SHADOW),
8836 &cur_col, 50);
8837 ahd_sg_state_print(ahd_inb(ahd, SG_STATE), &cur_col, 50);
8838 ahd_dffsxfrctl_print(ahd_inb(ahd, DFFSXFRCTL), &cur_col, 50);
8839 ahd_soffcnt_print(ahd_inb(ahd, SOFFCNT), &cur_col, 50);
8840 ahd_mdffstat_print(ahd_inb(ahd, MDFFSTAT), &cur_col, 50);
8841 if (cur_col > 50) {
8842 printf("\n");
8843 cur_col = 0;
8844 }
8845 cur_col += printf("SHADDR = 0x%x%x, SHCNT = 0x%x ",
8846 ahd_inl(ahd, SHADDR+4),
8847 ahd_inl(ahd, SHADDR),
8848 (ahd_inb(ahd, SHCNT)
8849 | (ahd_inb(ahd, SHCNT + 1) << 8)
8850 | (ahd_inb(ahd, SHCNT + 2) << 16)));
8851 if (cur_col > 50) {
8852 printf("\n");
8853 cur_col = 0;
8854 }
8855 cur_col += printf("HADDR = 0x%x%x, HCNT = 0x%x ",
8856 ahd_inl(ahd, HADDR+4),
8857 ahd_inl(ahd, HADDR),
8858 (ahd_inb(ahd, HCNT)
8859 | (ahd_inb(ahd, HCNT + 1) << 8)
8860 | (ahd_inb(ahd, HCNT + 2) << 16)));
8861 ahd_ccsgctl_print(ahd_inb(ahd, CCSGCTL), &cur_col, 50);
8862 #ifdef AHD_DEBUG
8863 if ((ahd_debug & AHD_SHOW_SG) != 0) {
8864 fifo_scb = ahd_lookup_scb(ahd, fifo_scbptr);
8865 if (fifo_scb != NULL)
8866 ahd_dump_sglist(fifo_scb);
8867 }
8868 #endif
8869 }
8870 printf("\nLQIN: ");
8871 for (i = 0; i < 20; i++)
8872 printf("0x%x ", ahd_inb(ahd, LQIN + i));
8873 printf("\n");
8874 ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
8875 printf("%s: LQISTATE = 0x%x, LQOSTATE = 0x%x, OPTIONMODE = 0x%x\n",
8876 ahd_name(ahd), ahd_inb(ahd, LQISTATE), ahd_inb(ahd, LQOSTATE),
8877 ahd_inb(ahd, OPTIONMODE));
8878 printf("%s: OS_SPACE_CNT = 0x%x MAXCMDCNT = 0x%x\n",
8879 ahd_name(ahd), ahd_inb(ahd, OS_SPACE_CNT),
8880 ahd_inb(ahd, MAXCMDCNT));
8881 printf("%s: SAVED_SCSIID = 0x%x SAVED_LUN = 0x%x\n",
8882 ahd_name(ahd), ahd_inb(ahd, SAVED_SCSIID),
8883 ahd_inb(ahd, SAVED_LUN));
8884 ahd_simode0_print(ahd_inb(ahd, SIMODE0), &cur_col, 50);
8885 printf("\n");
8886 ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
8887 cur_col = 0;
8888 ahd_ccscbctl_print(ahd_inb(ahd, CCSCBCTL), &cur_col, 50);
8889 printf("\n");
8890 ahd_set_modes(ahd, ahd->saved_src_mode, ahd->saved_dst_mode);
8891 printf("%s: REG0 == 0x%x, SINDEX = 0x%x, DINDEX = 0x%x\n",
8892 ahd_name(ahd), ahd_inw(ahd, REG0), ahd_inw(ahd, SINDEX),
8893 ahd_inw(ahd, DINDEX));
8894 printf("%s: SCBPTR == 0x%x, SCB_NEXT == 0x%x, SCB_NEXT2 == 0x%x\n",
8895 ahd_name(ahd), ahd_get_scbptr(ahd),
8896 ahd_inw_scbram(ahd, SCB_NEXT),
8897 ahd_inw_scbram(ahd, SCB_NEXT2));
8898 printf("CDB %x %x %x %x %x %x\n",
8899 ahd_inb_scbram(ahd, SCB_CDB_STORE),
8900 ahd_inb_scbram(ahd, SCB_CDB_STORE+1),
8901 ahd_inb_scbram(ahd, SCB_CDB_STORE+2),
8902 ahd_inb_scbram(ahd, SCB_CDB_STORE+3),
8903 ahd_inb_scbram(ahd, SCB_CDB_STORE+4),
8904 ahd_inb_scbram(ahd, SCB_CDB_STORE+5));
8905 printf("STACK:");
8906 for (i = 0; i < ahd->stack_size; i++) {
8907 ahd->saved_stack[i] =
8908 ahd_inb(ahd, STACK)|(ahd_inb(ahd, STACK) << 8);
8909 printf(" 0x%x", ahd->saved_stack[i]);
8910 }
8911 for (i = ahd->stack_size-1; i >= 0; i--) {
8912 ahd_outb(ahd, STACK, ahd->saved_stack[i] & 0xFF);
8913 ahd_outb(ahd, STACK, (ahd->saved_stack[i] >> 8) & 0xFF);
8914 }
8915 printf("\n================= Dump Card State Ends ==================\n");
8916 ahd_platform_dump_card_state(ahd);
8917 ahd_restore_modes(ahd, saved_modes);
8918 if (paused == 0)
8919 ahd_unpause(ahd);
8920 }
8921
8922 void
ahd_dump_scbs(struct ahd_softc * ahd)8923 ahd_dump_scbs(struct ahd_softc *ahd)
8924 {
8925 ahd_mode_state saved_modes;
8926 u_int saved_scb_index;
8927 int i;
8928
8929 saved_modes = ahd_save_modes(ahd);
8930 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
8931 saved_scb_index = ahd_get_scbptr(ahd);
8932 for (i = 0; i < AHD_SCB_MAX; i++) {
8933 ahd_set_scbptr(ahd, i);
8934 printf("%3d", i);
8935 printf("(CTRL 0x%x ID 0x%x N 0x%x N2 0x%x SG 0x%x, RSG 0x%x)\n",
8936 ahd_inb_scbram(ahd, SCB_CONTROL),
8937 ahd_inb_scbram(ahd, SCB_SCSIID),
8938 ahd_inw_scbram(ahd, SCB_NEXT),
8939 ahd_inw_scbram(ahd, SCB_NEXT2),
8940 ahd_inl_scbram(ahd, SCB_SGPTR),
8941 ahd_inl_scbram(ahd, SCB_RESIDUAL_SGPTR));
8942 }
8943 printf("\n");
8944 ahd_set_scbptr(ahd, saved_scb_index);
8945 ahd_restore_modes(ahd, saved_modes);
8946 }
8947
8948
8949 /*************************** Timeout Handling *********************************/
8950 void
ahd_timeout(void * arg)8951 ahd_timeout(void *arg)
8952 {
8953 struct scb *scb, *list_scb;
8954 struct ahd_softc *ahd;
8955 char channel;
8956 long s;
8957 int found;
8958 #ifdef AHD_DEBUG
8959 int was_paused;
8960 #endif
8961
8962 scb = (struct scb *)arg;
8963 ahd = scb->ahd_softc;
8964
8965 ahd_lock(ahd, &s);
8966
8967 #ifdef AHD_DEBUG
8968 was_paused = ahd_is_paused(ahd);
8969 printf("%s: SCB %d timed out - Card was %spaused\n", ahd_name(ahd),
8970 SCB_GET_TAG(scb), was_paused ? "" : "not ");
8971 ahd_dump_card_state(ahd);
8972 #endif
8973
8974 ahd_pause(ahd);
8975
8976 if (scb->flags & SCB_ACTIVE) {
8977 aic_set_transaction_status(scb, CAM_CMD_TIMEOUT);
8978 /*
8979 * Go through all of our pending SCBs and remove any scheduled
8980 * timeouts for them. They're about to be aborted so no need
8981 * for them to timeout.
8982 */
8983 TAILQ_FOREACH(list_scb, &ahd->pending_scbs, next) {
8984 if (list_scb->xs)
8985 timeout_del(&list_scb->xs->stimeout);
8986 }
8987 channel = SCB_GET_CHANNEL(ahd, scb);
8988 found = ahd_reset_channel(ahd, channel, /*Initiate Reset*/TRUE);
8989 #ifdef AHD_DEBUG
8990 printf("%s: Issued Channel %c Bus Reset. %d SCBs aborted\n",
8991 ahd_name(ahd), channel, found);
8992 #endif
8993 }
8994
8995 ahd_unpause(ahd);
8996 ahd_unlock(ahd, &s);
8997 }
8998
8999 /**************************** Flexport Logic **********************************/
9000 /*
9001 * Read count 16bit words from 16bit word address start_addr from the
9002 * SEEPROM attached to the controller, into buf, using the controller's
9003 * SEEPROM reading state machine. Optionally treat the data as a byte
9004 * stream in terms of byte order.
9005 */
9006 int
ahd_read_seeprom(struct ahd_softc * ahd,uint16_t * buf,u_int start_addr,u_int count,int bytestream)9007 ahd_read_seeprom(struct ahd_softc *ahd, uint16_t *buf,
9008 u_int start_addr, u_int count, int bytestream)
9009 {
9010 u_int cur_addr;
9011 u_int end_addr;
9012 int error;
9013
9014 /*
9015 * If we never make it through the loop even once,
9016 * we were passed invalid arguments.
9017 */
9018 error = EINVAL;
9019 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
9020 end_addr = start_addr + count;
9021 for (cur_addr = start_addr; cur_addr < end_addr; cur_addr++) {
9022
9023 ahd_outb(ahd, SEEADR, cur_addr);
9024 ahd_outb(ahd, SEECTL, SEEOP_READ | SEESTART);
9025
9026 error = ahd_wait_seeprom(ahd);
9027 if (error) {
9028 printf("%s: ahd_wait_seeprom timed out\n", ahd_name(ahd));
9029 break;
9030 }
9031 if (bytestream != 0) {
9032 uint8_t *bytestream_ptr;
9033
9034 bytestream_ptr = (uint8_t *)buf;
9035 *bytestream_ptr++ = ahd_inb(ahd, SEEDAT);
9036 *bytestream_ptr = ahd_inb(ahd, SEEDAT+1);
9037 } else {
9038 /*
9039 * ahd_inw() already handles machine byte order.
9040 */
9041 *buf = ahd_inw(ahd, SEEDAT);
9042 }
9043 buf++;
9044 }
9045 return (error);
9046 }
9047
9048 /*
9049 * Write count 16bit words from buf, into SEEPROM attached to the
9050 * controller starting at 16bit word address start_addr, using the
9051 * controller's SEEPROM writing state machine.
9052 */
9053 int
ahd_write_seeprom(struct ahd_softc * ahd,uint16_t * buf,u_int start_addr,u_int count)9054 ahd_write_seeprom(struct ahd_softc *ahd, uint16_t *buf,
9055 u_int start_addr, u_int count)
9056 {
9057 u_int cur_addr;
9058 u_int end_addr;
9059 int error;
9060 int retval;
9061
9062 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
9063
9064 /* Place the chip into write-enable mode */
9065 ahd_outb(ahd, SEEADR, SEEOP_EWEN_ADDR);
9066 ahd_outb(ahd, SEECTL, SEEOP_EWEN | SEESTART);
9067 error = ahd_wait_seeprom(ahd);
9068 if (error)
9069 return (error);
9070
9071 /*
9072 * Write the data. If we don't get through the loop at
9073 * least once, the arguments were invalid.
9074 */
9075 retval = EINVAL;
9076 end_addr = start_addr + count;
9077 for (cur_addr = start_addr; cur_addr < end_addr; cur_addr++) {
9078 ahd_outw(ahd, SEEDAT, *buf++);
9079 ahd_outb(ahd, SEEADR, cur_addr);
9080 ahd_outb(ahd, SEECTL, SEEOP_WRITE | SEESTART);
9081
9082 retval = ahd_wait_seeprom(ahd);
9083 if (retval)
9084 break;
9085 }
9086
9087 /*
9088 * Disable writes.
9089 */
9090 ahd_outb(ahd, SEEADR, SEEOP_EWDS_ADDR);
9091 ahd_outb(ahd, SEECTL, SEEOP_EWDS | SEESTART);
9092 error = ahd_wait_seeprom(ahd);
9093 if (error)
9094 return (error);
9095 return (retval);
9096 }
9097
9098 /*
9099 * Wait ~100us for the serial eeprom to satisfy our request.
9100 */
9101 int
ahd_wait_seeprom(struct ahd_softc * ahd)9102 ahd_wait_seeprom(struct ahd_softc *ahd)
9103 {
9104 int cnt;
9105
9106 cnt = 5000;
9107 while ((ahd_inb(ahd, SEESTAT) & (SEEARBACK|SEEBUSY)) != 0 && --cnt)
9108 aic_delay(5);
9109
9110 if (cnt == 0)
9111 return (ETIMEDOUT);
9112 return (0);
9113 }
9114
9115 /*
9116 * Validate the two checksums in the per_channel
9117 * vital product data struct.
9118 */
9119 int
ahd_verify_vpd_cksum(struct vpd_config * vpd)9120 ahd_verify_vpd_cksum(struct vpd_config *vpd)
9121 {
9122 int i;
9123 int maxaddr;
9124 uint32_t checksum;
9125 uint8_t *vpdarray;
9126
9127 vpdarray = (uint8_t *)vpd;
9128 maxaddr = offsetof(struct vpd_config, vpd_checksum);
9129 checksum = 0;
9130 for (i = offsetof(struct vpd_config, resource_type); i < maxaddr; i++)
9131 checksum = checksum + vpdarray[i];
9132 if (checksum == 0
9133 || (-checksum & 0xFF) != vpd->vpd_checksum)
9134 return (0);
9135
9136 checksum = 0;
9137 maxaddr = offsetof(struct vpd_config, checksum);
9138 for (i = offsetof(struct vpd_config, default_target_flags);
9139 i < maxaddr; i++)
9140 checksum = checksum + vpdarray[i];
9141 if (checksum == 0
9142 || (-checksum & 0xFF) != vpd->checksum)
9143 return (0);
9144 return (1);
9145 }
9146
9147 int
ahd_verify_cksum(struct seeprom_config * sc)9148 ahd_verify_cksum(struct seeprom_config *sc)
9149 {
9150 int i;
9151 int maxaddr;
9152 uint32_t checksum;
9153 uint16_t *scarray;
9154
9155 maxaddr = (sizeof(*sc)/2) - 1;
9156 checksum = 0;
9157 scarray = (uint16_t *)sc;
9158
9159 for (i = 0; i < maxaddr; i++)
9160 checksum = checksum + scarray[i];
9161 if (checksum == 0
9162 || (checksum & 0xFFFF) != sc->checksum) {
9163 return (0);
9164 } else {
9165 return (1);
9166 }
9167 }
9168
9169 int
ahd_acquire_seeprom(struct ahd_softc * ahd)9170 ahd_acquire_seeprom(struct ahd_softc *ahd)
9171 {
9172 /*
9173 * We should be able to determine the SEEPROM type
9174 * from the flexport logic, but unfortunately not
9175 * all implementations have this logic and there is
9176 * no programmatic method for determining if the logic
9177 * is present.
9178 */
9179 return (1);
9180 #if 0
9181 uint8_t seetype;
9182 int error;
9183
9184 error = ahd_read_flexport(ahd, FLXADDR_ROMSTAT_CURSENSECTL, &seetype);
9185 if (error != 0
9186 || ((seetype & FLX_ROMSTAT_SEECFG) == FLX_ROMSTAT_SEE_NONE))
9187 return (0);
9188 return (1);
9189 #endif
9190 }
9191
9192 void
ahd_release_seeprom(struct ahd_softc * ahd)9193 ahd_release_seeprom(struct ahd_softc *ahd)
9194 {
9195 /* Currently a no-op */
9196 }
9197
9198 int
ahd_write_flexport(struct ahd_softc * ahd,u_int addr,u_int value)9199 ahd_write_flexport(struct ahd_softc *ahd, u_int addr, u_int value)
9200 {
9201 int error;
9202
9203 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
9204 if (addr > 7)
9205 panic("ahd_write_flexport: address out of range");
9206 ahd_outb(ahd, BRDCTL, BRDEN|(addr << 3));
9207 error = ahd_wait_flexport(ahd);
9208 if (error != 0)
9209 return (error);
9210 ahd_outb(ahd, BRDDAT, value);
9211 ahd_flush_device_writes(ahd);
9212 ahd_outb(ahd, BRDCTL, BRDSTB|BRDEN|(addr << 3));
9213 ahd_flush_device_writes(ahd);
9214 ahd_outb(ahd, BRDCTL, BRDEN|(addr << 3));
9215 ahd_flush_device_writes(ahd);
9216 ahd_outb(ahd, BRDCTL, 0);
9217 ahd_flush_device_writes(ahd);
9218 return (0);
9219 }
9220
9221 int
ahd_read_flexport(struct ahd_softc * ahd,u_int addr,uint8_t * value)9222 ahd_read_flexport(struct ahd_softc *ahd, u_int addr, uint8_t *value)
9223 {
9224 int error;
9225
9226 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
9227 if (addr > 7)
9228 panic("ahd_read_flexport: address out of range");
9229 ahd_outb(ahd, BRDCTL, BRDRW|BRDEN|(addr << 3));
9230 error = ahd_wait_flexport(ahd);
9231 if (error != 0)
9232 return (error);
9233 *value = ahd_inb(ahd, BRDDAT);
9234 ahd_outb(ahd, BRDCTL, 0);
9235 ahd_flush_device_writes(ahd);
9236 return (0);
9237 }
9238
9239 /*
9240 * Wait at most 2 seconds for flexport arbitration to succeed.
9241 */
9242 int
ahd_wait_flexport(struct ahd_softc * ahd)9243 ahd_wait_flexport(struct ahd_softc *ahd)
9244 {
9245 int cnt;
9246
9247 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
9248 cnt = 1000000 * 2 / 5;
9249 while ((ahd_inb(ahd, BRDCTL) & FLXARBACK) == 0 && --cnt)
9250 aic_delay(5);
9251
9252 if (cnt == 0)
9253 return (ETIMEDOUT);
9254 return (0);
9255 }
9256
9257 /************************* Target Mode ****************************************/
9258 #ifdef AHD_TARGET_MODE
9259 cam_status
ahd_find_tmode_devs(struct ahd_softc * ahd,struct cam_sim * sim,union ccb * ccb,struct ahd_tmode_tstate ** tstate,struct ahd_tmode_lstate ** lstate,int notfound_failure)9260 ahd_find_tmode_devs(struct ahd_softc *ahd, struct cam_sim *sim, union ccb *ccb,
9261 struct ahd_tmode_tstate **tstate,
9262 struct ahd_tmode_lstate **lstate,
9263 int notfound_failure)
9264 {
9265
9266 if ((ahd->features & AHD_TARGETMODE) == 0)
9267 return (CAM_REQ_INVALID);
9268
9269 /*
9270 * Handle the 'black hole' device that sucks up
9271 * requests to unattached luns on enabled targets.
9272 */
9273 if (ccb->ccb_h.target_id == CAM_TARGET_WILDCARD
9274 && ccb->ccb_h.target_lun == CAM_LUN_WILDCARD) {
9275 *tstate = NULL;
9276 *lstate = ahd->black_hole;
9277 } else {
9278 u_int max_id;
9279
9280 max_id = (ahd->features & AHD_WIDE) ? 15 : 7;
9281 if (ccb->ccb_h.target_id > max_id)
9282 return (CAM_TID_INVALID);
9283
9284 if (ccb->ccb_h.target_lun >= AHD_NUM_LUNS)
9285 return (CAM_LUN_INVALID);
9286
9287 *tstate = ahd->enabled_targets[ccb->ccb_h.target_id];
9288 *lstate = NULL;
9289 if (*tstate != NULL)
9290 *lstate =
9291 (*tstate)->enabled_luns[ccb->ccb_h.target_lun];
9292 }
9293
9294 if (notfound_failure != 0 && *lstate == NULL)
9295 return (CAM_PATH_INVALID);
9296
9297 return (CAM_REQ_CMP);
9298 }
9299
9300 void
ahd_handle_en_lun(struct ahd_softc * ahd,struct cam_sim * sim,union ccb * ccb)9301 ahd_handle_en_lun(struct ahd_softc *ahd, struct cam_sim *sim, union ccb *ccb)
9302 {
9303 #if NOT_YET
9304 struct ahd_tmode_tstate *tstate;
9305 struct ahd_tmode_lstate *lstate;
9306 struct ccb_en_lun *cel;
9307 cam_status status;
9308 u_int target;
9309 u_int lun;
9310 u_int target_mask;
9311 int s;
9312 char channel;
9313
9314 status = ahd_find_tmode_devs(ahd, sim, ccb, &tstate, &lstate,
9315 /*notfound_failure*/FALSE);
9316
9317 if (status != CAM_REQ_CMP) {
9318 ccb->ccb_h.status = status;
9319 return;
9320 }
9321
9322 if ((ahd->features & AHD_MULTIROLE) != 0) {
9323 u_int our_id;
9324
9325 our_id = ahd->our_id;
9326 if (ccb->ccb_h.target_id != our_id) {
9327 if ((ahd->features & AHD_MULTI_TID) != 0
9328 && (ahd->flags & AHD_INITIATORROLE) != 0) {
9329 /*
9330 * Only allow additional targets if
9331 * the initiator role is disabled.
9332 * The hardware cannot handle a re-select-in
9333 * on the initiator id during a re-select-out
9334 * on a different target id.
9335 */
9336 status = CAM_TID_INVALID;
9337 } else if ((ahd->flags & AHD_INITIATORROLE) != 0
9338 || ahd->enabled_luns > 0) {
9339 /*
9340 * Only allow our target id to change
9341 * if the initiator role is not configured
9342 * and there are no enabled luns which
9343 * are attached to the currently registered
9344 * scsi id.
9345 */
9346 status = CAM_TID_INVALID;
9347 }
9348 }
9349 }
9350
9351 if (status != CAM_REQ_CMP) {
9352 ccb->ccb_h.status = status;
9353 return;
9354 }
9355
9356 /*
9357 * We now have an id that is valid.
9358 * If we aren't in target mode, switch modes.
9359 */
9360 if ((ahd->flags & AHD_TARGETROLE) == 0
9361 && ccb->ccb_h.target_id != CAM_TARGET_WILDCARD) {
9362 int s;
9363
9364 printf("Configuring Target Mode\n");
9365 ahd_lock(ahd, &s);
9366 if (LIST_FIRST(&ahd->pending_scbs) != NULL) {
9367 ccb->ccb_h.status = CAM_BUSY;
9368 ahd_unlock(ahd, &s);
9369 return;
9370 }
9371 ahd->flags |= AHD_TARGETROLE;
9372 if ((ahd->features & AHD_MULTIROLE) == 0)
9373 ahd->flags &= ~AHD_INITIATORROLE;
9374 ahd_pause(ahd);
9375 ahd_loadseq(ahd);
9376 ahd_restart(ahd);
9377 ahd_unlock(ahd, &s);
9378 }
9379 cel = &ccb->cel;
9380 target = ccb->ccb_h.target_id;
9381 lun = ccb->ccb_h.target_lun;
9382 channel = SCSI_CHANNEL(ahd, sim);
9383 target_mask = 0x01 << target;
9384 if (channel == 'B')
9385 target_mask <<= 8;
9386
9387 if (cel->enable != 0) {
9388 u_int scsiseq1;
9389
9390 /* Are we already enabled?? */
9391 if (lstate != NULL) {
9392 xpt_print_path(ccb->ccb_h.path);
9393 printf("Lun already enabled\n");
9394 ccb->ccb_h.status = CAM_LUN_ALRDY_ENA;
9395 return;
9396 }
9397
9398 if (cel->grp6_len != 0
9399 || cel->grp7_len != 0) {
9400 /*
9401 * Don't (yet?) support vendor
9402 * specific commands.
9403 */
9404 ccb->ccb_h.status = CAM_REQ_INVALID;
9405 printf("Non-zero Group Codes\n");
9406 return;
9407 }
9408
9409 /*
9410 * Seems to be okay.
9411 * Setup our data structures.
9412 */
9413 if (target != CAM_TARGET_WILDCARD && tstate == NULL) {
9414 tstate = ahd_alloc_tstate(ahd, target, channel);
9415 if (tstate == NULL) {
9416 xpt_print_path(ccb->ccb_h.path);
9417 printf("Couldn't allocate tstate\n");
9418 ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
9419 return;
9420 }
9421 }
9422 lstate = malloc(sizeof(*lstate), M_DEVBUF, M_NOWAIT | M_ZERO);
9423 if (lstate == NULL) {
9424 xpt_print_path(ccb->ccb_h.path);
9425 printf("Couldn't allocate lstate\n");
9426 ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
9427 return;
9428 }
9429 status = xpt_create_path(&lstate->path, /*periph*/NULL,
9430 xpt_path_path_id(ccb->ccb_h.path),
9431 xpt_path_target_id(ccb->ccb_h.path),
9432 xpt_path_lun_id(ccb->ccb_h.path));
9433 if (status != CAM_REQ_CMP) {
9434 free(lstate, M_DEVBUF, 0);
9435 xpt_print_path(ccb->ccb_h.path);
9436 printf("Couldn't allocate path\n");
9437 ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
9438 return;
9439 }
9440 SLIST_INIT(&lstate->accept_tios);
9441 SLIST_INIT(&lstate->immed_notifies);
9442 ahd_lock(ahd, &s);
9443 ahd_pause(ahd);
9444 if (target != CAM_TARGET_WILDCARD) {
9445 tstate->enabled_luns[lun] = lstate;
9446 ahd->enabled_luns++;
9447
9448 if ((ahd->features & AHD_MULTI_TID) != 0) {
9449 u_int targid_mask;
9450
9451 targid_mask = ahd_inw(ahd, TARGID);
9452 targid_mask |= target_mask;
9453 ahd_outw(ahd, TARGID, targid_mask);
9454 ahd_update_scsiid(ahd, targid_mask);
9455 } else {
9456 u_int our_id;
9457 char channel;
9458
9459 channel = SCSI_CHANNEL(ahd, sim);
9460 our_id = SCSI_SCSI_ID(ahd, sim);
9461
9462 /*
9463 * This can only happen if selections
9464 * are not enabled
9465 */
9466 if (target != our_id) {
9467 u_int sblkctl;
9468 char cur_channel;
9469 int swap;
9470
9471 sblkctl = ahd_inb(ahd, SBLKCTL);
9472 cur_channel = (sblkctl & SELBUSB)
9473 ? 'B' : 'A';
9474 if ((ahd->features & AHD_TWIN) == 0)
9475 cur_channel = 'A';
9476 swap = cur_channel != channel;
9477 ahd->our_id = target;
9478
9479 if (swap)
9480 ahd_outb(ahd, SBLKCTL,
9481 sblkctl ^ SELBUSB);
9482
9483 ahd_outb(ahd, SCSIID, target);
9484
9485 if (swap)
9486 ahd_outb(ahd, SBLKCTL, sblkctl);
9487 }
9488 }
9489 } else
9490 ahd->black_hole = lstate;
9491 /* Allow select-in operations */
9492 if (ahd->black_hole != NULL && ahd->enabled_luns > 0) {
9493 scsiseq1 = ahd_inb(ahd, SCSISEQ_TEMPLATE);
9494 scsiseq1 |= ENSELI;
9495 ahd_outb(ahd, SCSISEQ_TEMPLATE, scsiseq1);
9496 scsiseq1 = ahd_inb(ahd, SCSISEQ1);
9497 scsiseq1 |= ENSELI;
9498 ahd_outb(ahd, SCSISEQ1, scsiseq1);
9499 }
9500 ahd_unpause(ahd);
9501 ahd_unlock(ahd, &s);
9502 ccb->ccb_h.status = CAM_REQ_CMP;
9503 xpt_print_path(ccb->ccb_h.path);
9504 printf("Lun now enabled for target mode\n");
9505 } else {
9506 struct scb *scb;
9507 int i, empty;
9508
9509 if (lstate == NULL) {
9510 ccb->ccb_h.status = CAM_LUN_INVALID;
9511 return;
9512 }
9513
9514 ahd_lock(ahd, &s);
9515
9516 ccb->ccb_h.status = CAM_REQ_CMP;
9517 TAILQ_FOREACH(scb, &ahd->pending_scbs, next) {
9518 struct ccb_hdr *ccbh;
9519
9520 ccbh = &scb->io_ctx->ccb_h;
9521 if (ccbh->func_code == XPT_CONT_TARGET_IO
9522 && !xpt_path_comp(ccbh->path, ccb->ccb_h.path)){
9523 printf("CTIO pending\n");
9524 ccb->ccb_h.status = CAM_REQ_INVALID;
9525 ahd_unlock(ahd, &s);
9526 return;
9527 }
9528 }
9529
9530 if (SLIST_FIRST(&lstate->accept_tios) != NULL) {
9531 printf("ATIOs pending\n");
9532 ccb->ccb_h.status = CAM_REQ_INVALID;
9533 }
9534
9535 if (SLIST_FIRST(&lstate->immed_notifies) != NULL) {
9536 printf("INOTs pending\n");
9537 ccb->ccb_h.status = CAM_REQ_INVALID;
9538 }
9539
9540 if (ccb->ccb_h.status != CAM_REQ_CMP) {
9541 ahd_unlock(ahd, &s);
9542 return;
9543 }
9544
9545 xpt_print_path(ccb->ccb_h.path);
9546 printf("Target mode disabled\n");
9547 xpt_free_path(lstate->path);
9548 free(lstate, M_DEVBUF, 0);
9549
9550 ahd_pause(ahd);
9551 /* Can we clean up the target too? */
9552 if (target != CAM_TARGET_WILDCARD) {
9553 tstate->enabled_luns[lun] = NULL;
9554 ahd->enabled_luns--;
9555 for (empty = 1, i = 0; i < 8; i++)
9556 if (tstate->enabled_luns[i] != NULL) {
9557 empty = 0;
9558 break;
9559 }
9560
9561 if (empty) {
9562 ahd_free_tstate(ahd, target, channel,
9563 /*force*/FALSE);
9564 if (ahd->features & AHD_MULTI_TID) {
9565 u_int targid_mask;
9566
9567 targid_mask = ahd_inw(ahd, TARGID);
9568 targid_mask &= ~target_mask;
9569 ahd_outw(ahd, TARGID, targid_mask);
9570 ahd_update_scsiid(ahd, targid_mask);
9571 }
9572 }
9573 } else {
9574
9575 ahd->black_hole = NULL;
9576
9577 /*
9578 * We can't allow selections without
9579 * our black hole device.
9580 */
9581 empty = TRUE;
9582 }
9583 if (ahd->enabled_luns == 0) {
9584 /* Disallow select-in */
9585 u_int scsiseq1;
9586
9587 scsiseq1 = ahd_inb(ahd, SCSISEQ_TEMPLATE);
9588 scsiseq1 &= ~ENSELI;
9589 ahd_outb(ahd, SCSISEQ_TEMPLATE, scsiseq1);
9590 scsiseq1 = ahd_inb(ahd, SCSISEQ1);
9591 scsiseq1 &= ~ENSELI;
9592 ahd_outb(ahd, SCSISEQ1, scsiseq1);
9593
9594 if ((ahd->features & AHD_MULTIROLE) == 0) {
9595 printf("Configuring Initiator Mode\n");
9596 ahd->flags &= ~AHD_TARGETROLE;
9597 ahd->flags |= AHD_INITIATORROLE;
9598 ahd_pause(ahd);
9599 ahd_loadseq(ahd);
9600 ahd_restart(ahd);
9601 /*
9602 * Unpaused. The extra unpause
9603 * that follows is harmless.
9604 */
9605 }
9606 }
9607 ahd_unpause(ahd);
9608 ahd_unlock(ahd, &s);
9609 }
9610 #endif
9611 }
9612
9613 void
ahd_update_scsiid(struct ahd_softc * ahd,u_int targid_mask)9614 ahd_update_scsiid(struct ahd_softc *ahd, u_int targid_mask)
9615 {
9616 #if NOT_YET
9617 u_int scsiid_mask;
9618 u_int scsiid;
9619
9620 if ((ahd->features & AHD_MULTI_TID) == 0)
9621 panic("ahd_update_scsiid called on non-multitid unit");
9622
9623 /*
9624 * Since we will rely on the TARGID mask
9625 * for selection enables, ensure that OID
9626 * in SCSIID is not set to some other ID
9627 * that we don't want to allow selections on.
9628 */
9629 if ((ahd->features & AHD_ULTRA2) != 0)
9630 scsiid = ahd_inb(ahd, SCSIID_ULTRA2);
9631 else
9632 scsiid = ahd_inb(ahd, SCSIID);
9633 scsiid_mask = 0x1 << (scsiid & OID);
9634 if ((targid_mask & scsiid_mask) == 0) {
9635 u_int our_id;
9636
9637 /* ffs counts from 1 */
9638 our_id = ffs(targid_mask);
9639 if (our_id == 0)
9640 our_id = ahd->our_id;
9641 else
9642 our_id--;
9643 scsiid &= TID;
9644 scsiid |= our_id;
9645 }
9646 if ((ahd->features & AHD_ULTRA2) != 0)
9647 ahd_outb(ahd, SCSIID_ULTRA2, scsiid);
9648 else
9649 ahd_outb(ahd, SCSIID, scsiid);
9650 #endif
9651 }
9652
9653 void
ahd_run_tqinfifo(struct ahd_softc * ahd,int paused)9654 ahd_run_tqinfifo(struct ahd_softc *ahd, int paused)
9655 {
9656 struct target_cmd *cmd;
9657
9658 ahd_sync_tqinfifo(ahd, BUS_DMASYNC_POSTREAD);
9659 while ((cmd = &ahd->targetcmds[ahd->tqinfifonext])->cmd_valid != 0) {
9660
9661 /*
9662 * Only advance through the queue if we
9663 * have the resources to process the command.
9664 */
9665 if (ahd_handle_target_cmd(ahd, cmd) != 0)
9666 break;
9667
9668 cmd->cmd_valid = 0;
9669 ahd_dmamap_sync(ahd, ahd->parent_dmat /*shared_data_dmat*/,
9670 ahd->shared_data_dmamap,
9671 ahd_targetcmd_offset(ahd, ahd->tqinfifonext),
9672 sizeof(struct target_cmd),
9673 BUS_DMASYNC_PREREAD);
9674 ahd->tqinfifonext++;
9675
9676 /*
9677 * Lazily update our position in the target mode incoming
9678 * command queue as seen by the sequencer.
9679 */
9680 if ((ahd->tqinfifonext & (HOST_TQINPOS - 1)) == 1) {
9681 u_int hs_mailbox;
9682
9683 hs_mailbox = ahd_inb(ahd, HS_MAILBOX);
9684 hs_mailbox &= ~HOST_TQINPOS;
9685 hs_mailbox |= ahd->tqinfifonext & HOST_TQINPOS;
9686 ahd_outb(ahd, HS_MAILBOX, hs_mailbox);
9687 }
9688 }
9689 }
9690
9691 int
ahd_handle_target_cmd(struct ahd_softc * ahd,struct target_cmd * cmd)9692 ahd_handle_target_cmd(struct ahd_softc *ahd, struct target_cmd *cmd)
9693 {
9694 struct ahd_tmode_tstate *tstate;
9695 struct ahd_tmode_lstate *lstate;
9696 struct ccb_accept_tio *atio;
9697 uint8_t *byte;
9698 int initiator;
9699 int target;
9700 int lun;
9701
9702 initiator = SCSIID_TARGET(ahd, cmd->scsiid);
9703 target = SCSIID_OUR_ID(cmd->scsiid);
9704 lun = (cmd->identify & MSG_IDENTIFY_LUNMASK);
9705
9706 byte = cmd->bytes;
9707 tstate = ahd->enabled_targets[target];
9708 lstate = NULL;
9709 if (tstate != NULL)
9710 lstate = tstate->enabled_luns[lun];
9711
9712 /*
9713 * Commands for disabled luns go to the black hole driver.
9714 */
9715 if (lstate == NULL)
9716 lstate = ahd->black_hole;
9717
9718 atio = (struct ccb_accept_tio*)SLIST_FIRST(&lstate->accept_tios);
9719 if (atio == NULL) {
9720 ahd->flags |= AHD_TQINFIFO_BLOCKED;
9721 /*
9722 * Wait for more ATIOs from the peripheral driver for this lun.
9723 */
9724 return (1);
9725 } else
9726 ahd->flags &= ~AHD_TQINFIFO_BLOCKED;
9727 #ifdef AHD_DEBUG
9728 if ((ahd_debug & AHD_SHOW_TQIN) != 0)
9729 printf("Incoming command from %d for %d:%d%s\n",
9730 initiator, target, lun,
9731 lstate == ahd->black_hole ? "(Black Holed)" : "");
9732 #endif
9733 SLIST_REMOVE_HEAD(&lstate->accept_tios, sim_links.sle);
9734
9735 if (lstate == ahd->black_hole) {
9736 /* Fill in the wildcards */
9737 atio->ccb_h.target_id = target;
9738 atio->ccb_h.target_lun = lun;
9739 }
9740
9741 /*
9742 * Package it up and send it off to
9743 * whomever has this lun enabled.
9744 */
9745 atio->sense_len = 0;
9746 atio->init_id = initiator;
9747 if (byte[0] != 0xFF) {
9748 /* Tag was included */
9749 atio->tag_action = *byte++;
9750 atio->tag_id = *byte++;
9751 atio->ccb_h.flags = CAM_TAG_ACTION_VALID;
9752 } else {
9753 atio->ccb_h.flags = 0;
9754 }
9755 byte++;
9756
9757 /* Okay. Now determine the cdb size based on the command code */
9758 switch (*byte >> CMD_GROUP_CODE_SHIFT) {
9759 case 0:
9760 atio->cdb_len = 6;
9761 break;
9762 case 1:
9763 case 2:
9764 atio->cdb_len = 10;
9765 break;
9766 case 4:
9767 atio->cdb_len = 16;
9768 break;
9769 case 5:
9770 atio->cdb_len = 12;
9771 break;
9772 case 3:
9773 default:
9774 /* Only copy the opcode. */
9775 atio->cdb_len = 1;
9776 printf("Reserved or VU command code type encountered\n");
9777 break;
9778 }
9779
9780 memcpy(atio->cdb_io.cdb_bytes, byte, atio->cdb_len);
9781
9782 atio->ccb_h.status |= CAM_CDB_RECVD;
9783
9784 if ((cmd->identify & MSG_IDENTIFY_DISCFLAG) == 0) {
9785 /*
9786 * We weren't allowed to disconnect.
9787 * We're hanging on the bus until a
9788 * continue target I/O comes in response
9789 * to this accept tio.
9790 */
9791 #ifdef AHD_DEBUG
9792 if ((ahd_debug & AHD_SHOW_TQIN) != 0)
9793 printf("Received Immediate Command %d:%d:%d - %p\n",
9794 initiator, target, lun, ahd->pending_device);
9795 #endif
9796 ahd->pending_device = lstate;
9797 ahd_freeze_ccb((union ccb *)atio);
9798 atio->ccb_h.flags |= CAM_DIS_DISCONNECT;
9799 }
9800 xpt_done((union ccb*)atio);
9801 return (0);
9802 }
9803
9804 #endif
9805
9806 int
ahd_createdmamem(struct ahd_softc * ahd,size_t size,struct map_node * map,const char * what)9807 ahd_createdmamem(struct ahd_softc *ahd, size_t size, struct map_node *map,
9808 const char *what)
9809 {
9810 bus_dma_tag_t tag = ahd->parent_dmat;
9811 int nseg, error;
9812
9813 bzero(map, sizeof(*map));
9814
9815 if ((error = bus_dmamap_create(tag, size, 1, size, 0, BUS_DMA_NOWAIT,
9816 &map->dmamap)) != 0) {
9817 printf("%s: failed to create DMA map for %s, error = %d\n",
9818 ahd_name(ahd), what, error);
9819 return (error);
9820 }
9821
9822 if ((error = bus_dmamem_alloc(tag, size, PAGE_SIZE, 0, &map->dmaseg,
9823 1, &nseg, BUS_DMA_NOWAIT)) != 0) {
9824 printf("%s: failed to allocate DMA mem for %s, error = %d\n",
9825 ahd_name(ahd), what, error);
9826 goto destroy;
9827 }
9828
9829 if ((error = bus_dmamem_map(tag, &map->dmaseg, nseg, size,
9830 (caddr_t *)&map->vaddr, BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
9831 printf("%s: failed to map DMA mem for %s, error = %d\n",
9832 ahd_name(ahd), what, error);
9833 goto free;
9834 }
9835
9836 if ((error = bus_dmamap_load(tag, map->dmamap, map->vaddr, size, NULL,
9837 BUS_DMA_NOWAIT)) != 0) {
9838 printf("%s: failed to load DMA map for %s, error = %d\n",
9839 ahd_name(ahd), what, error);
9840 goto unmap;
9841 }
9842
9843 map->size = size;
9844 map->busaddr = map->dmamap->dm_segs[0].ds_addr;
9845 return (0);
9846
9847 unmap:
9848 bus_dmamem_unmap(tag, map->vaddr, size);
9849 free:
9850 bus_dmamem_free(tag, &map->dmaseg, 1);
9851 destroy:
9852 bus_dmamap_destroy(tag, map->dmamap);
9853
9854 bzero(map, sizeof(*map));
9855 return (error);
9856 }
9857
9858 void
ahd_freedmamem(struct ahd_softc * ahd,struct map_node * map)9859 ahd_freedmamem(struct ahd_softc* ahd, struct map_node *map)
9860 {
9861 bus_dma_tag_t tag = ahd->parent_dmat;
9862
9863 bus_dmamap_unload(tag, map->dmamap);
9864 bus_dmamem_unmap(tag, map->vaddr, map->size);
9865 bus_dmamem_free(tag, &map->dmaseg, 1);
9866 bus_dmamap_destroy(tag, map->dmamap);
9867 }
9868
9869 char *
ahd_name(struct ahd_softc * ahd)9870 ahd_name(struct ahd_softc *ahd)
9871 {
9872 return (ahd->name);
9873 }
9874
9875 void
ahd_known_modes(struct ahd_softc * ahd,ahd_mode src,ahd_mode dst)9876 ahd_known_modes(struct ahd_softc *ahd, ahd_mode src, ahd_mode dst)
9877 {
9878 ahd->src_mode = src;
9879 ahd->dst_mode = dst;
9880 ahd->saved_src_mode = src;
9881 ahd->saved_dst_mode = dst;
9882 }
9883
9884 ahd_mode_state
ahd_build_mode_state(struct ahd_softc * ahd,ahd_mode src,ahd_mode dst)9885 ahd_build_mode_state(struct ahd_softc *ahd, ahd_mode src, ahd_mode dst)
9886 {
9887 return ((src << SRC_MODE_SHIFT) | (dst << DST_MODE_SHIFT));
9888 }
9889
9890 void
ahd_extract_mode_state(struct ahd_softc * ahd,ahd_mode_state state,ahd_mode * src,ahd_mode * dst)9891 ahd_extract_mode_state(struct ahd_softc *ahd, ahd_mode_state state,
9892 ahd_mode *src, ahd_mode *dst)
9893 {
9894 *src = (state & SRC_MODE) >> SRC_MODE_SHIFT;
9895 *dst = (state & DST_MODE) >> DST_MODE_SHIFT;
9896 }
9897
9898 void
ahd_set_modes(struct ahd_softc * ahd,ahd_mode src,ahd_mode dst)9899 ahd_set_modes(struct ahd_softc *ahd, ahd_mode src, ahd_mode dst)
9900 {
9901 if (ahd->src_mode == src && ahd->dst_mode == dst)
9902 return;
9903 #ifdef AHD_DEBUG
9904 if (ahd->src_mode == AHD_MODE_UNKNOWN
9905 || ahd->dst_mode == AHD_MODE_UNKNOWN)
9906 panic("Setting mode prior to saving it.");
9907 if ((ahd_debug & AHD_SHOW_MODEPTR) != 0)
9908 printf("%s: Setting mode 0x%x\n", ahd_name(ahd),
9909 ahd_build_mode_state(ahd, src, dst));
9910 #endif
9911 ahd_outb(ahd, MODE_PTR, ahd_build_mode_state(ahd, src, dst));
9912 ahd->src_mode = src;
9913 ahd->dst_mode = dst;
9914 }
9915
9916 void
ahd_update_modes(struct ahd_softc * ahd)9917 ahd_update_modes(struct ahd_softc *ahd)
9918 {
9919 ahd_mode_state mode_ptr;
9920 ahd_mode src;
9921 ahd_mode dst;
9922
9923 mode_ptr = ahd_inb(ahd, MODE_PTR);
9924 #ifdef AHD_DEBUG
9925 if ((ahd_debug & AHD_SHOW_MODEPTR) != 0)
9926 printf("Reading mode 0x%x\n", mode_ptr);
9927 #endif
9928 ahd_extract_mode_state(ahd, mode_ptr, &src, &dst);
9929 ahd_known_modes(ahd, src, dst);
9930 }
9931
9932 void
ahd_assert_modes(struct ahd_softc * ahd,ahd_mode srcmode,ahd_mode dstmode,const char * file,int line)9933 ahd_assert_modes(struct ahd_softc *ahd, ahd_mode srcmode,
9934 ahd_mode dstmode, const char *file, int line)
9935 {
9936 #ifdef AHD_DEBUG
9937 if ((srcmode & AHD_MK_MSK(ahd->src_mode)) == 0
9938 || (dstmode & AHD_MK_MSK(ahd->dst_mode)) == 0) {
9939 panic("%s:%s:%d: Mode assertion failed.",
9940 ahd_name(ahd), file, line);
9941 }
9942 #endif
9943 }
9944
9945 ahd_mode_state
ahd_save_modes(struct ahd_softc * ahd)9946 ahd_save_modes(struct ahd_softc *ahd)
9947 {
9948 if (ahd->src_mode == AHD_MODE_UNKNOWN
9949 || ahd->dst_mode == AHD_MODE_UNKNOWN)
9950 ahd_update_modes(ahd);
9951
9952 return (ahd_build_mode_state(ahd, ahd->src_mode, ahd->dst_mode));
9953 }
9954
9955 void
ahd_restore_modes(struct ahd_softc * ahd,ahd_mode_state state)9956 ahd_restore_modes(struct ahd_softc *ahd, ahd_mode_state state)
9957 {
9958 ahd_mode src;
9959 ahd_mode dst;
9960
9961 ahd_extract_mode_state(ahd, state, &src, &dst);
9962 ahd_set_modes(ahd, src, dst);
9963 }
9964
9965 /*
9966 * Determine whether the sequencer has halted code execution.
9967 * Returns non-zero status if the sequencer is stopped.
9968 */
9969 int
ahd_is_paused(struct ahd_softc * ahd)9970 ahd_is_paused(struct ahd_softc *ahd)
9971 {
9972 return ((ahd_inb(ahd, HCNTRL) & PAUSE) != 0);
9973 }
9974
9975 /*
9976 * Request that the sequencer stop and wait, indefinitely, for it
9977 * to stop. The sequencer will only acknowledge that it is paused
9978 * once it has reached an instruction boundary and PAUSEDIS is
9979 * cleared in the SEQCTL register. The sequencer may use PAUSEDIS
9980 * for critical sections.
9981 */
9982 void
ahd_pause(struct ahd_softc * ahd)9983 ahd_pause(struct ahd_softc *ahd)
9984 {
9985 ahd_outb(ahd, HCNTRL, ahd->pause);
9986
9987 /*
9988 * Since the sequencer can disable pausing in a critical section, we
9989 * must loop until it actually stops.
9990 */
9991 while (ahd_is_paused(ahd) == 0)
9992 ;
9993 }
9994
9995 /*
9996 * Allow the sequencer to continue program execution.
9997 * We check here to ensure that no additional interrupt
9998 * sources that would cause the sequencer to halt have been
9999 * asserted. If, for example, a SCSI bus reset is detected
10000 * while we are fielding a different, pausing, interrupt type,
10001 * we don't want to release the sequencer before going back
10002 * into our interrupt handler and dealing with this new
10003 * condition.
10004 */
10005 void
ahd_unpause(struct ahd_softc * ahd)10006 ahd_unpause(struct ahd_softc *ahd)
10007 {
10008 /*
10009 * Automatically restore our modes to those saved
10010 * prior to the first change of the mode.
10011 */
10012 if (ahd->saved_src_mode != AHD_MODE_UNKNOWN
10013 && ahd->saved_dst_mode != AHD_MODE_UNKNOWN) {
10014 if ((ahd->flags & AHD_UPDATE_PEND_CMDS) != 0)
10015 ahd_reset_cmds_pending(ahd);
10016 ahd_set_modes(ahd, ahd->saved_src_mode, ahd->saved_dst_mode);
10017 }
10018
10019 if ((ahd_inb(ahd, INTSTAT) & ~CMDCMPLT) == 0)
10020 ahd_outb(ahd, HCNTRL, ahd->unpause);
10021
10022 ahd_known_modes(ahd, AHD_MODE_UNKNOWN, AHD_MODE_UNKNOWN);
10023 }
10024
10025 void *
ahd_sg_setup(struct ahd_softc * ahd,struct scb * scb,void * sgptr,bus_addr_t addr,bus_size_t len,int last)10026 ahd_sg_setup(struct ahd_softc *ahd, struct scb *scb,
10027 void *sgptr, bus_addr_t addr, bus_size_t len, int last)
10028 {
10029 scb->sg_count++;
10030 if (sizeof(bus_addr_t) > 4
10031 && (ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
10032 struct ahd_dma64_seg *sg;
10033
10034 sg = (struct ahd_dma64_seg *)sgptr;
10035 sg->addr = aic_htole64(addr);
10036 sg->len = aic_htole32(len | (last ? AHD_DMA_LAST_SEG : 0));
10037 return (sg + 1);
10038 } else {
10039 struct ahd_dma_seg *sg;
10040
10041 sg = (struct ahd_dma_seg *)sgptr;
10042 sg->addr = aic_htole32(addr & 0xFFFFFFFF);
10043 sg->len = aic_htole32(len | ((addr >> 8) & 0x7F000000)
10044 | (last ? AHD_DMA_LAST_SEG : 0));
10045 return (sg + 1);
10046 }
10047 }
10048
10049 void
ahd_setup_scb_common(struct ahd_softc * ahd,struct scb * scb)10050 ahd_setup_scb_common(struct ahd_softc *ahd, struct scb *scb)
10051 {
10052 /* XXX Handle target mode SCBs. */
10053 scb->crc_retry_count = 0;
10054 if ((scb->flags & SCB_PACKETIZED) != 0) {
10055 /* XXX what about ACA?? It is type 4, but TAG_TYPE == 0x3. */
10056 scb->hscb->task_attribute = scb->hscb->control & SCB_TAG_TYPE;
10057 } else {
10058 if (aic_get_transfer_length(scb) & 0x01)
10059 scb->hscb->task_attribute = SCB_XFERLEN_ODD;
10060 else
10061 scb->hscb->task_attribute = 0;
10062 }
10063
10064 if (scb->hscb->cdb_len <= MAX_CDB_LEN_WITH_SENSE_ADDR
10065 || (scb->hscb->cdb_len & SCB_CDB_LEN_PTR) != 0)
10066 scb->hscb->shared_data.idata.cdb_plus_saddr.sense_addr =
10067 aic_htole32(scb->sense_busaddr);
10068 }
10069
10070 void
ahd_setup_data_scb(struct ahd_softc * ahd,struct scb * scb)10071 ahd_setup_data_scb(struct ahd_softc *ahd, struct scb *scb)
10072 {
10073 /*
10074 * Copy the first SG into the "current" data pointer area.
10075 */
10076 if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
10077 struct ahd_dma64_seg *sg;
10078
10079 sg = (struct ahd_dma64_seg *)scb->sg_list;
10080 scb->hscb->dataptr = sg->addr;
10081 scb->hscb->datacnt = sg->len;
10082 } else {
10083 struct ahd_dma_seg *sg;
10084 uint32_t *dataptr_words;
10085
10086 sg = (struct ahd_dma_seg *)scb->sg_list;
10087 dataptr_words = (uint32_t*)&scb->hscb->dataptr;
10088 dataptr_words[0] = sg->addr;
10089 dataptr_words[1] = 0;
10090 if ((ahd->flags & AHD_39BIT_ADDRESSING) != 0) {
10091 uint64_t high_addr;
10092
10093 high_addr = aic_le32toh(sg->len) & 0x7F000000;
10094 scb->hscb->dataptr |= aic_htole64(high_addr << 8);
10095 }
10096 scb->hscb->datacnt = sg->len;
10097 }
10098 /*
10099 * Note where to find the SG entries in bus space.
10100 * We also set the full residual flag which the
10101 * sequencer will clear as soon as a data transfer
10102 * occurs.
10103 */
10104 scb->hscb->sgptr = aic_htole32(scb->sg_list_busaddr|SG_FULL_RESID);
10105 }
10106
10107 void
ahd_setup_noxfer_scb(struct ahd_softc * ahd,struct scb * scb)10108 ahd_setup_noxfer_scb(struct ahd_softc *ahd, struct scb *scb)
10109 {
10110 scb->hscb->sgptr = aic_htole32(SG_LIST_NULL);
10111 scb->hscb->dataptr = 0;
10112 scb->hscb->datacnt = 0;
10113 }
10114
10115 size_t
ahd_sg_size(struct ahd_softc * ahd)10116 ahd_sg_size(struct ahd_softc *ahd)
10117 {
10118 if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0)
10119 return (sizeof(struct ahd_dma64_seg));
10120 return (sizeof(struct ahd_dma_seg));
10121 }
10122
10123 void *
ahd_sg_bus_to_virt(struct ahd_softc * ahd,struct scb * scb,uint32_t sg_busaddr)10124 ahd_sg_bus_to_virt(struct ahd_softc *ahd, struct scb *scb, uint32_t sg_busaddr)
10125 {
10126 bus_addr_t sg_offset;
10127
10128 /* sg_list_phys points to entry 1, not 0 */
10129 sg_offset = sg_busaddr - (scb->sg_list_busaddr - ahd_sg_size(ahd));
10130 return ((uint8_t *)scb->sg_list + sg_offset);
10131 }
10132
10133 uint32_t
ahd_sg_virt_to_bus(struct ahd_softc * ahd,struct scb * scb,void * sg)10134 ahd_sg_virt_to_bus(struct ahd_softc *ahd, struct scb *scb, void *sg)
10135 {
10136 bus_addr_t sg_offset;
10137
10138 /* sg_list_phys points to entry 1, not 0 */
10139 sg_offset = ((uint8_t *)sg - (uint8_t *)scb->sg_list)
10140 - ahd_sg_size(ahd);
10141
10142 return (scb->sg_list_busaddr + sg_offset);
10143 }
10144
10145 void
ahd_sync_scb(struct ahd_softc * ahd,struct scb * scb,int op)10146 ahd_sync_scb(struct ahd_softc *ahd, struct scb *scb, int op)
10147 {
10148 ahd_dmamap_sync(ahd, ahd->parent_dmat, scb->hscb_map->dmamap,
10149 /*offset*/(uint8_t*)scb->hscb - scb->hscb_map->vaddr,
10150 /*len*/sizeof(*scb->hscb), op);
10151 }
10152
10153 void
ahd_sync_sglist(struct ahd_softc * ahd,struct scb * scb,int op)10154 ahd_sync_sglist(struct ahd_softc *ahd, struct scb *scb, int op)
10155 {
10156 if (scb->sg_count == 0)
10157 return;
10158
10159 ahd_dmamap_sync(ahd, ahd->parent_dmat,
10160 scb->sense_map->dmamap,
10161 /*offset*/scb->sg_list_busaddr - ahd_sg_size(ahd),
10162 /*len*/ahd_sg_size(ahd) * scb->sg_count, op);
10163 }
10164
10165 void
ahd_sync_sense(struct ahd_softc * ahd,struct scb * scb,int op)10166 ahd_sync_sense(struct ahd_softc *ahd, struct scb *scb, int op)
10167 {
10168 ahd_dmamap_sync(ahd, ahd->parent_dmat,
10169 scb->sense_map->dmamap,
10170 /*offset*/scb->sense_busaddr,
10171 /*len*/AHD_SENSE_BUFSIZE, op);
10172 }
10173
10174 uint32_t
ahd_targetcmd_offset(struct ahd_softc * ahd,u_int index)10175 ahd_targetcmd_offset(struct ahd_softc *ahd, u_int index)
10176 {
10177 return (((uint8_t *)&ahd->targetcmds[index])
10178 - (uint8_t *)ahd->qoutfifo);
10179 }
10180
10181 void
ahd_complete_scb(struct ahd_softc * ahd,struct scb * scb)10182 ahd_complete_scb(struct ahd_softc *ahd, struct scb *scb)
10183 {
10184 uint32_t sgptr;
10185
10186 sgptr = aic_le32toh(scb->hscb->sgptr);
10187 if ((sgptr & SG_STATUS_VALID) != 0)
10188 ahd_handle_scb_status(ahd, scb);
10189 else
10190 ahd_done(ahd, scb);
10191 }
10192
10193 /*
10194 * Determine whether the sequencer reported a residual
10195 * for this SCB/transaction.
10196 */
10197 void
ahd_update_residual(struct ahd_softc * ahd,struct scb * scb)10198 ahd_update_residual(struct ahd_softc *ahd, struct scb *scb)
10199 {
10200 uint32_t sgptr;
10201
10202 sgptr = aic_le32toh(scb->hscb->sgptr);
10203 if ((sgptr & SG_STATUS_VALID) != 0)
10204 ahd_calc_residual(ahd, scb);
10205 }
10206
10207 /*
10208 * Return pointers to the transfer negotiation information
10209 * for the specified our_id/remote_id pair.
10210 */
10211 struct ahd_initiator_tinfo *
ahd_fetch_transinfo(struct ahd_softc * ahd,char channel,u_int our_id,u_int remote_id,struct ahd_tmode_tstate ** tstate)10212 ahd_fetch_transinfo(struct ahd_softc *ahd, char channel, u_int our_id,
10213 u_int remote_id, struct ahd_tmode_tstate **tstate)
10214 {
10215 /*
10216 * Transfer data structures are stored from the perspective
10217 * of the target role. Since the parameters for a connection
10218 * in the initiator role to a given target are the same as
10219 * when the roles are reversed, we pretend we are the target.
10220 */
10221 if (channel == 'B')
10222 our_id += 8;
10223 *tstate = ahd->enabled_targets[our_id];
10224 return (&(*tstate)->transinfo[remote_id]);
10225 }
10226
10227 #define AHD_COPY_COL_IDX(dst, src) \
10228 do { \
10229 dst->hscb->scsiid = src->hscb->scsiid; \
10230 dst->hscb->lun = src->hscb->lun; \
10231 } while (0)
10232
10233 uint16_t
ahd_inw(struct ahd_softc * ahd,u_int port)10234 ahd_inw(struct ahd_softc *ahd, u_int port)
10235 {
10236 /*
10237 * Read high byte first as some registers increment
10238 * or have other side effects when the low byte is
10239 * read.
10240 */
10241 return ((ahd_inb(ahd, port+1) << 8) | ahd_inb(ahd, port));
10242 }
10243
10244 void
ahd_outw(struct ahd_softc * ahd,u_int port,u_int value)10245 ahd_outw(struct ahd_softc *ahd, u_int port, u_int value)
10246 {
10247 /*
10248 * Write low byte first to accommodate registers
10249 * such as PRGMCNT where the order maters.
10250 */
10251 ahd_outb(ahd, port, value & 0xFF);
10252 ahd_outb(ahd, port+1, (value >> 8) & 0xFF);
10253 }
10254
10255 uint32_t
ahd_inl(struct ahd_softc * ahd,u_int port)10256 ahd_inl(struct ahd_softc *ahd, u_int port)
10257 {
10258 return ((ahd_inb(ahd, port))
10259 | (ahd_inb(ahd, port+1) << 8)
10260 | (ahd_inb(ahd, port+2) << 16)
10261 | (ahd_inb(ahd, port+3) << 24));
10262 }
10263
10264 void
ahd_outl(struct ahd_softc * ahd,u_int port,uint32_t value)10265 ahd_outl(struct ahd_softc *ahd, u_int port, uint32_t value)
10266 {
10267 ahd_outb(ahd, port, (value) & 0xFF);
10268 ahd_outb(ahd, port+1, ((value) >> 8) & 0xFF);
10269 ahd_outb(ahd, port+2, ((value) >> 16) & 0xFF);
10270 ahd_outb(ahd, port+3, ((value) >> 24) & 0xFF);
10271 }
10272
10273 uint64_t
ahd_inq(struct ahd_softc * ahd,u_int port)10274 ahd_inq(struct ahd_softc *ahd, u_int port)
10275 {
10276 return ((ahd_inb(ahd, port))
10277 | (ahd_inb(ahd, port+1) << 8)
10278 | (ahd_inb(ahd, port+2) << 16)
10279 | (ahd_inb(ahd, port+3) << 24)
10280 | (((uint64_t)ahd_inb(ahd, port+4)) << 32)
10281 | (((uint64_t)ahd_inb(ahd, port+5)) << 40)
10282 | (((uint64_t)ahd_inb(ahd, port+6)) << 48)
10283 | (((uint64_t)ahd_inb(ahd, port+7)) << 56));
10284 }
10285
10286 void
ahd_outq(struct ahd_softc * ahd,u_int port,uint64_t value)10287 ahd_outq(struct ahd_softc *ahd, u_int port, uint64_t value)
10288 {
10289 ahd_outb(ahd, port, value & 0xFF);
10290 ahd_outb(ahd, port+1, (value >> 8) & 0xFF);
10291 ahd_outb(ahd, port+2, (value >> 16) & 0xFF);
10292 ahd_outb(ahd, port+3, (value >> 24) & 0xFF);
10293 ahd_outb(ahd, port+4, (value >> 32) & 0xFF);
10294 ahd_outb(ahd, port+5, (value >> 40) & 0xFF);
10295 ahd_outb(ahd, port+6, (value >> 48) & 0xFF);
10296 ahd_outb(ahd, port+7, (value >> 56) & 0xFF);
10297 }
10298
10299 u_int
ahd_get_scbptr(struct ahd_softc * ahd)10300 ahd_get_scbptr(struct ahd_softc *ahd)
10301 {
10302 AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
10303 ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
10304 return (ahd_inb(ahd, SCBPTR) | (ahd_inb(ahd, SCBPTR + 1) << 8));
10305 }
10306
10307 void
ahd_set_scbptr(struct ahd_softc * ahd,u_int scbptr)10308 ahd_set_scbptr(struct ahd_softc *ahd, u_int scbptr)
10309 {
10310 AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
10311 ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
10312 ahd_outb(ahd, SCBPTR, scbptr & 0xFF);
10313 ahd_outb(ahd, SCBPTR+1, (scbptr >> 8) & 0xFF);
10314 }
10315
10316 u_int
ahd_get_hnscb_qoff(struct ahd_softc * ahd)10317 ahd_get_hnscb_qoff(struct ahd_softc *ahd)
10318 {
10319 return (ahd_inw_atomic(ahd, HNSCB_QOFF));
10320 }
10321
10322 void
ahd_set_hnscb_qoff(struct ahd_softc * ahd,u_int value)10323 ahd_set_hnscb_qoff(struct ahd_softc *ahd, u_int value)
10324 {
10325 ahd_outw_atomic(ahd, HNSCB_QOFF, value);
10326 }
10327
10328 u_int
ahd_get_hescb_qoff(struct ahd_softc * ahd)10329 ahd_get_hescb_qoff(struct ahd_softc *ahd)
10330 {
10331 return (ahd_inb(ahd, HESCB_QOFF));
10332 }
10333
10334 void
ahd_set_hescb_qoff(struct ahd_softc * ahd,u_int value)10335 ahd_set_hescb_qoff(struct ahd_softc *ahd, u_int value)
10336 {
10337 ahd_outb(ahd, HESCB_QOFF, value);
10338 }
10339
10340 u_int
ahd_get_snscb_qoff(struct ahd_softc * ahd)10341 ahd_get_snscb_qoff(struct ahd_softc *ahd)
10342 {
10343 u_int oldvalue;
10344
10345 AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
10346 oldvalue = ahd_inw(ahd, SNSCB_QOFF);
10347 ahd_outw(ahd, SNSCB_QOFF, oldvalue);
10348 return (oldvalue);
10349 }
10350
10351 void
ahd_set_snscb_qoff(struct ahd_softc * ahd,u_int value)10352 ahd_set_snscb_qoff(struct ahd_softc *ahd, u_int value)
10353 {
10354 AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
10355 ahd_outw(ahd, SNSCB_QOFF, value);
10356 }
10357
10358 u_int
ahd_get_sescb_qoff(struct ahd_softc * ahd)10359 ahd_get_sescb_qoff(struct ahd_softc *ahd)
10360 {
10361 AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
10362 return (ahd_inb(ahd, SESCB_QOFF));
10363 }
10364
10365 void
ahd_set_sescb_qoff(struct ahd_softc * ahd,u_int value)10366 ahd_set_sescb_qoff(struct ahd_softc *ahd, u_int value)
10367 {
10368 AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
10369 ahd_outb(ahd, SESCB_QOFF, value);
10370 }
10371
10372 u_int
ahd_get_sdscb_qoff(struct ahd_softc * ahd)10373 ahd_get_sdscb_qoff(struct ahd_softc *ahd)
10374 {
10375 AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
10376 return (ahd_inb(ahd, SDSCB_QOFF) | (ahd_inb(ahd, SDSCB_QOFF + 1) << 8));
10377 }
10378
10379 void
ahd_set_sdscb_qoff(struct ahd_softc * ahd,u_int value)10380 ahd_set_sdscb_qoff(struct ahd_softc *ahd, u_int value)
10381 {
10382 AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
10383 ahd_outb(ahd, SDSCB_QOFF, value & 0xFF);
10384 ahd_outb(ahd, SDSCB_QOFF+1, (value >> 8) & 0xFF);
10385 }
10386
10387 u_int
ahd_inb_scbram(struct ahd_softc * ahd,u_int offset)10388 ahd_inb_scbram(struct ahd_softc *ahd, u_int offset)
10389 {
10390 u_int value;
10391
10392 /*
10393 * Workaround PCI-X Rev A. hardware bug.
10394 * After a host read of SCB memory, the chip
10395 * may become confused into thinking prefetch
10396 * was required. This starts the discard timer
10397 * running and can cause an unexpected discard
10398 * timer interrupt. The work around is to read
10399 * a normal register prior to the exhaustion of
10400 * the discard timer. The mode pointer register
10401 * has no side effects and so serves well for
10402 * this purpose.
10403 *
10404 * Razor #528
10405 */
10406 value = ahd_inb(ahd, offset);
10407 if ((ahd->bugs & AHD_PCIX_SCBRAM_RD_BUG) != 0)
10408 ahd_inb(ahd, MODE_PTR);
10409 return (value);
10410 }
10411
10412 u_int
ahd_inw_scbram(struct ahd_softc * ahd,u_int offset)10413 ahd_inw_scbram(struct ahd_softc *ahd, u_int offset)
10414 {
10415 return (ahd_inb_scbram(ahd, offset)
10416 | (ahd_inb_scbram(ahd, offset+1) << 8));
10417 }
10418
10419 uint32_t
ahd_inl_scbram(struct ahd_softc * ahd,u_int offset)10420 ahd_inl_scbram(struct ahd_softc *ahd, u_int offset)
10421 {
10422 return (ahd_inw_scbram(ahd, offset)
10423 | (ahd_inw_scbram(ahd, offset+2) << 16));
10424 }
10425
10426 uint64_t
ahd_inq_scbram(struct ahd_softc * ahd,u_int offset)10427 ahd_inq_scbram(struct ahd_softc *ahd, u_int offset)
10428 {
10429 return (ahd_inl_scbram(ahd, offset)
10430 | ((uint64_t)ahd_inl_scbram(ahd, offset+4)) << 32);
10431 }
10432
10433 struct scb *
ahd_lookup_scb(struct ahd_softc * ahd,u_int tag)10434 ahd_lookup_scb(struct ahd_softc *ahd, u_int tag)
10435 {
10436 struct scb* scb;
10437
10438 if (tag >= AHD_SCB_MAX)
10439 return (NULL);
10440 scb = ahd->scb_data.scbindex[tag];
10441 if (scb != NULL)
10442 ahd_sync_scb(ahd, scb,
10443 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
10444 return (scb);
10445 }
10446
10447 void
ahd_swap_with_next_hscb(struct ahd_softc * ahd,struct scb * scb)10448 ahd_swap_with_next_hscb(struct ahd_softc *ahd, struct scb *scb)
10449 {
10450 struct hardware_scb *q_hscb;
10451 struct map_node *q_hscb_map;
10452 uint32_t saved_hscb_busaddr;
10453
10454 /*
10455 * Our queuing method is a bit tricky. The card
10456 * knows in advance which HSCB (by address) to download,
10457 * and we can't disappoint it. To achieve this, the next
10458 * HSCB to download is saved off in ahd->next_queued_hscb.
10459 * When we are called to queue "an arbitrary scb",
10460 * we copy the contents of the incoming HSCB to the one
10461 * the sequencer knows about, swap HSCB pointers and
10462 * finally assign the SCB to the tag indexed location
10463 * in the scb_array. This makes sure that we can still
10464 * locate the correct SCB by SCB_TAG.
10465 */
10466 q_hscb = ahd->next_queued_hscb;
10467 q_hscb_map = ahd->next_queued_hscb_map;
10468 saved_hscb_busaddr = q_hscb->hscb_busaddr;
10469 memcpy(q_hscb, scb->hscb, sizeof(*scb->hscb));
10470 q_hscb->hscb_busaddr = saved_hscb_busaddr;
10471 q_hscb->next_hscb_busaddr = scb->hscb->hscb_busaddr;
10472
10473 /* Now swap HSCB pointers. */
10474 ahd->next_queued_hscb = scb->hscb;
10475 ahd->next_queued_hscb_map = scb->hscb_map;
10476 scb->hscb = q_hscb;
10477 scb->hscb_map = q_hscb_map;
10478
10479 /* Now define the mapping from tag to SCB in the scbindex */
10480 ahd->scb_data.scbindex[SCB_GET_TAG(scb)] = scb;
10481 }
10482
10483 /*
10484 * Tell the sequencer about a new transaction to execute.
10485 */
10486 void
ahd_queue_scb(struct ahd_softc * ahd,struct scb * scb)10487 ahd_queue_scb(struct ahd_softc *ahd, struct scb *scb)
10488 {
10489 ahd_swap_with_next_hscb(ahd, scb);
10490
10491 if (SCBID_IS_NULL(SCB_GET_TAG(scb)))
10492 panic("Attempt to queue invalid SCB tag %x",
10493 SCB_GET_TAG(scb));
10494
10495 /*
10496 * Keep a history of SCBs we've downloaded in the qinfifo.
10497 */
10498 ahd->qinfifo[AHD_QIN_WRAP(ahd->qinfifonext)] = SCB_GET_TAG(scb);
10499 ahd->qinfifonext++;
10500
10501 if (scb->sg_count != 0)
10502 ahd_setup_data_scb(ahd, scb);
10503 else
10504 ahd_setup_noxfer_scb(ahd, scb);
10505 ahd_setup_scb_common(ahd, scb);
10506
10507 /*
10508 * Make sure our data is consistent from the
10509 * perspective of the adapter.
10510 */
10511 ahd_sync_scb(ahd, scb, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
10512
10513 #ifdef AHD_DEBUG
10514 if ((ahd_debug & AHD_SHOW_QUEUE) != 0) {
10515 uint64_t host_dataptr;
10516
10517 host_dataptr = aic_le64toh(scb->hscb->dataptr);
10518 printf("%s: Queueing SCB %d:0x%x bus addr 0x%x - 0x%x%x/0x%x\n",
10519 ahd_name(ahd),
10520 SCB_GET_TAG(scb), scb->hscb->scsiid,
10521 aic_le32toh(scb->hscb->hscb_busaddr),
10522 (u_int)((host_dataptr >> 32) & 0xFFFFFFFF),
10523 (u_int)(host_dataptr & 0xFFFFFFFF),
10524 aic_le32toh(scb->hscb->datacnt));
10525 }
10526 #endif
10527 /* Tell the adapter about the newly queued SCB */
10528 ahd_set_hnscb_qoff(ahd, ahd->qinfifonext);
10529 }
10530
10531 uint8_t *
ahd_get_sense_buf(struct ahd_softc * ahd,struct scb * scb)10532 ahd_get_sense_buf(struct ahd_softc *ahd, struct scb *scb)
10533 {
10534 return (scb->sense_data);
10535 }
10536
10537 uint32_t
ahd_get_sense_bufaddr(struct ahd_softc * ahd,struct scb * scb)10538 ahd_get_sense_bufaddr(struct ahd_softc *ahd, struct scb *scb)
10539 {
10540 return (scb->sense_busaddr);
10541 }
10542
10543 void
ahd_sync_qoutfifo(struct ahd_softc * ahd,int op)10544 ahd_sync_qoutfifo(struct ahd_softc *ahd, int op)
10545 {
10546 ahd_dmamap_sync(ahd, ahd->parent_dmat, ahd->shared_data_map.dmamap,
10547 /*offset*/0,
10548 /*len*/AHD_SCB_MAX * sizeof(struct ahd_completion), op);
10549 }
10550
10551 void
ahd_sync_tqinfifo(struct ahd_softc * ahd,int op)10552 ahd_sync_tqinfifo(struct ahd_softc *ahd, int op)
10553 {
10554 #ifdef AHD_TARGET_MODE
10555 if ((ahd->flags & AHD_TARGETROLE) != 0) {
10556 ahd_dmamap_sync(ahd, ahd->parent_dmat,
10557 ahd->shared_data_map.dmamap,
10558 ahd_targetcmd_offset(ahd, 0),
10559 sizeof(struct target_cmd) * AHD_TMODE_CMDS,
10560 op);
10561 }
10562 #endif
10563 }
10564
10565 /*
10566 * See if the firmware has posted any completed commands
10567 * into our in-core command complete fifos.
10568 */
10569 #define AHD_RUN_QOUTFIFO 0x1
10570 #define AHD_RUN_TQINFIFO 0x2
10571 u_int
ahd_check_cmdcmpltqueues(struct ahd_softc * ahd)10572 ahd_check_cmdcmpltqueues(struct ahd_softc *ahd)
10573 {
10574 u_int retval;
10575
10576 retval = 0;
10577 ahd_dmamap_sync(ahd, ahd->parent_dmat, ahd->shared_data_map.dmamap,
10578 /*offset*/ahd->qoutfifonext * sizeof(*ahd->qoutfifo),
10579 /*len*/sizeof(*ahd->qoutfifo), BUS_DMASYNC_POSTREAD);
10580 if (ahd->qoutfifo[ahd->qoutfifonext].valid_tag
10581 == ahd->qoutfifonext_valid_tag)
10582 retval |= AHD_RUN_QOUTFIFO;
10583 #ifdef AHD_TARGET_MODE
10584 if ((ahd->flags & AHD_TARGETROLE) != 0
10585 && (ahd->flags & AHD_TQINFIFO_BLOCKED) == 0) {
10586 ahd_dmamap_sync(ahd, ahd->parent_dmat
10587 ahd->shared_data_map.dmamap,
10588 ahd_targetcmd_offset(ahd, ahd->tqinfifofnext),
10589 /*len*/sizeof(struct target_cmd),
10590 BUS_DMASYNC_POSTREAD);
10591 if (ahd->targetcmds[ahd->tqinfifonext].cmd_valid != 0)
10592 retval |= AHD_RUN_TQINFIFO;
10593 }
10594 #endif
10595 return (retval);
10596 }
10597
10598 /*
10599 * Catch an interrupt from the adapter
10600 */
10601 int
ahd_intr(struct ahd_softc * ahd)10602 ahd_intr(struct ahd_softc *ahd)
10603 {
10604 u_int intstat;
10605
10606 if ((ahd->pause & INTEN) == 0) {
10607 /*
10608 * Our interrupt is not enabled on the chip
10609 * and may be disabled for re-entrancy reasons,
10610 * so just return. This is likely just a shared
10611 * interrupt.
10612 */
10613 return (0);
10614 }
10615
10616 /*
10617 * Instead of directly reading the interrupt status register,
10618 * infer the cause of the interrupt by checking our in-core
10619 * completion queues. This avoids a costly PCI bus read in
10620 * most cases.
10621 */
10622 if ((ahd->flags & AHD_ALL_INTERRUPTS) == 0
10623 && (ahd_check_cmdcmpltqueues(ahd) != 0))
10624 intstat = CMDCMPLT;
10625 else
10626 intstat = ahd_inb(ahd, INTSTAT);
10627
10628 if ((intstat & INT_PEND) == 0)
10629 return (0);
10630
10631 if (intstat & CMDCMPLT) {
10632 ahd_outb(ahd, CLRINT, CLRCMDINT);
10633
10634 /*
10635 * Ensure that the chip sees that we've cleared
10636 * this interrupt before we walk the output fifo.
10637 * Otherwise, we may, due to posted bus writes,
10638 * clear the interrupt after we finish the scan,
10639 * and after the sequencer has added new entries
10640 * and asserted the interrupt again.
10641 */
10642 if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) {
10643 if (ahd_is_paused(ahd)) {
10644 /*
10645 * Potentially lost SEQINT.
10646 * If SEQINTCODE is non-zero,
10647 * simulate the SEQINT.
10648 */
10649 if (ahd_inb(ahd, SEQINTCODE) != NO_SEQINT)
10650 intstat |= SEQINT;
10651 }
10652 } else {
10653 ahd_flush_device_writes(ahd);
10654 }
10655 ahd_run_qoutfifo(ahd);
10656 ahd->cmdcmplt_counts[ahd->cmdcmplt_bucket]++;
10657 ahd->cmdcmplt_total++;
10658 #ifdef AHD_TARGET_MODE
10659 if ((ahd->flags & AHD_TARGETROLE) != 0)
10660 ahd_run_tqinfifo(ahd, /*paused*/FALSE);
10661 #endif
10662 }
10663
10664 /*
10665 * Handle statuses that may invalidate our cached
10666 * copy of INTSTAT separately.
10667 */
10668 if (intstat == 0xFF && (ahd->features & AHD_REMOVABLE) != 0) {
10669 /* Hot eject. Do nothing */
10670 } else if (intstat & HWERRINT) {
10671 ahd_handle_hwerrint(ahd);
10672 } else if ((intstat & (PCIINT|SPLTINT)) != 0) {
10673 ahd->bus_intr(ahd);
10674 } else {
10675
10676 if ((intstat & SEQINT) != 0)
10677 ahd_handle_seqint(ahd, intstat);
10678
10679 if ((intstat & SCSIINT) != 0)
10680 ahd_handle_scsiint(ahd, intstat);
10681 }
10682 return (1);
10683 }
10684
10685 void
ahd_unbusy_tcl(struct ahd_softc * ahd,u_int tcl)10686 ahd_unbusy_tcl(struct ahd_softc *ahd, u_int tcl)
10687 {
10688 ahd_busy_tcl(ahd, tcl, SCB_LIST_NULL);
10689 }
10690