xref: /linux/arch/x86/mm/fault.c (revision 02b670c1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1995  Linus Torvalds
4  *  Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
5  *  Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
6  */
7 #include <linux/sched.h>		/* test_thread_flag(), ...	*/
8 #include <linux/sched/task_stack.h>	/* task_stack_*(), ...		*/
9 #include <linux/kdebug.h>		/* oops_begin/end, ...		*/
10 #include <linux/extable.h>		/* search_exception_tables	*/
11 #include <linux/memblock.h>		/* max_low_pfn			*/
12 #include <linux/kfence.h>		/* kfence_handle_page_fault	*/
13 #include <linux/kprobes.h>		/* NOKPROBE_SYMBOL, ...		*/
14 #include <linux/mmiotrace.h>		/* kmmio_handler, ...		*/
15 #include <linux/perf_event.h>		/* perf_sw_event		*/
16 #include <linux/hugetlb.h>		/* hstate_index_to_shift	*/
17 #include <linux/prefetch.h>		/* prefetchw			*/
18 #include <linux/context_tracking.h>	/* exception_enter(), ...	*/
19 #include <linux/uaccess.h>		/* faulthandler_disabled()	*/
20 #include <linux/efi.h>			/* efi_crash_gracefully_on_page_fault()*/
21 #include <linux/mm_types.h>
22 #include <linux/mm.h>			/* find_and_lock_vma() */
23 #include <linux/vmalloc.h>
24 
25 #include <asm/cpufeature.h>		/* boot_cpu_has, ...		*/
26 #include <asm/traps.h>			/* dotraplinkage, ...		*/
27 #include <asm/fixmap.h>			/* VSYSCALL_ADDR		*/
28 #include <asm/vsyscall.h>		/* emulate_vsyscall		*/
29 #include <asm/vm86.h>			/* struct vm86			*/
30 #include <asm/mmu_context.h>		/* vma_pkey()			*/
31 #include <asm/efi.h>			/* efi_crash_gracefully_on_page_fault()*/
32 #include <asm/desc.h>			/* store_idt(), ...		*/
33 #include <asm/cpu_entry_area.h>		/* exception stack		*/
34 #include <asm/pgtable_areas.h>		/* VMALLOC_START, ...		*/
35 #include <asm/kvm_para.h>		/* kvm_handle_async_pf		*/
36 #include <asm/vdso.h>			/* fixup_vdso_exception()	*/
37 #include <asm/irq_stack.h>
38 #include <asm/fred.h>
39 #include <asm/sev.h>			/* snp_dump_hva_rmpentry()	*/
40 
41 #define CREATE_TRACE_POINTS
42 #include <asm/trace/exceptions.h>
43 
44 /*
45  * Returns 0 if mmiotrace is disabled, or if the fault is not
46  * handled by mmiotrace:
47  */
48 static nokprobe_inline int
kmmio_fault(struct pt_regs * regs,unsigned long addr)49 kmmio_fault(struct pt_regs *regs, unsigned long addr)
50 {
51 	if (unlikely(is_kmmio_active()))
52 		if (kmmio_handler(regs, addr) == 1)
53 			return -1;
54 	return 0;
55 }
56 
57 /*
58  * Prefetch quirks:
59  *
60  * 32-bit mode:
61  *
62  *   Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
63  *   Check that here and ignore it.  This is AMD erratum #91.
64  *
65  * 64-bit mode:
66  *
67  *   Sometimes the CPU reports invalid exceptions on prefetch.
68  *   Check that here and ignore it.
69  *
70  * Opcode checker based on code by Richard Brunner.
71  */
72 static inline int
check_prefetch_opcode(struct pt_regs * regs,unsigned char * instr,unsigned char opcode,int * prefetch)73 check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
74 		      unsigned char opcode, int *prefetch)
75 {
76 	unsigned char instr_hi = opcode & 0xf0;
77 	unsigned char instr_lo = opcode & 0x0f;
78 
79 	switch (instr_hi) {
80 	case 0x20:
81 	case 0x30:
82 		/*
83 		 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
84 		 * In X86_64 long mode, the CPU will signal invalid
85 		 * opcode if some of these prefixes are present so
86 		 * X86_64 will never get here anyway
87 		 */
88 		return ((instr_lo & 7) == 0x6);
89 #ifdef CONFIG_X86_64
90 	case 0x40:
91 		/*
92 		 * In 64-bit mode 0x40..0x4F are valid REX prefixes
93 		 */
94 		return (!user_mode(regs) || user_64bit_mode(regs));
95 #endif
96 	case 0x60:
97 		/* 0x64 thru 0x67 are valid prefixes in all modes. */
98 		return (instr_lo & 0xC) == 0x4;
99 	case 0xF0:
100 		/* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
101 		return !instr_lo || (instr_lo>>1) == 1;
102 	case 0x00:
103 		/* Prefetch instruction is 0x0F0D or 0x0F18 */
104 		if (get_kernel_nofault(opcode, instr))
105 			return 0;
106 
107 		*prefetch = (instr_lo == 0xF) &&
108 			(opcode == 0x0D || opcode == 0x18);
109 		return 0;
110 	default:
111 		return 0;
112 	}
113 }
114 
is_amd_k8_pre_npt(void)115 static bool is_amd_k8_pre_npt(void)
116 {
117 	struct cpuinfo_x86 *c = &boot_cpu_data;
118 
119 	return unlikely(IS_ENABLED(CONFIG_CPU_SUP_AMD) &&
120 			c->x86_vendor == X86_VENDOR_AMD &&
121 			c->x86 == 0xf && c->x86_model < 0x40);
122 }
123 
124 static int
is_prefetch(struct pt_regs * regs,unsigned long error_code,unsigned long addr)125 is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
126 {
127 	unsigned char *max_instr;
128 	unsigned char *instr;
129 	int prefetch = 0;
130 
131 	/* Erratum #91 affects AMD K8, pre-NPT CPUs */
132 	if (!is_amd_k8_pre_npt())
133 		return 0;
134 
135 	/*
136 	 * If it was a exec (instruction fetch) fault on NX page, then
137 	 * do not ignore the fault:
138 	 */
139 	if (error_code & X86_PF_INSTR)
140 		return 0;
141 
142 	instr = (void *)convert_ip_to_linear(current, regs);
143 	max_instr = instr + 15;
144 
145 	/*
146 	 * This code has historically always bailed out if IP points to a
147 	 * not-present page (e.g. due to a race).  No one has ever
148 	 * complained about this.
149 	 */
150 	pagefault_disable();
151 
152 	while (instr < max_instr) {
153 		unsigned char opcode;
154 
155 		if (user_mode(regs)) {
156 			if (get_user(opcode, (unsigned char __user *) instr))
157 				break;
158 		} else {
159 			if (get_kernel_nofault(opcode, instr))
160 				break;
161 		}
162 
163 		instr++;
164 
165 		if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
166 			break;
167 	}
168 
169 	pagefault_enable();
170 	return prefetch;
171 }
172 
173 DEFINE_SPINLOCK(pgd_lock);
174 LIST_HEAD(pgd_list);
175 
176 #ifdef CONFIG_X86_32
vmalloc_sync_one(pgd_t * pgd,unsigned long address)177 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
178 {
179 	unsigned index = pgd_index(address);
180 	pgd_t *pgd_k;
181 	p4d_t *p4d, *p4d_k;
182 	pud_t *pud, *pud_k;
183 	pmd_t *pmd, *pmd_k;
184 
185 	pgd += index;
186 	pgd_k = init_mm.pgd + index;
187 
188 	if (!pgd_present(*pgd_k))
189 		return NULL;
190 
191 	/*
192 	 * set_pgd(pgd, *pgd_k); here would be useless on PAE
193 	 * and redundant with the set_pmd() on non-PAE. As would
194 	 * set_p4d/set_pud.
195 	 */
196 	p4d = p4d_offset(pgd, address);
197 	p4d_k = p4d_offset(pgd_k, address);
198 	if (!p4d_present(*p4d_k))
199 		return NULL;
200 
201 	pud = pud_offset(p4d, address);
202 	pud_k = pud_offset(p4d_k, address);
203 	if (!pud_present(*pud_k))
204 		return NULL;
205 
206 	pmd = pmd_offset(pud, address);
207 	pmd_k = pmd_offset(pud_k, address);
208 
209 	if (pmd_present(*pmd) != pmd_present(*pmd_k))
210 		set_pmd(pmd, *pmd_k);
211 
212 	if (!pmd_present(*pmd_k))
213 		return NULL;
214 	else
215 		BUG_ON(pmd_pfn(*pmd) != pmd_pfn(*pmd_k));
216 
217 	return pmd_k;
218 }
219 
220 /*
221  *   Handle a fault on the vmalloc or module mapping area
222  *
223  *   This is needed because there is a race condition between the time
224  *   when the vmalloc mapping code updates the PMD to the point in time
225  *   where it synchronizes this update with the other page-tables in the
226  *   system.
227  *
228  *   In this race window another thread/CPU can map an area on the same
229  *   PMD, finds it already present and does not synchronize it with the
230  *   rest of the system yet. As a result v[mz]alloc might return areas
231  *   which are not mapped in every page-table in the system, causing an
232  *   unhandled page-fault when they are accessed.
233  */
vmalloc_fault(unsigned long address)234 static noinline int vmalloc_fault(unsigned long address)
235 {
236 	unsigned long pgd_paddr;
237 	pmd_t *pmd_k;
238 	pte_t *pte_k;
239 
240 	/* Make sure we are in vmalloc area: */
241 	if (!(address >= VMALLOC_START && address < VMALLOC_END))
242 		return -1;
243 
244 	/*
245 	 * Synchronize this task's top level page-table
246 	 * with the 'reference' page table.
247 	 *
248 	 * Do _not_ use "current" here. We might be inside
249 	 * an interrupt in the middle of a task switch..
250 	 */
251 	pgd_paddr = read_cr3_pa();
252 	pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
253 	if (!pmd_k)
254 		return -1;
255 
256 	if (pmd_leaf(*pmd_k))
257 		return 0;
258 
259 	pte_k = pte_offset_kernel(pmd_k, address);
260 	if (!pte_present(*pte_k))
261 		return -1;
262 
263 	return 0;
264 }
265 NOKPROBE_SYMBOL(vmalloc_fault);
266 
arch_sync_kernel_mappings(unsigned long start,unsigned long end)267 void arch_sync_kernel_mappings(unsigned long start, unsigned long end)
268 {
269 	unsigned long addr;
270 
271 	for (addr = start & PMD_MASK;
272 	     addr >= TASK_SIZE_MAX && addr < VMALLOC_END;
273 	     addr += PMD_SIZE) {
274 		struct page *page;
275 
276 		spin_lock(&pgd_lock);
277 		list_for_each_entry(page, &pgd_list, lru) {
278 			spinlock_t *pgt_lock;
279 
280 			/* the pgt_lock only for Xen */
281 			pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
282 
283 			spin_lock(pgt_lock);
284 			vmalloc_sync_one(page_address(page), addr);
285 			spin_unlock(pgt_lock);
286 		}
287 		spin_unlock(&pgd_lock);
288 	}
289 }
290 
low_pfn(unsigned long pfn)291 static bool low_pfn(unsigned long pfn)
292 {
293 	return pfn < max_low_pfn;
294 }
295 
dump_pagetable(unsigned long address)296 static void dump_pagetable(unsigned long address)
297 {
298 	pgd_t *base = __va(read_cr3_pa());
299 	pgd_t *pgd = &base[pgd_index(address)];
300 	p4d_t *p4d;
301 	pud_t *pud;
302 	pmd_t *pmd;
303 	pte_t *pte;
304 
305 #ifdef CONFIG_X86_PAE
306 	pr_info("*pdpt = %016Lx ", pgd_val(*pgd));
307 	if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
308 		goto out;
309 #define pr_pde pr_cont
310 #else
311 #define pr_pde pr_info
312 #endif
313 	p4d = p4d_offset(pgd, address);
314 	pud = pud_offset(p4d, address);
315 	pmd = pmd_offset(pud, address);
316 	pr_pde("*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
317 #undef pr_pde
318 
319 	/*
320 	 * We must not directly access the pte in the highpte
321 	 * case if the page table is located in highmem.
322 	 * And let's rather not kmap-atomic the pte, just in case
323 	 * it's allocated already:
324 	 */
325 	if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_leaf(*pmd))
326 		goto out;
327 
328 	pte = pte_offset_kernel(pmd, address);
329 	pr_cont("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
330 out:
331 	pr_cont("\n");
332 }
333 
334 #else /* CONFIG_X86_64: */
335 
336 #ifdef CONFIG_CPU_SUP_AMD
337 static const char errata93_warning[] =
338 KERN_ERR
339 "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
340 "******* Working around it, but it may cause SEGVs or burn power.\n"
341 "******* Please consider a BIOS update.\n"
342 "******* Disabling USB legacy in the BIOS may also help.\n";
343 #endif
344 
bad_address(void * p)345 static int bad_address(void *p)
346 {
347 	unsigned long dummy;
348 
349 	return get_kernel_nofault(dummy, (unsigned long *)p);
350 }
351 
dump_pagetable(unsigned long address)352 static void dump_pagetable(unsigned long address)
353 {
354 	pgd_t *base = __va(read_cr3_pa());
355 	pgd_t *pgd = base + pgd_index(address);
356 	p4d_t *p4d;
357 	pud_t *pud;
358 	pmd_t *pmd;
359 	pte_t *pte;
360 
361 	if (bad_address(pgd))
362 		goto bad;
363 
364 	pr_info("PGD %lx ", pgd_val(*pgd));
365 
366 	if (!pgd_present(*pgd))
367 		goto out;
368 
369 	p4d = p4d_offset(pgd, address);
370 	if (bad_address(p4d))
371 		goto bad;
372 
373 	pr_cont("P4D %lx ", p4d_val(*p4d));
374 	if (!p4d_present(*p4d) || p4d_leaf(*p4d))
375 		goto out;
376 
377 	pud = pud_offset(p4d, address);
378 	if (bad_address(pud))
379 		goto bad;
380 
381 	pr_cont("PUD %lx ", pud_val(*pud));
382 	if (!pud_present(*pud) || pud_leaf(*pud))
383 		goto out;
384 
385 	pmd = pmd_offset(pud, address);
386 	if (bad_address(pmd))
387 		goto bad;
388 
389 	pr_cont("PMD %lx ", pmd_val(*pmd));
390 	if (!pmd_present(*pmd) || pmd_leaf(*pmd))
391 		goto out;
392 
393 	pte = pte_offset_kernel(pmd, address);
394 	if (bad_address(pte))
395 		goto bad;
396 
397 	pr_cont("PTE %lx", pte_val(*pte));
398 out:
399 	pr_cont("\n");
400 	return;
401 bad:
402 	pr_info("BAD\n");
403 }
404 
405 #endif /* CONFIG_X86_64 */
406 
407 /*
408  * Workaround for K8 erratum #93 & buggy BIOS.
409  *
410  * BIOS SMM functions are required to use a specific workaround
411  * to avoid corruption of the 64bit RIP register on C stepping K8.
412  *
413  * A lot of BIOS that didn't get tested properly miss this.
414  *
415  * The OS sees this as a page fault with the upper 32bits of RIP cleared.
416  * Try to work around it here.
417  *
418  * Note we only handle faults in kernel here.
419  * Does nothing on 32-bit.
420  */
is_errata93(struct pt_regs * regs,unsigned long address)421 static int is_errata93(struct pt_regs *regs, unsigned long address)
422 {
423 #if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
424 	if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
425 	    || boot_cpu_data.x86 != 0xf)
426 		return 0;
427 
428 	if (user_mode(regs))
429 		return 0;
430 
431 	if (address != regs->ip)
432 		return 0;
433 
434 	if ((address >> 32) != 0)
435 		return 0;
436 
437 	address |= 0xffffffffUL << 32;
438 	if ((address >= (u64)_stext && address <= (u64)_etext) ||
439 	    (address >= MODULES_VADDR && address <= MODULES_END)) {
440 		printk_once(errata93_warning);
441 		regs->ip = address;
442 		return 1;
443 	}
444 #endif
445 	return 0;
446 }
447 
448 /*
449  * Work around K8 erratum #100 K8 in compat mode occasionally jumps
450  * to illegal addresses >4GB.
451  *
452  * We catch this in the page fault handler because these addresses
453  * are not reachable. Just detect this case and return.  Any code
454  * segment in LDT is compatibility mode.
455  */
is_errata100(struct pt_regs * regs,unsigned long address)456 static int is_errata100(struct pt_regs *regs, unsigned long address)
457 {
458 #ifdef CONFIG_X86_64
459 	if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
460 		return 1;
461 #endif
462 	return 0;
463 }
464 
465 /* Pentium F0 0F C7 C8 bug workaround: */
is_f00f_bug(struct pt_regs * regs,unsigned long error_code,unsigned long address)466 static int is_f00f_bug(struct pt_regs *regs, unsigned long error_code,
467 		       unsigned long address)
468 {
469 #ifdef CONFIG_X86_F00F_BUG
470 	if (boot_cpu_has_bug(X86_BUG_F00F) && !(error_code & X86_PF_USER) &&
471 	    idt_is_f00f_address(address)) {
472 		handle_invalid_op(regs);
473 		return 1;
474 	}
475 #endif
476 	return 0;
477 }
478 
show_ldttss(const struct desc_ptr * gdt,const char * name,u16 index)479 static void show_ldttss(const struct desc_ptr *gdt, const char *name, u16 index)
480 {
481 	u32 offset = (index >> 3) * sizeof(struct desc_struct);
482 	unsigned long addr;
483 	struct ldttss_desc desc;
484 
485 	if (index == 0) {
486 		pr_alert("%s: NULL\n", name);
487 		return;
488 	}
489 
490 	if (offset + sizeof(struct ldttss_desc) >= gdt->size) {
491 		pr_alert("%s: 0x%hx -- out of bounds\n", name, index);
492 		return;
493 	}
494 
495 	if (copy_from_kernel_nofault(&desc, (void *)(gdt->address + offset),
496 			      sizeof(struct ldttss_desc))) {
497 		pr_alert("%s: 0x%hx -- GDT entry is not readable\n",
498 			 name, index);
499 		return;
500 	}
501 
502 	addr = desc.base0 | (desc.base1 << 16) | ((unsigned long)desc.base2 << 24);
503 #ifdef CONFIG_X86_64
504 	addr |= ((u64)desc.base3 << 32);
505 #endif
506 	pr_alert("%s: 0x%hx -- base=0x%lx limit=0x%x\n",
507 		 name, index, addr, (desc.limit0 | (desc.limit1 << 16)));
508 }
509 
510 static void
show_fault_oops(struct pt_regs * regs,unsigned long error_code,unsigned long address)511 show_fault_oops(struct pt_regs *regs, unsigned long error_code, unsigned long address)
512 {
513 	if (!oops_may_print())
514 		return;
515 
516 	if (error_code & X86_PF_INSTR) {
517 		unsigned int level;
518 		bool nx, rw;
519 		pgd_t *pgd;
520 		pte_t *pte;
521 
522 		pgd = __va(read_cr3_pa());
523 		pgd += pgd_index(address);
524 
525 		pte = lookup_address_in_pgd_attr(pgd, address, &level, &nx, &rw);
526 
527 		if (pte && pte_present(*pte) && (!pte_exec(*pte) || nx))
528 			pr_crit("kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n",
529 				from_kuid(&init_user_ns, current_uid()));
530 		if (pte && pte_present(*pte) && pte_exec(*pte) && !nx &&
531 				(pgd_flags(*pgd) & _PAGE_USER) &&
532 				(__read_cr4() & X86_CR4_SMEP))
533 			pr_crit("unable to execute userspace code (SMEP?) (uid: %d)\n",
534 				from_kuid(&init_user_ns, current_uid()));
535 	}
536 
537 	if (address < PAGE_SIZE && !user_mode(regs))
538 		pr_alert("BUG: kernel NULL pointer dereference, address: %px\n",
539 			(void *)address);
540 	else
541 		pr_alert("BUG: unable to handle page fault for address: %px\n",
542 			(void *)address);
543 
544 	pr_alert("#PF: %s %s in %s mode\n",
545 		 (error_code & X86_PF_USER)  ? "user" : "supervisor",
546 		 (error_code & X86_PF_INSTR) ? "instruction fetch" :
547 		 (error_code & X86_PF_WRITE) ? "write access" :
548 					       "read access",
549 			     user_mode(regs) ? "user" : "kernel");
550 	pr_alert("#PF: error_code(0x%04lx) - %s\n", error_code,
551 		 !(error_code & X86_PF_PROT) ? "not-present page" :
552 		 (error_code & X86_PF_RSVD)  ? "reserved bit violation" :
553 		 (error_code & X86_PF_PK)    ? "protection keys violation" :
554 		 (error_code & X86_PF_RMP)   ? "RMP violation" :
555 					       "permissions violation");
556 
557 	if (!(error_code & X86_PF_USER) && user_mode(regs)) {
558 		struct desc_ptr idt, gdt;
559 		u16 ldtr, tr;
560 
561 		/*
562 		 * This can happen for quite a few reasons.  The more obvious
563 		 * ones are faults accessing the GDT, or LDT.  Perhaps
564 		 * surprisingly, if the CPU tries to deliver a benign or
565 		 * contributory exception from user code and gets a page fault
566 		 * during delivery, the page fault can be delivered as though
567 		 * it originated directly from user code.  This could happen
568 		 * due to wrong permissions on the IDT, GDT, LDT, TSS, or
569 		 * kernel or IST stack.
570 		 */
571 		store_idt(&idt);
572 
573 		/* Usable even on Xen PV -- it's just slow. */
574 		native_store_gdt(&gdt);
575 
576 		pr_alert("IDT: 0x%lx (limit=0x%hx) GDT: 0x%lx (limit=0x%hx)\n",
577 			 idt.address, idt.size, gdt.address, gdt.size);
578 
579 		store_ldt(ldtr);
580 		show_ldttss(&gdt, "LDTR", ldtr);
581 
582 		store_tr(tr);
583 		show_ldttss(&gdt, "TR", tr);
584 	}
585 
586 	dump_pagetable(address);
587 
588 	if (error_code & X86_PF_RMP)
589 		snp_dump_hva_rmpentry(address);
590 }
591 
592 static noinline void
pgtable_bad(struct pt_regs * regs,unsigned long error_code,unsigned long address)593 pgtable_bad(struct pt_regs *regs, unsigned long error_code,
594 	    unsigned long address)
595 {
596 	struct task_struct *tsk;
597 	unsigned long flags;
598 	int sig;
599 
600 	flags = oops_begin();
601 	tsk = current;
602 	sig = SIGKILL;
603 
604 	printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
605 	       tsk->comm, address);
606 	dump_pagetable(address);
607 
608 	if (__die("Bad pagetable", regs, error_code))
609 		sig = 0;
610 
611 	oops_end(flags, regs, sig);
612 }
613 
sanitize_error_code(unsigned long address,unsigned long * error_code)614 static void sanitize_error_code(unsigned long address,
615 				unsigned long *error_code)
616 {
617 	/*
618 	 * To avoid leaking information about the kernel page
619 	 * table layout, pretend that user-mode accesses to
620 	 * kernel addresses are always protection faults.
621 	 *
622 	 * NB: This means that failed vsyscalls with vsyscall=none
623 	 * will have the PROT bit.  This doesn't leak any
624 	 * information and does not appear to cause any problems.
625 	 */
626 	if (address >= TASK_SIZE_MAX)
627 		*error_code |= X86_PF_PROT;
628 }
629 
set_signal_archinfo(unsigned long address,unsigned long error_code)630 static void set_signal_archinfo(unsigned long address,
631 				unsigned long error_code)
632 {
633 	struct task_struct *tsk = current;
634 
635 	tsk->thread.trap_nr = X86_TRAP_PF;
636 	tsk->thread.error_code = error_code | X86_PF_USER;
637 	tsk->thread.cr2 = address;
638 }
639 
640 static noinline void
page_fault_oops(struct pt_regs * regs,unsigned long error_code,unsigned long address)641 page_fault_oops(struct pt_regs *regs, unsigned long error_code,
642 		unsigned long address)
643 {
644 #ifdef CONFIG_VMAP_STACK
645 	struct stack_info info;
646 #endif
647 	unsigned long flags;
648 	int sig;
649 
650 	if (user_mode(regs)) {
651 		/*
652 		 * Implicit kernel access from user mode?  Skip the stack
653 		 * overflow and EFI special cases.
654 		 */
655 		goto oops;
656 	}
657 
658 #ifdef CONFIG_VMAP_STACK
659 	/*
660 	 * Stack overflow?  During boot, we can fault near the initial
661 	 * stack in the direct map, but that's not an overflow -- check
662 	 * that we're in vmalloc space to avoid this.
663 	 */
664 	if (is_vmalloc_addr((void *)address) &&
665 	    get_stack_guard_info((void *)address, &info)) {
666 		/*
667 		 * We're likely to be running with very little stack space
668 		 * left.  It's plausible that we'd hit this condition but
669 		 * double-fault even before we get this far, in which case
670 		 * we're fine: the double-fault handler will deal with it.
671 		 *
672 		 * We don't want to make it all the way into the oops code
673 		 * and then double-fault, though, because we're likely to
674 		 * break the console driver and lose most of the stack dump.
675 		 */
676 		call_on_stack(__this_cpu_ist_top_va(DF) - sizeof(void*),
677 			      handle_stack_overflow,
678 			      ASM_CALL_ARG3,
679 			      , [arg1] "r" (regs), [arg2] "r" (address), [arg3] "r" (&info));
680 
681 		unreachable();
682 	}
683 #endif
684 
685 	/*
686 	 * Buggy firmware could access regions which might page fault.  If
687 	 * this happens, EFI has a special OOPS path that will try to
688 	 * avoid hanging the system.
689 	 */
690 	if (IS_ENABLED(CONFIG_EFI))
691 		efi_crash_gracefully_on_page_fault(address);
692 
693 	/* Only not-present faults should be handled by KFENCE. */
694 	if (!(error_code & X86_PF_PROT) &&
695 	    kfence_handle_page_fault(address, error_code & X86_PF_WRITE, regs))
696 		return;
697 
698 oops:
699 	/*
700 	 * Oops. The kernel tried to access some bad page. We'll have to
701 	 * terminate things with extreme prejudice:
702 	 */
703 	flags = oops_begin();
704 
705 	show_fault_oops(regs, error_code, address);
706 
707 	if (task_stack_end_corrupted(current))
708 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
709 
710 	sig = SIGKILL;
711 	if (__die("Oops", regs, error_code))
712 		sig = 0;
713 
714 	/* Executive summary in case the body of the oops scrolled away */
715 	printk(KERN_DEFAULT "CR2: %016lx\n", address);
716 
717 	oops_end(flags, regs, sig);
718 }
719 
720 static noinline void
kernelmode_fixup_or_oops(struct pt_regs * regs,unsigned long error_code,unsigned long address,int signal,int si_code,u32 pkey)721 kernelmode_fixup_or_oops(struct pt_regs *regs, unsigned long error_code,
722 			 unsigned long address, int signal, int si_code,
723 			 u32 pkey)
724 {
725 	WARN_ON_ONCE(user_mode(regs));
726 
727 	/* Are we prepared to handle this kernel fault? */
728 	if (fixup_exception(regs, X86_TRAP_PF, error_code, address))
729 		return;
730 
731 	/*
732 	 * AMD erratum #91 manifests as a spurious page fault on a PREFETCH
733 	 * instruction.
734 	 */
735 	if (is_prefetch(regs, error_code, address))
736 		return;
737 
738 	page_fault_oops(regs, error_code, address);
739 }
740 
741 /*
742  * Print out info about fatal segfaults, if the show_unhandled_signals
743  * sysctl is set:
744  */
745 static inline void
show_signal_msg(struct pt_regs * regs,unsigned long error_code,unsigned long address,struct task_struct * tsk)746 show_signal_msg(struct pt_regs *regs, unsigned long error_code,
747 		unsigned long address, struct task_struct *tsk)
748 {
749 	const char *loglvl = task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG;
750 	/* This is a racy snapshot, but it's better than nothing. */
751 	int cpu = raw_smp_processor_id();
752 
753 	if (!unhandled_signal(tsk, SIGSEGV))
754 		return;
755 
756 	if (!printk_ratelimit())
757 		return;
758 
759 	printk("%s%s[%d]: segfault at %lx ip %px sp %px error %lx",
760 		loglvl, tsk->comm, task_pid_nr(tsk), address,
761 		(void *)regs->ip, (void *)regs->sp, error_code);
762 
763 	print_vma_addr(KERN_CONT " in ", regs->ip);
764 
765 	/*
766 	 * Dump the likely CPU where the fatal segfault happened.
767 	 * This can help identify faulty hardware.
768 	 */
769 	printk(KERN_CONT " likely on CPU %d (core %d, socket %d)", cpu,
770 	       topology_core_id(cpu), topology_physical_package_id(cpu));
771 
772 
773 	printk(KERN_CONT "\n");
774 
775 	show_opcodes(regs, loglvl);
776 }
777 
778 static void
__bad_area_nosemaphore(struct pt_regs * regs,unsigned long error_code,unsigned long address,u32 pkey,int si_code)779 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
780 		       unsigned long address, u32 pkey, int si_code)
781 {
782 	struct task_struct *tsk = current;
783 
784 	if (!user_mode(regs)) {
785 		kernelmode_fixup_or_oops(regs, error_code, address,
786 					 SIGSEGV, si_code, pkey);
787 		return;
788 	}
789 
790 	if (!(error_code & X86_PF_USER)) {
791 		/* Implicit user access to kernel memory -- just oops */
792 		page_fault_oops(regs, error_code, address);
793 		return;
794 	}
795 
796 	/*
797 	 * User mode accesses just cause a SIGSEGV.
798 	 * It's possible to have interrupts off here:
799 	 */
800 	local_irq_enable();
801 
802 	/*
803 	 * Valid to do another page fault here because this one came
804 	 * from user space:
805 	 */
806 	if (is_prefetch(regs, error_code, address))
807 		return;
808 
809 	if (is_errata100(regs, address))
810 		return;
811 
812 	sanitize_error_code(address, &error_code);
813 
814 	if (fixup_vdso_exception(regs, X86_TRAP_PF, error_code, address))
815 		return;
816 
817 	if (likely(show_unhandled_signals))
818 		show_signal_msg(regs, error_code, address, tsk);
819 
820 	set_signal_archinfo(address, error_code);
821 
822 	if (si_code == SEGV_PKUERR)
823 		force_sig_pkuerr((void __user *)address, pkey);
824 	else
825 		force_sig_fault(SIGSEGV, si_code, (void __user *)address);
826 
827 	local_irq_disable();
828 }
829 
830 static noinline void
bad_area_nosemaphore(struct pt_regs * regs,unsigned long error_code,unsigned long address)831 bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
832 		     unsigned long address)
833 {
834 	__bad_area_nosemaphore(regs, error_code, address, 0, SEGV_MAPERR);
835 }
836 
837 static void
__bad_area(struct pt_regs * regs,unsigned long error_code,unsigned long address,struct mm_struct * mm,struct vm_area_struct * vma,u32 pkey,int si_code)838 __bad_area(struct pt_regs *regs, unsigned long error_code,
839 	   unsigned long address, struct mm_struct *mm,
840 	   struct vm_area_struct *vma, u32 pkey, int si_code)
841 {
842 	/*
843 	 * Something tried to access memory that isn't in our memory map..
844 	 * Fix it, but check if it's kernel or user first..
845 	 */
846 	if (mm)
847 		mmap_read_unlock(mm);
848 	else
849 		vma_end_read(vma);
850 
851 	__bad_area_nosemaphore(regs, error_code, address, pkey, si_code);
852 }
853 
bad_area_access_from_pkeys(unsigned long error_code,struct vm_area_struct * vma)854 static inline bool bad_area_access_from_pkeys(unsigned long error_code,
855 		struct vm_area_struct *vma)
856 {
857 	/* This code is always called on the current mm */
858 	bool foreign = false;
859 
860 	if (!cpu_feature_enabled(X86_FEATURE_OSPKE))
861 		return false;
862 	if (error_code & X86_PF_PK)
863 		return true;
864 	/* this checks permission keys on the VMA: */
865 	if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
866 				       (error_code & X86_PF_INSTR), foreign))
867 		return true;
868 	return false;
869 }
870 
871 static noinline void
bad_area_access_error(struct pt_regs * regs,unsigned long error_code,unsigned long address,struct mm_struct * mm,struct vm_area_struct * vma)872 bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
873 		      unsigned long address, struct mm_struct *mm,
874 		      struct vm_area_struct *vma)
875 {
876 	/*
877 	 * This OSPKE check is not strictly necessary at runtime.
878 	 * But, doing it this way allows compiler optimizations
879 	 * if pkeys are compiled out.
880 	 */
881 	if (bad_area_access_from_pkeys(error_code, vma)) {
882 		/*
883 		 * A protection key fault means that the PKRU value did not allow
884 		 * access to some PTE.  Userspace can figure out what PKRU was
885 		 * from the XSAVE state.  This function captures the pkey from
886 		 * the vma and passes it to userspace so userspace can discover
887 		 * which protection key was set on the PTE.
888 		 *
889 		 * If we get here, we know that the hardware signaled a X86_PF_PK
890 		 * fault and that there was a VMA once we got in the fault
891 		 * handler.  It does *not* guarantee that the VMA we find here
892 		 * was the one that we faulted on.
893 		 *
894 		 * 1. T1   : mprotect_key(foo, PAGE_SIZE, pkey=4);
895 		 * 2. T1   : set PKRU to deny access to pkey=4, touches page
896 		 * 3. T1   : faults...
897 		 * 4.    T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
898 		 * 5. T1   : enters fault handler, takes mmap_lock, etc...
899 		 * 6. T1   : reaches here, sees vma_pkey(vma)=5, when we really
900 		 *	     faulted on a pte with its pkey=4.
901 		 */
902 		u32 pkey = vma_pkey(vma);
903 
904 		__bad_area(regs, error_code, address, mm, vma, pkey, SEGV_PKUERR);
905 	} else {
906 		__bad_area(regs, error_code, address, mm, vma, 0, SEGV_ACCERR);
907 	}
908 }
909 
910 static void
do_sigbus(struct pt_regs * regs,unsigned long error_code,unsigned long address,vm_fault_t fault)911 do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
912 	  vm_fault_t fault)
913 {
914 	/* Kernel mode? Handle exceptions or die: */
915 	if (!user_mode(regs)) {
916 		kernelmode_fixup_or_oops(regs, error_code, address,
917 					 SIGBUS, BUS_ADRERR, ARCH_DEFAULT_PKEY);
918 		return;
919 	}
920 
921 	/* User-space => ok to do another page fault: */
922 	if (is_prefetch(regs, error_code, address))
923 		return;
924 
925 	sanitize_error_code(address, &error_code);
926 
927 	if (fixup_vdso_exception(regs, X86_TRAP_PF, error_code, address))
928 		return;
929 
930 	set_signal_archinfo(address, error_code);
931 
932 #ifdef CONFIG_MEMORY_FAILURE
933 	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
934 		struct task_struct *tsk = current;
935 		unsigned lsb = 0;
936 
937 		pr_err(
938 	"MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
939 			tsk->comm, tsk->pid, address);
940 		if (fault & VM_FAULT_HWPOISON_LARGE)
941 			lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
942 		if (fault & VM_FAULT_HWPOISON)
943 			lsb = PAGE_SHIFT;
944 		force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb);
945 		return;
946 	}
947 #endif
948 	force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
949 }
950 
spurious_kernel_fault_check(unsigned long error_code,pte_t * pte)951 static int spurious_kernel_fault_check(unsigned long error_code, pte_t *pte)
952 {
953 	if ((error_code & X86_PF_WRITE) && !pte_write(*pte))
954 		return 0;
955 
956 	if ((error_code & X86_PF_INSTR) && !pte_exec(*pte))
957 		return 0;
958 
959 	return 1;
960 }
961 
962 /*
963  * Handle a spurious fault caused by a stale TLB entry.
964  *
965  * This allows us to lazily refresh the TLB when increasing the
966  * permissions of a kernel page (RO -> RW or NX -> X).  Doing it
967  * eagerly is very expensive since that implies doing a full
968  * cross-processor TLB flush, even if no stale TLB entries exist
969  * on other processors.
970  *
971  * Spurious faults may only occur if the TLB contains an entry with
972  * fewer permission than the page table entry.  Non-present (P = 0)
973  * and reserved bit (R = 1) faults are never spurious.
974  *
975  * There are no security implications to leaving a stale TLB when
976  * increasing the permissions on a page.
977  *
978  * Returns non-zero if a spurious fault was handled, zero otherwise.
979  *
980  * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
981  * (Optional Invalidation).
982  */
983 static noinline int
spurious_kernel_fault(unsigned long error_code,unsigned long address)984 spurious_kernel_fault(unsigned long error_code, unsigned long address)
985 {
986 	pgd_t *pgd;
987 	p4d_t *p4d;
988 	pud_t *pud;
989 	pmd_t *pmd;
990 	pte_t *pte;
991 	int ret;
992 
993 	/*
994 	 * Only writes to RO or instruction fetches from NX may cause
995 	 * spurious faults.
996 	 *
997 	 * These could be from user or supervisor accesses but the TLB
998 	 * is only lazily flushed after a kernel mapping protection
999 	 * change, so user accesses are not expected to cause spurious
1000 	 * faults.
1001 	 */
1002 	if (error_code != (X86_PF_WRITE | X86_PF_PROT) &&
1003 	    error_code != (X86_PF_INSTR | X86_PF_PROT))
1004 		return 0;
1005 
1006 	pgd = init_mm.pgd + pgd_index(address);
1007 	if (!pgd_present(*pgd))
1008 		return 0;
1009 
1010 	p4d = p4d_offset(pgd, address);
1011 	if (!p4d_present(*p4d))
1012 		return 0;
1013 
1014 	if (p4d_leaf(*p4d))
1015 		return spurious_kernel_fault_check(error_code, (pte_t *) p4d);
1016 
1017 	pud = pud_offset(p4d, address);
1018 	if (!pud_present(*pud))
1019 		return 0;
1020 
1021 	if (pud_leaf(*pud))
1022 		return spurious_kernel_fault_check(error_code, (pte_t *) pud);
1023 
1024 	pmd = pmd_offset(pud, address);
1025 	if (!pmd_present(*pmd))
1026 		return 0;
1027 
1028 	if (pmd_leaf(*pmd))
1029 		return spurious_kernel_fault_check(error_code, (pte_t *) pmd);
1030 
1031 	pte = pte_offset_kernel(pmd, address);
1032 	if (!pte_present(*pte))
1033 		return 0;
1034 
1035 	ret = spurious_kernel_fault_check(error_code, pte);
1036 	if (!ret)
1037 		return 0;
1038 
1039 	/*
1040 	 * Make sure we have permissions in PMD.
1041 	 * If not, then there's a bug in the page tables:
1042 	 */
1043 	ret = spurious_kernel_fault_check(error_code, (pte_t *) pmd);
1044 	WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
1045 
1046 	return ret;
1047 }
1048 NOKPROBE_SYMBOL(spurious_kernel_fault);
1049 
1050 int show_unhandled_signals = 1;
1051 
1052 static inline int
access_error(unsigned long error_code,struct vm_area_struct * vma)1053 access_error(unsigned long error_code, struct vm_area_struct *vma)
1054 {
1055 	/* This is only called for the current mm, so: */
1056 	bool foreign = false;
1057 
1058 	/*
1059 	 * Read or write was blocked by protection keys.  This is
1060 	 * always an unconditional error and can never result in
1061 	 * a follow-up action to resolve the fault, like a COW.
1062 	 */
1063 	if (error_code & X86_PF_PK)
1064 		return 1;
1065 
1066 	/*
1067 	 * SGX hardware blocked the access.  This usually happens
1068 	 * when the enclave memory contents have been destroyed, like
1069 	 * after a suspend/resume cycle. In any case, the kernel can't
1070 	 * fix the cause of the fault.  Handle the fault as an access
1071 	 * error even in cases where no actual access violation
1072 	 * occurred.  This allows userspace to rebuild the enclave in
1073 	 * response to the signal.
1074 	 */
1075 	if (unlikely(error_code & X86_PF_SGX))
1076 		return 1;
1077 
1078 	/*
1079 	 * Make sure to check the VMA so that we do not perform
1080 	 * faults just to hit a X86_PF_PK as soon as we fill in a
1081 	 * page.
1082 	 */
1083 	if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
1084 				       (error_code & X86_PF_INSTR), foreign))
1085 		return 1;
1086 
1087 	/*
1088 	 * Shadow stack accesses (PF_SHSTK=1) are only permitted to
1089 	 * shadow stack VMAs. All other accesses result in an error.
1090 	 */
1091 	if (error_code & X86_PF_SHSTK) {
1092 		if (unlikely(!(vma->vm_flags & VM_SHADOW_STACK)))
1093 			return 1;
1094 		if (unlikely(!(vma->vm_flags & VM_WRITE)))
1095 			return 1;
1096 		return 0;
1097 	}
1098 
1099 	if (error_code & X86_PF_WRITE) {
1100 		/* write, present and write, not present: */
1101 		if (unlikely(vma->vm_flags & VM_SHADOW_STACK))
1102 			return 1;
1103 		if (unlikely(!(vma->vm_flags & VM_WRITE)))
1104 			return 1;
1105 		return 0;
1106 	}
1107 
1108 	/* read, present: */
1109 	if (unlikely(error_code & X86_PF_PROT))
1110 		return 1;
1111 
1112 	/* read, not present: */
1113 	if (unlikely(!vma_is_accessible(vma)))
1114 		return 1;
1115 
1116 	return 0;
1117 }
1118 
fault_in_kernel_space(unsigned long address)1119 bool fault_in_kernel_space(unsigned long address)
1120 {
1121 	/*
1122 	 * On 64-bit systems, the vsyscall page is at an address above
1123 	 * TASK_SIZE_MAX, but is not considered part of the kernel
1124 	 * address space.
1125 	 */
1126 	if (IS_ENABLED(CONFIG_X86_64) && is_vsyscall_vaddr(address))
1127 		return false;
1128 
1129 	return address >= TASK_SIZE_MAX;
1130 }
1131 
1132 /*
1133  * Called for all faults where 'address' is part of the kernel address
1134  * space.  Might get called for faults that originate from *code* that
1135  * ran in userspace or the kernel.
1136  */
1137 static void
do_kern_addr_fault(struct pt_regs * regs,unsigned long hw_error_code,unsigned long address)1138 do_kern_addr_fault(struct pt_regs *regs, unsigned long hw_error_code,
1139 		   unsigned long address)
1140 {
1141 	/*
1142 	 * Protection keys exceptions only happen on user pages.  We
1143 	 * have no user pages in the kernel portion of the address
1144 	 * space, so do not expect them here.
1145 	 */
1146 	WARN_ON_ONCE(hw_error_code & X86_PF_PK);
1147 
1148 #ifdef CONFIG_X86_32
1149 	/*
1150 	 * We can fault-in kernel-space virtual memory on-demand. The
1151 	 * 'reference' page table is init_mm.pgd.
1152 	 *
1153 	 * NOTE! We MUST NOT take any locks for this case. We may
1154 	 * be in an interrupt or a critical region, and should
1155 	 * only copy the information from the master page table,
1156 	 * nothing more.
1157 	 *
1158 	 * Before doing this on-demand faulting, ensure that the
1159 	 * fault is not any of the following:
1160 	 * 1. A fault on a PTE with a reserved bit set.
1161 	 * 2. A fault caused by a user-mode access.  (Do not demand-
1162 	 *    fault kernel memory due to user-mode accesses).
1163 	 * 3. A fault caused by a page-level protection violation.
1164 	 *    (A demand fault would be on a non-present page which
1165 	 *     would have X86_PF_PROT==0).
1166 	 *
1167 	 * This is only needed to close a race condition on x86-32 in
1168 	 * the vmalloc mapping/unmapping code. See the comment above
1169 	 * vmalloc_fault() for details. On x86-64 the race does not
1170 	 * exist as the vmalloc mappings don't need to be synchronized
1171 	 * there.
1172 	 */
1173 	if (!(hw_error_code & (X86_PF_RSVD | X86_PF_USER | X86_PF_PROT))) {
1174 		if (vmalloc_fault(address) >= 0)
1175 			return;
1176 	}
1177 #endif
1178 
1179 	if (is_f00f_bug(regs, hw_error_code, address))
1180 		return;
1181 
1182 	/* Was the fault spurious, caused by lazy TLB invalidation? */
1183 	if (spurious_kernel_fault(hw_error_code, address))
1184 		return;
1185 
1186 	/* kprobes don't want to hook the spurious faults: */
1187 	if (WARN_ON_ONCE(kprobe_page_fault(regs, X86_TRAP_PF)))
1188 		return;
1189 
1190 	/*
1191 	 * Note, despite being a "bad area", there are quite a few
1192 	 * acceptable reasons to get here, such as erratum fixups
1193 	 * and handling kernel code that can fault, like get_user().
1194 	 *
1195 	 * Don't take the mm semaphore here. If we fixup a prefetch
1196 	 * fault we could otherwise deadlock:
1197 	 */
1198 	bad_area_nosemaphore(regs, hw_error_code, address);
1199 }
1200 NOKPROBE_SYMBOL(do_kern_addr_fault);
1201 
1202 /*
1203  * Handle faults in the user portion of the address space.  Nothing in here
1204  * should check X86_PF_USER without a specific justification: for almost
1205  * all purposes, we should treat a normal kernel access to user memory
1206  * (e.g. get_user(), put_user(), etc.) the same as the WRUSS instruction.
1207  * The one exception is AC flag handling, which is, per the x86
1208  * architecture, special for WRUSS.
1209  */
1210 static inline
do_user_addr_fault(struct pt_regs * regs,unsigned long error_code,unsigned long address)1211 void do_user_addr_fault(struct pt_regs *regs,
1212 			unsigned long error_code,
1213 			unsigned long address)
1214 {
1215 	struct vm_area_struct *vma;
1216 	struct task_struct *tsk;
1217 	struct mm_struct *mm;
1218 	vm_fault_t fault;
1219 	unsigned int flags = FAULT_FLAG_DEFAULT;
1220 
1221 	tsk = current;
1222 	mm = tsk->mm;
1223 
1224 	if (unlikely((error_code & (X86_PF_USER | X86_PF_INSTR)) == X86_PF_INSTR)) {
1225 		/*
1226 		 * Whoops, this is kernel mode code trying to execute from
1227 		 * user memory.  Unless this is AMD erratum #93, which
1228 		 * corrupts RIP such that it looks like a user address,
1229 		 * this is unrecoverable.  Don't even try to look up the
1230 		 * VMA or look for extable entries.
1231 		 */
1232 		if (is_errata93(regs, address))
1233 			return;
1234 
1235 		page_fault_oops(regs, error_code, address);
1236 		return;
1237 	}
1238 
1239 	/* kprobes don't want to hook the spurious faults: */
1240 	if (WARN_ON_ONCE(kprobe_page_fault(regs, X86_TRAP_PF)))
1241 		return;
1242 
1243 	/*
1244 	 * Reserved bits are never expected to be set on
1245 	 * entries in the user portion of the page tables.
1246 	 */
1247 	if (unlikely(error_code & X86_PF_RSVD))
1248 		pgtable_bad(regs, error_code, address);
1249 
1250 	/*
1251 	 * If SMAP is on, check for invalid kernel (supervisor) access to user
1252 	 * pages in the user address space.  The odd case here is WRUSS,
1253 	 * which, according to the preliminary documentation, does not respect
1254 	 * SMAP and will have the USER bit set so, in all cases, SMAP
1255 	 * enforcement appears to be consistent with the USER bit.
1256 	 */
1257 	if (unlikely(cpu_feature_enabled(X86_FEATURE_SMAP) &&
1258 		     !(error_code & X86_PF_USER) &&
1259 		     !(regs->flags & X86_EFLAGS_AC))) {
1260 		/*
1261 		 * No extable entry here.  This was a kernel access to an
1262 		 * invalid pointer.  get_kernel_nofault() will not get here.
1263 		 */
1264 		page_fault_oops(regs, error_code, address);
1265 		return;
1266 	}
1267 
1268 	/*
1269 	 * If we're in an interrupt, have no user context or are running
1270 	 * in a region with pagefaults disabled then we must not take the fault
1271 	 */
1272 	if (unlikely(faulthandler_disabled() || !mm)) {
1273 		bad_area_nosemaphore(regs, error_code, address);
1274 		return;
1275 	}
1276 
1277 	/* Legacy check - remove this after verifying that it doesn't trigger */
1278 	if (WARN_ON_ONCE(!(regs->flags & X86_EFLAGS_IF))) {
1279 		bad_area_nosemaphore(regs, error_code, address);
1280 		return;
1281 	}
1282 
1283 	local_irq_enable();
1284 
1285 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1286 
1287 	/*
1288 	 * Read-only permissions can not be expressed in shadow stack PTEs.
1289 	 * Treat all shadow stack accesses as WRITE faults. This ensures
1290 	 * that the MM will prepare everything (e.g., break COW) such that
1291 	 * maybe_mkwrite() can create a proper shadow stack PTE.
1292 	 */
1293 	if (error_code & X86_PF_SHSTK)
1294 		flags |= FAULT_FLAG_WRITE;
1295 	if (error_code & X86_PF_WRITE)
1296 		flags |= FAULT_FLAG_WRITE;
1297 	if (error_code & X86_PF_INSTR)
1298 		flags |= FAULT_FLAG_INSTRUCTION;
1299 
1300 	/*
1301 	 * We set FAULT_FLAG_USER based on the register state, not
1302 	 * based on X86_PF_USER. User space accesses that cause
1303 	 * system page faults are still user accesses.
1304 	 */
1305 	if (user_mode(regs))
1306 		flags |= FAULT_FLAG_USER;
1307 
1308 #ifdef CONFIG_X86_64
1309 	/*
1310 	 * Faults in the vsyscall page might need emulation.  The
1311 	 * vsyscall page is at a high address (>PAGE_OFFSET), but is
1312 	 * considered to be part of the user address space.
1313 	 *
1314 	 * The vsyscall page does not have a "real" VMA, so do this
1315 	 * emulation before we go searching for VMAs.
1316 	 *
1317 	 * PKRU never rejects instruction fetches, so we don't need
1318 	 * to consider the PF_PK bit.
1319 	 */
1320 	if (is_vsyscall_vaddr(address)) {
1321 		if (emulate_vsyscall(error_code, regs, address))
1322 			return;
1323 	}
1324 #endif
1325 
1326 	if (!(flags & FAULT_FLAG_USER))
1327 		goto lock_mmap;
1328 
1329 	vma = lock_vma_under_rcu(mm, address);
1330 	if (!vma)
1331 		goto lock_mmap;
1332 
1333 	if (unlikely(access_error(error_code, vma))) {
1334 		bad_area_access_error(regs, error_code, address, NULL, vma);
1335 		count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
1336 		return;
1337 	}
1338 	fault = handle_mm_fault(vma, address, flags | FAULT_FLAG_VMA_LOCK, regs);
1339 	if (!(fault & (VM_FAULT_RETRY | VM_FAULT_COMPLETED)))
1340 		vma_end_read(vma);
1341 
1342 	if (!(fault & VM_FAULT_RETRY)) {
1343 		count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
1344 		goto done;
1345 	}
1346 	count_vm_vma_lock_event(VMA_LOCK_RETRY);
1347 	if (fault & VM_FAULT_MAJOR)
1348 		flags |= FAULT_FLAG_TRIED;
1349 
1350 	/* Quick path to respond to signals */
1351 	if (fault_signal_pending(fault, regs)) {
1352 		if (!user_mode(regs))
1353 			kernelmode_fixup_or_oops(regs, error_code, address,
1354 						 SIGBUS, BUS_ADRERR,
1355 						 ARCH_DEFAULT_PKEY);
1356 		return;
1357 	}
1358 lock_mmap:
1359 
1360 retry:
1361 	vma = lock_mm_and_find_vma(mm, address, regs);
1362 	if (unlikely(!vma)) {
1363 		bad_area_nosemaphore(regs, error_code, address);
1364 		return;
1365 	}
1366 
1367 	/*
1368 	 * Ok, we have a good vm_area for this memory access, so
1369 	 * we can handle it..
1370 	 */
1371 	if (unlikely(access_error(error_code, vma))) {
1372 		bad_area_access_error(regs, error_code, address, mm, vma);
1373 		return;
1374 	}
1375 
1376 	/*
1377 	 * If for any reason at all we couldn't handle the fault,
1378 	 * make sure we exit gracefully rather than endlessly redo
1379 	 * the fault.  Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1380 	 * we get VM_FAULT_RETRY back, the mmap_lock has been unlocked.
1381 	 *
1382 	 * Note that handle_userfault() may also release and reacquire mmap_lock
1383 	 * (and not return with VM_FAULT_RETRY), when returning to userland to
1384 	 * repeat the page fault later with a VM_FAULT_NOPAGE retval
1385 	 * (potentially after handling any pending signal during the return to
1386 	 * userland). The return to userland is identified whenever
1387 	 * FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags.
1388 	 */
1389 	fault = handle_mm_fault(vma, address, flags, regs);
1390 
1391 	if (fault_signal_pending(fault, regs)) {
1392 		/*
1393 		 * Quick path to respond to signals.  The core mm code
1394 		 * has unlocked the mm for us if we get here.
1395 		 */
1396 		if (!user_mode(regs))
1397 			kernelmode_fixup_or_oops(regs, error_code, address,
1398 						 SIGBUS, BUS_ADRERR,
1399 						 ARCH_DEFAULT_PKEY);
1400 		return;
1401 	}
1402 
1403 	/* The fault is fully completed (including releasing mmap lock) */
1404 	if (fault & VM_FAULT_COMPLETED)
1405 		return;
1406 
1407 	/*
1408 	 * If we need to retry the mmap_lock has already been released,
1409 	 * and if there is a fatal signal pending there is no guarantee
1410 	 * that we made any progress. Handle this case first.
1411 	 */
1412 	if (unlikely(fault & VM_FAULT_RETRY)) {
1413 		flags |= FAULT_FLAG_TRIED;
1414 		goto retry;
1415 	}
1416 
1417 	mmap_read_unlock(mm);
1418 done:
1419 	if (likely(!(fault & VM_FAULT_ERROR)))
1420 		return;
1421 
1422 	if (fatal_signal_pending(current) && !user_mode(regs)) {
1423 		kernelmode_fixup_or_oops(regs, error_code, address,
1424 					 0, 0, ARCH_DEFAULT_PKEY);
1425 		return;
1426 	}
1427 
1428 	if (fault & VM_FAULT_OOM) {
1429 		/* Kernel mode? Handle exceptions or die: */
1430 		if (!user_mode(regs)) {
1431 			kernelmode_fixup_or_oops(regs, error_code, address,
1432 						 SIGSEGV, SEGV_MAPERR,
1433 						 ARCH_DEFAULT_PKEY);
1434 			return;
1435 		}
1436 
1437 		/*
1438 		 * We ran out of memory, call the OOM killer, and return the
1439 		 * userspace (which will retry the fault, or kill us if we got
1440 		 * oom-killed):
1441 		 */
1442 		pagefault_out_of_memory();
1443 	} else {
1444 		if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
1445 			     VM_FAULT_HWPOISON_LARGE))
1446 			do_sigbus(regs, error_code, address, fault);
1447 		else if (fault & VM_FAULT_SIGSEGV)
1448 			bad_area_nosemaphore(regs, error_code, address);
1449 		else
1450 			BUG();
1451 	}
1452 }
1453 NOKPROBE_SYMBOL(do_user_addr_fault);
1454 
1455 static __always_inline void
trace_page_fault_entries(struct pt_regs * regs,unsigned long error_code,unsigned long address)1456 trace_page_fault_entries(struct pt_regs *regs, unsigned long error_code,
1457 			 unsigned long address)
1458 {
1459 	if (!trace_pagefault_enabled())
1460 		return;
1461 
1462 	if (user_mode(regs))
1463 		trace_page_fault_user(address, regs, error_code);
1464 	else
1465 		trace_page_fault_kernel(address, regs, error_code);
1466 }
1467 
1468 static __always_inline void
handle_page_fault(struct pt_regs * regs,unsigned long error_code,unsigned long address)1469 handle_page_fault(struct pt_regs *regs, unsigned long error_code,
1470 			      unsigned long address)
1471 {
1472 	trace_page_fault_entries(regs, error_code, address);
1473 
1474 	if (unlikely(kmmio_fault(regs, address)))
1475 		return;
1476 
1477 	/* Was the fault on kernel-controlled part of the address space? */
1478 	if (unlikely(fault_in_kernel_space(address))) {
1479 		do_kern_addr_fault(regs, error_code, address);
1480 	} else {
1481 		do_user_addr_fault(regs, error_code, address);
1482 		/*
1483 		 * User address page fault handling might have reenabled
1484 		 * interrupts. Fixing up all potential exit points of
1485 		 * do_user_addr_fault() and its leaf functions is just not
1486 		 * doable w/o creating an unholy mess or turning the code
1487 		 * upside down.
1488 		 */
1489 		local_irq_disable();
1490 	}
1491 }
1492 
DEFINE_IDTENTRY_RAW_ERRORCODE(exc_page_fault)1493 DEFINE_IDTENTRY_RAW_ERRORCODE(exc_page_fault)
1494 {
1495 	irqentry_state_t state;
1496 	unsigned long address;
1497 
1498 	address = cpu_feature_enabled(X86_FEATURE_FRED) ? fred_event_data(regs) : read_cr2();
1499 
1500 	prefetchw(&current->mm->mmap_lock);
1501 
1502 	/*
1503 	 * KVM uses #PF vector to deliver 'page not present' events to guests
1504 	 * (asynchronous page fault mechanism). The event happens when a
1505 	 * userspace task is trying to access some valid (from guest's point of
1506 	 * view) memory which is not currently mapped by the host (e.g. the
1507 	 * memory is swapped out). Note, the corresponding "page ready" event
1508 	 * which is injected when the memory becomes available, is delivered via
1509 	 * an interrupt mechanism and not a #PF exception
1510 	 * (see arch/x86/kernel/kvm.c: sysvec_kvm_asyncpf_interrupt()).
1511 	 *
1512 	 * We are relying on the interrupted context being sane (valid RSP,
1513 	 * relevant locks not held, etc.), which is fine as long as the
1514 	 * interrupted context had IF=1.  We are also relying on the KVM
1515 	 * async pf type field and CR2 being read consistently instead of
1516 	 * getting values from real and async page faults mixed up.
1517 	 *
1518 	 * Fingers crossed.
1519 	 *
1520 	 * The async #PF handling code takes care of idtentry handling
1521 	 * itself.
1522 	 */
1523 	if (kvm_handle_async_pf(regs, (u32)address))
1524 		return;
1525 
1526 	/*
1527 	 * Entry handling for valid #PF from kernel mode is slightly
1528 	 * different: RCU is already watching and ct_irq_enter() must not
1529 	 * be invoked because a kernel fault on a user space address might
1530 	 * sleep.
1531 	 *
1532 	 * In case the fault hit a RCU idle region the conditional entry
1533 	 * code reenabled RCU to avoid subsequent wreckage which helps
1534 	 * debuggability.
1535 	 */
1536 	state = irqentry_enter(regs);
1537 
1538 	instrumentation_begin();
1539 	handle_page_fault(regs, error_code, address);
1540 	instrumentation_end();
1541 
1542 	irqentry_exit(regs, state);
1543 }
1544