1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2020 Intel Corporation
4 */
5
6 #include "i915_drv.h"
7 #include "i915_reg.h"
8 #include "intel_gt.h"
9 #include "intel_gt_clock_utils.h"
10 #include "intel_gt_print.h"
11 #include "intel_gt_regs.h"
12
read_reference_ts_freq(struct intel_uncore * uncore)13 static u32 read_reference_ts_freq(struct intel_uncore *uncore)
14 {
15 u32 ts_override = intel_uncore_read(uncore, GEN9_TIMESTAMP_OVERRIDE);
16 u32 base_freq, frac_freq;
17
18 base_freq = ((ts_override & GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_MASK) >>
19 GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_SHIFT) + 1;
20 base_freq *= 1000000;
21
22 frac_freq = ((ts_override &
23 GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_MASK) >>
24 GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_SHIFT);
25 frac_freq = 1000000 / (frac_freq + 1);
26
27 return base_freq + frac_freq;
28 }
29
gen11_get_crystal_clock_freq(struct intel_uncore * uncore,u32 rpm_config_reg)30 static u32 gen11_get_crystal_clock_freq(struct intel_uncore *uncore,
31 u32 rpm_config_reg)
32 {
33 u32 f19_2_mhz = 19200000;
34 u32 f24_mhz = 24000000;
35 u32 f25_mhz = 25000000;
36 u32 f38_4_mhz = 38400000;
37 u32 crystal_clock =
38 (rpm_config_reg & GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_MASK) >>
39 GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_SHIFT;
40
41 switch (crystal_clock) {
42 case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_24_MHZ:
43 return f24_mhz;
44 case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_19_2_MHZ:
45 return f19_2_mhz;
46 case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_38_4_MHZ:
47 return f38_4_mhz;
48 case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_25_MHZ:
49 return f25_mhz;
50 default:
51 MISSING_CASE(crystal_clock);
52 return 0;
53 }
54 }
55
gen11_read_clock_frequency(struct intel_uncore * uncore)56 static u32 gen11_read_clock_frequency(struct intel_uncore *uncore)
57 {
58 u32 ctc_reg = intel_uncore_read(uncore, CTC_MODE);
59 u32 freq = 0;
60
61 /*
62 * Note that on gen11+, the clock frequency may be reconfigured.
63 * We do not, and we assume nobody else does.
64 *
65 * First figure out the reference frequency. There are 2 ways
66 * we can compute the frequency, either through the
67 * TIMESTAMP_OVERRIDE register or through RPM_CONFIG. CTC_MODE
68 * tells us which one we should use.
69 */
70 if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
71 freq = read_reference_ts_freq(uncore);
72 } else {
73 u32 c0 = intel_uncore_read(uncore, RPM_CONFIG0);
74
75 freq = gen11_get_crystal_clock_freq(uncore, c0);
76
77 /*
78 * Now figure out how the command stream's timestamp
79 * register increments from this frequency (it might
80 * increment only every few clock cycle).
81 */
82 freq >>= 3 - ((c0 & GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK) >>
83 GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_SHIFT);
84 }
85
86 return freq;
87 }
88
gen9_read_clock_frequency(struct intel_uncore * uncore)89 static u32 gen9_read_clock_frequency(struct intel_uncore *uncore)
90 {
91 u32 ctc_reg = intel_uncore_read(uncore, CTC_MODE);
92 u32 freq = 0;
93
94 if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
95 freq = read_reference_ts_freq(uncore);
96 } else {
97 freq = IS_GEN9_LP(uncore->i915) ? 19200000 : 24000000;
98
99 /*
100 * Now figure out how the command stream's timestamp
101 * register increments from this frequency (it might
102 * increment only every few clock cycle).
103 */
104 freq >>= 3 - ((ctc_reg & CTC_SHIFT_PARAMETER_MASK) >>
105 CTC_SHIFT_PARAMETER_SHIFT);
106 }
107
108 return freq;
109 }
110
gen6_read_clock_frequency(struct intel_uncore * uncore)111 static u32 gen6_read_clock_frequency(struct intel_uncore *uncore)
112 {
113 /*
114 * PRMs say:
115 *
116 * "The PCU TSC counts 10ns increments; this timestamp
117 * reflects bits 38:3 of the TSC (i.e. 80ns granularity,
118 * rolling over every 1.5 hours).
119 */
120 return 12500000;
121 }
122
gen5_read_clock_frequency(struct intel_uncore * uncore)123 static u32 gen5_read_clock_frequency(struct intel_uncore *uncore)
124 {
125 /*
126 * 63:32 increments every 1000 ns
127 * 31:0 mbz
128 */
129 return 1000000000 / 1000;
130 }
131
g4x_read_clock_frequency(struct intel_uncore * uncore)132 static u32 g4x_read_clock_frequency(struct intel_uncore *uncore)
133 {
134 /*
135 * 63:20 increments every 1/4 ns
136 * 19:0 mbz
137 *
138 * -> 63:32 increments every 1024 ns
139 */
140 return 1000000000 / 1024;
141 }
142
gen4_read_clock_frequency(struct intel_uncore * uncore)143 static u32 gen4_read_clock_frequency(struct intel_uncore *uncore)
144 {
145 /*
146 * PRMs say:
147 *
148 * "The value in this register increments once every 16
149 * hclks." (through the “Clocking Configuration”
150 * (“CLKCFG”) MCHBAR register)
151 *
152 * Testing on actual hardware has shown there is no /16.
153 */
154 return RUNTIME_INFO(uncore->i915)->rawclk_freq * 1000;
155 }
156
read_clock_frequency(struct intel_uncore * uncore)157 static u32 read_clock_frequency(struct intel_uncore *uncore)
158 {
159 if (GRAPHICS_VER(uncore->i915) >= 11)
160 return gen11_read_clock_frequency(uncore);
161 else if (GRAPHICS_VER(uncore->i915) >= 9)
162 return gen9_read_clock_frequency(uncore);
163 else if (GRAPHICS_VER(uncore->i915) >= 6)
164 return gen6_read_clock_frequency(uncore);
165 else if (GRAPHICS_VER(uncore->i915) == 5)
166 return gen5_read_clock_frequency(uncore);
167 else if (IS_G4X(uncore->i915))
168 return g4x_read_clock_frequency(uncore);
169 else if (GRAPHICS_VER(uncore->i915) == 4)
170 return gen4_read_clock_frequency(uncore);
171 else
172 return 0;
173 }
174
intel_gt_init_clock_frequency(struct intel_gt * gt)175 void intel_gt_init_clock_frequency(struct intel_gt *gt)
176 {
177 gt->clock_frequency = read_clock_frequency(gt->uncore);
178
179 /* Icelake appears to use another fixed frequency for CTX_TIMESTAMP */
180 if (GRAPHICS_VER(gt->i915) == 11)
181 gt->clock_period_ns = NSEC_PER_SEC / 13750000;
182 else if (gt->clock_frequency)
183 gt->clock_period_ns = intel_gt_clock_interval_to_ns(gt, 1);
184
185 GT_TRACE(gt,
186 "Using clock frequency: %dkHz, period: %dns, wrap: %lldms\n",
187 gt->clock_frequency / 1000,
188 gt->clock_period_ns,
189 div_u64(mul_u32_u32(gt->clock_period_ns, S32_MAX),
190 USEC_PER_SEC));
191 }
192
193 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
intel_gt_check_clock_frequency(const struct intel_gt * gt)194 void intel_gt_check_clock_frequency(const struct intel_gt *gt)
195 {
196 if (gt->clock_frequency != read_clock_frequency(gt->uncore)) {
197 gt_err(gt, "GT clock frequency changed, was %uHz, now %uHz!\n",
198 gt->clock_frequency,
199 read_clock_frequency(gt->uncore));
200 }
201 }
202 #endif
203
div_u64_roundup(u64 nom,u32 den)204 static u64 div_u64_roundup(u64 nom, u32 den)
205 {
206 return div_u64(nom + den - 1, den);
207 }
208
intel_gt_clock_interval_to_ns(const struct intel_gt * gt,u64 count)209 u64 intel_gt_clock_interval_to_ns(const struct intel_gt *gt, u64 count)
210 {
211 return div_u64_roundup(count * NSEC_PER_SEC, gt->clock_frequency);
212 }
213
intel_gt_pm_interval_to_ns(const struct intel_gt * gt,u64 count)214 u64 intel_gt_pm_interval_to_ns(const struct intel_gt *gt, u64 count)
215 {
216 return intel_gt_clock_interval_to_ns(gt, 16 * count);
217 }
218
intel_gt_ns_to_clock_interval(const struct intel_gt * gt,u64 ns)219 u64 intel_gt_ns_to_clock_interval(const struct intel_gt *gt, u64 ns)
220 {
221 return div_u64_roundup(gt->clock_frequency * ns, NSEC_PER_SEC);
222 }
223
intel_gt_ns_to_pm_interval(const struct intel_gt * gt,u64 ns)224 u64 intel_gt_ns_to_pm_interval(const struct intel_gt *gt, u64 ns)
225 {
226 u64 val;
227
228 /*
229 * Make these a multiple of magic 25 to avoid SNB (eg. Dell XPS
230 * 8300) freezing up around GPU hangs. Looks as if even
231 * scheduling/timer interrupts start misbehaving if the RPS
232 * EI/thresholds are "bad", leading to a very sluggish or even
233 * frozen machine.
234 */
235 val = div_u64_roundup(intel_gt_ns_to_clock_interval(gt, ns), 16);
236 if (GRAPHICS_VER(gt->i915) == 6)
237 val = div_u64_roundup(val, 25) * 25;
238
239 return val;
240 }
241