1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2014-2019 Intel Corporation
4 */
5
6 #include <linux/debugfs.h>
7 #include <linux/string_helpers.h>
8
9 #include "gt/intel_gt.h"
10 #include "i915_drv.h"
11 #include "i915_irq.h"
12 #include "i915_memcpy.h"
13 #include "intel_guc_capture.h"
14 #include "intel_guc_log.h"
15 #include "intel_guc_print.h"
16
17 #if defined(CONFIG_DRM_I915_DEBUG_GUC)
18 #define GUC_LOG_DEFAULT_CRASH_BUFFER_SIZE SZ_2M
19 #define GUC_LOG_DEFAULT_DEBUG_BUFFER_SIZE SZ_16M
20 #define GUC_LOG_DEFAULT_CAPTURE_BUFFER_SIZE SZ_1M
21 #elif defined(CONFIG_DRM_I915_DEBUG_GEM)
22 #define GUC_LOG_DEFAULT_CRASH_BUFFER_SIZE SZ_1M
23 #define GUC_LOG_DEFAULT_DEBUG_BUFFER_SIZE SZ_2M
24 #define GUC_LOG_DEFAULT_CAPTURE_BUFFER_SIZE SZ_1M
25 #else
26 #define GUC_LOG_DEFAULT_CRASH_BUFFER_SIZE SZ_8K
27 #define GUC_LOG_DEFAULT_DEBUG_BUFFER_SIZE SZ_64K
28 #define GUC_LOG_DEFAULT_CAPTURE_BUFFER_SIZE SZ_1M
29 #endif
30
31 static void guc_log_copy_debuglogs_for_relay(struct intel_guc_log *log);
32
33 struct guc_log_section {
34 u32 max;
35 u32 flag;
36 u32 default_val;
37 const char *name;
38 };
39
_guc_log_init_sizes(struct intel_guc_log * log)40 static void _guc_log_init_sizes(struct intel_guc_log *log)
41 {
42 struct intel_guc *guc = log_to_guc(log);
43 static const struct guc_log_section sections[GUC_LOG_SECTIONS_LIMIT] = {
44 {
45 GUC_LOG_CRASH_MASK >> GUC_LOG_CRASH_SHIFT,
46 GUC_LOG_LOG_ALLOC_UNITS,
47 GUC_LOG_DEFAULT_CRASH_BUFFER_SIZE,
48 "crash dump"
49 },
50 {
51 GUC_LOG_DEBUG_MASK >> GUC_LOG_DEBUG_SHIFT,
52 GUC_LOG_LOG_ALLOC_UNITS,
53 GUC_LOG_DEFAULT_DEBUG_BUFFER_SIZE,
54 "debug",
55 },
56 {
57 GUC_LOG_CAPTURE_MASK >> GUC_LOG_CAPTURE_SHIFT,
58 GUC_LOG_CAPTURE_ALLOC_UNITS,
59 GUC_LOG_DEFAULT_CAPTURE_BUFFER_SIZE,
60 "capture",
61 }
62 };
63 int i;
64
65 for (i = 0; i < GUC_LOG_SECTIONS_LIMIT; i++)
66 log->sizes[i].bytes = sections[i].default_val;
67
68 /* If debug size > 1MB then bump default crash size to keep the same units */
69 if (log->sizes[GUC_LOG_SECTIONS_DEBUG].bytes >= SZ_1M &&
70 GUC_LOG_DEFAULT_CRASH_BUFFER_SIZE < SZ_1M)
71 log->sizes[GUC_LOG_SECTIONS_CRASH].bytes = SZ_1M;
72
73 /* Prepare the GuC API structure fields: */
74 for (i = 0; i < GUC_LOG_SECTIONS_LIMIT; i++) {
75 /* Convert to correct units */
76 if ((log->sizes[i].bytes % SZ_1M) == 0) {
77 log->sizes[i].units = SZ_1M;
78 log->sizes[i].flag = sections[i].flag;
79 } else {
80 log->sizes[i].units = SZ_4K;
81 log->sizes[i].flag = 0;
82 }
83
84 if (!IS_ALIGNED(log->sizes[i].bytes, log->sizes[i].units))
85 guc_err(guc, "Mis-aligned log %s size: 0x%X vs 0x%X!\n",
86 sections[i].name, log->sizes[i].bytes, log->sizes[i].units);
87 log->sizes[i].count = log->sizes[i].bytes / log->sizes[i].units;
88
89 if (!log->sizes[i].count) {
90 guc_err(guc, "Zero log %s size!\n", sections[i].name);
91 } else {
92 /* Size is +1 unit */
93 log->sizes[i].count--;
94 }
95
96 /* Clip to field size */
97 if (log->sizes[i].count > sections[i].max) {
98 guc_err(guc, "log %s size too large: %d vs %d!\n",
99 sections[i].name, log->sizes[i].count + 1, sections[i].max + 1);
100 log->sizes[i].count = sections[i].max;
101 }
102 }
103
104 if (log->sizes[GUC_LOG_SECTIONS_CRASH].units != log->sizes[GUC_LOG_SECTIONS_DEBUG].units) {
105 guc_err(guc, "Unit mismatch for crash and debug sections: %d vs %d!\n",
106 log->sizes[GUC_LOG_SECTIONS_CRASH].units,
107 log->sizes[GUC_LOG_SECTIONS_DEBUG].units);
108 log->sizes[GUC_LOG_SECTIONS_CRASH].units = log->sizes[GUC_LOG_SECTIONS_DEBUG].units;
109 log->sizes[GUC_LOG_SECTIONS_CRASH].count = 0;
110 }
111
112 log->sizes_initialised = true;
113 }
114
guc_log_init_sizes(struct intel_guc_log * log)115 static void guc_log_init_sizes(struct intel_guc_log *log)
116 {
117 if (log->sizes_initialised)
118 return;
119
120 _guc_log_init_sizes(log);
121 }
122
intel_guc_log_section_size_crash(struct intel_guc_log * log)123 static u32 intel_guc_log_section_size_crash(struct intel_guc_log *log)
124 {
125 guc_log_init_sizes(log);
126
127 return log->sizes[GUC_LOG_SECTIONS_CRASH].bytes;
128 }
129
intel_guc_log_section_size_debug(struct intel_guc_log * log)130 static u32 intel_guc_log_section_size_debug(struct intel_guc_log *log)
131 {
132 guc_log_init_sizes(log);
133
134 return log->sizes[GUC_LOG_SECTIONS_DEBUG].bytes;
135 }
136
intel_guc_log_section_size_capture(struct intel_guc_log * log)137 u32 intel_guc_log_section_size_capture(struct intel_guc_log *log)
138 {
139 guc_log_init_sizes(log);
140
141 return log->sizes[GUC_LOG_SECTIONS_CAPTURE].bytes;
142 }
143
intel_guc_log_size(struct intel_guc_log * log)144 static u32 intel_guc_log_size(struct intel_guc_log *log)
145 {
146 /*
147 * GuC Log buffer Layout:
148 *
149 * NB: Ordering must follow "enum guc_log_buffer_type".
150 *
151 * +===============================+ 00B
152 * | Debug state header |
153 * +-------------------------------+ 32B
154 * | Crash dump state header |
155 * +-------------------------------+ 64B
156 * | Capture state header |
157 * +-------------------------------+ 96B
158 * | |
159 * +===============================+ PAGE_SIZE (4KB)
160 * | Debug logs |
161 * +===============================+ + DEBUG_SIZE
162 * | Crash Dump logs |
163 * +===============================+ + CRASH_SIZE
164 * | Capture logs |
165 * +===============================+ + CAPTURE_SIZE
166 */
167 return PAGE_SIZE +
168 intel_guc_log_section_size_crash(log) +
169 intel_guc_log_section_size_debug(log) +
170 intel_guc_log_section_size_capture(log);
171 }
172
173 /**
174 * DOC: GuC firmware log
175 *
176 * Firmware log is enabled by setting i915.guc_log_level to the positive level.
177 * Log data is printed out via reading debugfs i915_guc_log_dump. Reading from
178 * i915_guc_load_status will print out firmware loading status and scratch
179 * registers value.
180 */
181
guc_action_flush_log_complete(struct intel_guc * guc)182 static int guc_action_flush_log_complete(struct intel_guc *guc)
183 {
184 u32 action[] = {
185 INTEL_GUC_ACTION_LOG_BUFFER_FILE_FLUSH_COMPLETE,
186 GUC_DEBUG_LOG_BUFFER
187 };
188
189 return intel_guc_send_nb(guc, action, ARRAY_SIZE(action), 0);
190 }
191
guc_action_flush_log(struct intel_guc * guc)192 static int guc_action_flush_log(struct intel_guc *guc)
193 {
194 u32 action[] = {
195 INTEL_GUC_ACTION_FORCE_LOG_BUFFER_FLUSH,
196 0
197 };
198
199 return intel_guc_send(guc, action, ARRAY_SIZE(action));
200 }
201
guc_action_control_log(struct intel_guc * guc,bool enable,bool default_logging,u32 verbosity)202 static int guc_action_control_log(struct intel_guc *guc, bool enable,
203 bool default_logging, u32 verbosity)
204 {
205 u32 action[] = {
206 INTEL_GUC_ACTION_UK_LOG_ENABLE_LOGGING,
207 (enable ? GUC_LOG_CONTROL_LOGGING_ENABLED : 0) |
208 (verbosity << GUC_LOG_CONTROL_VERBOSITY_SHIFT) |
209 (default_logging ? GUC_LOG_CONTROL_DEFAULT_LOGGING : 0)
210 };
211
212 GEM_BUG_ON(verbosity > GUC_LOG_VERBOSITY_MAX);
213
214 return intel_guc_send(guc, action, ARRAY_SIZE(action));
215 }
216
217 #ifdef __linux__
218
219 /*
220 * Sub buffer switch callback. Called whenever relay has to switch to a new
221 * sub buffer, relay stays on the same sub buffer if 0 is returned.
222 */
subbuf_start_callback(struct rchan_buf * buf,void * subbuf,void * prev_subbuf,size_t prev_padding)223 static int subbuf_start_callback(struct rchan_buf *buf,
224 void *subbuf,
225 void *prev_subbuf,
226 size_t prev_padding)
227 {
228 /*
229 * Use no-overwrite mode by default, where relay will stop accepting
230 * new data if there are no empty sub buffers left.
231 * There is no strict synchronization enforced by relay between Consumer
232 * and Producer. In overwrite mode, there is a possibility of getting
233 * inconsistent/garbled data, the producer could be writing on to the
234 * same sub buffer from which Consumer is reading. This can't be avoided
235 * unless Consumer is fast enough and can always run in tandem with
236 * Producer.
237 */
238 if (relay_buf_full(buf))
239 return 0;
240
241 return 1;
242 }
243
244 /*
245 * file_create() callback. Creates relay file in debugfs.
246 */
create_buf_file_callback(const char * filename,struct dentry * parent,umode_t mode,struct rchan_buf * buf,int * is_global)247 static struct dentry *create_buf_file_callback(const char *filename,
248 struct dentry *parent,
249 umode_t mode,
250 struct rchan_buf *buf,
251 int *is_global)
252 {
253 struct dentry *buf_file;
254
255 /*
256 * This to enable the use of a single buffer for the relay channel and
257 * correspondingly have a single file exposed to User, through which
258 * it can collect the logs in order without any post-processing.
259 * Need to set 'is_global' even if parent is NULL for early logging.
260 */
261 *is_global = 1;
262
263 if (!parent)
264 return NULL;
265
266 buf_file = debugfs_create_file(filename, mode,
267 parent, buf, &relay_file_operations);
268 if (IS_ERR(buf_file))
269 return NULL;
270
271 return buf_file;
272 }
273
274 /*
275 * file_remove() default callback. Removes relay file in debugfs.
276 */
remove_buf_file_callback(struct dentry * dentry)277 static int remove_buf_file_callback(struct dentry *dentry)
278 {
279 debugfs_remove(dentry);
280 return 0;
281 }
282
283 /* relay channel callbacks */
284 static const struct rchan_callbacks relay_callbacks = {
285 .subbuf_start = subbuf_start_callback,
286 .create_buf_file = create_buf_file_callback,
287 .remove_buf_file = remove_buf_file_callback,
288 };
289
290 #endif /* __linux__ */
291
guc_move_to_next_buf(struct intel_guc_log * log)292 static void guc_move_to_next_buf(struct intel_guc_log *log)
293 {
294 STUB();
295 #ifdef notyet
296 /*
297 * Make sure the updates made in the sub buffer are visible when
298 * Consumer sees the following update to offset inside the sub buffer.
299 */
300 smp_wmb();
301
302 /* All data has been written, so now move the offset of sub buffer. */
303 relay_reserve(log->relay.channel, log->vma->obj->base.size -
304 intel_guc_log_section_size_capture(log));
305
306 /* Switch to the next sub buffer */
307 relay_flush(log->relay.channel);
308 #endif
309 }
310
guc_get_write_buffer(struct intel_guc_log * log)311 static void *guc_get_write_buffer(struct intel_guc_log *log)
312 {
313 STUB();
314 return NULL;
315 #ifdef notyet
316 /*
317 * Just get the base address of a new sub buffer and copy data into it
318 * ourselves. NULL will be returned in no-overwrite mode, if all sub
319 * buffers are full. Could have used the relay_write() to indirectly
320 * copy the data, but that would have been bit convoluted, as we need to
321 * write to only certain locations inside a sub buffer which cannot be
322 * done without using relay_reserve() along with relay_write(). So its
323 * better to use relay_reserve() alone.
324 */
325 return relay_reserve(log->relay.channel, 0);
326 #endif
327 }
328
intel_guc_check_log_buf_overflow(struct intel_guc_log * log,enum guc_log_buffer_type type,unsigned int full_cnt)329 bool intel_guc_check_log_buf_overflow(struct intel_guc_log *log,
330 enum guc_log_buffer_type type,
331 unsigned int full_cnt)
332 {
333 unsigned int prev_full_cnt = log->stats[type].sampled_overflow;
334 bool overflow = false;
335
336 if (full_cnt != prev_full_cnt) {
337 overflow = true;
338
339 log->stats[type].overflow = full_cnt;
340 log->stats[type].sampled_overflow += full_cnt - prev_full_cnt;
341
342 if (full_cnt < prev_full_cnt) {
343 /* buffer_full_cnt is a 4 bit counter */
344 log->stats[type].sampled_overflow += 16;
345 }
346
347 guc_notice_ratelimited(log_to_guc(log), "log buffer overflow\n");
348 }
349
350 return overflow;
351 }
352
intel_guc_get_log_buffer_size(struct intel_guc_log * log,enum guc_log_buffer_type type)353 unsigned int intel_guc_get_log_buffer_size(struct intel_guc_log *log,
354 enum guc_log_buffer_type type)
355 {
356 switch (type) {
357 case GUC_DEBUG_LOG_BUFFER:
358 return intel_guc_log_section_size_debug(log);
359 case GUC_CRASH_DUMP_LOG_BUFFER:
360 return intel_guc_log_section_size_crash(log);
361 case GUC_CAPTURE_LOG_BUFFER:
362 return intel_guc_log_section_size_capture(log);
363 default:
364 MISSING_CASE(type);
365 }
366
367 return 0;
368 }
369
intel_guc_get_log_buffer_offset(struct intel_guc_log * log,enum guc_log_buffer_type type)370 size_t intel_guc_get_log_buffer_offset(struct intel_guc_log *log,
371 enum guc_log_buffer_type type)
372 {
373 enum guc_log_buffer_type i;
374 size_t offset = PAGE_SIZE;/* for the log_buffer_states */
375
376 for (i = GUC_DEBUG_LOG_BUFFER; i < GUC_MAX_LOG_BUFFER; ++i) {
377 if (i == type)
378 break;
379 offset += intel_guc_get_log_buffer_size(log, i);
380 }
381
382 return offset;
383 }
384
_guc_log_copy_debuglogs_for_relay(struct intel_guc_log * log)385 static void _guc_log_copy_debuglogs_for_relay(struct intel_guc_log *log)
386 {
387 struct intel_guc *guc = log_to_guc(log);
388 unsigned int buffer_size, read_offset, write_offset, bytes_to_copy, full_cnt;
389 struct guc_log_buffer_state *log_buf_state, *log_buf_snapshot_state;
390 struct guc_log_buffer_state log_buf_state_local;
391 enum guc_log_buffer_type type;
392 void *src_data, *dst_data;
393 bool new_overflow;
394
395 mutex_lock(&log->relay.lock);
396
397 if (guc_WARN_ON(guc, !intel_guc_log_relay_created(log)))
398 goto out_unlock;
399
400 /* Get the pointer to shared GuC log buffer */
401 src_data = log->buf_addr;
402 log_buf_state = src_data;
403
404 /* Get the pointer to local buffer to store the logs */
405 log_buf_snapshot_state = dst_data = guc_get_write_buffer(log);
406
407 if (unlikely(!log_buf_snapshot_state)) {
408 /*
409 * Used rate limited to avoid deluge of messages, logs might be
410 * getting consumed by User at a slow rate.
411 */
412 guc_err_ratelimited(guc, "no sub-buffer to copy general logs\n");
413 log->relay.full_count++;
414
415 goto out_unlock;
416 }
417
418 /* Actual logs are present from the 2nd page */
419 src_data += PAGE_SIZE;
420 dst_data += PAGE_SIZE;
421
422 /* For relay logging, we exclude error state capture */
423 for (type = GUC_DEBUG_LOG_BUFFER; type <= GUC_CRASH_DUMP_LOG_BUFFER; type++) {
424 /*
425 * Make a copy of the state structure, inside GuC log buffer
426 * (which is uncached mapped), on the stack to avoid reading
427 * from it multiple times.
428 */
429 memcpy(&log_buf_state_local, log_buf_state,
430 sizeof(struct guc_log_buffer_state));
431 buffer_size = intel_guc_get_log_buffer_size(log, type);
432 read_offset = log_buf_state_local.read_ptr;
433 write_offset = log_buf_state_local.sampled_write_ptr;
434 full_cnt = log_buf_state_local.buffer_full_cnt;
435
436 /* Bookkeeping stuff */
437 log->stats[type].flush += log_buf_state_local.flush_to_file;
438 new_overflow = intel_guc_check_log_buf_overflow(log, type, full_cnt);
439
440 /* Update the state of shared log buffer */
441 log_buf_state->read_ptr = write_offset;
442 log_buf_state->flush_to_file = 0;
443 log_buf_state++;
444
445 /* First copy the state structure in snapshot buffer */
446 memcpy(log_buf_snapshot_state, &log_buf_state_local,
447 sizeof(struct guc_log_buffer_state));
448
449 /*
450 * The write pointer could have been updated by GuC firmware,
451 * after sending the flush interrupt to Host, for consistency
452 * set write pointer value to same value of sampled_write_ptr
453 * in the snapshot buffer.
454 */
455 log_buf_snapshot_state->write_ptr = write_offset;
456 log_buf_snapshot_state++;
457
458 /* Now copy the actual logs. */
459 if (unlikely(new_overflow)) {
460 /* copy the whole buffer in case of overflow */
461 read_offset = 0;
462 write_offset = buffer_size;
463 } else if (unlikely((read_offset > buffer_size) ||
464 (write_offset > buffer_size))) {
465 guc_err(guc, "invalid log buffer state\n");
466 /* copy whole buffer as offsets are unreliable */
467 read_offset = 0;
468 write_offset = buffer_size;
469 }
470
471 /* Just copy the newly written data */
472 if (read_offset > write_offset) {
473 i915_memcpy_from_wc(dst_data, src_data, write_offset);
474 bytes_to_copy = buffer_size - read_offset;
475 } else {
476 bytes_to_copy = write_offset - read_offset;
477 }
478 i915_memcpy_from_wc(dst_data + read_offset,
479 src_data + read_offset, bytes_to_copy);
480
481 src_data += buffer_size;
482 dst_data += buffer_size;
483 }
484
485 guc_move_to_next_buf(log);
486
487 out_unlock:
488 mutex_unlock(&log->relay.lock);
489 }
490
copy_debug_logs_work(struct work_struct * work)491 static void copy_debug_logs_work(struct work_struct *work)
492 {
493 struct intel_guc_log *log =
494 container_of(work, struct intel_guc_log, relay.flush_work);
495
496 guc_log_copy_debuglogs_for_relay(log);
497 }
498
guc_log_relay_map(struct intel_guc_log * log)499 static int guc_log_relay_map(struct intel_guc_log *log)
500 {
501 lockdep_assert_held(&log->relay.lock);
502
503 if (!log->vma || !log->buf_addr)
504 return -ENODEV;
505
506 /*
507 * WC vmalloc mapping of log buffer pages was done at
508 * GuC Log Init time, but lets keep a ref for book-keeping
509 */
510 i915_gem_object_get(log->vma->obj);
511 log->relay.buf_in_use = true;
512
513 return 0;
514 }
515
guc_log_relay_unmap(struct intel_guc_log * log)516 static void guc_log_relay_unmap(struct intel_guc_log *log)
517 {
518 lockdep_assert_held(&log->relay.lock);
519
520 i915_gem_object_put(log->vma->obj);
521 log->relay.buf_in_use = false;
522 }
523
intel_guc_log_init_early(struct intel_guc_log * log)524 void intel_guc_log_init_early(struct intel_guc_log *log)
525 {
526 rw_init(&log->relay.lock, "rllk");
527 INIT_WORK(&log->relay.flush_work, copy_debug_logs_work);
528 log->relay.started = false;
529 }
530
guc_log_relay_create(struct intel_guc_log * log)531 static int guc_log_relay_create(struct intel_guc_log *log)
532 {
533 STUB();
534 return -ENOSYS;
535 #ifdef notyet
536 struct intel_guc *guc = log_to_guc(log);
537 struct drm_i915_private *i915 = guc_to_gt(guc)->i915;
538 struct rchan *guc_log_relay_chan;
539 size_t n_subbufs, subbuf_size;
540 int ret;
541
542 lockdep_assert_held(&log->relay.lock);
543 GEM_BUG_ON(!log->vma);
544
545 /*
546 * Keep the size of sub buffers same as shared log buffer
547 * but GuC log-events excludes the error-state-capture logs
548 */
549 subbuf_size = log->vma->size - intel_guc_log_section_size_capture(log);
550
551 /*
552 * Store up to 8 snapshots, which is large enough to buffer sufficient
553 * boot time logs and provides enough leeway to User, in terms of
554 * latency, for consuming the logs from relay. Also doesn't take
555 * up too much memory.
556 */
557 n_subbufs = 8;
558
559 if (!guc->dbgfs_node)
560 return -ENOENT;
561
562 guc_log_relay_chan = relay_open("guc_log",
563 guc->dbgfs_node,
564 subbuf_size, n_subbufs,
565 &relay_callbacks, i915);
566 if (!guc_log_relay_chan) {
567 guc_err(guc, "Couldn't create relay channel for logging\n");
568
569 ret = -ENOMEM;
570 return ret;
571 }
572
573 GEM_BUG_ON(guc_log_relay_chan->subbuf_size < subbuf_size);
574 log->relay.channel = guc_log_relay_chan;
575
576 return 0;
577 #endif
578 }
579
guc_log_relay_destroy(struct intel_guc_log * log)580 static void guc_log_relay_destroy(struct intel_guc_log *log)
581 {
582 STUB();
583 #ifdef notyet
584 lockdep_assert_held(&log->relay.lock);
585
586 relay_close(log->relay.channel);
587 log->relay.channel = NULL;
588 #endif
589 }
590
guc_log_copy_debuglogs_for_relay(struct intel_guc_log * log)591 static void guc_log_copy_debuglogs_for_relay(struct intel_guc_log *log)
592 {
593 struct intel_guc *guc = log_to_guc(log);
594 struct drm_i915_private *i915 = guc_to_gt(guc)->i915;
595 intel_wakeref_t wakeref;
596
597 _guc_log_copy_debuglogs_for_relay(log);
598
599 /*
600 * Generally device is expected to be active only at this
601 * time, so get/put should be really quick.
602 */
603 with_intel_runtime_pm(&i915->runtime_pm, wakeref)
604 guc_action_flush_log_complete(guc);
605 }
606
__get_default_log_level(struct intel_guc_log * log)607 static u32 __get_default_log_level(struct intel_guc_log *log)
608 {
609 struct intel_guc *guc = log_to_guc(log);
610 struct drm_i915_private *i915 = guc_to_gt(guc)->i915;
611
612 /* A negative value means "use platform/config default" */
613 if (i915->params.guc_log_level < 0) {
614 return (IS_ENABLED(CONFIG_DRM_I915_DEBUG) ||
615 IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) ?
616 GUC_LOG_LEVEL_MAX : GUC_LOG_LEVEL_NON_VERBOSE;
617 }
618
619 if (i915->params.guc_log_level > GUC_LOG_LEVEL_MAX) {
620 guc_warn(guc, "Log verbosity param out of range: %d > %d!\n",
621 i915->params.guc_log_level, GUC_LOG_LEVEL_MAX);
622 return (IS_ENABLED(CONFIG_DRM_I915_DEBUG) ||
623 IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) ?
624 GUC_LOG_LEVEL_MAX : GUC_LOG_LEVEL_DISABLED;
625 }
626
627 GEM_BUG_ON(i915->params.guc_log_level < GUC_LOG_LEVEL_DISABLED);
628 GEM_BUG_ON(i915->params.guc_log_level > GUC_LOG_LEVEL_MAX);
629 return i915->params.guc_log_level;
630 }
631
intel_guc_log_create(struct intel_guc_log * log)632 int intel_guc_log_create(struct intel_guc_log *log)
633 {
634 struct intel_guc *guc = log_to_guc(log);
635 struct i915_vma *vma;
636 void *vaddr;
637 u32 guc_log_size;
638 int ret;
639
640 GEM_BUG_ON(log->vma);
641
642 guc_log_size = intel_guc_log_size(log);
643
644 vma = intel_guc_allocate_vma(guc, guc_log_size);
645 if (IS_ERR(vma)) {
646 ret = PTR_ERR(vma);
647 goto err;
648 }
649
650 log->vma = vma;
651 /*
652 * Create a WC (Uncached for read) vmalloc mapping up front immediate access to
653 * data from memory during critical events such as error capture
654 */
655 vaddr = i915_gem_object_pin_map_unlocked(log->vma->obj, I915_MAP_WC);
656 if (IS_ERR(vaddr)) {
657 ret = PTR_ERR(vaddr);
658 i915_vma_unpin_and_release(&log->vma, 0);
659 goto err;
660 }
661 log->buf_addr = vaddr;
662
663 log->level = __get_default_log_level(log);
664 guc_dbg(guc, "guc_log_level=%d (%s, verbose:%s, verbosity:%d)\n",
665 log->level, str_enabled_disabled(log->level),
666 str_yes_no(GUC_LOG_LEVEL_IS_VERBOSE(log->level)),
667 GUC_LOG_LEVEL_TO_VERBOSITY(log->level));
668
669 return 0;
670
671 err:
672 guc_err(guc, "Failed to allocate or map log buffer %pe\n", ERR_PTR(ret));
673 return ret;
674 }
675
intel_guc_log_destroy(struct intel_guc_log * log)676 void intel_guc_log_destroy(struct intel_guc_log *log)
677 {
678 log->buf_addr = NULL;
679 i915_vma_unpin_and_release(&log->vma, I915_VMA_RELEASE_MAP);
680 }
681
intel_guc_log_set_level(struct intel_guc_log * log,u32 level)682 int intel_guc_log_set_level(struct intel_guc_log *log, u32 level)
683 {
684 struct intel_guc *guc = log_to_guc(log);
685 struct drm_i915_private *i915 = guc_to_gt(guc)->i915;
686 intel_wakeref_t wakeref;
687 int ret = 0;
688
689 BUILD_BUG_ON(GUC_LOG_VERBOSITY_MIN != 0);
690 GEM_BUG_ON(!log->vma);
691
692 /*
693 * GuC is recognizing log levels starting from 0 to max, we're using 0
694 * as indication that logging should be disabled.
695 */
696 if (level < GUC_LOG_LEVEL_DISABLED || level > GUC_LOG_LEVEL_MAX)
697 return -EINVAL;
698
699 mutex_lock(&i915->drm.struct_mutex);
700
701 if (log->level == level)
702 goto out_unlock;
703
704 with_intel_runtime_pm(&i915->runtime_pm, wakeref)
705 ret = guc_action_control_log(guc,
706 GUC_LOG_LEVEL_IS_VERBOSE(level),
707 GUC_LOG_LEVEL_IS_ENABLED(level),
708 GUC_LOG_LEVEL_TO_VERBOSITY(level));
709 if (ret) {
710 guc_dbg(guc, "guc_log_control action failed %pe\n", ERR_PTR(ret));
711 goto out_unlock;
712 }
713
714 log->level = level;
715
716 out_unlock:
717 mutex_unlock(&i915->drm.struct_mutex);
718
719 return ret;
720 }
721
intel_guc_log_relay_created(const struct intel_guc_log * log)722 bool intel_guc_log_relay_created(const struct intel_guc_log *log)
723 {
724 return log->buf_addr;
725 }
726
intel_guc_log_relay_open(struct intel_guc_log * log)727 int intel_guc_log_relay_open(struct intel_guc_log *log)
728 {
729 int ret;
730
731 if (!log->vma)
732 return -ENODEV;
733
734 mutex_lock(&log->relay.lock);
735
736 if (intel_guc_log_relay_created(log)) {
737 ret = -EEXIST;
738 goto out_unlock;
739 }
740
741 /*
742 * We require SSE 4.1 for fast reads from the GuC log buffer and
743 * it should be present on the chipsets supporting GuC based
744 * submissions.
745 */
746 if (!i915_has_memcpy_from_wc()) {
747 ret = -ENXIO;
748 goto out_unlock;
749 }
750
751 ret = guc_log_relay_create(log);
752 if (ret)
753 goto out_unlock;
754
755 ret = guc_log_relay_map(log);
756 if (ret)
757 goto out_relay;
758
759 mutex_unlock(&log->relay.lock);
760
761 return 0;
762
763 out_relay:
764 guc_log_relay_destroy(log);
765 out_unlock:
766 mutex_unlock(&log->relay.lock);
767
768 return ret;
769 }
770
intel_guc_log_relay_start(struct intel_guc_log * log)771 int intel_guc_log_relay_start(struct intel_guc_log *log)
772 {
773 if (log->relay.started)
774 return -EEXIST;
775
776 /*
777 * When GuC is logging without us relaying to userspace, we're ignoring
778 * the flush notification. This means that we need to unconditionally
779 * flush on relay enabling, since GuC only notifies us once.
780 */
781 queue_work(system_highpri_wq, &log->relay.flush_work);
782
783 log->relay.started = true;
784
785 return 0;
786 }
787
intel_guc_log_relay_flush(struct intel_guc_log * log)788 void intel_guc_log_relay_flush(struct intel_guc_log *log)
789 {
790 struct intel_guc *guc = log_to_guc(log);
791 intel_wakeref_t wakeref;
792
793 if (!log->relay.started)
794 return;
795
796 /*
797 * Before initiating the forceful flush, wait for any pending/ongoing
798 * flush to complete otherwise forceful flush may not actually happen.
799 */
800 flush_work(&log->relay.flush_work);
801
802 with_intel_runtime_pm(guc_to_gt(guc)->uncore->rpm, wakeref)
803 guc_action_flush_log(guc);
804
805 /* GuC would have updated log buffer by now, so copy it */
806 guc_log_copy_debuglogs_for_relay(log);
807 }
808
809 /*
810 * Stops the relay log. Called from intel_guc_log_relay_close(), so no
811 * possibility of race with start/flush since relay_write cannot race
812 * relay_close.
813 */
guc_log_relay_stop(struct intel_guc_log * log)814 static void guc_log_relay_stop(struct intel_guc_log *log)
815 {
816 struct intel_guc *guc = log_to_guc(log);
817 struct drm_i915_private *i915 = guc_to_gt(guc)->i915;
818
819 if (!log->relay.started)
820 return;
821
822 intel_synchronize_irq(i915);
823
824 flush_work(&log->relay.flush_work);
825
826 log->relay.started = false;
827 }
828
intel_guc_log_relay_close(struct intel_guc_log * log)829 void intel_guc_log_relay_close(struct intel_guc_log *log)
830 {
831 guc_log_relay_stop(log);
832
833 mutex_lock(&log->relay.lock);
834 GEM_BUG_ON(!intel_guc_log_relay_created(log));
835 guc_log_relay_unmap(log);
836 guc_log_relay_destroy(log);
837 mutex_unlock(&log->relay.lock);
838 }
839
intel_guc_log_handle_flush_event(struct intel_guc_log * log)840 void intel_guc_log_handle_flush_event(struct intel_guc_log *log)
841 {
842 if (log->relay.started)
843 queue_work(system_highpri_wq, &log->relay.flush_work);
844 }
845
846 static const char *
stringify_guc_log_type(enum guc_log_buffer_type type)847 stringify_guc_log_type(enum guc_log_buffer_type type)
848 {
849 switch (type) {
850 case GUC_DEBUG_LOG_BUFFER:
851 return "DEBUG";
852 case GUC_CRASH_DUMP_LOG_BUFFER:
853 return "CRASH";
854 case GUC_CAPTURE_LOG_BUFFER:
855 return "CAPTURE";
856 default:
857 MISSING_CASE(type);
858 }
859
860 return "";
861 }
862
863 /**
864 * intel_guc_log_info - dump information about GuC log relay
865 * @log: the GuC log
866 * @p: the &drm_printer
867 *
868 * Pretty printer for GuC log info
869 */
intel_guc_log_info(struct intel_guc_log * log,struct drm_printer * p)870 void intel_guc_log_info(struct intel_guc_log *log, struct drm_printer *p)
871 {
872 enum guc_log_buffer_type type;
873
874 if (!intel_guc_log_relay_created(log)) {
875 drm_puts(p, "GuC log relay not created\n");
876 return;
877 }
878
879 drm_puts(p, "GuC logging stats:\n");
880
881 drm_printf(p, "\tRelay full count: %u\n", log->relay.full_count);
882
883 for (type = GUC_DEBUG_LOG_BUFFER; type < GUC_MAX_LOG_BUFFER; type++) {
884 drm_printf(p, "\t%s:\tflush count %10u, overflow count %10u\n",
885 stringify_guc_log_type(type),
886 log->stats[type].flush,
887 log->stats[type].sampled_overflow);
888 }
889 }
890
891 /**
892 * intel_guc_log_dump - dump the contents of the GuC log
893 * @log: the GuC log
894 * @p: the &drm_printer
895 * @dump_load_err: dump the log saved on GuC load error
896 *
897 * Pretty printer for the GuC log
898 */
intel_guc_log_dump(struct intel_guc_log * log,struct drm_printer * p,bool dump_load_err)899 int intel_guc_log_dump(struct intel_guc_log *log, struct drm_printer *p,
900 bool dump_load_err)
901 {
902 struct intel_guc *guc = log_to_guc(log);
903 struct intel_uc *uc = container_of(guc, struct intel_uc, guc);
904 struct drm_i915_gem_object *obj = NULL;
905 void *map;
906 u32 *page;
907 int i, j;
908
909 if (!intel_guc_is_supported(guc))
910 return -ENODEV;
911
912 if (dump_load_err)
913 obj = uc->load_err_log;
914 else if (guc->log.vma)
915 obj = guc->log.vma->obj;
916
917 if (!obj)
918 return 0;
919
920 page = (u32 *)__get_free_page(GFP_KERNEL);
921 if (!page)
922 return -ENOMEM;
923
924 intel_guc_dump_time_info(guc, p);
925
926 map = i915_gem_object_pin_map_unlocked(obj, I915_MAP_WC);
927 if (IS_ERR(map)) {
928 guc_dbg(guc, "Failed to pin log object: %pe\n", map);
929 drm_puts(p, "(log data unaccessible)\n");
930 free_page((unsigned long)page);
931 return PTR_ERR(map);
932 }
933
934 for (i = 0; i < obj->base.size; i += PAGE_SIZE) {
935 if (!i915_memcpy_from_wc(page, map + i, PAGE_SIZE))
936 memcpy(page, map + i, PAGE_SIZE);
937
938 for (j = 0; j < PAGE_SIZE / sizeof(u32); j += 4)
939 drm_printf(p, "0x%08x 0x%08x 0x%08x 0x%08x\n",
940 *(page + j + 0), *(page + j + 1),
941 *(page + j + 2), *(page + j + 3));
942 }
943
944 drm_puts(p, "\n");
945
946 i915_gem_object_unpin_map(obj);
947 free_page((unsigned long)page);
948
949 return 0;
950 }
951