1 /*	$NetBSD: if_kse.c,v 1.30 2016/06/10 13:27:14 ozaki-r Exp $	*/
2 
3 /*-
4  * Copyright (c) 2006 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Tohru Nishimura.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: if_kse.c,v 1.30 2016/06/10 13:27:14 ozaki-r Exp $");
34 
35 
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/callout.h>
39 #include <sys/mbuf.h>
40 #include <sys/malloc.h>
41 #include <sys/kernel.h>
42 #include <sys/ioctl.h>
43 #include <sys/errno.h>
44 #include <sys/device.h>
45 #include <sys/queue.h>
46 
47 #include <machine/endian.h>
48 #include <sys/bus.h>
49 #include <sys/intr.h>
50 
51 #include <net/if.h>
52 #include <net/if_media.h>
53 #include <net/if_dl.h>
54 #include <net/if_ether.h>
55 
56 #include <net/bpf.h>
57 
58 #include <dev/pci/pcivar.h>
59 #include <dev/pci/pcireg.h>
60 #include <dev/pci/pcidevs.h>
61 
62 #define CSR_READ_4(sc, off) \
63 	    bus_space_read_4(sc->sc_st, sc->sc_sh, off)
64 #define CSR_WRITE_4(sc, off, val) \
65 	    bus_space_write_4(sc->sc_st, sc->sc_sh, off, val)
66 #define CSR_READ_2(sc, off) \
67 	    bus_space_read_2(sc->sc_st, sc->sc_sh, off)
68 #define CSR_WRITE_2(sc, off, val) \
69 	    bus_space_write_2(sc->sc_st, sc->sc_sh, off, val)
70 
71 #define MDTXC	0x000	/* DMA transmit control */
72 #define MDRXC	0x004	/* DMA receive control */
73 #define MDTSC	0x008	/* DMA transmit start */
74 #define MDRSC	0x00c	/* DMA receive start */
75 #define TDLB	0x010	/* transmit descriptor list base */
76 #define RDLB	0x014	/* receive descriptor list base */
77 #define MTR0	0x020	/* multicast table 31:0 */
78 #define MTR1	0x024	/* multicast table 63:32 */
79 #define INTEN	0x028	/* interrupt enable */
80 #define INTST	0x02c	/* interrupt status */
81 #define MARL	0x200	/* MAC address low */
82 #define MARM	0x202	/* MAC address middle */
83 #define MARH	0x204	/* MAC address high */
84 #define GRR	0x216	/* global reset */
85 #define CIDR	0x400	/* chip ID and enable */
86 #define CGCR	0x40a	/* chip global control */
87 #define IACR	0x4a0	/* indirect access control */
88 #define IADR1	0x4a2	/* indirect access data 66:63 */
89 #define IADR2	0x4a4	/* indirect access data 47:32 */
90 #define IADR3	0x4a6	/* indirect access data 63:48 */
91 #define IADR4	0x4a8	/* indirect access data 15:0 */
92 #define IADR5	0x4aa	/* indirect access data 31:16 */
93 #define P1CR4	0x512	/* port 1 control 4 */
94 #define P1SR	0x514	/* port 1 status */
95 #define P2CR4	0x532	/* port 2 control 4 */
96 #define P2SR	0x534	/* port 2 status */
97 
98 #define TXC_BS_MSK	0x3f000000	/* burst size */
99 #define TXC_BS_SFT	(24)		/* 1,2,4,8,16,32 or 0 for unlimited */
100 #define TXC_UCG		(1U<<18)	/* generate UDP checksum */
101 #define TXC_TCG		(1U<<17)	/* generate TCP checksum */
102 #define TXC_ICG		(1U<<16)	/* generate IP checksum */
103 #define TXC_FCE		(1U<<9)		/* enable flowcontrol */
104 #define TXC_EP		(1U<<2)		/* enable automatic padding */
105 #define TXC_AC		(1U<<1)		/* add CRC to frame */
106 #define TXC_TEN		(1)		/* enable DMA to run */
107 
108 #define RXC_BS_MSK	0x3f000000	/* burst size */
109 #define RXC_BS_SFT	(24)		/* 1,2,4,8,16,32 or 0 for unlimited */
110 #define RXC_IHAE	(1U<<19)	/* IP header alignment enable */
111 #define RXC_UCC		(1U<<18)	/* run UDP checksum */
112 #define RXC_TCC		(1U<<17)	/* run TDP checksum */
113 #define RXC_ICC		(1U<<16)	/* run IP checksum */
114 #define RXC_FCE		(1U<<9)		/* enable flowcontrol */
115 #define RXC_RB		(1U<<6)		/* receive broadcast frame */
116 #define RXC_RM		(1U<<5)		/* receive multicast frame */
117 #define RXC_RU		(1U<<4)		/* receive unicast frame */
118 #define RXC_RE		(1U<<3)		/* accept error frame */
119 #define RXC_RA		(1U<<2)		/* receive all frame */
120 #define RXC_MHTE	(1U<<1)		/* use multicast hash table */
121 #define RXC_REN		(1)		/* enable DMA to run */
122 
123 #define INT_DMLCS	(1U<<31)	/* link status change */
124 #define INT_DMTS	(1U<<30)	/* sending desc. has posted Tx done */
125 #define INT_DMRS	(1U<<29)	/* frame was received */
126 #define INT_DMRBUS	(1U<<27)	/* Rx descriptor pool is full */
127 
128 #define T0_OWN		(1U<<31)	/* desc is ready to Tx */
129 
130 #define R0_OWN		(1U<<31)	/* desc is empty */
131 #define R0_FS		(1U<<30)	/* first segment of frame */
132 #define R0_LS		(1U<<29)	/* last segment of frame */
133 #define R0_IPE		(1U<<28)	/* IP checksum error */
134 #define R0_TCPE		(1U<<27)	/* TCP checksum error */
135 #define R0_UDPE		(1U<<26)	/* UDP checksum error */
136 #define R0_ES		(1U<<25)	/* error summary */
137 #define R0_MF		(1U<<24)	/* multicast frame */
138 #define R0_SPN		0x00300000	/* 21:20 switch port 1/2 */
139 #define R0_ALIGN	0x00300000	/* 21:20 (KSZ8692P) Rx align amount */
140 #define R0_RE		(1U<<19)	/* MII reported error */
141 #define R0_TL		(1U<<18)	/* frame too long, beyond 1518 */
142 #define R0_RF		(1U<<17)	/* damaged runt frame */
143 #define R0_CE		(1U<<16)	/* CRC error */
144 #define R0_FT		(1U<<15)	/* frame type */
145 #define R0_FL_MASK	0x7ff		/* frame length 10:0 */
146 
147 #define T1_IC		(1U<<31)	/* post interrupt on complete */
148 #define T1_FS		(1U<<30)	/* first segment of frame */
149 #define T1_LS		(1U<<29)	/* last segment of frame */
150 #define T1_IPCKG	(1U<<28)	/* generate IP checksum */
151 #define T1_TCPCKG	(1U<<27)	/* generate TCP checksum */
152 #define T1_UDPCKG	(1U<<26)	/* generate UDP checksum */
153 #define T1_TER		(1U<<25)	/* end of ring */
154 #define T1_SPN		0x00300000	/* 21:20 switch port 1/2 */
155 #define T1_TBS_MASK	0x7ff		/* segment size 10:0 */
156 
157 #define R1_RER		(1U<<25)	/* end of ring */
158 #define R1_RBS_MASK	0x7fc		/* segment size 10:0 */
159 
160 #define KSE_NTXSEGS		16
161 #define KSE_TXQUEUELEN		64
162 #define KSE_TXQUEUELEN_MASK	(KSE_TXQUEUELEN - 1)
163 #define KSE_TXQUEUE_GC		(KSE_TXQUEUELEN / 4)
164 #define KSE_NTXDESC		256
165 #define KSE_NTXDESC_MASK	(KSE_NTXDESC - 1)
166 #define KSE_NEXTTX(x)		(((x) + 1) & KSE_NTXDESC_MASK)
167 #define KSE_NEXTTXS(x)		(((x) + 1) & KSE_TXQUEUELEN_MASK)
168 
169 #define KSE_NRXDESC		64
170 #define KSE_NRXDESC_MASK	(KSE_NRXDESC - 1)
171 #define KSE_NEXTRX(x)		(((x) + 1) & KSE_NRXDESC_MASK)
172 
173 struct tdes {
174 	uint32_t t0, t1, t2, t3;
175 };
176 
177 struct rdes {
178 	uint32_t r0, r1, r2, r3;
179 };
180 
181 struct kse_control_data {
182 	struct tdes kcd_txdescs[KSE_NTXDESC];
183 	struct rdes kcd_rxdescs[KSE_NRXDESC];
184 };
185 #define KSE_CDOFF(x)		offsetof(struct kse_control_data, x)
186 #define KSE_CDTXOFF(x)		KSE_CDOFF(kcd_txdescs[(x)])
187 #define KSE_CDRXOFF(x)		KSE_CDOFF(kcd_rxdescs[(x)])
188 
189 struct kse_txsoft {
190 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
191 	bus_dmamap_t txs_dmamap;	/* our DMA map */
192 	int txs_firstdesc;		/* first descriptor in packet */
193 	int txs_lastdesc;		/* last descriptor in packet */
194 	int txs_ndesc;			/* # of descriptors used */
195 };
196 
197 struct kse_rxsoft {
198 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
199 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
200 };
201 
202 struct kse_softc {
203 	device_t sc_dev;		/* generic device information */
204 	bus_space_tag_t sc_st;		/* bus space tag */
205 	bus_space_handle_t sc_sh;	/* bus space handle */
206 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
207 	struct ethercom sc_ethercom;	/* Ethernet common data */
208 	void *sc_ih;			/* interrupt cookie */
209 
210 	struct ifmedia sc_media;	/* ifmedia information */
211 	int sc_media_status;		/* PHY */
212 	int sc_media_active;		/* PHY */
213 	callout_t  sc_callout;		/* MII tick callout */
214 	callout_t  sc_stat_ch;		/* statistics counter callout */
215 
216 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
217 #define sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
218 
219 	struct kse_control_data *sc_control_data;
220 #define sc_txdescs	sc_control_data->kcd_txdescs
221 #define sc_rxdescs	sc_control_data->kcd_rxdescs
222 
223 	struct kse_txsoft sc_txsoft[KSE_TXQUEUELEN];
224 	struct kse_rxsoft sc_rxsoft[KSE_NRXDESC];
225 	int sc_txfree;			/* number of free Tx descriptors */
226 	int sc_txnext;			/* next ready Tx descriptor */
227 	int sc_txsfree;			/* number of free Tx jobs */
228 	int sc_txsnext;			/* next ready Tx job */
229 	int sc_txsdirty;		/* dirty Tx jobs */
230 	int sc_rxptr;			/* next ready Rx descriptor/descsoft */
231 
232 	uint32_t sc_txc, sc_rxc;
233 	uint32_t sc_t1csum;
234 	int sc_mcsum;
235 	uint32_t sc_inten;
236 
237 	uint32_t sc_chip;
238 	uint8_t sc_altmac[16][ETHER_ADDR_LEN];
239 	uint16_t sc_vlan[16];
240 
241 #ifdef KSE_EVENT_COUNTERS
242 	struct ksext {
243 		char evcntname[3][8];
244 		struct evcnt pev[3][34];
245 	} sc_ext;			/* switch statistics */
246 #endif
247 };
248 
249 #define KSE_CDTXADDR(sc, x)	((sc)->sc_cddma + KSE_CDTXOFF((x)))
250 #define KSE_CDRXADDR(sc, x)	((sc)->sc_cddma + KSE_CDRXOFF((x)))
251 
252 #define KSE_CDTXSYNC(sc, x, n, ops)					\
253 do {									\
254 	int __x, __n;							\
255 									\
256 	__x = (x);							\
257 	__n = (n);							\
258 									\
259 	/* If it will wrap around, sync to the end of the ring. */	\
260 	if ((__x + __n) > KSE_NTXDESC) {				\
261 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
262 		    KSE_CDTXOFF(__x), sizeof(struct tdes) *		\
263 		    (KSE_NTXDESC - __x), (ops));			\
264 		__n -= (KSE_NTXDESC - __x);				\
265 		__x = 0;						\
266 	}								\
267 									\
268 	/* Now sync whatever is left. */				\
269 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
270 	    KSE_CDTXOFF(__x), sizeof(struct tdes) * __n, (ops));	\
271 } while (/*CONSTCOND*/0)
272 
273 #define KSE_CDRXSYNC(sc, x, ops)					\
274 do {									\
275 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
276 	    KSE_CDRXOFF((x)), sizeof(struct rdes), (ops));		\
277 } while (/*CONSTCOND*/0)
278 
279 #define KSE_INIT_RXDESC(sc, x)						\
280 do {									\
281 	struct kse_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
282 	struct rdes *__rxd = &(sc)->sc_rxdescs[(x)];			\
283 	struct mbuf *__m = __rxs->rxs_mbuf;				\
284 									\
285 	__m->m_data = __m->m_ext.ext_buf;				\
286 	__rxd->r2 = __rxs->rxs_dmamap->dm_segs[0].ds_addr;		\
287 	__rxd->r1 = R1_RBS_MASK /* __m->m_ext.ext_size */;		\
288 	__rxd->r0 = R0_OWN;						\
289 	KSE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
290 } while (/*CONSTCOND*/0)
291 
292 u_int kse_burstsize = 8;	/* DMA burst length tuning knob */
293 
294 #ifdef KSEDIAGNOSTIC
295 u_int kse_monitor_rxintr;	/* fragmented UDP csum HW bug hook */
296 #endif
297 
298 static int kse_match(device_t, cfdata_t, void *);
299 static void kse_attach(device_t, device_t, void *);
300 
301 CFATTACH_DECL_NEW(kse, sizeof(struct kse_softc),
302     kse_match, kse_attach, NULL, NULL);
303 
304 static int kse_ioctl(struct ifnet *, u_long, void *);
305 static void kse_start(struct ifnet *);
306 static void kse_watchdog(struct ifnet *);
307 static int kse_init(struct ifnet *);
308 static void kse_stop(struct ifnet *, int);
309 static void kse_reset(struct kse_softc *);
310 static void kse_set_filter(struct kse_softc *);
311 static int add_rxbuf(struct kse_softc *, int);
312 static void rxdrain(struct kse_softc *);
313 static int kse_intr(void *);
314 static void rxintr(struct kse_softc *);
315 static void txreap(struct kse_softc *);
316 static void lnkchg(struct kse_softc *);
317 static int ifmedia_upd(struct ifnet *);
318 static void ifmedia_sts(struct ifnet *, struct ifmediareq *);
319 static void phy_tick(void *);
320 static int ifmedia2_upd(struct ifnet *);
321 static void ifmedia2_sts(struct ifnet *, struct ifmediareq *);
322 #ifdef KSE_EVENT_COUNTERS
323 static void stat_tick(void *);
324 static void zerostats(struct kse_softc *);
325 #endif
326 
327 static int
kse_match(device_t parent,cfdata_t match,void * aux)328 kse_match(device_t parent, cfdata_t match, void *aux)
329 {
330 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
331 
332 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_MICREL &&
333 	     (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_MICREL_KSZ8842 ||
334 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_MICREL_KSZ8841) &&
335 	    PCI_CLASS(pa->pa_class) == PCI_CLASS_NETWORK)
336 		return 1;
337 
338 	return 0;
339 }
340 
341 static void
kse_attach(device_t parent,device_t self,void * aux)342 kse_attach(device_t parent, device_t self, void *aux)
343 {
344 	struct kse_softc *sc = device_private(self);
345 	struct pci_attach_args *pa = aux;
346 	pci_chipset_tag_t pc = pa->pa_pc;
347 	pci_intr_handle_t ih;
348 	const char *intrstr;
349 	struct ifnet *ifp;
350 	struct ifmedia *ifm;
351 	uint8_t enaddr[ETHER_ADDR_LEN];
352 	bus_dma_segment_t seg;
353 	int i, error, nseg;
354 	pcireg_t pmode;
355 	int pmreg;
356 	char intrbuf[PCI_INTRSTR_LEN];
357 
358 	if (pci_mapreg_map(pa, 0x10,
359 	    PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
360 	    0, &sc->sc_st, &sc->sc_sh, NULL, NULL) != 0) {
361 		printf(": unable to map device registers\n");
362 		return;
363 	}
364 
365 	sc->sc_dev = self;
366 	sc->sc_dmat = pa->pa_dmat;
367 
368 	/* Make sure bus mastering is enabled. */
369 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
370 	    pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
371 	    PCI_COMMAND_MASTER_ENABLE);
372 
373 	/* Get it out of power save mode, if needed. */
374 	if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
375 		pmode = pci_conf_read(pc, pa->pa_tag, pmreg + PCI_PMCSR) &
376 		    PCI_PMCSR_STATE_MASK;
377 		if (pmode == PCI_PMCSR_STATE_D3) {
378 			/*
379 			 * The card has lost all configuration data in
380 			 * this state, so punt.
381 			 */
382 			printf("%s: unable to wake from power state D3\n",
383 			    device_xname(sc->sc_dev));
384 			return;
385 		}
386 		if (pmode != PCI_PMCSR_STATE_D0) {
387 			printf("%s: waking up from power date D%d\n",
388 			    device_xname(sc->sc_dev), pmode);
389 			pci_conf_write(pc, pa->pa_tag, pmreg + PCI_PMCSR,
390 			    PCI_PMCSR_STATE_D0);
391 		}
392 	}
393 
394 	sc->sc_chip = PCI_PRODUCT(pa->pa_id);
395 	printf(": Micrel KSZ%04x Ethernet (rev. 0x%02x)\n",
396 	    sc->sc_chip, PCI_REVISION(pa->pa_class));
397 
398 	/*
399 	 * Read the Ethernet address from the EEPROM.
400 	 */
401 	i = CSR_READ_2(sc, MARL);
402 	enaddr[5] = i; enaddr[4] = i >> 8;
403 	i = CSR_READ_2(sc, MARM);
404 	enaddr[3] = i; enaddr[2] = i >> 8;
405 	i = CSR_READ_2(sc, MARH);
406 	enaddr[1] = i; enaddr[0] = i >> 8;
407 	printf("%s: Ethernet address: %s\n",
408 		device_xname(sc->sc_dev), ether_sprintf(enaddr));
409 
410 	/*
411 	 * Enable chip function.
412 	 */
413 	CSR_WRITE_2(sc, CIDR, 1);
414 
415 	/*
416 	 * Map and establish our interrupt.
417 	 */
418 	if (pci_intr_map(pa, &ih)) {
419 		aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
420 		return;
421 	}
422 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
423 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, kse_intr, sc);
424 	if (sc->sc_ih == NULL) {
425 		aprint_error_dev(sc->sc_dev, "unable to establish interrupt");
426 		if (intrstr != NULL)
427 			aprint_error(" at %s", intrstr);
428 		aprint_error("\n");
429 		return;
430 	}
431 	aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
432 
433 	/*
434 	 * Allocate the control data structures, and create and load the
435 	 * DMA map for it.
436 	 */
437 	error = bus_dmamem_alloc(sc->sc_dmat,
438 	    sizeof(struct kse_control_data), PAGE_SIZE, 0, &seg, 1, &nseg, 0);
439 	if (error != 0) {
440 		aprint_error_dev(sc->sc_dev, "unable to allocate control data, error = %d\n", error);
441 		goto fail_0;
442 	}
443 	error = bus_dmamem_map(sc->sc_dmat, &seg, nseg,
444 	    sizeof(struct kse_control_data), (void **)&sc->sc_control_data,
445 	    BUS_DMA_COHERENT);
446 	if (error != 0) {
447 		aprint_error_dev(sc->sc_dev, "unable to map control data, error = %d\n", error);
448 		goto fail_1;
449 	}
450 	error = bus_dmamap_create(sc->sc_dmat,
451 	    sizeof(struct kse_control_data), 1,
452 	    sizeof(struct kse_control_data), 0, 0, &sc->sc_cddmamap);
453 	if (error != 0) {
454 		aprint_error_dev(sc->sc_dev, "unable to create control data DMA map, "
455 		    "error = %d\n", error);
456 		goto fail_2;
457 	}
458 	error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
459 	    sc->sc_control_data, sizeof(struct kse_control_data), NULL, 0);
460 	if (error != 0) {
461 		aprint_error_dev(sc->sc_dev, "unable to load control data DMA map, error = %d\n",
462 		    error);
463 		goto fail_3;
464 	}
465 	for (i = 0; i < KSE_TXQUEUELEN; i++) {
466 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
467 		    KSE_NTXSEGS, MCLBYTES, 0, 0,
468 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
469 			aprint_error_dev(sc->sc_dev, "unable to create tx DMA map %d, "
470 			    "error = %d\n", i, error);
471 			goto fail_4;
472 		}
473 	}
474 	for (i = 0; i < KSE_NRXDESC; i++) {
475 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
476 		    1, MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
477 			aprint_error_dev(sc->sc_dev, "unable to create rx DMA map %d, "
478 			    "error = %d\n", i, error);
479 			goto fail_5;
480 		}
481 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
482 	}
483 
484 	callout_init(&sc->sc_callout, 0);
485 	callout_init(&sc->sc_stat_ch, 0);
486 
487 	ifm = &sc->sc_media;
488 	if (sc->sc_chip == 0x8841) {
489 		ifmedia_init(ifm, 0, ifmedia_upd, ifmedia_sts);
490 		ifmedia_add(ifm, IFM_ETHER|IFM_10_T, 0, NULL);
491 		ifmedia_add(ifm, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
492 		ifmedia_add(ifm, IFM_ETHER|IFM_100_TX, 0, NULL);
493 		ifmedia_add(ifm, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
494 		ifmedia_add(ifm, IFM_ETHER|IFM_AUTO, 0, NULL);
495 		ifmedia_set(ifm, IFM_ETHER|IFM_AUTO);
496 	}
497 	else {
498 		ifmedia_init(ifm, 0, ifmedia2_upd, ifmedia2_sts);
499 		ifmedia_add(ifm, IFM_ETHER|IFM_AUTO, 0, NULL);
500 		ifmedia_set(ifm, IFM_ETHER|IFM_AUTO);
501 	}
502 
503 	printf("%s: 10baseT, 10baseT-FDX, 100baseTX, 100baseTX-FDX, auto\n",
504 	    device_xname(sc->sc_dev));
505 
506 	ifp = &sc->sc_ethercom.ec_if;
507 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
508 	ifp->if_softc = sc;
509 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
510 	ifp->if_ioctl = kse_ioctl;
511 	ifp->if_start = kse_start;
512 	ifp->if_watchdog = kse_watchdog;
513 	ifp->if_init = kse_init;
514 	ifp->if_stop = kse_stop;
515 	IFQ_SET_READY(&ifp->if_snd);
516 
517 	/*
518 	 * KSZ8842 can handle 802.1Q VLAN-sized frames,
519 	 * can do IPv4, TCPv4, and UDPv4 checksums in hardware.
520 	 */
521 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
522 	ifp->if_capabilities |=
523 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
524 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
525 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
526 
527 	if_attach(ifp);
528 	ether_ifattach(ifp, enaddr);
529 
530 #ifdef KSE_EVENT_COUNTERS
531 	int p = (sc->sc_chip == 0x8842) ? 3 : 1;
532 	for (i = 0; i < p; i++) {
533 		struct ksext *ee = &sc->sc_ext;
534 		snprintf(ee->evcntname[i], sizeof(ee->evcntname[i]),
535 		    "%s.%d", device_xname(sc->sc_dev), i+1);
536 		evcnt_attach_dynamic(&ee->pev[i][0], EVCNT_TYPE_MISC,
537 		    NULL, ee->evcntname[i], "RxLoPriotyByte");
538 		evcnt_attach_dynamic(&ee->pev[i][1], EVCNT_TYPE_MISC,
539 		    NULL, ee->evcntname[i], "RxHiPriotyByte");
540 		evcnt_attach_dynamic(&ee->pev[i][2], EVCNT_TYPE_MISC,
541 		    NULL, ee->evcntname[i], "RxUndersizePkt");
542 		evcnt_attach_dynamic(&ee->pev[i][3], EVCNT_TYPE_MISC,
543 		    NULL, ee->evcntname[i], "RxFragments");
544 		evcnt_attach_dynamic(&ee->pev[i][4], EVCNT_TYPE_MISC,
545 		    NULL, ee->evcntname[i], "RxOversize");
546 		evcnt_attach_dynamic(&ee->pev[i][5], EVCNT_TYPE_MISC,
547 		    NULL, ee->evcntname[i], "RxJabbers");
548 		evcnt_attach_dynamic(&ee->pev[i][6], EVCNT_TYPE_MISC,
549 		    NULL, ee->evcntname[i], "RxSymbolError");
550 		evcnt_attach_dynamic(&ee->pev[i][7], EVCNT_TYPE_MISC,
551 		    NULL, ee->evcntname[i], "RxCRCError");
552 		evcnt_attach_dynamic(&ee->pev[i][8], EVCNT_TYPE_MISC,
553 		    NULL, ee->evcntname[i], "RxAlignmentError");
554 		evcnt_attach_dynamic(&ee->pev[i][9], EVCNT_TYPE_MISC,
555 		    NULL, ee->evcntname[i], "RxControl8808Pkts");
556 		evcnt_attach_dynamic(&ee->pev[i][10], EVCNT_TYPE_MISC,
557 		    NULL, ee->evcntname[i], "RxPausePkts");
558 		evcnt_attach_dynamic(&ee->pev[i][11], EVCNT_TYPE_MISC,
559 		    NULL, ee->evcntname[i], "RxBroadcast");
560 		evcnt_attach_dynamic(&ee->pev[i][12], EVCNT_TYPE_MISC,
561 		    NULL, ee->evcntname[i], "RxMulticast");
562 		evcnt_attach_dynamic(&ee->pev[i][13], EVCNT_TYPE_MISC,
563 		    NULL, ee->evcntname[i], "RxUnicast");
564 		evcnt_attach_dynamic(&ee->pev[i][14], EVCNT_TYPE_MISC,
565 		    NULL, ee->evcntname[i], "Rx64Octets");
566 		evcnt_attach_dynamic(&ee->pev[i][15], EVCNT_TYPE_MISC,
567 		    NULL, ee->evcntname[i], "Rx65To127Octets");
568 		evcnt_attach_dynamic(&ee->pev[i][16], EVCNT_TYPE_MISC,
569 		    NULL, ee->evcntname[i], "Rx128To255Octets");
570 		evcnt_attach_dynamic(&ee->pev[i][17], EVCNT_TYPE_MISC,
571 		    NULL, ee->evcntname[i], "Rx255To511Octets");
572 		evcnt_attach_dynamic(&ee->pev[i][18], EVCNT_TYPE_MISC,
573 		    NULL, ee->evcntname[i], "Rx512To1023Octets");
574 		evcnt_attach_dynamic(&ee->pev[i][19], EVCNT_TYPE_MISC,
575 		    NULL, ee->evcntname[i], "Rx1024To1522Octets");
576 		evcnt_attach_dynamic(&ee->pev[i][20], EVCNT_TYPE_MISC,
577 		    NULL, ee->evcntname[i], "TxLoPriotyByte");
578 		evcnt_attach_dynamic(&ee->pev[i][21], EVCNT_TYPE_MISC,
579 		    NULL, ee->evcntname[i], "TxHiPriotyByte");
580 		evcnt_attach_dynamic(&ee->pev[i][22], EVCNT_TYPE_MISC,
581 		    NULL, ee->evcntname[i], "TxLateCollision");
582 		evcnt_attach_dynamic(&ee->pev[i][23], EVCNT_TYPE_MISC,
583 		    NULL, ee->evcntname[i], "TxPausePkts");
584 		evcnt_attach_dynamic(&ee->pev[i][24], EVCNT_TYPE_MISC,
585 		    NULL, ee->evcntname[i], "TxBroadcastPkts");
586 		evcnt_attach_dynamic(&ee->pev[i][25], EVCNT_TYPE_MISC,
587 		    NULL, ee->evcntname[i], "TxMulticastPkts");
588 		evcnt_attach_dynamic(&ee->pev[i][26], EVCNT_TYPE_MISC,
589 		    NULL, ee->evcntname[i], "TxUnicastPkts");
590 		evcnt_attach_dynamic(&ee->pev[i][27], EVCNT_TYPE_MISC,
591 		    NULL, ee->evcntname[i], "TxDeferred");
592 		evcnt_attach_dynamic(&ee->pev[i][28], EVCNT_TYPE_MISC,
593 		    NULL, ee->evcntname[i], "TxTotalCollision");
594 		evcnt_attach_dynamic(&ee->pev[i][29], EVCNT_TYPE_MISC,
595 		    NULL, ee->evcntname[i], "TxExcessiveCollision");
596 		evcnt_attach_dynamic(&ee->pev[i][30], EVCNT_TYPE_MISC,
597 		    NULL, ee->evcntname[i], "TxSingleCollision");
598 		evcnt_attach_dynamic(&ee->pev[i][31], EVCNT_TYPE_MISC,
599 		    NULL, ee->evcntname[i], "TxMultipleCollision");
600 		evcnt_attach_dynamic(&ee->pev[i][32], EVCNT_TYPE_MISC,
601 		    NULL, ee->evcntname[i], "TxDropPkts");
602 		evcnt_attach_dynamic(&ee->pev[i][33], EVCNT_TYPE_MISC,
603 		    NULL, ee->evcntname[i], "RxDropPkts");
604 	}
605 #endif
606 	return;
607 
608  fail_5:
609 	for (i = 0; i < KSE_NRXDESC; i++) {
610 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
611 			bus_dmamap_destroy(sc->sc_dmat,
612 			    sc->sc_rxsoft[i].rxs_dmamap);
613 	}
614  fail_4:
615 	for (i = 0; i < KSE_TXQUEUELEN; i++) {
616 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
617 			bus_dmamap_destroy(sc->sc_dmat,
618 			    sc->sc_txsoft[i].txs_dmamap);
619 	}
620 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
621  fail_3:
622 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
623  fail_2:
624 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
625 	    sizeof(struct kse_control_data));
626  fail_1:
627 	bus_dmamem_free(sc->sc_dmat, &seg, nseg);
628  fail_0:
629 	return;
630 }
631 
632 static int
kse_ioctl(struct ifnet * ifp,u_long cmd,void * data)633 kse_ioctl(struct ifnet *ifp, u_long cmd, void *data)
634 {
635 	struct kse_softc *sc = ifp->if_softc;
636 	struct ifreq *ifr = (struct ifreq *)data;
637 	int s, error;
638 
639 	s = splnet();
640 
641 	switch (cmd) {
642 	case SIOCSIFMEDIA:
643 	case SIOCGIFMEDIA:
644 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
645 		break;
646 
647 	default:
648 		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
649 			break;
650 
651 		error = 0;
652 
653 		if (cmd == SIOCSIFCAP)
654 			error = (*ifp->if_init)(ifp);
655 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
656 			;
657 		else if (ifp->if_flags & IFF_RUNNING) {
658 			/*
659 			 * Multicast list has changed; set the hardware filter
660 			 * accordingly.
661 			 */
662 			kse_set_filter(sc);
663 		}
664 		break;
665 	}
666 
667 	kse_start(ifp);
668 
669 	splx(s);
670 	return error;
671 }
672 
673 static int
kse_init(struct ifnet * ifp)674 kse_init(struct ifnet *ifp)
675 {
676 	struct kse_softc *sc = ifp->if_softc;
677 	uint32_t paddr;
678 	int i, error = 0;
679 
680 	/* cancel pending I/O */
681 	kse_stop(ifp, 0);
682 
683 	/* reset all registers but PCI configuration */
684 	kse_reset(sc);
685 
686 	/* craft Tx descriptor ring */
687 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
688 	for (i = 0, paddr = KSE_CDTXADDR(sc, 1); i < KSE_NTXDESC - 1; i++) {
689 		sc->sc_txdescs[i].t3 = paddr;
690 		paddr += sizeof(struct tdes);
691 	}
692 	sc->sc_txdescs[KSE_NTXDESC - 1].t3 = KSE_CDTXADDR(sc, 0);
693 	KSE_CDTXSYNC(sc, 0, KSE_NTXDESC,
694 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
695 	sc->sc_txfree = KSE_NTXDESC;
696 	sc->sc_txnext = 0;
697 
698 	for (i = 0; i < KSE_TXQUEUELEN; i++)
699 		sc->sc_txsoft[i].txs_mbuf = NULL;
700 	sc->sc_txsfree = KSE_TXQUEUELEN;
701 	sc->sc_txsnext = 0;
702 	sc->sc_txsdirty = 0;
703 
704 	/* craft Rx descriptor ring */
705 	memset(sc->sc_rxdescs, 0, sizeof(sc->sc_rxdescs));
706 	for (i = 0, paddr = KSE_CDRXADDR(sc, 1); i < KSE_NRXDESC - 1; i++) {
707 		sc->sc_rxdescs[i].r3 = paddr;
708 		paddr += sizeof(struct rdes);
709 	}
710 	sc->sc_rxdescs[KSE_NRXDESC - 1].r3 = KSE_CDRXADDR(sc, 0);
711 	for (i = 0; i < KSE_NRXDESC; i++) {
712 		if (sc->sc_rxsoft[i].rxs_mbuf == NULL) {
713 			if ((error = add_rxbuf(sc, i)) != 0) {
714 				printf("%s: unable to allocate or map rx "
715 				    "buffer %d, error = %d\n",
716 				     device_xname(sc->sc_dev), i, error);
717 				rxdrain(sc);
718 				goto out;
719 			}
720 		}
721 		else
722 			KSE_INIT_RXDESC(sc, i);
723 	}
724 	sc->sc_rxptr = 0;
725 
726 	/* hand Tx/Rx rings to HW */
727 	CSR_WRITE_4(sc, TDLB, KSE_CDTXADDR(sc, 0));
728 	CSR_WRITE_4(sc, RDLB, KSE_CDRXADDR(sc, 0));
729 
730 	sc->sc_txc = TXC_TEN | TXC_EP | TXC_AC | TXC_FCE;
731 	sc->sc_rxc = RXC_REN | RXC_RU | RXC_FCE;
732 	if (ifp->if_flags & IFF_PROMISC)
733 		sc->sc_rxc |= RXC_RA;
734 	if (ifp->if_flags & IFF_BROADCAST)
735 		sc->sc_rxc |= RXC_RB;
736 	sc->sc_t1csum = sc->sc_mcsum = 0;
737 	if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) {
738 		sc->sc_rxc |= RXC_ICC;
739 		sc->sc_mcsum |= M_CSUM_IPv4;
740 	}
741 	if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) {
742 		sc->sc_txc |= TXC_ICG;
743 		sc->sc_t1csum |= T1_IPCKG;
744 	}
745 	if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) {
746 		sc->sc_rxc |= RXC_TCC;
747 		sc->sc_mcsum |= M_CSUM_TCPv4;
748 	}
749 	if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx) {
750 		sc->sc_txc |= TXC_TCG;
751 		sc->sc_t1csum |= T1_TCPCKG;
752 	}
753 	if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) {
754 		sc->sc_rxc |= RXC_UCC;
755 		sc->sc_mcsum |= M_CSUM_UDPv4;
756 	}
757 	if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx) {
758 		sc->sc_txc |= TXC_UCG;
759 		sc->sc_t1csum |= T1_UDPCKG;
760 	}
761 	sc->sc_txc |= (kse_burstsize << TXC_BS_SFT);
762 	sc->sc_rxc |= (kse_burstsize << RXC_BS_SFT);
763 
764 	/* build multicast hash filter if necessary */
765 	kse_set_filter(sc);
766 
767 	/* set current media */
768 	(void)ifmedia_upd(ifp);
769 
770 	/* enable transmitter and receiver */
771 	CSR_WRITE_4(sc, MDTXC, sc->sc_txc);
772 	CSR_WRITE_4(sc, MDRXC, sc->sc_rxc);
773 	CSR_WRITE_4(sc, MDRSC, 1);
774 
775 	/* enable interrupts */
776 	sc->sc_inten = INT_DMTS|INT_DMRS|INT_DMRBUS;
777 	if (sc->sc_chip == 0x8841)
778 		sc->sc_inten |= INT_DMLCS;
779 	CSR_WRITE_4(sc, INTST, ~0);
780 	CSR_WRITE_4(sc, INTEN, sc->sc_inten);
781 
782 	ifp->if_flags |= IFF_RUNNING;
783 	ifp->if_flags &= ~IFF_OACTIVE;
784 
785 	if (sc->sc_chip == 0x8841) {
786 		/* start one second timer */
787 		callout_reset(&sc->sc_callout, hz, phy_tick, sc);
788 	}
789 #ifdef KSE_EVENT_COUNTERS
790 	/* start statistics gather 1 minute timer */
791 	zerostats(sc);
792 	callout_reset(&sc->sc_stat_ch, hz * 60, stat_tick, sc);
793 #endif
794 
795  out:
796 	if (error) {
797 		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
798 		ifp->if_timer = 0;
799 		printf("%s: interface not running\n", device_xname(sc->sc_dev));
800 	}
801 	return error;
802 }
803 
804 static void
kse_stop(struct ifnet * ifp,int disable)805 kse_stop(struct ifnet *ifp, int disable)
806 {
807 	struct kse_softc *sc = ifp->if_softc;
808 	struct kse_txsoft *txs;
809 	int i;
810 
811 	if (sc->sc_chip == 0x8841)
812 		callout_stop(&sc->sc_callout);
813 	callout_stop(&sc->sc_stat_ch);
814 
815 	sc->sc_txc &= ~TXC_TEN;
816 	sc->sc_rxc &= ~RXC_REN;
817 	CSR_WRITE_4(sc, MDTXC, sc->sc_txc);
818 	CSR_WRITE_4(sc, MDRXC, sc->sc_rxc);
819 
820 	for (i = 0; i < KSE_TXQUEUELEN; i++) {
821 		txs = &sc->sc_txsoft[i];
822 		if (txs->txs_mbuf != NULL) {
823 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
824 			m_freem(txs->txs_mbuf);
825 			txs->txs_mbuf = NULL;
826 		}
827 	}
828 
829 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
830 	ifp->if_timer = 0;
831 
832 	if (disable)
833 		rxdrain(sc);
834 }
835 
836 static void
kse_reset(struct kse_softc * sc)837 kse_reset(struct kse_softc *sc)
838 {
839 
840 	CSR_WRITE_2(sc, GRR, 1);
841 	delay(1000); /* PDF does not mention the delay amount */
842 	CSR_WRITE_2(sc, GRR, 0);
843 
844 	CSR_WRITE_2(sc, CIDR, 1);
845 }
846 
847 static void
kse_watchdog(struct ifnet * ifp)848 kse_watchdog(struct ifnet *ifp)
849 {
850 	struct kse_softc *sc = ifp->if_softc;
851 
852 	/*
853 	 * Since we're not interrupting every packet, sweep
854 	 * up before we report an error.
855 	 */
856 	txreap(sc);
857 
858 	if (sc->sc_txfree != KSE_NTXDESC) {
859 		printf("%s: device timeout (txfree %d txsfree %d txnext %d)\n",
860 		    device_xname(sc->sc_dev), sc->sc_txfree, sc->sc_txsfree,
861 		    sc->sc_txnext);
862 		ifp->if_oerrors++;
863 
864 		/* Reset the interface. */
865 		kse_init(ifp);
866 	}
867 	else if (ifp->if_flags & IFF_DEBUG)
868 		printf("%s: recovered from device timeout\n",
869 		    device_xname(sc->sc_dev));
870 
871 	/* Try to get more packets going. */
872 	kse_start(ifp);
873 }
874 
875 static void
kse_start(struct ifnet * ifp)876 kse_start(struct ifnet *ifp)
877 {
878 	struct kse_softc *sc = ifp->if_softc;
879 	struct mbuf *m0, *m;
880 	struct kse_txsoft *txs;
881 	bus_dmamap_t dmamap;
882 	int error, nexttx, lasttx, ofree, seg;
883 	uint32_t tdes0;
884 
885 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
886 		return;
887 
888 	/*
889 	 * Remember the previous number of free descriptors.
890 	 */
891 	ofree = sc->sc_txfree;
892 
893 	/*
894 	 * Loop through the send queue, setting up transmit descriptors
895 	 * until we drain the queue, or use up all available transmit
896 	 * descriptors.
897 	 */
898 	for (;;) {
899 		IFQ_POLL(&ifp->if_snd, m0);
900 		if (m0 == NULL)
901 			break;
902 
903 		if (sc->sc_txsfree < KSE_TXQUEUE_GC) {
904 			txreap(sc);
905 			if (sc->sc_txsfree == 0)
906 				break;
907 		}
908 		txs = &sc->sc_txsoft[sc->sc_txsnext];
909 		dmamap = txs->txs_dmamap;
910 
911 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
912 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
913 		if (error) {
914 			if (error == EFBIG) {
915 				printf("%s: Tx packet consumes too many "
916 				    "DMA segments, dropping...\n",
917 				    device_xname(sc->sc_dev));
918 				    IFQ_DEQUEUE(&ifp->if_snd, m0);
919 				    m_freem(m0);
920 				    continue;
921 			}
922 			/* Short on resources, just stop for now. */
923 			break;
924 		}
925 
926 		if (dmamap->dm_nsegs > sc->sc_txfree) {
927 			/*
928 			 * Not enough free descriptors to transmit this
929 			 * packet.  We haven't committed anything yet,
930 			 * so just unload the DMA map, put the packet
931 			 * back on the queue, and punt.	 Notify the upper
932 			 * layer that there are not more slots left.
933 			 */
934 			ifp->if_flags |= IFF_OACTIVE;
935 			bus_dmamap_unload(sc->sc_dmat, dmamap);
936 			break;
937 		}
938 
939 		IFQ_DEQUEUE(&ifp->if_snd, m0);
940 
941 		/*
942 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
943 		 */
944 
945 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
946 		    BUS_DMASYNC_PREWRITE);
947 
948 		lasttx = -1; tdes0 = 0;
949 		for (nexttx = sc->sc_txnext, seg = 0;
950 		     seg < dmamap->dm_nsegs;
951 		     seg++, nexttx = KSE_NEXTTX(nexttx)) {
952 			struct tdes *tdes = &sc->sc_txdescs[nexttx];
953 			/*
954 			 * If this is the first descriptor we're
955 			 * enqueueing, don't set the OWN bit just
956 			 * yet.	 That could cause a race condition.
957 			 * We'll do it below.
958 			 */
959 			tdes->t2 = dmamap->dm_segs[seg].ds_addr;
960 			tdes->t1 = sc->sc_t1csum
961 			     | (dmamap->dm_segs[seg].ds_len & T1_TBS_MASK);
962 			tdes->t0 = tdes0;
963 			tdes0 |= T0_OWN;
964 			lasttx = nexttx;
965 		}
966 
967 		/*
968 		 * Outgoing NFS mbuf must be unloaded when Tx completed.
969 		 * Without T1_IC NFS mbuf is left unack'ed for excessive
970 		 * time and NFS stops to proceed until kse_watchdog()
971 		 * calls txreap() to reclaim the unack'ed mbuf.
972 		 * It's painful to traverse every mbuf chain to determine
973 		 * whether someone is waiting for Tx completion.
974 		 */
975 		m = m0;
976 		do {
977 			if ((m->m_flags & M_EXT) && m->m_ext.ext_free) {
978 				sc->sc_txdescs[lasttx].t1 |= T1_IC;
979 				break;
980 			}
981 		} while ((m = m->m_next) != NULL);
982 
983 		/* write last T0_OWN bit of the 1st segment */
984 		sc->sc_txdescs[lasttx].t1 |= T1_LS;
985 		sc->sc_txdescs[sc->sc_txnext].t1 |= T1_FS;
986 		sc->sc_txdescs[sc->sc_txnext].t0 = T0_OWN;
987 		KSE_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
988 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
989 
990 		/* tell DMA start transmit */
991 		CSR_WRITE_4(sc, MDTSC, 1);
992 
993 		txs->txs_mbuf = m0;
994 		txs->txs_firstdesc = sc->sc_txnext;
995 		txs->txs_lastdesc = lasttx;
996 		txs->txs_ndesc = dmamap->dm_nsegs;
997 
998 		sc->sc_txfree -= txs->txs_ndesc;
999 		sc->sc_txnext = nexttx;
1000 		sc->sc_txsfree--;
1001 		sc->sc_txsnext = KSE_NEXTTXS(sc->sc_txsnext);
1002 		/*
1003 		 * Pass the packet to any BPF listeners.
1004 		 */
1005 		bpf_mtap(ifp, m0);
1006 	}
1007 
1008 	if (sc->sc_txsfree == 0 || sc->sc_txfree == 0) {
1009 		/* No more slots left; notify upper layer. */
1010 		ifp->if_flags |= IFF_OACTIVE;
1011 	}
1012 	if (sc->sc_txfree != ofree) {
1013 		/* Set a watchdog timer in case the chip flakes out. */
1014 		ifp->if_timer = 5;
1015 	}
1016 }
1017 
1018 static void
kse_set_filter(struct kse_softc * sc)1019 kse_set_filter(struct kse_softc *sc)
1020 {
1021 	struct ether_multistep step;
1022 	struct ether_multi *enm;
1023 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1024 	uint32_t h, hashes[2];
1025 
1026 	sc->sc_rxc &= ~(RXC_MHTE | RXC_RM);
1027 	ifp->if_flags &= ~IFF_ALLMULTI;
1028 	if (ifp->if_flags & IFF_PROMISC)
1029 		return;
1030 
1031 	ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
1032 	if (enm == NULL)
1033 		return;
1034 	hashes[0] = hashes[1] = 0;
1035 	do {
1036 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1037 			/*
1038 			 * We must listen to a range of multicast addresses.
1039 			 * For now, just accept all multicasts, rather than
1040 			 * trying to set only those filter bits needed to match
1041 			 * the range.  (At this time, the only use of address
1042 			 * ranges is for IP multicast routing, for which the
1043 			 * range is big enough to require all bits set.)
1044 			 */
1045 			goto allmulti;
1046 		}
1047 		h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) >> 26;
1048 		hashes[h >> 5] |= 1 << (h & 0x1f);
1049 		ETHER_NEXT_MULTI(step, enm);
1050 	} while (enm != NULL);
1051 	sc->sc_rxc |= RXC_MHTE;
1052 	CSR_WRITE_4(sc, MTR0, hashes[0]);
1053 	CSR_WRITE_4(sc, MTR1, hashes[1]);
1054 	return;
1055  allmulti:
1056 	sc->sc_rxc |= RXC_RM;
1057 	ifp->if_flags |= IFF_ALLMULTI;
1058 }
1059 
1060 static int
add_rxbuf(struct kse_softc * sc,int idx)1061 add_rxbuf(struct kse_softc *sc, int idx)
1062 {
1063 	struct kse_rxsoft *rxs = &sc->sc_rxsoft[idx];
1064 	struct mbuf *m;
1065 	int error;
1066 
1067 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1068 	if (m == NULL)
1069 		return ENOBUFS;
1070 
1071 	MCLGET(m, M_DONTWAIT);
1072 	if ((m->m_flags & M_EXT) == 0) {
1073 		m_freem(m);
1074 		return ENOBUFS;
1075 	}
1076 
1077 	if (rxs->rxs_mbuf != NULL)
1078 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1079 
1080 	rxs->rxs_mbuf = m;
1081 
1082 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
1083 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1084 	if (error) {
1085 		printf("%s: can't load rx DMA map %d, error = %d\n",
1086 		    device_xname(sc->sc_dev), idx, error);
1087 		panic("kse_add_rxbuf");
1088 	}
1089 
1090 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1091 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1092 
1093 	KSE_INIT_RXDESC(sc, idx);
1094 
1095 	return 0;
1096 }
1097 
1098 static void
rxdrain(struct kse_softc * sc)1099 rxdrain(struct kse_softc *sc)
1100 {
1101 	struct kse_rxsoft *rxs;
1102 	int i;
1103 
1104 	for (i = 0; i < KSE_NRXDESC; i++) {
1105 		rxs = &sc->sc_rxsoft[i];
1106 		if (rxs->rxs_mbuf != NULL) {
1107 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1108 			m_freem(rxs->rxs_mbuf);
1109 			rxs->rxs_mbuf = NULL;
1110 		}
1111 	}
1112 }
1113 
1114 static int
kse_intr(void * arg)1115 kse_intr(void *arg)
1116 {
1117 	struct kse_softc *sc = arg;
1118 	uint32_t isr;
1119 
1120 	if ((isr = CSR_READ_4(sc, INTST)) == 0)
1121 		return 0;
1122 
1123 	if (isr & INT_DMRS)
1124 		rxintr(sc);
1125 	if (isr & INT_DMTS)
1126 		txreap(sc);
1127 	if (isr & INT_DMLCS)
1128 		lnkchg(sc);
1129 	if (isr & INT_DMRBUS)
1130 		printf("%s: Rx descriptor full\n", device_xname(sc->sc_dev));
1131 
1132 	CSR_WRITE_4(sc, INTST, isr);
1133 	return 1;
1134 }
1135 
1136 static void
rxintr(struct kse_softc * sc)1137 rxintr(struct kse_softc *sc)
1138 {
1139 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1140 	struct kse_rxsoft *rxs;
1141 	struct mbuf *m;
1142 	uint32_t rxstat;
1143 	int i, len;
1144 
1145 	for (i = sc->sc_rxptr; /*CONSTCOND*/ 1; i = KSE_NEXTRX(i)) {
1146 		rxs = &sc->sc_rxsoft[i];
1147 
1148 		KSE_CDRXSYNC(sc, i,
1149 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1150 
1151 		rxstat = sc->sc_rxdescs[i].r0;
1152 
1153 		if (rxstat & R0_OWN) /* desc is left empty */
1154 			break;
1155 
1156 		/* R0_FS|R0_LS must have been marked for this desc */
1157 
1158 		if (rxstat & R0_ES) {
1159 			ifp->if_ierrors++;
1160 #define PRINTERR(bit, str)						\
1161 			if (rxstat & (bit))				\
1162 				printf("%s: receive error: %s\n",	\
1163 				    device_xname(sc->sc_dev), str)
1164 			PRINTERR(R0_TL, "frame too long");
1165 			PRINTERR(R0_RF, "runt frame");
1166 			PRINTERR(R0_CE, "bad FCS");
1167 #undef PRINTERR
1168 			KSE_INIT_RXDESC(sc, i);
1169 			continue;
1170 		}
1171 
1172 		/* HW errata; frame might be too small or too large */
1173 
1174 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1175 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1176 
1177 		len = rxstat & R0_FL_MASK;
1178 		len -= ETHER_CRC_LEN;	/* trim CRC off */
1179 		m = rxs->rxs_mbuf;
1180 
1181 		if (add_rxbuf(sc, i) != 0) {
1182 			ifp->if_ierrors++;
1183 			KSE_INIT_RXDESC(sc, i);
1184 			bus_dmamap_sync(sc->sc_dmat,
1185 			    rxs->rxs_dmamap, 0,
1186 			    rxs->rxs_dmamap->dm_mapsize,
1187 			    BUS_DMASYNC_PREREAD);
1188 			continue;
1189 		}
1190 
1191 		ifp->if_ipackets++;
1192 		m_set_rcvif(m, ifp);
1193 		m->m_pkthdr.len = m->m_len = len;
1194 
1195 		if (sc->sc_mcsum) {
1196 			m->m_pkthdr.csum_flags |= sc->sc_mcsum;
1197 			if (rxstat & R0_IPE)
1198 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1199 			if (rxstat & (R0_TCPE | R0_UDPE))
1200 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1201 		}
1202 		bpf_mtap(ifp, m);
1203 		if_percpuq_enqueue(ifp->if_percpuq, m);
1204 #ifdef KSEDIAGNOSTIC
1205 		if (kse_monitor_rxintr > 0) {
1206 			printf("m stat %x data %p len %d\n",
1207 			    rxstat, m->m_data, m->m_len);
1208 		}
1209 #endif
1210 	}
1211 	sc->sc_rxptr = i;
1212 }
1213 
1214 static void
txreap(struct kse_softc * sc)1215 txreap(struct kse_softc *sc)
1216 {
1217 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1218 	struct kse_txsoft *txs;
1219 	uint32_t txstat;
1220 	int i;
1221 
1222 	ifp->if_flags &= ~IFF_OACTIVE;
1223 
1224 	for (i = sc->sc_txsdirty; sc->sc_txsfree != KSE_TXQUEUELEN;
1225 	     i = KSE_NEXTTXS(i), sc->sc_txsfree++) {
1226 		txs = &sc->sc_txsoft[i];
1227 
1228 		KSE_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndesc,
1229 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1230 
1231 		txstat = sc->sc_txdescs[txs->txs_lastdesc].t0;
1232 
1233 		if (txstat & T0_OWN) /* desc is still in use */
1234 			break;
1235 
1236 		/* there is no way to tell transmission status per frame */
1237 
1238 		ifp->if_opackets++;
1239 
1240 		sc->sc_txfree += txs->txs_ndesc;
1241 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1242 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1243 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1244 		m_freem(txs->txs_mbuf);
1245 		txs->txs_mbuf = NULL;
1246 	}
1247 	sc->sc_txsdirty = i;
1248 	if (sc->sc_txsfree == KSE_TXQUEUELEN)
1249 		ifp->if_timer = 0;
1250 }
1251 
1252 static void
lnkchg(struct kse_softc * sc)1253 lnkchg(struct kse_softc *sc)
1254 {
1255 	struct ifmediareq ifmr;
1256 
1257 #if 0 /* rambling link status */
1258 	printf("%s: link %s\n", device_xname(sc->sc_dev),
1259 	    (CSR_READ_2(sc, P1SR) & (1U << 5)) ? "up" : "down");
1260 #endif
1261 	ifmedia_sts(&sc->sc_ethercom.ec_if, &ifmr);
1262 }
1263 
1264 static int
ifmedia_upd(struct ifnet * ifp)1265 ifmedia_upd(struct ifnet *ifp)
1266 {
1267 	struct kse_softc *sc = ifp->if_softc;
1268 	struct ifmedia *ifm = &sc->sc_media;
1269 	uint16_t ctl;
1270 
1271 	ctl = 0;
1272 	if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO) {
1273 		ctl |= (1U << 13); /* restart AN */
1274 		ctl |= (1U << 7);  /* enable AN */
1275 		ctl |= (1U << 4);  /* advertise flow control pause */
1276 		ctl |= (1U << 3) | (1U << 2) | (1U << 1) | (1U << 0);
1277 	}
1278 	else {
1279 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX)
1280 			ctl |= (1U << 6);
1281 		if (ifm->ifm_media & IFM_FDX)
1282 			ctl |= (1U << 5);
1283 	}
1284 	CSR_WRITE_2(sc, P1CR4, ctl);
1285 
1286 	sc->sc_media_active = IFM_NONE;
1287 	sc->sc_media_status = IFM_AVALID;
1288 
1289 	return 0;
1290 }
1291 
1292 static void
ifmedia_sts(struct ifnet * ifp,struct ifmediareq * ifmr)1293 ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1294 {
1295 	struct kse_softc *sc = ifp->if_softc;
1296 	struct ifmedia *ifm = &sc->sc_media;
1297 	uint16_t ctl, sts, result;
1298 
1299 	ifmr->ifm_status = IFM_AVALID;
1300 	ifmr->ifm_active = IFM_ETHER;
1301 
1302 	ctl = CSR_READ_2(sc, P1CR4);
1303 	sts = CSR_READ_2(sc, P1SR);
1304 	if ((sts & (1U << 5)) == 0) {
1305 		ifmr->ifm_active |= IFM_NONE;
1306 		goto out; /* link is down */
1307 	}
1308 	ifmr->ifm_status |= IFM_ACTIVE;
1309 	if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO) {
1310 		if ((sts & (1U << 6)) == 0) {
1311 			ifmr->ifm_active |= IFM_NONE;
1312 			goto out; /* negotiation in progress */
1313 		}
1314 		result = ctl & sts & 017;
1315 		if (result & (1U << 3))
1316 			ifmr->ifm_active |= IFM_100_TX|IFM_FDX;
1317 		else if (result & (1U << 2))
1318 			ifmr->ifm_active |= IFM_100_TX|IFM_HDX;
1319 		else if (result & (1U << 1))
1320 			ifmr->ifm_active |= IFM_10_T|IFM_FDX;
1321 		else if (result & (1U << 0))
1322 			ifmr->ifm_active |= IFM_10_T|IFM_HDX;
1323 		else
1324 			ifmr->ifm_active |= IFM_NONE;
1325 		if (ctl & (1U << 4))
1326 			ifmr->ifm_active |= IFM_FLOW | IFM_ETH_RXPAUSE;
1327 		if (sts & (1U << 4))
1328 			ifmr->ifm_active |= IFM_FLOW | IFM_ETH_TXPAUSE;
1329 	}
1330 	else {
1331 		ifmr->ifm_active |= (sts & (1U << 10)) ? IFM_100_TX : IFM_10_T;
1332 		if (sts & (1U << 9))
1333 			ifmr->ifm_active |= IFM_FDX;
1334 		if (sts & (1U << 12))
1335 			ifmr->ifm_active |= IFM_FLOW | IFM_ETH_RXPAUSE;
1336 		if (sts & (1U << 11))
1337 			ifmr->ifm_active |= IFM_FLOW | IFM_ETH_TXPAUSE;
1338 	}
1339 
1340   out:
1341 	sc->sc_media_status = ifmr->ifm_status;
1342 	sc->sc_media_active = ifmr->ifm_active;
1343 }
1344 
1345 static void
phy_tick(void * arg)1346 phy_tick(void *arg)
1347 {
1348 	struct kse_softc *sc = arg;
1349 	struct ifmediareq ifmr;
1350 	int s;
1351 
1352 	s = splnet();
1353 	ifmedia_sts(&sc->sc_ethercom.ec_if, &ifmr);
1354 	splx(s);
1355 
1356 	callout_reset(&sc->sc_callout, hz, phy_tick, sc);
1357 }
1358 
1359 static int
ifmedia2_upd(struct ifnet * ifp)1360 ifmedia2_upd(struct ifnet *ifp)
1361 {
1362 	struct kse_softc *sc = ifp->if_softc;
1363 
1364 	sc->sc_media_status = IFM_AVALID;
1365 	sc->sc_media_active = IFM_NONE;
1366 	return 0;
1367 }
1368 
1369 static void
ifmedia2_sts(struct ifnet * ifp,struct ifmediareq * ifmr)1370 ifmedia2_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1371 {
1372 	struct kse_softc *sc = ifp->if_softc;
1373 	int p1sts, p2sts;
1374 
1375 	ifmr->ifm_status = IFM_AVALID;
1376 	ifmr->ifm_active = IFM_ETHER;
1377 	p1sts = CSR_READ_2(sc, P1SR);
1378 	p2sts = CSR_READ_2(sc, P2SR);
1379 	if (((p1sts | p2sts) & (1U << 5)) == 0)
1380 		ifmr->ifm_active |= IFM_NONE;
1381 	else {
1382 		ifmr->ifm_status |= IFM_ACTIVE;
1383 		ifmr->ifm_active |= IFM_100_TX|IFM_FDX;
1384 		ifmr->ifm_active |= IFM_FLOW|IFM_ETH_RXPAUSE|IFM_ETH_TXPAUSE;
1385 	}
1386 	sc->sc_media_status = ifmr->ifm_status;
1387 	sc->sc_media_active = ifmr->ifm_active;
1388 }
1389 
1390 #ifdef KSE_EVENT_COUNTERS
1391 static void
stat_tick(void * arg)1392 stat_tick(void *arg)
1393 {
1394 	struct kse_softc *sc = arg;
1395 	struct ksext *ee = &sc->sc_ext;
1396 	int nport, p, i, val;
1397 
1398 	nport = (sc->sc_chip == 0x8842) ? 3 : 1;
1399 	for (p = 0; p < nport; p++) {
1400 		for (i = 0; i < 32; i++) {
1401 			val = 0x1c00 | (p * 0x20 + i);
1402 			CSR_WRITE_2(sc, IACR, val);
1403 			do {
1404 				val = CSR_READ_2(sc, IADR5) << 16;
1405 			} while ((val & (1U << 30)) == 0);
1406 			if (val & (1U << 31)) {
1407 				(void)CSR_READ_2(sc, IADR4);
1408 				val = 0x3fffffff; /* has made overflow */
1409 			}
1410 			else {
1411 				val &= 0x3fff0000;		/* 29:16 */
1412 				val |= CSR_READ_2(sc, IADR4);	/* 15:0 */
1413 			}
1414 			ee->pev[p][i].ev_count += val; /* i (0-31) */
1415 		}
1416 		CSR_WRITE_2(sc, IACR, 0x1c00 + 0x100 + p);
1417 		ee->pev[p][32].ev_count = CSR_READ_2(sc, IADR4); /* 32 */
1418 		CSR_WRITE_2(sc, IACR, 0x1c00 + 0x100 + p * 3 + 1);
1419 		ee->pev[p][33].ev_count = CSR_READ_2(sc, IADR4); /* 33 */
1420 	}
1421 	callout_reset(&sc->sc_stat_ch, hz * 60, stat_tick, arg);
1422 }
1423 
1424 static void
zerostats(struct kse_softc * sc)1425 zerostats(struct kse_softc *sc)
1426 {
1427 	struct ksext *ee = &sc->sc_ext;
1428 	int nport, p, i, val;
1429 
1430 	/* make sure all the HW counters get zero */
1431 	nport = (sc->sc_chip == 0x8842) ? 3 : 1;
1432 	for (p = 0; p < nport; p++) {
1433 		for (i = 0; i < 31; i++) {
1434 			val = 0x1c00 | (p * 0x20 + i);
1435 			CSR_WRITE_2(sc, IACR, val);
1436 			do {
1437 				val = CSR_READ_2(sc, IADR5) << 16;
1438 			} while ((val & (1U << 30)) == 0);
1439 			(void)CSR_READ_2(sc, IADR4);
1440 			ee->pev[p][i].ev_count = 0;
1441 		}
1442 	}
1443 }
1444 #endif
1445