1 /* FIXME: We need to go back and add the warning messages about code
2 moved across setjmp. */
3
4
5 /* Scanning of rtl for dataflow analysis.
6 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
7 Free Software Foundation, Inc.
8 Originally contributed by Michael P. Hayes
9 (m.hayes@elec.canterbury.ac.nz, mhayes@redhat.com)
10 Major rewrite contributed by Danny Berlin (dberlin@dberlin.org)
11 and Kenneth Zadeck (zadeck@naturalbridge.com).
12
13 This file is part of GCC.
14
15 GCC is free software; you can redistribute it and/or modify it under
16 the terms of the GNU General Public License as published by the Free
17 Software Foundation; either version 2, or (at your option) any later
18 version.
19
20 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
21 WARRANTY; without even the implied warranty of MERCHANTABILITY or
22 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
23 for more details.
24
25 You should have received a copy of the GNU General Public License
26 along with GCC; see the file COPYING. If not, write to the Free
27 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
28 02110-1301, USA.
29 */
30
31 #include "config.h"
32 #include "system.h"
33 #include "coretypes.h"
34 #include "tm.h"
35 #include "rtl.h"
36 #include "tm_p.h"
37 #include "insn-config.h"
38 #include "recog.h"
39 #include "function.h"
40 #include "regs.h"
41 #include "output.h"
42 #include "alloc-pool.h"
43 #include "flags.h"
44 #include "hard-reg-set.h"
45 #include "basic-block.h"
46 #include "sbitmap.h"
47 #include "bitmap.h"
48 #include "timevar.h"
49 #include "tree.h"
50 #include "target.h"
51 #include "target-def.h"
52 #include "df.h"
53
54 #ifndef HAVE_epilogue
55 #define HAVE_epilogue 0
56 #endif
57 #ifndef HAVE_prologue
58 #define HAVE_prologue 0
59 #endif
60 #ifndef HAVE_sibcall_epilogue
61 #define HAVE_sibcall_epilogue 0
62 #endif
63
64 #ifndef EPILOGUE_USES
65 #define EPILOGUE_USES(REGNO) 0
66 #endif
67
68 /* The bitmap_obstack is used to hold some static variables that
69 should not be reset after each function is compiled. */
70
71 static bitmap_obstack persistent_obstack;
72
73 /* The set of hard registers in eliminables[i].from. */
74
75 static HARD_REG_SET elim_reg_set;
76
77 /* This is a bitmap copy of regs_invalidated_by_call so that we can
78 easily add it into bitmaps, etc. */
79
80 bitmap df_invalidated_by_call = NULL;
81
82 /* Initialize ur_in and ur_out as if all hard registers were partially
83 available. */
84
85 static void df_ref_record (struct dataflow *, rtx, rtx *,
86 basic_block, rtx, enum df_ref_type,
87 enum df_ref_flags, bool record_live);
88 static void df_def_record_1 (struct dataflow *, rtx, basic_block, rtx,
89 enum df_ref_flags, bool record_live);
90 static void df_defs_record (struct dataflow *, rtx, basic_block, rtx);
91 static void df_uses_record (struct dataflow *, rtx *, enum df_ref_type,
92 basic_block, rtx, enum df_ref_flags);
93
94 static void df_insn_refs_record (struct dataflow *, basic_block, rtx);
95 static void df_bb_refs_record (struct dataflow *, basic_block);
96 static void df_refs_record (struct dataflow *, bitmap);
97 static struct df_ref *df_ref_create_structure (struct dataflow *, rtx, rtx *,
98 basic_block, rtx, enum df_ref_type,
99 enum df_ref_flags);
100 static void df_record_entry_block_defs (struct dataflow *);
101 static void df_record_exit_block_uses (struct dataflow *);
102 static void df_grow_reg_info (struct dataflow *, struct df_ref_info *);
103 static void df_grow_ref_info (struct df_ref_info *, unsigned int);
104 static void df_grow_insn_info (struct df *);
105
106
107 /*----------------------------------------------------------------------------
108 SCANNING DATAFLOW PROBLEM
109
110 There are several ways in which scanning looks just like the other
111 dataflow problems. It shares the all the mechanisms for local info
112 as well as basic block info. Where it differs is when and how often
113 it gets run. It also has no need for the iterative solver.
114 ----------------------------------------------------------------------------*/
115
116 /* Problem data for the scanning dataflow function. */
117 struct df_scan_problem_data
118 {
119 alloc_pool ref_pool;
120 alloc_pool insn_pool;
121 alloc_pool reg_pool;
122 alloc_pool mw_reg_pool;
123 alloc_pool mw_link_pool;
124 };
125
126 typedef struct df_scan_bb_info *df_scan_bb_info_t;
127
128 static void
df_scan_free_internal(struct dataflow * dflow)129 df_scan_free_internal (struct dataflow *dflow)
130 {
131 struct df *df = dflow->df;
132 struct df_scan_problem_data *problem_data
133 = (struct df_scan_problem_data *) dflow->problem_data;
134
135 free (df->def_info.regs);
136 free (df->def_info.refs);
137 memset (&df->def_info, 0, (sizeof (struct df_ref_info)));
138
139 free (df->use_info.regs);
140 free (df->use_info.refs);
141 memset (&df->use_info, 0, (sizeof (struct df_ref_info)));
142
143 free (df->insns);
144 df->insns = NULL;
145 df->insns_size = 0;
146
147 free (dflow->block_info);
148 dflow->block_info = NULL;
149 dflow->block_info_size = 0;
150
151 BITMAP_FREE (df->hardware_regs_used);
152 BITMAP_FREE (df->entry_block_defs);
153 BITMAP_FREE (df->exit_block_uses);
154
155 free_alloc_pool (dflow->block_pool);
156 free_alloc_pool (problem_data->ref_pool);
157 free_alloc_pool (problem_data->insn_pool);
158 free_alloc_pool (problem_data->reg_pool);
159 free_alloc_pool (problem_data->mw_reg_pool);
160 free_alloc_pool (problem_data->mw_link_pool);
161 }
162
163
164 /* Get basic block info. */
165
166 struct df_scan_bb_info *
df_scan_get_bb_info(struct dataflow * dflow,unsigned int index)167 df_scan_get_bb_info (struct dataflow *dflow, unsigned int index)
168 {
169 gcc_assert (index < dflow->block_info_size);
170 return (struct df_scan_bb_info *) dflow->block_info[index];
171 }
172
173
174 /* Set basic block info. */
175
176 static void
df_scan_set_bb_info(struct dataflow * dflow,unsigned int index,struct df_scan_bb_info * bb_info)177 df_scan_set_bb_info (struct dataflow *dflow, unsigned int index,
178 struct df_scan_bb_info *bb_info)
179 {
180 gcc_assert (index < dflow->block_info_size);
181 dflow->block_info[index] = (void *) bb_info;
182 }
183
184
185 /* Free basic block info. */
186
187 static void
df_scan_free_bb_info(struct dataflow * dflow,basic_block bb,void * vbb_info)188 df_scan_free_bb_info (struct dataflow *dflow, basic_block bb, void *vbb_info)
189 {
190 struct df_scan_bb_info *bb_info = (struct df_scan_bb_info *) vbb_info;
191 if (bb_info)
192 {
193 df_bb_refs_delete (dflow, bb->index);
194 pool_free (dflow->block_pool, bb_info);
195 }
196 }
197
198
199 /* Allocate the problem data for the scanning problem. This should be
200 called when the problem is created or when the entire function is to
201 be rescanned. */
202
203 static void
df_scan_alloc(struct dataflow * dflow,bitmap blocks_to_rescan,bitmap all_blocks ATTRIBUTE_UNUSED)204 df_scan_alloc (struct dataflow *dflow, bitmap blocks_to_rescan,
205 bitmap all_blocks ATTRIBUTE_UNUSED)
206 {
207 struct df *df = dflow->df;
208 struct df_scan_problem_data *problem_data;
209 unsigned int insn_num = get_max_uid () + 1;
210 unsigned int block_size = 50;
211 unsigned int bb_index;
212 bitmap_iterator bi;
213
214 /* Given the number of pools, this is really faster than tearing
215 everything apart. */
216 if (dflow->problem_data)
217 df_scan_free_internal (dflow);
218
219 dflow->block_pool
220 = create_alloc_pool ("df_scan_block pool",
221 sizeof (struct df_scan_bb_info),
222 block_size);
223
224 problem_data = XNEW (struct df_scan_problem_data);
225 dflow->problem_data = problem_data;
226
227 problem_data->ref_pool
228 = create_alloc_pool ("df_scan_ref pool",
229 sizeof (struct df_ref), block_size);
230 problem_data->insn_pool
231 = create_alloc_pool ("df_scan_insn pool",
232 sizeof (struct df_insn_info), block_size);
233 problem_data->reg_pool
234 = create_alloc_pool ("df_scan_reg pool",
235 sizeof (struct df_reg_info), block_size);
236 problem_data->mw_reg_pool
237 = create_alloc_pool ("df_scan_mw_reg pool",
238 sizeof (struct df_mw_hardreg), block_size);
239 problem_data->mw_link_pool
240 = create_alloc_pool ("df_scan_mw_link pool",
241 sizeof (struct df_link), block_size);
242
243 insn_num += insn_num / 4;
244 df_grow_reg_info (dflow, &df->def_info);
245 df_grow_ref_info (&df->def_info, insn_num);
246
247 df_grow_reg_info (dflow, &df->use_info);
248 df_grow_ref_info (&df->use_info, insn_num *2);
249
250 df_grow_insn_info (df);
251 df_grow_bb_info (dflow);
252
253 EXECUTE_IF_SET_IN_BITMAP (blocks_to_rescan, 0, bb_index, bi)
254 {
255 struct df_scan_bb_info *bb_info = df_scan_get_bb_info (dflow, bb_index);
256 if (!bb_info)
257 {
258 bb_info = (struct df_scan_bb_info *) pool_alloc (dflow->block_pool);
259 df_scan_set_bb_info (dflow, bb_index, bb_info);
260 }
261 bb_info->artificial_defs = NULL;
262 bb_info->artificial_uses = NULL;
263 }
264
265 df->hardware_regs_used = BITMAP_ALLOC (NULL);
266 df->entry_block_defs = BITMAP_ALLOC (NULL);
267 df->exit_block_uses = BITMAP_ALLOC (NULL);
268 }
269
270
271 /* Free all of the data associated with the scan problem. */
272
273 static void
df_scan_free(struct dataflow * dflow)274 df_scan_free (struct dataflow *dflow)
275 {
276 struct df *df = dflow->df;
277
278 if (dflow->problem_data)
279 {
280 df_scan_free_internal (dflow);
281 free (dflow->problem_data);
282 }
283
284 if (df->blocks_to_scan)
285 BITMAP_FREE (df->blocks_to_scan);
286
287 if (df->blocks_to_analyze)
288 BITMAP_FREE (df->blocks_to_analyze);
289
290 free (dflow);
291 }
292
293 static void
df_scan_dump(struct dataflow * dflow ATTRIBUTE_UNUSED,FILE * file ATTRIBUTE_UNUSED)294 df_scan_dump (struct dataflow *dflow ATTRIBUTE_UNUSED, FILE *file ATTRIBUTE_UNUSED)
295 {
296 struct df *df = dflow->df;
297 int i;
298
299 fprintf (file, " invalidated by call \t");
300 dump_bitmap (file, df_invalidated_by_call);
301 fprintf (file, " hardware regs used \t");
302 dump_bitmap (file, df->hardware_regs_used);
303 fprintf (file, " entry block uses \t");
304 dump_bitmap (file, df->entry_block_defs);
305 fprintf (file, " exit block uses \t");
306 dump_bitmap (file, df->exit_block_uses);
307 fprintf (file, " regs ever live \t");
308 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
309 if (regs_ever_live[i])
310 fprintf (file, "%d ", i);
311 fprintf (file, "\n");
312 }
313
314 static struct df_problem problem_SCAN =
315 {
316 DF_SCAN, /* Problem id. */
317 DF_NONE, /* Direction. */
318 df_scan_alloc, /* Allocate the problem specific data. */
319 NULL, /* Reset global information. */
320 df_scan_free_bb_info, /* Free basic block info. */
321 NULL, /* Local compute function. */
322 NULL, /* Init the solution specific data. */
323 NULL, /* Iterative solver. */
324 NULL, /* Confluence operator 0. */
325 NULL, /* Confluence operator n. */
326 NULL, /* Transfer function. */
327 NULL, /* Finalize function. */
328 df_scan_free, /* Free all of the problem information. */
329 df_scan_dump, /* Debugging. */
330 NULL, /* Dependent problem. */
331 0 /* Changeable flags. */
332 };
333
334
335 /* Create a new DATAFLOW instance and add it to an existing instance
336 of DF. The returned structure is what is used to get at the
337 solution. */
338
339 struct dataflow *
df_scan_add_problem(struct df * df,int flags)340 df_scan_add_problem (struct df *df, int flags)
341 {
342 return df_add_problem (df, &problem_SCAN, flags);
343 }
344
345 /*----------------------------------------------------------------------------
346 Storage Allocation Utilities
347 ----------------------------------------------------------------------------*/
348
349
350 /* First, grow the reg_info information. If the current size is less than
351 the number of psuedos, grow to 25% more than the number of
352 pseudos.
353
354 Second, assure that all of the slots up to max_reg_num have been
355 filled with reg_info structures. */
356
357 static void
df_grow_reg_info(struct dataflow * dflow,struct df_ref_info * ref_info)358 df_grow_reg_info (struct dataflow *dflow, struct df_ref_info *ref_info)
359 {
360 unsigned int max_reg = max_reg_num ();
361 unsigned int new_size = max_reg;
362 struct df_scan_problem_data *problem_data
363 = (struct df_scan_problem_data *) dflow->problem_data;
364 unsigned int i;
365
366 if (ref_info->regs_size < new_size)
367 {
368 new_size += new_size / 4;
369 ref_info->regs = xrealloc (ref_info->regs,
370 new_size *sizeof (struct df_reg_info*));
371 ref_info->regs_size = new_size;
372 }
373
374 for (i = ref_info->regs_inited; i < max_reg; i++)
375 {
376 struct df_reg_info *reg_info = pool_alloc (problem_data->reg_pool);
377 memset (reg_info, 0, sizeof (struct df_reg_info));
378 ref_info->regs[i] = reg_info;
379 }
380
381 ref_info->regs_inited = max_reg;
382 }
383
384
385 /* Grow the ref information. */
386
387 static void
df_grow_ref_info(struct df_ref_info * ref_info,unsigned int new_size)388 df_grow_ref_info (struct df_ref_info *ref_info, unsigned int new_size)
389 {
390 if (ref_info->refs_size < new_size)
391 {
392 ref_info->refs = xrealloc (ref_info->refs,
393 new_size *sizeof (struct df_ref *));
394 memset (ref_info->refs + ref_info->refs_size, 0,
395 (new_size - ref_info->refs_size) *sizeof (struct df_ref *));
396 ref_info->refs_size = new_size;
397 }
398 }
399
400
401 /* Grow the ref information. If the current size is less than the
402 number of instructions, grow to 25% more than the number of
403 instructions. */
404
405 static void
df_grow_insn_info(struct df * df)406 df_grow_insn_info (struct df *df)
407 {
408 unsigned int new_size = get_max_uid () + 1;
409 if (df->insns_size < new_size)
410 {
411 new_size += new_size / 4;
412 df->insns = xrealloc (df->insns,
413 new_size *sizeof (struct df_insn_info *));
414 memset (df->insns + df->insns_size, 0,
415 (new_size - df->insns_size) *sizeof (struct df_insn_info *));
416 df->insns_size = new_size;
417 }
418 }
419
420
421
422
423 /*----------------------------------------------------------------------------
424 PUBLIC INTERFACES FOR SMALL GRAIN CHANGES TO SCANNING.
425 ----------------------------------------------------------------------------*/
426
427 /* Rescan some BLOCKS or all the blocks defined by the last call to
428 df_set_blocks if BLOCKS is NULL); */
429
430 void
df_rescan_blocks(struct df * df,bitmap blocks)431 df_rescan_blocks (struct df *df, bitmap blocks)
432 {
433 bitmap local_blocks_to_scan = BITMAP_ALLOC (NULL);
434
435 struct dataflow *dflow = df->problems_by_index[DF_SCAN];
436 basic_block bb;
437
438 df->def_info.refs_organized = false;
439 df->use_info.refs_organized = false;
440
441 if (blocks)
442 {
443 int i;
444 unsigned int bb_index;
445 bitmap_iterator bi;
446 bool cleared_bits = false;
447
448 /* Need to assure that there are space in all of the tables. */
449 unsigned int insn_num = get_max_uid () + 1;
450 insn_num += insn_num / 4;
451
452 df_grow_reg_info (dflow, &df->def_info);
453 df_grow_ref_info (&df->def_info, insn_num);
454
455 df_grow_reg_info (dflow, &df->use_info);
456 df_grow_ref_info (&df->use_info, insn_num *2);
457
458 df_grow_insn_info (df);
459 df_grow_bb_info (dflow);
460
461 bitmap_copy (local_blocks_to_scan, blocks);
462
463 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, bb_index, bi)
464 {
465 basic_block bb = BASIC_BLOCK (bb_index);
466 if (!bb)
467 {
468 bitmap_clear_bit (local_blocks_to_scan, bb_index);
469 cleared_bits = true;
470 }
471 }
472
473 if (cleared_bits)
474 bitmap_copy (blocks, local_blocks_to_scan);
475
476 df->def_info.add_refs_inline = true;
477 df->use_info.add_refs_inline = true;
478
479 for (i = df->num_problems_defined; i; i--)
480 {
481 bitmap blocks_to_reset = NULL;
482 if (dflow->problem->reset_fun)
483 {
484 if (!blocks_to_reset)
485 {
486 blocks_to_reset = BITMAP_ALLOC (NULL);
487 bitmap_copy (blocks_to_reset, local_blocks_to_scan);
488 if (df->blocks_to_scan)
489 bitmap_ior_into (blocks_to_reset, df->blocks_to_scan);
490 }
491 dflow->problem->reset_fun (dflow, blocks_to_reset);
492 }
493 if (blocks_to_reset)
494 BITMAP_FREE (blocks_to_reset);
495 }
496
497 df_refs_delete (dflow, local_blocks_to_scan);
498
499 /* This may be a mistake, but if an explicit blocks is passed in
500 and the set of blocks to analyze has been explicitly set, add
501 the extra blocks to blocks_to_analyze. The alternative is to
502 put an assert here. We do not want this to just go by
503 silently or else we may get storage leaks. */
504 if (df->blocks_to_analyze)
505 bitmap_ior_into (df->blocks_to_analyze, blocks);
506 }
507 else
508 {
509 /* If we are going to do everything, just reallocate everything.
510 Most stuff is allocated in pools so this is faster than
511 walking it. */
512 if (df->blocks_to_analyze)
513 bitmap_copy (local_blocks_to_scan, df->blocks_to_analyze);
514 else
515 FOR_ALL_BB (bb)
516 {
517 bitmap_set_bit (local_blocks_to_scan, bb->index);
518 }
519 df_scan_alloc (dflow, local_blocks_to_scan, NULL);
520
521 df->def_info.add_refs_inline = false;
522 df->use_info.add_refs_inline = false;
523 }
524
525 df_refs_record (dflow, local_blocks_to_scan);
526 #if 0
527 bitmap_print (stderr, local_blocks_to_scan, "scanning: ", "\n");
528 #endif
529
530 if (!df->blocks_to_scan)
531 df->blocks_to_scan = BITMAP_ALLOC (NULL);
532
533 bitmap_ior_into (df->blocks_to_scan, local_blocks_to_scan);
534 BITMAP_FREE (local_blocks_to_scan);
535 }
536
537
538 /* Create a new ref of type DF_REF_TYPE for register REG at address
539 LOC within INSN of BB. */
540
541 struct df_ref *
df_ref_create(struct df * df,rtx reg,rtx * loc,rtx insn,basic_block bb,enum df_ref_type ref_type,enum df_ref_flags ref_flags)542 df_ref_create (struct df *df, rtx reg, rtx *loc, rtx insn,
543 basic_block bb,
544 enum df_ref_type ref_type,
545 enum df_ref_flags ref_flags)
546 {
547 struct dataflow *dflow = df->problems_by_index[DF_SCAN];
548 struct df_scan_bb_info *bb_info;
549
550 df_grow_reg_info (dflow, &df->use_info);
551 df_grow_reg_info (dflow, &df->def_info);
552 df_grow_bb_info (dflow);
553
554 /* Make sure there is the bb_info for this block. */
555 bb_info = df_scan_get_bb_info (dflow, bb->index);
556 if (!bb_info)
557 {
558 bb_info = (struct df_scan_bb_info *) pool_alloc (dflow->block_pool);
559 df_scan_set_bb_info (dflow, bb->index, bb_info);
560 bb_info->artificial_defs = NULL;
561 bb_info->artificial_uses = NULL;
562 }
563
564 if (ref_type == DF_REF_REG_DEF)
565 df->def_info.add_refs_inline = true;
566 else
567 df->use_info.add_refs_inline = true;
568
569 return df_ref_create_structure (dflow, reg, loc, bb, insn, ref_type, ref_flags);
570 }
571
572
573
574 /*----------------------------------------------------------------------------
575 UTILITIES TO CREATE AND DESTROY REFS AND CHAINS.
576 ----------------------------------------------------------------------------*/
577
578
579 /* Get the artificial uses for a basic block. */
580
581 struct df_ref *
df_get_artificial_defs(struct df * df,unsigned int bb_index)582 df_get_artificial_defs (struct df *df, unsigned int bb_index)
583 {
584 struct dataflow *dflow = df->problems_by_index[DF_SCAN];
585 return df_scan_get_bb_info (dflow, bb_index)->artificial_defs;
586 }
587
588
589 /* Get the artificial uses for a basic block. */
590
591 struct df_ref *
df_get_artificial_uses(struct df * df,unsigned int bb_index)592 df_get_artificial_uses (struct df *df, unsigned int bb_index)
593 {
594 struct dataflow *dflow = df->problems_by_index[DF_SCAN];
595 return df_scan_get_bb_info (dflow, bb_index)->artificial_uses;
596 }
597
598
599 /* Link REF at the front of reg_use or reg_def chain for REGNO. */
600
601 void
df_reg_chain_create(struct df_reg_info * reg_info,struct df_ref * ref)602 df_reg_chain_create (struct df_reg_info *reg_info,
603 struct df_ref *ref)
604 {
605 struct df_ref *head = reg_info->reg_chain;
606 reg_info->reg_chain = ref;
607
608 DF_REF_NEXT_REG (ref) = head;
609
610 /* We cannot actually link to the head of the chain. */
611 DF_REF_PREV_REG (ref) = NULL;
612
613 if (head)
614 DF_REF_PREV_REG (head) = ref;
615 }
616
617
618 /* Remove REF from the CHAIN. Return the head of the chain. This
619 will be CHAIN unless the REF was at the beginning of the chain. */
620
621 static struct df_ref *
df_ref_unlink(struct df_ref * chain,struct df_ref * ref)622 df_ref_unlink (struct df_ref *chain, struct df_ref *ref)
623 {
624 struct df_ref *orig_chain = chain;
625 struct df_ref *prev = NULL;
626 while (chain)
627 {
628 if (chain == ref)
629 {
630 if (prev)
631 {
632 prev->next_ref = ref->next_ref;
633 ref->next_ref = NULL;
634 return orig_chain;
635 }
636 else
637 {
638 chain = ref->next_ref;
639 ref->next_ref = NULL;
640 return chain;
641 }
642 }
643
644 prev = chain;
645 chain = chain->next_ref;
646 }
647
648 /* Someone passed in a ref that was not in the chain. */
649 gcc_unreachable ();
650 return NULL;
651 }
652
653
654 /* Unlink and delete REF at the reg_use or reg_def chain. Also delete
655 the def-use or use-def chain if it exists. Returns the next ref in
656 uses or defs chain. */
657
658 struct df_ref *
df_reg_chain_unlink(struct dataflow * dflow,struct df_ref * ref)659 df_reg_chain_unlink (struct dataflow *dflow, struct df_ref *ref)
660 {
661 struct df *df = dflow->df;
662 struct df_ref *next = DF_REF_NEXT_REG (ref);
663 struct df_ref *prev = DF_REF_PREV_REG (ref);
664 struct df_scan_problem_data *problem_data
665 = (struct df_scan_problem_data *) dflow->problem_data;
666 struct df_reg_info *reg_info;
667 struct df_ref *next_ref = ref->next_ref;
668 unsigned int id = DF_REF_ID (ref);
669
670 if (DF_REF_TYPE (ref) == DF_REF_REG_DEF)
671 {
672 reg_info = DF_REG_DEF_GET (df, DF_REF_REGNO (ref));
673 df->def_info.bitmap_size--;
674 if (df->def_info.refs && (id < df->def_info.refs_size))
675 DF_DEFS_SET (df, id, NULL);
676 }
677 else
678 {
679 reg_info = DF_REG_USE_GET (df, DF_REF_REGNO (ref));
680 df->use_info.bitmap_size--;
681 if (df->use_info.refs && (id < df->use_info.refs_size))
682 DF_USES_SET (df, id, NULL);
683 }
684
685 /* Delete any def-use or use-def chains that start here. */
686 if (DF_REF_CHAIN (ref))
687 df_chain_unlink (df->problems_by_index[DF_CHAIN], ref, NULL);
688
689 reg_info->n_refs--;
690
691 /* Unlink from the reg chain. If there is no prev, this is the
692 first of the list. If not, just join the next and prev. */
693 if (prev)
694 {
695 DF_REF_NEXT_REG (prev) = next;
696 if (next)
697 DF_REF_PREV_REG (next) = prev;
698 }
699 else
700 {
701 reg_info->reg_chain = next;
702 if (next)
703 DF_REF_PREV_REG (next) = NULL;
704 }
705
706 pool_free (problem_data->ref_pool, ref);
707 return next_ref;
708 }
709
710
711 /* Unlink REF from all def-use/use-def chains, etc. */
712
713 void
df_ref_remove(struct df * df,struct df_ref * ref)714 df_ref_remove (struct df *df, struct df_ref *ref)
715 {
716 struct dataflow *dflow = df->problems_by_index[DF_SCAN];
717 if (DF_REF_REG_DEF_P (ref))
718 {
719 if (DF_REF_FLAGS (ref) & DF_REF_ARTIFICIAL)
720 {
721 struct df_scan_bb_info *bb_info
722 = df_scan_get_bb_info (dflow, DF_REF_BB (ref)->index);
723 bb_info->artificial_defs
724 = df_ref_unlink (bb_info->artificial_defs, ref);
725 }
726 else
727 DF_INSN_UID_DEFS (df, DF_REF_INSN_UID (ref))
728 = df_ref_unlink (DF_INSN_UID_DEFS (df, DF_REF_INSN_UID (ref)), ref);
729
730 if (df->def_info.add_refs_inline)
731 DF_DEFS_SET (df, DF_REF_ID (ref), NULL);
732 }
733 else
734 {
735 if (DF_REF_FLAGS (ref) & DF_REF_ARTIFICIAL)
736 {
737 struct df_scan_bb_info *bb_info
738 = df_scan_get_bb_info (dflow, DF_REF_BB (ref)->index);
739 bb_info->artificial_uses
740 = df_ref_unlink (bb_info->artificial_uses, ref);
741 }
742 else
743 DF_INSN_UID_USES (df, DF_REF_INSN_UID (ref))
744 = df_ref_unlink (DF_INSN_UID_USES (df, DF_REF_INSN_UID (ref)), ref);
745
746 if (df->use_info.add_refs_inline)
747 DF_USES_SET (df, DF_REF_ID (ref), NULL);
748 }
749
750 df_reg_chain_unlink (dflow, ref);
751 }
752
753
754 /* Create the insn record for INSN. If there was one there, zero it out. */
755
756 static struct df_insn_info *
df_insn_create_insn_record(struct dataflow * dflow,rtx insn)757 df_insn_create_insn_record (struct dataflow *dflow, rtx insn)
758 {
759 struct df *df = dflow->df;
760 struct df_scan_problem_data *problem_data
761 = (struct df_scan_problem_data *) dflow->problem_data;
762
763 struct df_insn_info *insn_rec = DF_INSN_GET (df, insn);
764 if (!insn_rec)
765 {
766 insn_rec = pool_alloc (problem_data->insn_pool);
767 DF_INSN_SET (df, insn, insn_rec);
768 }
769 memset (insn_rec, 0, sizeof (struct df_insn_info));
770
771 return insn_rec;
772 }
773
774
775 /* Delete all of the refs information from INSN. */
776
777 void
df_insn_refs_delete(struct dataflow * dflow,rtx insn)778 df_insn_refs_delete (struct dataflow *dflow, rtx insn)
779 {
780 struct df *df = dflow->df;
781 unsigned int uid = INSN_UID (insn);
782 struct df_insn_info *insn_info = NULL;
783 struct df_ref *ref;
784 struct df_scan_problem_data *problem_data
785 = (struct df_scan_problem_data *) dflow->problem_data;
786
787 if (uid < df->insns_size)
788 insn_info = DF_INSN_UID_GET (df, uid);
789
790 if (insn_info)
791 {
792 struct df_mw_hardreg *hardregs = insn_info->mw_hardregs;
793
794 while (hardregs)
795 {
796 struct df_mw_hardreg *next_hr = hardregs->next;
797 struct df_link *link = hardregs->regs;
798 while (link)
799 {
800 struct df_link *next_l = link->next;
801 pool_free (problem_data->mw_link_pool, link);
802 link = next_l;
803 }
804
805 pool_free (problem_data->mw_reg_pool, hardregs);
806 hardregs = next_hr;
807 }
808
809 ref = insn_info->defs;
810 while (ref)
811 ref = df_reg_chain_unlink (dflow, ref);
812
813 ref = insn_info->uses;
814 while (ref)
815 ref = df_reg_chain_unlink (dflow, ref);
816
817 pool_free (problem_data->insn_pool, insn_info);
818 DF_INSN_SET (df, insn, NULL);
819 }
820 }
821
822
823 /* Delete all of the refs information from basic_block with BB_INDEX. */
824
825 void
df_bb_refs_delete(struct dataflow * dflow,int bb_index)826 df_bb_refs_delete (struct dataflow *dflow, int bb_index)
827 {
828 struct df_ref *def;
829 struct df_ref *use;
830
831 struct df_scan_bb_info *bb_info
832 = df_scan_get_bb_info (dflow, bb_index);
833 rtx insn;
834 basic_block bb = BASIC_BLOCK (bb_index);
835 FOR_BB_INSNS (bb, insn)
836 {
837 if (INSN_P (insn))
838 {
839 /* Record defs within INSN. */
840 df_insn_refs_delete (dflow, insn);
841 }
842 }
843
844 /* Get rid of any artificial uses or defs. */
845 if (bb_info)
846 {
847 def = bb_info->artificial_defs;
848 while (def)
849 def = df_reg_chain_unlink (dflow, def);
850 bb_info->artificial_defs = NULL;
851 use = bb_info->artificial_uses;
852 while (use)
853 use = df_reg_chain_unlink (dflow, use);
854 bb_info->artificial_uses = NULL;
855 }
856 }
857
858
859 /* Delete all of the refs information from BLOCKS. */
860
861 void
df_refs_delete(struct dataflow * dflow,bitmap blocks)862 df_refs_delete (struct dataflow *dflow, bitmap blocks)
863 {
864 bitmap_iterator bi;
865 unsigned int bb_index;
866
867 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, bb_index, bi)
868 {
869 df_bb_refs_delete (dflow, bb_index);
870 }
871 }
872
873
874 /* Take build ref table for either the uses or defs from the reg-use
875 or reg-def chains. */
876
877 void
df_reorganize_refs(struct df_ref_info * ref_info)878 df_reorganize_refs (struct df_ref_info *ref_info)
879 {
880 unsigned int m = ref_info->regs_inited;
881 unsigned int regno;
882 unsigned int offset = 0;
883 unsigned int size = 0;
884
885 if (ref_info->refs_organized)
886 return;
887
888 if (ref_info->refs_size < ref_info->bitmap_size)
889 {
890 int new_size = ref_info->bitmap_size + ref_info->bitmap_size / 4;
891 df_grow_ref_info (ref_info, new_size);
892 }
893
894 for (regno = 0; regno < m; regno++)
895 {
896 struct df_reg_info *reg_info = ref_info->regs[regno];
897 int count = 0;
898 if (reg_info)
899 {
900 struct df_ref *ref = reg_info->reg_chain;
901 reg_info->begin = offset;
902 while (ref)
903 {
904 ref_info->refs[offset] = ref;
905 DF_REF_ID (ref) = offset++;
906 ref = DF_REF_NEXT_REG (ref);
907 count++;
908 size++;
909 }
910 reg_info->n_refs = count;
911 }
912 }
913
914 /* The bitmap size is not decremented when refs are deleted. So
915 reset it now that we have squished out all of the empty
916 slots. */
917 ref_info->bitmap_size = size;
918 ref_info->refs_organized = true;
919 ref_info->add_refs_inline = true;
920 }
921
922
923 /*----------------------------------------------------------------------------
924 Hard core instruction scanning code. No external interfaces here,
925 just a lot of routines that look inside insns.
926 ----------------------------------------------------------------------------*/
927
928 /* Create a ref and add it to the reg-def or reg-use chains. */
929
930 static struct df_ref *
df_ref_create_structure(struct dataflow * dflow,rtx reg,rtx * loc,basic_block bb,rtx insn,enum df_ref_type ref_type,enum df_ref_flags ref_flags)931 df_ref_create_structure (struct dataflow *dflow, rtx reg, rtx *loc,
932 basic_block bb, rtx insn,
933 enum df_ref_type ref_type,
934 enum df_ref_flags ref_flags)
935 {
936 struct df_ref *this_ref;
937 struct df *df = dflow->df;
938 int regno = REGNO (GET_CODE (reg) == SUBREG ? SUBREG_REG (reg) : reg);
939 struct df_scan_problem_data *problem_data
940 = (struct df_scan_problem_data *) dflow->problem_data;
941
942 this_ref = pool_alloc (problem_data->ref_pool);
943 DF_REF_REG (this_ref) = reg;
944 DF_REF_REGNO (this_ref) = regno;
945 DF_REF_LOC (this_ref) = loc;
946 DF_REF_INSN (this_ref) = insn;
947 DF_REF_CHAIN (this_ref) = NULL;
948 DF_REF_TYPE (this_ref) = ref_type;
949 DF_REF_FLAGS (this_ref) = ref_flags;
950 DF_REF_DATA (this_ref) = NULL;
951 DF_REF_BB (this_ref) = bb;
952
953 /* Link the ref into the reg_def and reg_use chains and keep a count
954 of the instances. */
955 switch (ref_type)
956 {
957 case DF_REF_REG_DEF:
958 {
959 struct df_reg_info *reg_info = DF_REG_DEF_GET (df, regno);
960 reg_info->n_refs++;
961
962 /* Add the ref to the reg_def chain. */
963 df_reg_chain_create (reg_info, this_ref);
964 DF_REF_ID (this_ref) = df->def_info.bitmap_size;
965 if (df->def_info.add_refs_inline)
966 {
967 if (DF_DEFS_SIZE (df) >= df->def_info.refs_size)
968 {
969 int new_size = df->def_info.bitmap_size
970 + df->def_info.bitmap_size / 4;
971 df_grow_ref_info (&df->def_info, new_size);
972 }
973 /* Add the ref to the big array of defs. */
974 DF_DEFS_SET (df, df->def_info.bitmap_size, this_ref);
975 df->def_info.refs_organized = false;
976 }
977
978 df->def_info.bitmap_size++;
979
980 if (DF_REF_FLAGS (this_ref) & DF_REF_ARTIFICIAL)
981 {
982 struct df_scan_bb_info *bb_info
983 = df_scan_get_bb_info (dflow, bb->index);
984 this_ref->next_ref = bb_info->artificial_defs;
985 bb_info->artificial_defs = this_ref;
986 }
987 else
988 {
989 this_ref->next_ref = DF_INSN_GET (df, insn)->defs;
990 DF_INSN_GET (df, insn)->defs = this_ref;
991 }
992 }
993 break;
994
995 case DF_REF_REG_MEM_LOAD:
996 case DF_REF_REG_MEM_STORE:
997 case DF_REF_REG_USE:
998 {
999 struct df_reg_info *reg_info = DF_REG_USE_GET (df, regno);
1000 reg_info->n_refs++;
1001
1002 /* Add the ref to the reg_use chain. */
1003 df_reg_chain_create (reg_info, this_ref);
1004 DF_REF_ID (this_ref) = df->use_info.bitmap_size;
1005 if (df->use_info.add_refs_inline)
1006 {
1007 if (DF_USES_SIZE (df) >= df->use_info.refs_size)
1008 {
1009 int new_size = df->use_info.bitmap_size
1010 + df->use_info.bitmap_size / 4;
1011 df_grow_ref_info (&df->use_info, new_size);
1012 }
1013 /* Add the ref to the big array of defs. */
1014 DF_USES_SET (df, df->use_info.bitmap_size, this_ref);
1015 df->use_info.refs_organized = false;
1016 }
1017
1018 df->use_info.bitmap_size++;
1019 if (DF_REF_FLAGS (this_ref) & DF_REF_ARTIFICIAL)
1020 {
1021 struct df_scan_bb_info *bb_info
1022 = df_scan_get_bb_info (dflow, bb->index);
1023 this_ref->next_ref = bb_info->artificial_uses;
1024 bb_info->artificial_uses = this_ref;
1025 }
1026 else
1027 {
1028 this_ref->next_ref = DF_INSN_GET (df, insn)->uses;
1029 DF_INSN_GET (df, insn)->uses = this_ref;
1030 }
1031 }
1032 break;
1033
1034 default:
1035 gcc_unreachable ();
1036
1037 }
1038 return this_ref;
1039 }
1040
1041
1042 /* Create new references of type DF_REF_TYPE for each part of register REG
1043 at address LOC within INSN of BB. */
1044
1045 static void
df_ref_record(struct dataflow * dflow,rtx reg,rtx * loc,basic_block bb,rtx insn,enum df_ref_type ref_type,enum df_ref_flags ref_flags,bool record_live)1046 df_ref_record (struct dataflow *dflow, rtx reg, rtx *loc,
1047 basic_block bb, rtx insn,
1048 enum df_ref_type ref_type,
1049 enum df_ref_flags ref_flags,
1050 bool record_live)
1051 {
1052 struct df *df = dflow->df;
1053 rtx oldreg = reg;
1054 unsigned int regno;
1055
1056 gcc_assert (REG_P (reg) || GET_CODE (reg) == SUBREG);
1057
1058 /* For the reg allocator we are interested in some SUBREG rtx's, but not
1059 all. Notably only those representing a word extraction from a multi-word
1060 reg. As written in the docu those should have the form
1061 (subreg:SI (reg:M A) N), with size(SImode) > size(Mmode).
1062 XXX Is that true? We could also use the global word_mode variable. */
1063 if ((dflow->flags & DF_SUBREGS) == 0
1064 && GET_CODE (reg) == SUBREG
1065 && (GET_MODE_SIZE (GET_MODE (reg)) < GET_MODE_SIZE (word_mode)
1066 || GET_MODE_SIZE (GET_MODE (reg))
1067 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (reg)))))
1068 {
1069 loc = &SUBREG_REG (reg);
1070 reg = *loc;
1071 ref_flags |= DF_REF_STRIPPED;
1072 }
1073
1074 regno = REGNO (GET_CODE (reg) == SUBREG ? SUBREG_REG (reg) : reg);
1075 if (regno < FIRST_PSEUDO_REGISTER)
1076 {
1077 unsigned int i;
1078 unsigned int endregno;
1079 struct df_mw_hardreg *hardreg = NULL;
1080 struct df_scan_problem_data *problem_data
1081 = (struct df_scan_problem_data *) dflow->problem_data;
1082
1083 if (!(dflow->flags & DF_HARD_REGS))
1084 return;
1085
1086 /* GET_MODE (reg) is correct here. We do not want to go into a SUBREG
1087 for the mode, because we only want to add references to regs, which
1088 are really referenced. E.g., a (subreg:SI (reg:DI 0) 0) does _not_
1089 reference the whole reg 0 in DI mode (which would also include
1090 reg 1, at least, if 0 and 1 are SImode registers). */
1091 endregno = hard_regno_nregs[regno][GET_MODE (reg)];
1092 if (GET_CODE (reg) == SUBREG)
1093 regno += subreg_regno_offset (regno, GET_MODE (SUBREG_REG (reg)),
1094 SUBREG_BYTE (reg), GET_MODE (reg));
1095 endregno += regno;
1096
1097 /* If this is a multiword hardreg, we create some extra datastructures that
1098 will enable us to easily build REG_DEAD and REG_UNUSED notes. */
1099 if ((endregno != regno + 1) && insn)
1100 {
1101 struct df_insn_info *insn_info = DF_INSN_GET (df, insn);
1102 /* Sets to a subreg of a multiword register are partial.
1103 Sets to a non-subreg of a multiword register are not. */
1104 if (GET_CODE (oldreg) == SUBREG)
1105 ref_flags |= DF_REF_PARTIAL;
1106 ref_flags |= DF_REF_MW_HARDREG;
1107 hardreg = pool_alloc (problem_data->mw_reg_pool);
1108 hardreg->next = insn_info->mw_hardregs;
1109 insn_info->mw_hardregs = hardreg;
1110 hardreg->type = ref_type;
1111 hardreg->flags = ref_flags;
1112 hardreg->mw_reg = reg;
1113 hardreg->regs = NULL;
1114
1115 }
1116
1117 for (i = regno; i < endregno; i++)
1118 {
1119 struct df_ref *ref;
1120
1121 /* Calls are handled at call site because regs_ever_live
1122 doesn't include clobbered regs, only used ones. */
1123 if (ref_type == DF_REF_REG_DEF && record_live)
1124 regs_ever_live[i] = 1;
1125 else if ((ref_type == DF_REF_REG_USE
1126 || ref_type == DF_REF_REG_MEM_STORE
1127 || ref_type == DF_REF_REG_MEM_LOAD)
1128 && ((ref_flags & DF_REF_ARTIFICIAL) == 0))
1129 {
1130 /* Set regs_ever_live on uses of non-eliminable frame
1131 pointers and arg pointers. */
1132 if (!(TEST_HARD_REG_BIT (elim_reg_set, regno)
1133 && (regno == FRAME_POINTER_REGNUM
1134 || regno == ARG_POINTER_REGNUM)))
1135 regs_ever_live[i] = 1;
1136 }
1137
1138 ref = df_ref_create_structure (dflow, regno_reg_rtx[i], loc,
1139 bb, insn, ref_type, ref_flags);
1140 if (hardreg)
1141 {
1142 struct df_link *link = pool_alloc (problem_data->mw_link_pool);
1143
1144 link->next = hardreg->regs;
1145 link->ref = ref;
1146 hardreg->regs = link;
1147 }
1148 }
1149 }
1150 else
1151 {
1152 df_ref_create_structure (dflow, reg, loc,
1153 bb, insn, ref_type, ref_flags);
1154 }
1155 }
1156
1157
1158 /* A set to a non-paradoxical SUBREG for which the number of word_mode units
1159 covered by the outer mode is smaller than that covered by the inner mode,
1160 is a read-modify-write operation.
1161 This function returns true iff the SUBREG X is such a SUBREG. */
1162
1163 bool
df_read_modify_subreg_p(rtx x)1164 df_read_modify_subreg_p (rtx x)
1165 {
1166 unsigned int isize, osize;
1167 if (GET_CODE (x) != SUBREG)
1168 return false;
1169 isize = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
1170 osize = GET_MODE_SIZE (GET_MODE (x));
1171 return (isize > osize && isize > UNITS_PER_WORD);
1172 }
1173
1174
1175 /* Process all the registers defined in the rtx, X.
1176 Autoincrement/decrement definitions will be picked up by
1177 df_uses_record. */
1178
1179 static void
df_def_record_1(struct dataflow * dflow,rtx x,basic_block bb,rtx insn,enum df_ref_flags flags,bool record_live)1180 df_def_record_1 (struct dataflow *dflow, rtx x,
1181 basic_block bb, rtx insn,
1182 enum df_ref_flags flags, bool record_live)
1183 {
1184 rtx *loc;
1185 rtx dst;
1186 bool dst_in_strict_lowpart = false;
1187
1188 /* We may recursively call ourselves on EXPR_LIST when dealing with PARALLEL
1189 construct. */
1190 if (GET_CODE (x) == EXPR_LIST || GET_CODE (x) == CLOBBER)
1191 loc = &XEXP (x, 0);
1192 else
1193 loc = &SET_DEST (x);
1194 dst = *loc;
1195
1196 /* It is legal to have a set destination be a parallel. */
1197 if (GET_CODE (dst) == PARALLEL)
1198 {
1199 int i;
1200
1201 for (i = XVECLEN (dst, 0) - 1; i >= 0; i--)
1202 {
1203 rtx temp = XVECEXP (dst, 0, i);
1204 if (GET_CODE (temp) == EXPR_LIST || GET_CODE (temp) == CLOBBER
1205 || GET_CODE (temp) == SET)
1206 df_def_record_1 (dflow, temp, bb, insn,
1207 GET_CODE (temp) == CLOBBER
1208 ? flags | DF_REF_MUST_CLOBBER : flags,
1209 record_live);
1210 }
1211 return;
1212 }
1213
1214 /* Maybe, we should flag the use of STRICT_LOW_PART somehow. It might
1215 be handy for the reg allocator. */
1216 while (GET_CODE (dst) == STRICT_LOW_PART
1217 || GET_CODE (dst) == ZERO_EXTRACT
1218 || df_read_modify_subreg_p (dst))
1219 {
1220 #if 0
1221 /* Strict low part always contains SUBREG, but we do not want to make
1222 it appear outside, as whole register is always considered. */
1223 if (GET_CODE (dst) == STRICT_LOW_PART)
1224 {
1225 loc = &XEXP (dst, 0);
1226 dst = *loc;
1227 }
1228 #endif
1229 loc = &XEXP (dst, 0);
1230 if (GET_CODE (dst) == STRICT_LOW_PART)
1231 dst_in_strict_lowpart = true;
1232 dst = *loc;
1233 flags |= DF_REF_READ_WRITE;
1234
1235 }
1236
1237 /* Sets to a subreg of a single word register are partial sets if
1238 they are wrapped in a strict lowpart, and not partial otherwise.
1239 */
1240 if (GET_CODE (dst) == SUBREG && REG_P (SUBREG_REG (dst))
1241 && dst_in_strict_lowpart)
1242 flags |= DF_REF_PARTIAL;
1243
1244 if (REG_P (dst)
1245 || (GET_CODE (dst) == SUBREG && REG_P (SUBREG_REG (dst))))
1246 df_ref_record (dflow, dst, loc, bb, insn,
1247 DF_REF_REG_DEF, flags, record_live);
1248 }
1249
1250
1251 /* Process all the registers defined in the pattern rtx, X. */
1252
1253 static void
df_defs_record(struct dataflow * dflow,rtx x,basic_block bb,rtx insn)1254 df_defs_record (struct dataflow *dflow, rtx x, basic_block bb, rtx insn)
1255 {
1256 RTX_CODE code = GET_CODE (x);
1257
1258 if (code == SET || code == CLOBBER)
1259 {
1260 /* Mark the single def within the pattern. */
1261 df_def_record_1 (dflow, x, bb, insn,
1262 code == CLOBBER ? DF_REF_MUST_CLOBBER : 0, true);
1263 }
1264 else if (code == COND_EXEC)
1265 {
1266 df_defs_record (dflow, COND_EXEC_CODE (x), bb, insn);
1267 }
1268 else if (code == PARALLEL)
1269 {
1270 int i;
1271
1272 /* Mark the multiple defs within the pattern. */
1273 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1274 df_defs_record (dflow, XVECEXP (x, 0, i), bb, insn);
1275 }
1276 }
1277
1278
1279 /* Process all the registers used in the rtx at address LOC. */
1280
1281 static void
df_uses_record(struct dataflow * dflow,rtx * loc,enum df_ref_type ref_type,basic_block bb,rtx insn,enum df_ref_flags flags)1282 df_uses_record (struct dataflow *dflow, rtx *loc, enum df_ref_type ref_type,
1283 basic_block bb, rtx insn, enum df_ref_flags flags)
1284 {
1285 RTX_CODE code;
1286 rtx x;
1287 retry:
1288 x = *loc;
1289 if (!x)
1290 return;
1291 code = GET_CODE (x);
1292 switch (code)
1293 {
1294 case LABEL_REF:
1295 case SYMBOL_REF:
1296 case CONST_INT:
1297 case CONST:
1298 case CONST_DOUBLE:
1299 case CONST_VECTOR:
1300 case PC:
1301 case CC0:
1302 case ADDR_VEC:
1303 case ADDR_DIFF_VEC:
1304 return;
1305
1306 case CLOBBER:
1307 /* If we are clobbering a MEM, mark any registers inside the address
1308 as being used. */
1309 if (MEM_P (XEXP (x, 0)))
1310 df_uses_record (dflow, &XEXP (XEXP (x, 0), 0),
1311 DF_REF_REG_MEM_STORE, bb, insn, flags);
1312
1313 /* If we're clobbering a REG then we have a def so ignore. */
1314 return;
1315
1316 case MEM:
1317 df_uses_record (dflow, &XEXP (x, 0), DF_REF_REG_MEM_LOAD, bb, insn,
1318 flags & DF_REF_IN_NOTE);
1319 return;
1320
1321 case SUBREG:
1322 /* While we're here, optimize this case. */
1323 flags |= DF_REF_PARTIAL;
1324 /* In case the SUBREG is not of a REG, do not optimize. */
1325 if (!REG_P (SUBREG_REG (x)))
1326 {
1327 loc = &SUBREG_REG (x);
1328 df_uses_record (dflow, loc, ref_type, bb, insn, flags);
1329 return;
1330 }
1331 /* ... Fall through ... */
1332
1333 case REG:
1334 df_ref_record (dflow, x, loc, bb, insn, ref_type, flags, true);
1335 return;
1336
1337 case SET:
1338 {
1339 rtx dst = SET_DEST (x);
1340 gcc_assert (!(flags & DF_REF_IN_NOTE));
1341 df_uses_record (dflow, &SET_SRC (x), DF_REF_REG_USE, bb, insn, flags);
1342
1343 switch (GET_CODE (dst))
1344 {
1345 case SUBREG:
1346 if (df_read_modify_subreg_p (dst))
1347 {
1348 df_uses_record (dflow, &SUBREG_REG (dst),
1349 DF_REF_REG_USE, bb,
1350 insn, flags | DF_REF_READ_WRITE);
1351 break;
1352 }
1353 /* Fall through. */
1354 case REG:
1355 case PARALLEL:
1356 case SCRATCH:
1357 case PC:
1358 case CC0:
1359 break;
1360 case MEM:
1361 df_uses_record (dflow, &XEXP (dst, 0),
1362 DF_REF_REG_MEM_STORE,
1363 bb, insn, flags);
1364 break;
1365 case STRICT_LOW_PART:
1366 {
1367 rtx *temp = &XEXP (dst, 0);
1368 /* A strict_low_part uses the whole REG and not just the
1369 SUBREG. */
1370 dst = XEXP (dst, 0);
1371 df_uses_record (dflow,
1372 (GET_CODE (dst) == SUBREG)
1373 ? &SUBREG_REG (dst) : temp,
1374 DF_REF_REG_USE, bb,
1375 insn, DF_REF_READ_WRITE);
1376 }
1377 break;
1378 case ZERO_EXTRACT:
1379 case SIGN_EXTRACT:
1380 df_uses_record (dflow, &XEXP (dst, 0),
1381 DF_REF_REG_USE, bb, insn,
1382 DF_REF_READ_WRITE);
1383 df_uses_record (dflow, &XEXP (dst, 1),
1384 DF_REF_REG_USE, bb, insn, flags);
1385 df_uses_record (dflow, &XEXP (dst, 2),
1386 DF_REF_REG_USE, bb, insn, flags);
1387 dst = XEXP (dst, 0);
1388 break;
1389 default:
1390 gcc_unreachable ();
1391 }
1392 return;
1393 }
1394
1395 case RETURN:
1396 break;
1397
1398 case ASM_OPERANDS:
1399 case UNSPEC_VOLATILE:
1400 case TRAP_IF:
1401 case ASM_INPUT:
1402 {
1403 /* Traditional and volatile asm instructions must be
1404 considered to use and clobber all hard registers, all
1405 pseudo-registers and all of memory. So must TRAP_IF and
1406 UNSPEC_VOLATILE operations.
1407
1408 Consider for instance a volatile asm that changes the fpu
1409 rounding mode. An insn should not be moved across this
1410 even if it only uses pseudo-regs because it might give an
1411 incorrectly rounded result.
1412
1413 However, flow.c's liveness computation did *not* do this,
1414 giving the reasoning as " ?!? Unfortunately, marking all
1415 hard registers as live causes massive problems for the
1416 register allocator and marking all pseudos as live creates
1417 mountains of uninitialized variable warnings."
1418
1419 In order to maintain the status quo with regard to liveness
1420 and uses, we do what flow.c did and just mark any regs we
1421 can find in ASM_OPERANDS as used. Later on, when liveness
1422 is computed, asm insns are scanned and regs_asm_clobbered
1423 is filled out.
1424
1425 For all ASM_OPERANDS, we must traverse the vector of input
1426 operands. We can not just fall through here since then we
1427 would be confused by the ASM_INPUT rtx inside ASM_OPERANDS,
1428 which do not indicate traditional asms unlike their normal
1429 usage. */
1430 if (code == ASM_OPERANDS)
1431 {
1432 int j;
1433
1434 for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
1435 df_uses_record (dflow, &ASM_OPERANDS_INPUT (x, j),
1436 DF_REF_REG_USE, bb, insn, flags);
1437 return;
1438 }
1439 break;
1440 }
1441
1442 case PRE_DEC:
1443 case POST_DEC:
1444 case PRE_INC:
1445 case POST_INC:
1446 case PRE_MODIFY:
1447 case POST_MODIFY:
1448 /* Catch the def of the register being modified. */
1449 flags |= DF_REF_READ_WRITE;
1450 df_ref_record (dflow, XEXP (x, 0), &XEXP (x, 0), bb, insn,
1451 DF_REF_REG_DEF, flags, true);
1452
1453 /* ... Fall through to handle uses ... */
1454
1455 default:
1456 break;
1457 }
1458
1459 /* Recursively scan the operands of this expression. */
1460 {
1461 const char *fmt = GET_RTX_FORMAT (code);
1462 int i;
1463
1464 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1465 {
1466 if (fmt[i] == 'e')
1467 {
1468 /* Tail recursive case: save a function call level. */
1469 if (i == 0)
1470 {
1471 loc = &XEXP (x, 0);
1472 goto retry;
1473 }
1474 df_uses_record (dflow, &XEXP (x, i), ref_type, bb, insn, flags);
1475 }
1476 else if (fmt[i] == 'E')
1477 {
1478 int j;
1479 for (j = 0; j < XVECLEN (x, i); j++)
1480 df_uses_record (dflow, &XVECEXP (x, i, j), ref_type,
1481 bb, insn, flags);
1482 }
1483 }
1484 }
1485 }
1486
1487 /* Return true if *LOC contains an asm. */
1488
1489 static int
df_insn_contains_asm_1(rtx * loc,void * data ATTRIBUTE_UNUSED)1490 df_insn_contains_asm_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
1491 {
1492 if ( !*loc)
1493 return 0;
1494 if (GET_CODE (*loc) == ASM_OPERANDS)
1495 return 1;
1496 return 0;
1497 }
1498
1499
1500 /* Return true if INSN contains an ASM. */
1501
1502 static int
df_insn_contains_asm(rtx insn)1503 df_insn_contains_asm (rtx insn)
1504 {
1505 return for_each_rtx (&insn, df_insn_contains_asm_1, NULL);
1506 }
1507
1508
1509
1510 /* Record all the refs for DF within INSN of basic block BB. */
1511
1512 static void
df_insn_refs_record(struct dataflow * dflow,basic_block bb,rtx insn)1513 df_insn_refs_record (struct dataflow *dflow, basic_block bb, rtx insn)
1514 {
1515 struct df *df = dflow->df;
1516 int i;
1517
1518 if (INSN_P (insn))
1519 {
1520 rtx note;
1521
1522 if (df_insn_contains_asm (insn))
1523 DF_INSN_CONTAINS_ASM (df, insn) = true;
1524
1525 /* Record register defs. */
1526 df_defs_record (dflow, PATTERN (insn), bb, insn);
1527
1528 if (dflow->flags & DF_EQUIV_NOTES)
1529 for (note = REG_NOTES (insn); note;
1530 note = XEXP (note, 1))
1531 {
1532 switch (REG_NOTE_KIND (note))
1533 {
1534 case REG_EQUIV:
1535 case REG_EQUAL:
1536 df_uses_record (dflow, &XEXP (note, 0), DF_REF_REG_USE,
1537 bb, insn, DF_REF_IN_NOTE);
1538 default:
1539 break;
1540 }
1541 }
1542
1543 if (CALL_P (insn))
1544 {
1545 rtx note;
1546
1547 /* Record the registers used to pass arguments, and explicitly
1548 noted as clobbered. */
1549 for (note = CALL_INSN_FUNCTION_USAGE (insn); note;
1550 note = XEXP (note, 1))
1551 {
1552 if (GET_CODE (XEXP (note, 0)) == USE)
1553 df_uses_record (dflow, &XEXP (XEXP (note, 0), 0),
1554 DF_REF_REG_USE,
1555 bb, insn, 0);
1556 else if (GET_CODE (XEXP (note, 0)) == CLOBBER)
1557 {
1558 df_defs_record (dflow, XEXP (note, 0), bb, insn);
1559 if (REG_P (XEXP (XEXP (note, 0), 0)))
1560 {
1561 rtx reg = XEXP (XEXP (note, 0), 0);
1562 int regno_last;
1563 int regno_first;
1564 int i;
1565
1566 regno_last = regno_first = REGNO (reg);
1567 if (regno_first < FIRST_PSEUDO_REGISTER)
1568 regno_last
1569 += hard_regno_nregs[regno_first][GET_MODE (reg)] - 1;
1570 for (i = regno_first; i <= regno_last; i++)
1571 regs_ever_live[i] = 1;
1572 }
1573 }
1574 }
1575
1576 /* The stack ptr is used (honorarily) by a CALL insn. */
1577 df_uses_record (dflow, ®no_reg_rtx[STACK_POINTER_REGNUM],
1578 DF_REF_REG_USE, bb, insn,
1579 0);
1580
1581 if (dflow->flags & DF_HARD_REGS)
1582 {
1583 bitmap_iterator bi;
1584 unsigned int ui;
1585 /* Calls may also reference any of the global registers,
1586 so they are recorded as used. */
1587 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1588 if (global_regs[i])
1589 df_uses_record (dflow, ®no_reg_rtx[i],
1590 DF_REF_REG_USE, bb, insn,
1591 0);
1592 EXECUTE_IF_SET_IN_BITMAP (df_invalidated_by_call, 0, ui, bi)
1593 df_ref_record (dflow, regno_reg_rtx[ui], ®no_reg_rtx[ui], bb,
1594 insn, DF_REF_REG_DEF, DF_REF_MAY_CLOBBER, false);
1595 }
1596 }
1597
1598 /* Record the register uses. */
1599 df_uses_record (dflow, &PATTERN (insn),
1600 DF_REF_REG_USE, bb, insn, 0);
1601
1602 }
1603 }
1604
1605 static bool
df_has_eh_preds(basic_block bb)1606 df_has_eh_preds (basic_block bb)
1607 {
1608 edge e;
1609 edge_iterator ei;
1610
1611 FOR_EACH_EDGE (e, ei, bb->preds)
1612 {
1613 if (e->flags & EDGE_EH)
1614 return true;
1615 }
1616 return false;
1617 }
1618
1619 /* Record all the refs within the basic block BB. */
1620
1621 static void
df_bb_refs_record(struct dataflow * dflow,basic_block bb)1622 df_bb_refs_record (struct dataflow *dflow, basic_block bb)
1623 {
1624 struct df *df = dflow->df;
1625 rtx insn;
1626 int luid = 0;
1627 struct df_scan_bb_info *bb_info = df_scan_get_bb_info (dflow, bb->index);
1628 bitmap artificial_uses_at_bottom = NULL;
1629
1630 if (dflow->flags & DF_HARD_REGS)
1631 artificial_uses_at_bottom = BITMAP_ALLOC (NULL);
1632
1633 /* Need to make sure that there is a record in the basic block info. */
1634 if (!bb_info)
1635 {
1636 bb_info = (struct df_scan_bb_info *) pool_alloc (dflow->block_pool);
1637 df_scan_set_bb_info (dflow, bb->index, bb_info);
1638 bb_info->artificial_defs = NULL;
1639 bb_info->artificial_uses = NULL;
1640 }
1641
1642 /* Scan the block an insn at a time from beginning to end. */
1643 FOR_BB_INSNS (bb, insn)
1644 {
1645 df_insn_create_insn_record (dflow, insn);
1646 if (INSN_P (insn))
1647 {
1648 /* Record defs within INSN. */
1649 DF_INSN_LUID (df, insn) = luid++;
1650 df_insn_refs_record (dflow, bb, insn);
1651 }
1652 DF_INSN_LUID (df, insn) = luid;
1653 }
1654
1655 #ifdef EH_RETURN_DATA_REGNO
1656 if ((dflow->flags & DF_HARD_REGS)
1657 && df_has_eh_preds (bb))
1658 {
1659 unsigned int i;
1660 /* Mark the registers that will contain data for the handler. */
1661 for (i = 0; ; ++i)
1662 {
1663 unsigned regno = EH_RETURN_DATA_REGNO (i);
1664 if (regno == INVALID_REGNUM)
1665 break;
1666 df_ref_record (dflow, regno_reg_rtx[regno], ®no_reg_rtx[regno],
1667 bb, NULL,
1668 DF_REF_REG_DEF, DF_REF_ARTIFICIAL | DF_REF_AT_TOP,
1669 false);
1670 }
1671 }
1672 #endif
1673
1674
1675 if ((dflow->flags & DF_HARD_REGS)
1676 && df_has_eh_preds (bb))
1677 {
1678 #ifdef EH_USES
1679 unsigned int i;
1680 /* This code is putting in a artificial ref for the use at the
1681 TOP of the block that receives the exception. It is too
1682 cumbersome to actually put the ref on the edge. We could
1683 either model this at the top of the receiver block or the
1684 bottom of the sender block.
1685
1686 The bottom of the sender block is problematic because not all
1687 out-edges of the a block are eh-edges. However, it is true
1688 that all edges into a block are either eh-edges or none of
1689 them are eh-edges. Thus, we can model this at the top of the
1690 eh-receiver for all of the edges at once. */
1691 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1692 if (EH_USES (i))
1693 df_uses_record (dflow, ®no_reg_rtx[i],
1694 DF_REF_REG_USE, bb, NULL,
1695 DF_REF_ARTIFICIAL | DF_REF_AT_TOP);
1696 #endif
1697
1698 /* The following code (down thru the arg_pointer setting APPEARS
1699 to be necessary because there is nothing that actually
1700 describes what the exception handling code may actually need
1701 to keep alive. */
1702 if (reload_completed)
1703 {
1704 if (frame_pointer_needed)
1705 {
1706 bitmap_set_bit (artificial_uses_at_bottom, FRAME_POINTER_REGNUM);
1707 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
1708 bitmap_set_bit (artificial_uses_at_bottom, HARD_FRAME_POINTER_REGNUM);
1709 #endif
1710 }
1711 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1712 if (fixed_regs[ARG_POINTER_REGNUM])
1713 bitmap_set_bit (artificial_uses_at_bottom, ARG_POINTER_REGNUM);
1714 #endif
1715 }
1716 }
1717
1718 if ((dflow->flags & DF_HARD_REGS)
1719 && bb->index >= NUM_FIXED_BLOCKS)
1720 {
1721 /* Before reload, there are a few registers that must be forced
1722 live everywhere -- which might not already be the case for
1723 blocks within infinite loops. */
1724 if (!reload_completed)
1725 {
1726
1727 /* Any reference to any pseudo before reload is a potential
1728 reference of the frame pointer. */
1729 bitmap_set_bit (artificial_uses_at_bottom, FRAME_POINTER_REGNUM);
1730
1731 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1732 /* Pseudos with argument area equivalences may require
1733 reloading via the argument pointer. */
1734 if (fixed_regs[ARG_POINTER_REGNUM])
1735 bitmap_set_bit (artificial_uses_at_bottom, ARG_POINTER_REGNUM);
1736 #endif
1737
1738 /* Any constant, or pseudo with constant equivalences, may
1739 require reloading from memory using the pic register. */
1740 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
1741 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
1742 bitmap_set_bit (artificial_uses_at_bottom, PIC_OFFSET_TABLE_REGNUM);
1743 }
1744 /* The all-important stack pointer must always be live. */
1745 bitmap_set_bit (artificial_uses_at_bottom, STACK_POINTER_REGNUM);
1746 }
1747
1748 if (dflow->flags & DF_HARD_REGS)
1749 {
1750 bitmap_iterator bi;
1751 unsigned int regno;
1752
1753 EXECUTE_IF_SET_IN_BITMAP (artificial_uses_at_bottom, 0, regno, bi)
1754 {
1755 df_uses_record (dflow, ®no_reg_rtx[regno],
1756 DF_REF_REG_USE, bb, NULL, DF_REF_ARTIFICIAL);
1757 }
1758
1759 BITMAP_FREE (artificial_uses_at_bottom);
1760 }
1761 }
1762
1763
1764 /* Record all the refs in the basic blocks specified by BLOCKS. */
1765
1766 static void
df_refs_record(struct dataflow * dflow,bitmap blocks)1767 df_refs_record (struct dataflow *dflow, bitmap blocks)
1768 {
1769 unsigned int bb_index;
1770 bitmap_iterator bi;
1771
1772 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, bb_index, bi)
1773 {
1774 basic_block bb = BASIC_BLOCK (bb_index);
1775 df_bb_refs_record (dflow, bb);
1776 }
1777
1778 if (bitmap_bit_p (blocks, EXIT_BLOCK))
1779 df_record_exit_block_uses (dflow);
1780
1781 if (bitmap_bit_p (blocks, ENTRY_BLOCK))
1782 df_record_entry_block_defs (dflow);
1783 }
1784
1785
1786 /*----------------------------------------------------------------------------
1787 Specialized hard register scanning functions.
1788 ----------------------------------------------------------------------------*/
1789
1790 /* Mark a register in SET. Hard registers in large modes get all
1791 of their component registers set as well. */
1792
1793 static void
df_mark_reg(rtx reg,void * vset)1794 df_mark_reg (rtx reg, void *vset)
1795 {
1796 bitmap set = (bitmap) vset;
1797 int regno = REGNO (reg);
1798
1799 gcc_assert (GET_MODE (reg) != BLKmode);
1800
1801 bitmap_set_bit (set, regno);
1802 if (regno < FIRST_PSEUDO_REGISTER)
1803 {
1804 int n = hard_regno_nregs[regno][GET_MODE (reg)];
1805 while (--n > 0)
1806 bitmap_set_bit (set, regno + n);
1807 }
1808 }
1809
1810
1811 /* Record the (conservative) set of hard registers that are defined on
1812 entry to the function. */
1813
1814 static void
df_record_entry_block_defs(struct dataflow * dflow)1815 df_record_entry_block_defs (struct dataflow *dflow)
1816 {
1817 unsigned int i;
1818 bitmap_iterator bi;
1819 rtx r;
1820 struct df *df = dflow->df;
1821
1822 bitmap_clear (df->entry_block_defs);
1823
1824 if (!(dflow->flags & DF_HARD_REGS))
1825 return;
1826
1827 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1828 {
1829 if (FUNCTION_ARG_REGNO_P (i))
1830 #ifdef INCOMING_REGNO
1831 bitmap_set_bit (df->entry_block_defs, INCOMING_REGNO (i));
1832 #else
1833 bitmap_set_bit (df->entry_block_defs, i);
1834 #endif
1835 }
1836
1837 /* Once the prologue has been generated, all of these registers
1838 should just show up in the first regular block. */
1839 if (HAVE_prologue && epilogue_completed)
1840 {
1841 /* Defs for the callee saved registers are inserted so that the
1842 pushes have some defining location. */
1843 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1844 if ((call_used_regs[i] == 0) && (regs_ever_live[i]))
1845 bitmap_set_bit (df->entry_block_defs, i);
1846 }
1847 else
1848 {
1849 /* The always important stack pointer. */
1850 bitmap_set_bit (df->entry_block_defs, STACK_POINTER_REGNUM);
1851
1852 #ifdef INCOMING_RETURN_ADDR_RTX
1853 if (REG_P (INCOMING_RETURN_ADDR_RTX))
1854 bitmap_set_bit (df->entry_block_defs, REGNO (INCOMING_RETURN_ADDR_RTX));
1855 #endif
1856
1857 /* If STATIC_CHAIN_INCOMING_REGNUM == STATIC_CHAIN_REGNUM
1858 only STATIC_CHAIN_REGNUM is defined. If they are different,
1859 we only care about the STATIC_CHAIN_INCOMING_REGNUM. */
1860 #ifdef STATIC_CHAIN_INCOMING_REGNUM
1861 bitmap_set_bit (df->entry_block_defs, STATIC_CHAIN_INCOMING_REGNUM);
1862 #else
1863 #ifdef STATIC_CHAIN_REGNUM
1864 bitmap_set_bit (df->entry_block_defs, STATIC_CHAIN_REGNUM);
1865 #endif
1866 #endif
1867
1868 r = TARGET_STRUCT_VALUE_RTX (current_function_decl, true);
1869 if (r && REG_P (r))
1870 bitmap_set_bit (df->entry_block_defs, REGNO (r));
1871 }
1872
1873 if ((!reload_completed) || frame_pointer_needed)
1874 {
1875 /* Any reference to any pseudo before reload is a potential
1876 reference of the frame pointer. */
1877 bitmap_set_bit (df->entry_block_defs, FRAME_POINTER_REGNUM);
1878 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
1879 /* If they are different, also mark the hard frame pointer as live. */
1880 if (!LOCAL_REGNO (HARD_FRAME_POINTER_REGNUM))
1881 bitmap_set_bit (df->entry_block_defs, HARD_FRAME_POINTER_REGNUM);
1882 #endif
1883 }
1884
1885 /* These registers are live everywhere. */
1886 if (!reload_completed)
1887 {
1888 #ifdef EH_USES
1889 /* The ia-64, the only machine that uses this, does not define these
1890 until after reload. */
1891 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1892 if (EH_USES (i))
1893 {
1894 bitmap_set_bit (df->entry_block_defs, i);
1895 }
1896 #endif
1897
1898 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1899 /* Pseudos with argument area equivalences may require
1900 reloading via the argument pointer. */
1901 if (fixed_regs[ARG_POINTER_REGNUM])
1902 bitmap_set_bit (df->entry_block_defs, ARG_POINTER_REGNUM);
1903 #endif
1904
1905 #ifdef PIC_OFFSET_TABLE_REGNUM
1906 /* Any constant, or pseudo with constant equivalences, may
1907 require reloading from memory using the pic register. */
1908 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
1909 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
1910 bitmap_set_bit (df->entry_block_defs, PIC_OFFSET_TABLE_REGNUM);
1911 #endif
1912 }
1913
1914 targetm.live_on_entry (df->entry_block_defs);
1915
1916 EXECUTE_IF_SET_IN_BITMAP (df->entry_block_defs, 0, i, bi)
1917 {
1918 df_ref_record (dflow, regno_reg_rtx[i], ®no_reg_rtx[i],
1919 ENTRY_BLOCK_PTR, NULL,
1920 DF_REF_REG_DEF, DF_REF_ARTIFICIAL , false);
1921 }
1922 }
1923
1924
1925 /* Record the set of hard registers that are used in the exit block. */
1926
1927 static void
df_record_exit_block_uses(struct dataflow * dflow)1928 df_record_exit_block_uses (struct dataflow *dflow)
1929 {
1930 unsigned int i;
1931 bitmap_iterator bi;
1932 struct df *df = dflow->df;
1933
1934 bitmap_clear (df->exit_block_uses);
1935
1936 if (!(dflow->flags & DF_HARD_REGS))
1937 return;
1938
1939 /* If exiting needs the right stack value, consider the stack
1940 pointer live at the end of the function. */
1941 if ((HAVE_epilogue && epilogue_completed)
1942 || !EXIT_IGNORE_STACK
1943 || (!FRAME_POINTER_REQUIRED
1944 && !current_function_calls_alloca
1945 && flag_omit_frame_pointer)
1946 || current_function_sp_is_unchanging)
1947 {
1948 bitmap_set_bit (df->exit_block_uses, STACK_POINTER_REGNUM);
1949 }
1950
1951 /* Mark the frame pointer if needed at the end of the function.
1952 If we end up eliminating it, it will be removed from the live
1953 list of each basic block by reload. */
1954
1955 if ((!reload_completed) || frame_pointer_needed)
1956 {
1957 bitmap_set_bit (df->exit_block_uses, FRAME_POINTER_REGNUM);
1958 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
1959 /* If they are different, also mark the hard frame pointer as live. */
1960 if (!LOCAL_REGNO (HARD_FRAME_POINTER_REGNUM))
1961 bitmap_set_bit (df->exit_block_uses, HARD_FRAME_POINTER_REGNUM);
1962 #endif
1963 }
1964
1965 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
1966 /* Many architectures have a GP register even without flag_pic.
1967 Assume the pic register is not in use, or will be handled by
1968 other means, if it is not fixed. */
1969 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
1970 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
1971 bitmap_set_bit (df->exit_block_uses, PIC_OFFSET_TABLE_REGNUM);
1972 #endif
1973
1974 /* Mark all global registers, and all registers used by the
1975 epilogue as being live at the end of the function since they
1976 may be referenced by our caller. */
1977 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1978 if (global_regs[i] || EPILOGUE_USES (i))
1979 bitmap_set_bit (df->exit_block_uses, i);
1980
1981 if (HAVE_epilogue && epilogue_completed)
1982 {
1983 /* Mark all call-saved registers that we actually used. */
1984 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1985 if (regs_ever_live[i] && !LOCAL_REGNO (i)
1986 && !TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1987 bitmap_set_bit (df->exit_block_uses, i);
1988 }
1989
1990 #ifdef EH_RETURN_DATA_REGNO
1991 /* Mark the registers that will contain data for the handler. */
1992 if (reload_completed && current_function_calls_eh_return)
1993 for (i = 0; ; ++i)
1994 {
1995 unsigned regno = EH_RETURN_DATA_REGNO (i);
1996 if (regno == INVALID_REGNUM)
1997 break;
1998 bitmap_set_bit (df->exit_block_uses, regno);
1999 }
2000 #endif
2001
2002 #ifdef EH_RETURN_STACKADJ_RTX
2003 if ((!HAVE_epilogue || ! epilogue_completed)
2004 && current_function_calls_eh_return)
2005 {
2006 rtx tmp = EH_RETURN_STACKADJ_RTX;
2007 if (tmp && REG_P (tmp))
2008 df_mark_reg (tmp, df->exit_block_uses);
2009 }
2010 #endif
2011
2012 #ifdef EH_RETURN_HANDLER_RTX
2013 if ((!HAVE_epilogue || ! epilogue_completed)
2014 && current_function_calls_eh_return)
2015 {
2016 rtx tmp = EH_RETURN_HANDLER_RTX;
2017 if (tmp && REG_P (tmp))
2018 df_mark_reg (tmp, df->exit_block_uses);
2019 }
2020 #endif
2021
2022 /* Mark function return value. */
2023 diddle_return_value (df_mark_reg, (void*) df->exit_block_uses);
2024
2025 if (dflow->flags & DF_HARD_REGS)
2026 EXECUTE_IF_SET_IN_BITMAP (df->exit_block_uses, 0, i, bi)
2027 df_uses_record (dflow, ®no_reg_rtx[i],
2028 DF_REF_REG_USE, EXIT_BLOCK_PTR, NULL,
2029 DF_REF_ARTIFICIAL);
2030 }
2031
2032 static bool initialized = false;
2033
2034 /* Initialize some platform specific structures. */
2035
2036 void
df_hard_reg_init(void)2037 df_hard_reg_init (void)
2038 {
2039 int i;
2040 #ifdef ELIMINABLE_REGS
2041 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
2042 #endif
2043 /* After reload, some ports add certain bits to regs_ever_live so
2044 this cannot be reset. */
2045
2046 if (!reload_completed)
2047 memset (regs_ever_live, 0, sizeof (regs_ever_live));
2048
2049 if (initialized)
2050 return;
2051
2052 bitmap_obstack_initialize (&persistent_obstack);
2053
2054 /* Record which registers will be eliminated. We use this in
2055 mark_used_regs. */
2056 CLEAR_HARD_REG_SET (elim_reg_set);
2057
2058 #ifdef ELIMINABLE_REGS
2059 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
2060 SET_HARD_REG_BIT (elim_reg_set, eliminables[i].from);
2061 #else
2062 SET_HARD_REG_BIT (elim_reg_set, FRAME_POINTER_REGNUM);
2063 #endif
2064
2065 df_invalidated_by_call = BITMAP_ALLOC (&persistent_obstack);
2066
2067 /* Inconveniently, this is only readily available in hard reg set
2068 form. */
2069 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
2070 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
2071 bitmap_set_bit (df_invalidated_by_call, i);
2072
2073 initialized = true;
2074 }
2075