1 /*
2  * GENerational Conservative Garbage Collector for SBCL
3  */
4 
5 /*
6  * This software is part of the SBCL system. See the README file for
7  * more information.
8  *
9  * This software is derived from the CMU CL system, which was
10  * written at Carnegie Mellon University and released into the
11  * public domain. The software is in the public domain and is
12  * provided with absolutely no warranty. See the COPYING and CREDITS
13  * files for more information.
14  */
15 
16 /*
17  * For a review of garbage collection techniques (e.g. generational
18  * GC) and terminology (e.g. "scavenging") see Paul R. Wilson,
19  * "Uniprocessor Garbage Collection Techniques". As of 20000618, this
20  * had been accepted for _ACM Computing Surveys_ and was available
21  * as a PostScript preprint through
22  *   <http://www.cs.utexas.edu/users/oops/papers.html>
23  * as
24  *   <ftp://ftp.cs.utexas.edu/pub/garbage/bigsurv.ps>.
25  */
26 
27 #include <stdlib.h>
28 #include <stdio.h>
29 #include <errno.h>
30 #include <string.h>
31 #include "sbcl.h"
32 #if defined(LISP_FEATURE_WIN32) && defined(LISP_FEATURE_SB_THREAD)
33 #include "pthreads_win32.h"
34 #else
35 #include <signal.h>
36 #endif
37 #include "runtime.h"
38 #include "os.h"
39 #include "interr.h"
40 #include "globals.h"
41 #include "interrupt.h"
42 #include "validate.h"
43 #include "lispregs.h"
44 #include "arch.h"
45 #include "gc.h"
46 #include "gc-internal.h"
47 #include "thread.h"
48 #include "pseudo-atomic.h"
49 #include "alloc.h"
50 #include "genesis/vector.h"
51 #include "genesis/weak-pointer.h"
52 #include "genesis/fdefn.h"
53 #include "genesis/simple-fun.h"
54 #include "save.h"
55 #include "genesis/hash-table.h"
56 #include "genesis/instance.h"
57 #include "genesis/layout.h"
58 #include "gencgc.h"
59 #if !defined(LISP_FEATURE_X86) && !defined(LISP_FEATURE_X86_64)
60 #include "genesis/cons.h"
61 #endif
62 
63 /* forward declarations */
64 page_index_t  gc_find_freeish_pages(page_index_t *restart_page_ptr, sword_t nbytes,
65                                     int page_type_flag);
66 
67 
68 /*
69  * GC parameters
70  */
71 
72 /* As usually configured, generations 0-5 are normal collected generations,
73    6 is pseudo-static (the objects in which are never moved nor reclaimed),
74    and 7 is scratch space used when collecting a generation without promotion,
75    wherein it is moved to generation 7 and back again.
76  */
77 enum {
78     SCRATCH_GENERATION = PSEUDO_STATIC_GENERATION+1,
79     NUM_GENERATIONS
80 };
81 
82 /* Should we use page protection to help avoid the scavenging of pages
83  * that don't have pointers to younger generations? */
84 boolean enable_page_protection = 1;
85 
86 /* Largest allocation seen since last GC. */
87 os_vm_size_t large_allocation = 0;
88 
89 
90 /*
91  * debugging
92  */
93 
94 /* the verbosity level. All non-error messages are disabled at level 0;
95  * and only a few rare messages are printed at level 1. */
96 #if QSHOW == 2
97 boolean gencgc_verbose = 1;
98 #else
99 boolean gencgc_verbose = 0;
100 #endif
101 
102 /* FIXME: At some point enable the various error-checking things below
103  * and see what they say. */
104 
105 /* We hunt for pointers to old-space, when GCing generations >= verify_gen.
106  * Set verify_gens to HIGHEST_NORMAL_GENERATION + 1 to disable this kind of
107  * check. */
108 generation_index_t verify_gens = HIGHEST_NORMAL_GENERATION + 1;
109 
110 /* Should we do a pre-scan verify of generation 0 before it's GCed? */
111 boolean pre_verify_gen_0 = 0;
112 
113 /* Should we print a note when code objects are found in the dynamic space
114  * during a heap verify? */
115 boolean verify_dynamic_code_check = 0;
116 
117 #ifdef LISP_FEATURE_X86
118 /* Should we check code objects for fixup errors after they are transported? */
119 boolean check_code_fixups = 0;
120 #endif
121 
122 /* Should we check that newly allocated regions are zero filled? */
123 boolean gencgc_zero_check = 0;
124 
125 /* Should we check that the free space is zero filled? */
126 boolean gencgc_enable_verify_zero_fill = 0;
127 
128 /* When loading a core, don't do a full scan of the memory for the
129  * memory region boundaries. (Set to true by coreparse.c if the core
130  * contained a pagetable entry).
131  */
132 boolean gencgc_partial_pickup = 0;
133 
134 /* If defined, free pages are read-protected to ensure that nothing
135  * accesses them.
136  */
137 
138 /* #define READ_PROTECT_FREE_PAGES */
139 
140 
141 /*
142  * GC structures and variables
143  */
144 
145 /* the total bytes allocated. These are seen by Lisp DYNAMIC-USAGE. */
146 os_vm_size_t bytes_allocated = 0;
147 os_vm_size_t auto_gc_trigger = 0;
148 
149 /* the source and destination generations. These are set before a GC starts
150  * scavenging. */
151 generation_index_t from_space;
152 generation_index_t new_space;
153 
154 /* Set to 1 when in GC */
155 boolean gc_active_p = 0;
156 
157 /* should the GC be conservative on stack. If false (only right before
158  * saving a core), don't scan the stack / mark pages dont_move. */
159 static boolean conservative_stack = 1;
160 
161 /* An array of page structures is allocated on gc initialization.
162  * This helps to quickly map between an address and its page structure.
163  * page_table_pages is set from the size of the dynamic space. */
164 page_index_t page_table_pages;
165 struct page *page_table;
166 
167 in_use_marker_t *page_table_pinned_dwords;
168 size_t pins_map_size_in_bytes;
169 
170 /* In GC cards that have conservative pointers to them, should we wipe out
171  * dwords in there that are not used, so that they do not act as false
172  * root to other things in the heap from then on? This is a new feature
173  * but in testing it is both reliable and no noticeable slowdown. */
174 int do_wipe_p = 1;
175 
page_allocated_p(page_index_t page)176 static inline boolean page_allocated_p(page_index_t page) {
177     return (page_table[page].allocated != FREE_PAGE_FLAG);
178 }
179 
page_no_region_p(page_index_t page)180 static inline boolean page_no_region_p(page_index_t page) {
181     return !(page_table[page].allocated & OPEN_REGION_PAGE_FLAG);
182 }
183 
page_allocated_no_region_p(page_index_t page)184 static inline boolean page_allocated_no_region_p(page_index_t page) {
185     return ((page_table[page].allocated & (UNBOXED_PAGE_FLAG | BOXED_PAGE_FLAG))
186             && page_no_region_p(page));
187 }
188 
page_free_p(page_index_t page)189 static inline boolean page_free_p(page_index_t page) {
190     return (page_table[page].allocated == FREE_PAGE_FLAG);
191 }
192 
page_boxed_p(page_index_t page)193 static inline boolean page_boxed_p(page_index_t page) {
194     return (page_table[page].allocated & BOXED_PAGE_FLAG);
195 }
196 
page_boxed_no_region_p(page_index_t page)197 static inline boolean page_boxed_no_region_p(page_index_t page) {
198     return page_boxed_p(page) && page_no_region_p(page);
199 }
200 
page_unboxed_p(page_index_t page)201 static inline boolean page_unboxed_p(page_index_t page) {
202     /* Both flags set == boxed code page */
203     return ((page_table[page].allocated & UNBOXED_PAGE_FLAG)
204             && !page_boxed_p(page));
205 }
206 
protect_page_p(page_index_t page,generation_index_t generation)207 static inline boolean protect_page_p(page_index_t page, generation_index_t generation) {
208     return (page_boxed_no_region_p(page)
209             && (page_table[page].bytes_used != 0)
210             && !page_table[page].dont_move
211             && (page_table[page].gen == generation));
212 }
213 
214 /* To map addresses to page structures the address of the first page
215  * is needed. */
216 void *heap_base = NULL;
217 
218 /* Calculate the start address for the given page number. */
219 inline void *
page_address(page_index_t page_num)220 page_address(page_index_t page_num)
221 {
222     return (heap_base + (page_num * GENCGC_CARD_BYTES));
223 }
224 
225 /* Calculate the address where the allocation region associated with
226  * the page starts. */
227 static inline void *
page_scan_start(page_index_t page_index)228 page_scan_start(page_index_t page_index)
229 {
230     return page_address(page_index)-page_table[page_index].scan_start_offset;
231 }
232 
233 /* True if the page starts a contiguous block. */
234 static inline boolean
page_starts_contiguous_block_p(page_index_t page_index)235 page_starts_contiguous_block_p(page_index_t page_index)
236 {
237     return page_table[page_index].scan_start_offset == 0;
238 }
239 
240 /* True if the page is the last page in a contiguous block. */
241 static inline boolean
page_ends_contiguous_block_p(page_index_t page_index,generation_index_t gen)242 page_ends_contiguous_block_p(page_index_t page_index, generation_index_t gen)
243 {
244     return (/* page doesn't fill block */
245             (page_table[page_index].bytes_used < GENCGC_CARD_BYTES)
246             /* page is last allocated page */
247             || ((page_index + 1) >= last_free_page)
248             /* next page free */
249             || page_free_p(page_index + 1)
250             /* next page contains no data */
251             || (page_table[page_index + 1].bytes_used == 0)
252             /* next page is in different generation */
253             || (page_table[page_index + 1].gen != gen)
254             /* next page starts its own contiguous block */
255             || (page_starts_contiguous_block_p(page_index + 1)));
256 }
257 
258 /* Find the page index within the page_table for the given
259  * address. Return -1 on failure. */
260 inline page_index_t
find_page_index(void * addr)261 find_page_index(void *addr)
262 {
263     if (addr >= heap_base) {
264         page_index_t index = ((pointer_sized_uint_t)addr -
265                               (pointer_sized_uint_t)heap_base) / GENCGC_CARD_BYTES;
266         if (index < page_table_pages)
267             return (index);
268     }
269     return (-1);
270 }
271 
272 static os_vm_size_t
npage_bytes(page_index_t npages)273 npage_bytes(page_index_t npages)
274 {
275     gc_assert(npages>=0);
276     return ((os_vm_size_t)npages)*GENCGC_CARD_BYTES;
277 }
278 
279 /* Check that X is a higher address than Y and return offset from Y to
280  * X in bytes. */
281 static inline os_vm_size_t
void_diff(void * x,void * y)282 void_diff(void *x, void *y)
283 {
284     gc_assert(x >= y);
285     return (pointer_sized_uint_t)x - (pointer_sized_uint_t)y;
286 }
287 
288 /* a structure to hold the state of a generation
289  *
290  * CAUTION: If you modify this, make sure to touch up the alien
291  * definition in src/code/gc.lisp accordingly. ...or better yes,
292  * deal with the FIXME there...
293  */
294 struct generation {
295 
296     /* the first page that gc_alloc() checks on its next call */
297     page_index_t alloc_start_page;
298 
299     /* the first page that gc_alloc_unboxed() checks on its next call */
300     page_index_t alloc_unboxed_start_page;
301 
302     /* the first page that gc_alloc_large (boxed) considers on its next
303      * call. (Although it always allocates after the boxed_region.) */
304     page_index_t alloc_large_start_page;
305 
306     /* the first page that gc_alloc_large (unboxed) considers on its
307      * next call. (Although it always allocates after the
308      * current_unboxed_region.) */
309     page_index_t alloc_large_unboxed_start_page;
310 
311     /* the bytes allocated to this generation */
312     os_vm_size_t bytes_allocated;
313 
314     /* the number of bytes at which to trigger a GC */
315     os_vm_size_t gc_trigger;
316 
317     /* to calculate a new level for gc_trigger */
318     os_vm_size_t bytes_consed_between_gc;
319 
320     /* the number of GCs since the last raise */
321     int num_gc;
322 
323     /* the number of GCs to run on the generations before raising objects to the
324      * next generation */
325     int number_of_gcs_before_promotion;
326 
327     /* the cumulative sum of the bytes allocated to this generation. It is
328      * cleared after a GC on this generations, and update before new
329      * objects are added from a GC of a younger generation. Dividing by
330      * the bytes_allocated will give the average age of the memory in
331      * this generation since its last GC. */
332     os_vm_size_t cum_sum_bytes_allocated;
333 
334     /* a minimum average memory age before a GC will occur helps
335      * prevent a GC when a large number of new live objects have been
336      * added, in which case a GC could be a waste of time */
337     double minimum_age_before_gc;
338 };
339 
340 /* an array of generation structures. There needs to be one more
341  * generation structure than actual generations as the oldest
342  * generation is temporarily raised then lowered. */
343 struct generation generations[NUM_GENERATIONS];
344 
345 /* the oldest generation that is will currently be GCed by default.
346  * Valid values are: 0, 1, ... HIGHEST_NORMAL_GENERATION
347  *
348  * The default of HIGHEST_NORMAL_GENERATION enables GC on all generations.
349  *
350  * Setting this to 0 effectively disables the generational nature of
351  * the GC. In some applications generational GC may not be useful
352  * because there are no long-lived objects.
353  *
354  * An intermediate value could be handy after moving long-lived data
355  * into an older generation so an unnecessary GC of this long-lived
356  * data can be avoided. */
357 generation_index_t gencgc_oldest_gen_to_gc = HIGHEST_NORMAL_GENERATION;
358 
359 /* META: Is nobody aside from me bothered by this especially misleading
360  * use of the word "last"?  It could mean either "ultimate" or "prior",
361  * but in fact means neither. It is the *FIRST* page that should be grabbed
362  * for more space, so it is min free page, or 1+ the max used page. */
363 /* The maximum free page in the heap is maintained and used to update
364  * ALLOCATION_POINTER which is used by the room function to limit its
365  * search of the heap. XX Gencgc obviously needs to be better
366  * integrated with the Lisp code. */
367 
368 page_index_t last_free_page;
369 
370 #ifdef LISP_FEATURE_SB_THREAD
371 /* This lock is to prevent multiple threads from simultaneously
372  * allocating new regions which overlap each other.  Note that the
373  * majority of GC is single-threaded, but alloc() may be called from
374  * >1 thread at a time and must be thread-safe.  This lock must be
375  * seized before all accesses to generations[] or to parts of
376  * page_table[] that other threads may want to see */
377 static pthread_mutex_t free_pages_lock = PTHREAD_MUTEX_INITIALIZER;
378 /* This lock is used to protect non-thread-local allocation. */
379 static pthread_mutex_t allocation_lock = PTHREAD_MUTEX_INITIALIZER;
380 #endif
381 
382 extern os_vm_size_t gencgc_release_granularity;
383 os_vm_size_t gencgc_release_granularity = GENCGC_RELEASE_GRANULARITY;
384 
385 extern os_vm_size_t gencgc_alloc_granularity;
386 os_vm_size_t gencgc_alloc_granularity = GENCGC_ALLOC_GRANULARITY;
387 
388 
389 /*
390  * miscellaneous heap functions
391  */
392 
393 /* Count the number of pages which are write-protected within the
394  * given generation. */
395 static page_index_t
count_write_protect_generation_pages(generation_index_t generation)396 count_write_protect_generation_pages(generation_index_t generation)
397 {
398     page_index_t i, count = 0;
399 
400     for (i = 0; i < last_free_page; i++)
401         if (page_allocated_p(i)
402             && (page_table[i].gen == generation)
403             && (page_table[i].write_protected == 1))
404             count++;
405     return count;
406 }
407 
408 /* Count the number of pages within the given generation. */
409 static page_index_t
count_generation_pages(generation_index_t generation)410 count_generation_pages(generation_index_t generation)
411 {
412     page_index_t i;
413     page_index_t count = 0;
414 
415     for (i = 0; i < last_free_page; i++)
416         if (page_allocated_p(i)
417             && (page_table[i].gen == generation))
418             count++;
419     return count;
420 }
421 
422 #if QSHOW
423 static page_index_t
count_dont_move_pages(void)424 count_dont_move_pages(void)
425 {
426     page_index_t i;
427     page_index_t count = 0;
428     for (i = 0; i < last_free_page; i++) {
429         if (page_allocated_p(i)
430             && (page_table[i].dont_move != 0)) {
431             ++count;
432         }
433     }
434     return count;
435 }
436 #endif /* QSHOW */
437 
438 /* Work through the pages and add up the number of bytes used for the
439  * given generation. */
440 static os_vm_size_t
count_generation_bytes_allocated(generation_index_t gen)441 count_generation_bytes_allocated (generation_index_t gen)
442 {
443     page_index_t i;
444     os_vm_size_t result = 0;
445     for (i = 0; i < last_free_page; i++) {
446         if (page_allocated_p(i)
447             && (page_table[i].gen == gen))
448             result += page_table[i].bytes_used;
449     }
450     return result;
451 }
452 
453 /* Return the average age of the memory in a generation. */
454 extern double
generation_average_age(generation_index_t gen)455 generation_average_age(generation_index_t gen)
456 {
457     if (generations[gen].bytes_allocated == 0)
458         return 0.0;
459 
460     return
461         ((double)generations[gen].cum_sum_bytes_allocated)
462         / ((double)generations[gen].bytes_allocated);
463 }
464 
465 #ifdef LISP_FEATURE_X86
466 extern void fpu_save(void *);
467 extern void fpu_restore(void *);
468 #endif
469 
470 extern void
write_generation_stats(FILE * file)471 write_generation_stats(FILE *file)
472 {
473     generation_index_t i;
474 
475 #ifdef LISP_FEATURE_X86
476     int fpu_state[27];
477 
478     /* Can end up here after calling alloc_tramp which doesn't prepare
479      * the x87 state, and the C ABI uses a different mode */
480     fpu_save(fpu_state);
481 #endif
482 
483     /* Print the heap stats. */
484     fprintf(file,
485             " Gen StaPg UbSta LaSta LUbSt Boxed Unboxed LB   LUB  !move  Alloc  Waste   Trig    WP  GCs Mem-age\n");
486 
487     for (i = 0; i < SCRATCH_GENERATION; i++) {
488         page_index_t j;
489         page_index_t boxed_cnt = 0;
490         page_index_t unboxed_cnt = 0;
491         page_index_t large_boxed_cnt = 0;
492         page_index_t large_unboxed_cnt = 0;
493         page_index_t pinned_cnt=0;
494 
495         for (j = 0; j < last_free_page; j++)
496             if (page_table[j].gen == i) {
497 
498                 /* Count the number of boxed pages within the given
499                  * generation. */
500                 if (page_boxed_p(j)) {
501                     if (page_table[j].large_object)
502                         large_boxed_cnt++;
503                     else
504                         boxed_cnt++;
505                 }
506                 if(page_table[j].dont_move) pinned_cnt++;
507                 /* Count the number of unboxed pages within the given
508                  * generation. */
509                 if (page_unboxed_p(j)) {
510                     if (page_table[j].large_object)
511                         large_unboxed_cnt++;
512                     else
513                         unboxed_cnt++;
514                 }
515             }
516 
517         gc_assert(generations[i].bytes_allocated
518                   == count_generation_bytes_allocated(i));
519         fprintf(file,
520                 "   %1d: %5ld %5ld %5ld %5ld",
521                 i,
522                 (long)generations[i].alloc_start_page,
523                 (long)generations[i].alloc_unboxed_start_page,
524                 (long)generations[i].alloc_large_start_page,
525                 (long)generations[i].alloc_large_unboxed_start_page);
526         fprintf(file,
527                 " %5"PAGE_INDEX_FMT" %5"PAGE_INDEX_FMT" %5"PAGE_INDEX_FMT
528                 " %5"PAGE_INDEX_FMT" %5"PAGE_INDEX_FMT,
529                 boxed_cnt, unboxed_cnt, large_boxed_cnt,
530                 large_unboxed_cnt, pinned_cnt);
531         fprintf(file,
532                 " %8"OS_VM_SIZE_FMT
533                 " %5"OS_VM_SIZE_FMT
534                 " %8"OS_VM_SIZE_FMT
535                 " %4"PAGE_INDEX_FMT" %3d %7.4f\n",
536                 generations[i].bytes_allocated,
537                 (npage_bytes(count_generation_pages(i)) - generations[i].bytes_allocated),
538                 generations[i].gc_trigger,
539                 count_write_protect_generation_pages(i),
540                 generations[i].num_gc,
541                 generation_average_age(i));
542     }
543     fprintf(file,"   Total bytes allocated    = %"OS_VM_SIZE_FMT"\n", bytes_allocated);
544     fprintf(file,"   Dynamic-space-size bytes = %"OS_VM_SIZE_FMT"\n", dynamic_space_size);
545 
546 #ifdef LISP_FEATURE_X86
547     fpu_restore(fpu_state);
548 #endif
549 }
550 
551 extern void
write_heap_exhaustion_report(FILE * file,long available,long requested,struct thread * thread)552 write_heap_exhaustion_report(FILE *file, long available, long requested,
553                              struct thread *thread)
554 {
555     fprintf(file,
556             "Heap exhausted during %s: %ld bytes available, %ld requested.\n",
557             gc_active_p ? "garbage collection" : "allocation",
558             available,
559             requested);
560     write_generation_stats(file);
561     fprintf(file, "GC control variables:\n");
562     fprintf(file, "   *GC-INHIBIT* = %s\n   *GC-PENDING* = %s\n",
563             SymbolValue(GC_INHIBIT,thread)==NIL ? "false" : "true",
564             (SymbolValue(GC_PENDING, thread) == T) ?
565             "true" : ((SymbolValue(GC_PENDING, thread) == NIL) ?
566                       "false" : "in progress"));
567 #ifdef LISP_FEATURE_SB_THREAD
568     fprintf(file, "   *STOP-FOR-GC-PENDING* = %s\n",
569             SymbolValue(STOP_FOR_GC_PENDING,thread)==NIL ? "false" : "true");
570 #endif
571 }
572 
573 extern void
print_generation_stats(void)574 print_generation_stats(void)
575 {
576     write_generation_stats(stderr);
577 }
578 
579 extern char* gc_logfile;
580 char * gc_logfile = NULL;
581 
582 extern void
log_generation_stats(char * logfile,char * header)583 log_generation_stats(char *logfile, char *header)
584 {
585     if (logfile) {
586         FILE * log = fopen(logfile, "a");
587         if (log) {
588             fprintf(log, "%s\n", header);
589             write_generation_stats(log);
590             fclose(log);
591         } else {
592             fprintf(stderr, "Could not open gc logfile: %s\n", logfile);
593             fflush(stderr);
594         }
595     }
596 }
597 
598 extern void
report_heap_exhaustion(long available,long requested,struct thread * th)599 report_heap_exhaustion(long available, long requested, struct thread *th)
600 {
601     if (gc_logfile) {
602         FILE * log = fopen(gc_logfile, "a");
603         if (log) {
604             write_heap_exhaustion_report(log, available, requested, th);
605             fclose(log);
606         } else {
607             fprintf(stderr, "Could not open gc logfile: %s\n", gc_logfile);
608             fflush(stderr);
609         }
610     }
611     /* Always to stderr as well. */
612     write_heap_exhaustion_report(stderr, available, requested, th);
613 }
614 
615 
616 #if defined(LISP_FEATURE_X86)
617 void fast_bzero(void*, size_t); /* in <arch>-assem.S */
618 #endif
619 
620 /* Zero the pages from START to END (inclusive), but use mmap/munmap instead
621  * if zeroing it ourselves, i.e. in practice give the memory back to the
622  * OS. Generally done after a large GC.
623  */
zero_pages_with_mmap(page_index_t start,page_index_t end)624 void zero_pages_with_mmap(page_index_t start, page_index_t end) {
625     page_index_t i;
626     void *addr = page_address(start), *new_addr;
627     os_vm_size_t length = npage_bytes(1+end-start);
628 
629     if (start > end)
630       return;
631 
632     gc_assert(length >= gencgc_release_granularity);
633     gc_assert((length % gencgc_release_granularity) == 0);
634 
635     os_invalidate(addr, length);
636     new_addr = os_validate(addr, length);
637     if (new_addr == NULL || new_addr != addr) {
638         lose("remap_free_pages: page moved, 0x%08x ==> 0x%08x",
639              start, new_addr);
640     }
641 
642     for (i = start; i <= end; i++) {
643         page_table[i].need_to_zero = 0;
644     }
645 }
646 
647 /* Zero the pages from START to END (inclusive). Generally done just after
648  * a new region has been allocated.
649  */
650 static void
zero_pages(page_index_t start,page_index_t end)651 zero_pages(page_index_t start, page_index_t end) {
652     if (start > end)
653       return;
654 
655 #if defined(LISP_FEATURE_X86)
656     fast_bzero(page_address(start), npage_bytes(1+end-start));
657 #else
658     bzero(page_address(start), npage_bytes(1+end-start));
659 #endif
660 
661 }
662 
663 static void
zero_and_mark_pages(page_index_t start,page_index_t end)664 zero_and_mark_pages(page_index_t start, page_index_t end) {
665     page_index_t i;
666 
667     zero_pages(start, end);
668     for (i = start; i <= end; i++)
669         page_table[i].need_to_zero = 0;
670 }
671 
672 /* Zero the pages from START to END (inclusive), except for those
673  * pages that are known to already zeroed. Mark all pages in the
674  * ranges as non-zeroed.
675  */
676 static void
zero_dirty_pages(page_index_t start,page_index_t end)677 zero_dirty_pages(page_index_t start, page_index_t end) {
678     page_index_t i, j;
679 
680     for (i = start; i <= end; i++) {
681         if (!page_table[i].need_to_zero) continue;
682         for (j = i+1; (j <= end) && (page_table[j].need_to_zero); j++);
683         zero_pages(i, j-1);
684         i = j;
685     }
686 
687     for (i = start; i <= end; i++) {
688         page_table[i].need_to_zero = 1;
689     }
690 }
691 
692 
693 /*
694  * To support quick and inline allocation, regions of memory can be
695  * allocated and then allocated from with just a free pointer and a
696  * check against an end address.
697  *
698  * Since objects can be allocated to spaces with different properties
699  * e.g. boxed/unboxed, generation, ages; there may need to be many
700  * allocation regions.
701  *
702  * Each allocation region may start within a partly used page. Many
703  * features of memory use are noted on a page wise basis, e.g. the
704  * generation; so if a region starts within an existing allocated page
705  * it must be consistent with this page.
706  *
707  * During the scavenging of the newspace, objects will be transported
708  * into an allocation region, and pointers updated to point to this
709  * allocation region. It is possible that these pointers will be
710  * scavenged again before the allocation region is closed, e.g. due to
711  * trans_list which jumps all over the place to cleanup the list. It
712  * is important to be able to determine properties of all objects
713  * pointed to when scavenging, e.g to detect pointers to the oldspace.
714  * Thus it's important that the allocation regions have the correct
715  * properties set when allocated, and not just set when closed. The
716  * region allocation routines return regions with the specified
717  * properties, and grab all the pages, setting their properties
718  * appropriately, except that the amount used is not known.
719  *
720  * These regions are used to support quicker allocation using just a
721  * free pointer. The actual space used by the region is not reflected
722  * in the pages tables until it is closed. It can't be scavenged until
723  * closed.
724  *
725  * When finished with the region it should be closed, which will
726  * update the page tables for the actual space used returning unused
727  * space. Further it may be noted in the new regions which is
728  * necessary when scavenging the newspace.
729  *
730  * Large objects may be allocated directly without an allocation
731  * region, the page tables are updated immediately.
732  *
733  * Unboxed objects don't contain pointers to other objects and so
734  * don't need scavenging. Further they can't contain pointers to
735  * younger generations so WP is not needed. By allocating pages to
736  * unboxed objects the whole page never needs scavenging or
737  * write-protecting. */
738 
739 /* We are only using two regions at present. Both are for the current
740  * newspace generation. */
741 struct alloc_region boxed_region;
742 struct alloc_region unboxed_region;
743 
744 /* The generation currently being allocated to. */
745 static generation_index_t gc_alloc_generation;
746 
747 static inline page_index_t
generation_alloc_start_page(generation_index_t generation,int page_type_flag,int large)748 generation_alloc_start_page(generation_index_t generation, int page_type_flag, int large)
749 {
750     if (large) {
751         if (UNBOXED_PAGE_FLAG == page_type_flag) {
752             return generations[generation].alloc_large_unboxed_start_page;
753         } else if (BOXED_PAGE_FLAG & page_type_flag) {
754             /* Both code and data. */
755             return generations[generation].alloc_large_start_page;
756         } else {
757             lose("bad page type flag: %d", page_type_flag);
758         }
759     } else {
760         if (UNBOXED_PAGE_FLAG == page_type_flag) {
761             return generations[generation].alloc_unboxed_start_page;
762         } else if (BOXED_PAGE_FLAG & page_type_flag) {
763             /* Both code and data. */
764             return generations[generation].alloc_start_page;
765         } else {
766             lose("bad page_type_flag: %d", page_type_flag);
767         }
768     }
769 }
770 
771 static inline void
set_generation_alloc_start_page(generation_index_t generation,int page_type_flag,int large,page_index_t page)772 set_generation_alloc_start_page(generation_index_t generation, int page_type_flag, int large,
773                                 page_index_t page)
774 {
775     if (large) {
776         if (UNBOXED_PAGE_FLAG == page_type_flag) {
777             generations[generation].alloc_large_unboxed_start_page = page;
778         } else if (BOXED_PAGE_FLAG & page_type_flag) {
779             /* Both code and data. */
780             generations[generation].alloc_large_start_page = page;
781         } else {
782             lose("bad page type flag: %d", page_type_flag);
783         }
784     } else {
785         if (UNBOXED_PAGE_FLAG == page_type_flag) {
786             generations[generation].alloc_unboxed_start_page = page;
787         } else if (BOXED_PAGE_FLAG & page_type_flag) {
788             /* Both code and data. */
789             generations[generation].alloc_start_page = page;
790         } else {
791             lose("bad page type flag: %d", page_type_flag);
792         }
793     }
794 }
795 
796 const int n_dwords_in_card = GENCGC_CARD_BYTES / N_WORD_BYTES / 2;
797 in_use_marker_t *
pinned_dwords(page_index_t page)798 pinned_dwords(page_index_t page)
799 {
800     if (page_table[page].has_pin_map)
801         return &page_table_pinned_dwords[page * (n_dwords_in_card/N_WORD_BITS)];
802     return NULL;
803 }
804 
805 /* Find a new region with room for at least the given number of bytes.
806  *
807  * It starts looking at the current generation's alloc_start_page. So
808  * may pick up from the previous region if there is enough space. This
809  * keeps the allocation contiguous when scavenging the newspace.
810  *
811  * The alloc_region should have been closed by a call to
812  * gc_alloc_update_page_tables(), and will thus be in an empty state.
813  *
814  * To assist the scavenging functions write-protected pages are not
815  * used. Free pages should not be write-protected.
816  *
817  * It is critical to the conservative GC that the start of regions be
818  * known. To help achieve this only small regions are allocated at a
819  * time.
820  *
821  * During scavenging, pointers may be found to within the current
822  * region and the page generation must be set so that pointers to the
823  * from space can be recognized. Therefore the generation of pages in
824  * the region are set to gc_alloc_generation. To prevent another
825  * allocation call using the same pages, all the pages in the region
826  * are allocated, although they will initially be empty.
827  */
828 static void
gc_alloc_new_region(sword_t nbytes,int page_type_flag,struct alloc_region * alloc_region)829 gc_alloc_new_region(sword_t nbytes, int page_type_flag, struct alloc_region *alloc_region)
830 {
831     page_index_t first_page;
832     page_index_t last_page;
833     os_vm_size_t bytes_found;
834     page_index_t i;
835     int ret;
836 
837     /*
838     FSHOW((stderr,
839            "/alloc_new_region for %d bytes from gen %d\n",
840            nbytes, gc_alloc_generation));
841     */
842 
843     /* Check that the region is in a reset state. */
844     gc_assert((alloc_region->first_page == 0)
845               && (alloc_region->last_page == -1)
846               && (alloc_region->free_pointer == alloc_region->end_addr));
847     ret = thread_mutex_lock(&free_pages_lock);
848     gc_assert(ret == 0);
849     first_page = generation_alloc_start_page(gc_alloc_generation, page_type_flag, 0);
850     last_page=gc_find_freeish_pages(&first_page, nbytes, page_type_flag);
851     bytes_found=(GENCGC_CARD_BYTES - page_table[first_page].bytes_used)
852             + npage_bytes(last_page-first_page);
853 
854     /* Set up the alloc_region. */
855     alloc_region->first_page = first_page;
856     alloc_region->last_page = last_page;
857     alloc_region->start_addr = page_table[first_page].bytes_used
858         + page_address(first_page);
859     alloc_region->free_pointer = alloc_region->start_addr;
860     alloc_region->end_addr = alloc_region->start_addr + bytes_found;
861 
862     /* Set up the pages. */
863 
864     /* The first page may have already been in use. */
865     if (page_table[first_page].bytes_used == 0) {
866         page_table[first_page].allocated = page_type_flag;
867         page_table[first_page].gen = gc_alloc_generation;
868         page_table[first_page].large_object = 0;
869         page_table[first_page].scan_start_offset = 0;
870         // wiping should have free()ed and :=NULL
871         gc_assert(pinned_dwords(first_page) == NULL);
872     }
873 
874     gc_assert(page_table[first_page].allocated == page_type_flag);
875     page_table[first_page].allocated |= OPEN_REGION_PAGE_FLAG;
876 
877     gc_assert(page_table[first_page].gen == gc_alloc_generation);
878     gc_assert(page_table[first_page].large_object == 0);
879 
880     for (i = first_page+1; i <= last_page; i++) {
881         page_table[i].allocated = page_type_flag;
882         page_table[i].gen = gc_alloc_generation;
883         page_table[i].large_object = 0;
884         /* This may not be necessary for unboxed regions (think it was
885          * broken before!) */
886         page_table[i].scan_start_offset =
887             void_diff(page_address(i),alloc_region->start_addr);
888         page_table[i].allocated |= OPEN_REGION_PAGE_FLAG ;
889     }
890     /* Bump up last_free_page. */
891     if (last_page+1 > last_free_page) {
892         last_free_page = last_page+1;
893         /* do we only want to call this on special occasions? like for
894          * boxed_region? */
895         set_alloc_pointer((lispobj)page_address(last_free_page));
896     }
897     ret = thread_mutex_unlock(&free_pages_lock);
898     gc_assert(ret == 0);
899 
900 #ifdef READ_PROTECT_FREE_PAGES
901     os_protect(page_address(first_page),
902                npage_bytes(1+last_page-first_page),
903                OS_VM_PROT_ALL);
904 #endif
905 
906     /* If the first page was only partial, don't check whether it's
907      * zeroed (it won't be) and don't zero it (since the parts that
908      * we're interested in are guaranteed to be zeroed).
909      */
910     if (page_table[first_page].bytes_used) {
911         first_page++;
912     }
913 
914     zero_dirty_pages(first_page, last_page);
915 
916     /* we can do this after releasing free_pages_lock */
917     if (gencgc_zero_check) {
918         word_t *p;
919         for (p = (word_t *)alloc_region->start_addr;
920              p < (word_t *)alloc_region->end_addr; p++) {
921             if (*p != 0) {
922                 lose("The new region is not zero at %p (start=%p, end=%p).\n",
923                      p, alloc_region->start_addr, alloc_region->end_addr);
924             }
925         }
926     }
927 }
928 
929 /* If the record_new_objects flag is 2 then all new regions created
930  * are recorded.
931  *
932  * If it's 1 then then it is only recorded if the first page of the
933  * current region is <= new_areas_ignore_page. This helps avoid
934  * unnecessary recording when doing full scavenge pass.
935  *
936  * The new_object structure holds the page, byte offset, and size of
937  * new regions of objects. Each new area is placed in the array of
938  * these structures pointer to by new_areas. new_areas_index holds the
939  * offset into new_areas.
940  *
941  * If new_area overflows NUM_NEW_AREAS then it stops adding them. The
942  * later code must detect this and handle it, probably by doing a full
943  * scavenge of a generation. */
944 #define NUM_NEW_AREAS 512
945 static int record_new_objects = 0;
946 static page_index_t new_areas_ignore_page;
947 struct new_area {
948     page_index_t page;
949     size_t offset;
950     size_t size;
951 };
952 static struct new_area (*new_areas)[];
953 static size_t new_areas_index;
954 size_t max_new_areas;
955 
956 /* Add a new area to new_areas. */
957 static void
add_new_area(page_index_t first_page,size_t offset,size_t size)958 add_new_area(page_index_t first_page, size_t offset, size_t size)
959 {
960     size_t new_area_start, c;
961     ssize_t i;
962 
963     /* Ignore if full. */
964     if (new_areas_index >= NUM_NEW_AREAS)
965         return;
966 
967     switch (record_new_objects) {
968     case 0:
969         return;
970     case 1:
971         if (first_page > new_areas_ignore_page)
972             return;
973         break;
974     case 2:
975         break;
976     default:
977         gc_abort();
978     }
979 
980     new_area_start = npage_bytes(first_page) + offset;
981 
982     /* Search backwards for a prior area that this follows from. If
983        found this will save adding a new area. */
984     for (i = new_areas_index-1, c = 0; (i >= 0) && (c < 8); i--, c++) {
985         size_t area_end =
986             npage_bytes((*new_areas)[i].page)
987             + (*new_areas)[i].offset
988             + (*new_areas)[i].size;
989         /*FSHOW((stderr,
990                "/add_new_area S1 %d %d %d %d\n",
991                i, c, new_area_start, area_end));*/
992         if (new_area_start == area_end) {
993             /*FSHOW((stderr,
994                    "/adding to [%d] %d %d %d with %d %d %d:\n",
995                    i,
996                    (*new_areas)[i].page,
997                    (*new_areas)[i].offset,
998                    (*new_areas)[i].size,
999                    first_page,
1000                    offset,
1001                     size);*/
1002             (*new_areas)[i].size += size;
1003             return;
1004         }
1005     }
1006 
1007     (*new_areas)[new_areas_index].page = first_page;
1008     (*new_areas)[new_areas_index].offset = offset;
1009     (*new_areas)[new_areas_index].size = size;
1010     /*FSHOW((stderr,
1011            "/new_area %d page %d offset %d size %d\n",
1012            new_areas_index, first_page, offset, size));*/
1013     new_areas_index++;
1014 
1015     /* Note the max new_areas used. */
1016     if (new_areas_index > max_new_areas)
1017         max_new_areas = new_areas_index;
1018 }
1019 
1020 /* Update the tables for the alloc_region. The region may be added to
1021  * the new_areas.
1022  *
1023  * When done the alloc_region is set up so that the next quick alloc
1024  * will fail safely and thus a new region will be allocated. Further
1025  * it is safe to try to re-update the page table of this reset
1026  * alloc_region. */
1027 void
gc_alloc_update_page_tables(int page_type_flag,struct alloc_region * alloc_region)1028 gc_alloc_update_page_tables(int page_type_flag, struct alloc_region *alloc_region)
1029 {
1030     boolean more;
1031     page_index_t first_page;
1032     page_index_t next_page;
1033     os_vm_size_t bytes_used;
1034     os_vm_size_t region_size;
1035     os_vm_size_t byte_cnt;
1036     page_bytes_t orig_first_page_bytes_used;
1037     int ret;
1038 
1039 
1040     first_page = alloc_region->first_page;
1041 
1042     /* Catch an unused alloc_region. */
1043     if ((first_page == 0) && (alloc_region->last_page == -1))
1044         return;
1045 
1046     next_page = first_page+1;
1047 
1048     ret = thread_mutex_lock(&free_pages_lock);
1049     gc_assert(ret == 0);
1050     if (alloc_region->free_pointer != alloc_region->start_addr) {
1051         /* some bytes were allocated in the region */
1052         orig_first_page_bytes_used = page_table[first_page].bytes_used;
1053 
1054         gc_assert(alloc_region->start_addr ==
1055                   (page_address(first_page)
1056                    + page_table[first_page].bytes_used));
1057 
1058         /* All the pages used need to be updated */
1059 
1060         /* Update the first page. */
1061 
1062         /* If the page was free then set up the gen, and
1063          * scan_start_offset. */
1064         if (page_table[first_page].bytes_used == 0)
1065             gc_assert(page_starts_contiguous_block_p(first_page));
1066         page_table[first_page].allocated &= ~(OPEN_REGION_PAGE_FLAG);
1067 
1068         gc_assert(page_table[first_page].allocated & page_type_flag);
1069         gc_assert(page_table[first_page].gen == gc_alloc_generation);
1070         gc_assert(page_table[first_page].large_object == 0);
1071 
1072         byte_cnt = 0;
1073 
1074         /* Calculate the number of bytes used in this page. This is not
1075          * always the number of new bytes, unless it was free. */
1076         more = 0;
1077         if ((bytes_used = void_diff(alloc_region->free_pointer,
1078                                     page_address(first_page)))
1079             >GENCGC_CARD_BYTES) {
1080             bytes_used = GENCGC_CARD_BYTES;
1081             more = 1;
1082         }
1083         page_table[first_page].bytes_used = bytes_used;
1084         byte_cnt += bytes_used;
1085 
1086 
1087         /* All the rest of the pages should be free. We need to set
1088          * their scan_start_offset pointer to the start of the
1089          * region, and set the bytes_used. */
1090         while (more) {
1091             page_table[next_page].allocated &= ~(OPEN_REGION_PAGE_FLAG);
1092             gc_assert(page_table[next_page].allocated & page_type_flag);
1093             gc_assert(page_table[next_page].bytes_used == 0);
1094             gc_assert(page_table[next_page].gen == gc_alloc_generation);
1095             gc_assert(page_table[next_page].large_object == 0);
1096 
1097             gc_assert(page_table[next_page].scan_start_offset ==
1098                       void_diff(page_address(next_page),
1099                                 alloc_region->start_addr));
1100 
1101             /* Calculate the number of bytes used in this page. */
1102             more = 0;
1103             if ((bytes_used = void_diff(alloc_region->free_pointer,
1104                                         page_address(next_page)))>GENCGC_CARD_BYTES) {
1105                 bytes_used = GENCGC_CARD_BYTES;
1106                 more = 1;
1107             }
1108             page_table[next_page].bytes_used = bytes_used;
1109             byte_cnt += bytes_used;
1110 
1111             next_page++;
1112         }
1113 
1114         region_size = void_diff(alloc_region->free_pointer,
1115                                 alloc_region->start_addr);
1116         bytes_allocated += region_size;
1117         generations[gc_alloc_generation].bytes_allocated += region_size;
1118 
1119         gc_assert((byte_cnt- orig_first_page_bytes_used) == region_size);
1120 
1121         /* Set the generations alloc restart page to the last page of
1122          * the region. */
1123         set_generation_alloc_start_page(gc_alloc_generation, page_type_flag, 0, next_page-1);
1124 
1125         /* Add the region to the new_areas if requested. */
1126         if (BOXED_PAGE_FLAG & page_type_flag)
1127             add_new_area(first_page,orig_first_page_bytes_used, region_size);
1128 
1129         /*
1130         FSHOW((stderr,
1131                "/gc_alloc_update_page_tables update %d bytes to gen %d\n",
1132                region_size,
1133                gc_alloc_generation));
1134         */
1135     } else {
1136         /* There are no bytes allocated. Unallocate the first_page if
1137          * there are 0 bytes_used. */
1138         page_table[first_page].allocated &= ~(OPEN_REGION_PAGE_FLAG);
1139         if (page_table[first_page].bytes_used == 0)
1140             page_table[first_page].allocated = FREE_PAGE_FLAG;
1141     }
1142 
1143     /* Unallocate any unused pages. */
1144     while (next_page <= alloc_region->last_page) {
1145         gc_assert(page_table[next_page].bytes_used == 0);
1146         page_table[next_page].allocated = FREE_PAGE_FLAG;
1147         next_page++;
1148     }
1149     ret = thread_mutex_unlock(&free_pages_lock);
1150     gc_assert(ret == 0);
1151 
1152     /* alloc_region is per-thread, we're ok to do this unlocked */
1153     gc_set_region_empty(alloc_region);
1154 }
1155 
1156 /* Allocate a possibly large object. */
1157 void *
gc_alloc_large(sword_t nbytes,int page_type_flag,struct alloc_region * alloc_region)1158 gc_alloc_large(sword_t nbytes, int page_type_flag, struct alloc_region *alloc_region)
1159 {
1160     boolean more;
1161     page_index_t first_page, next_page, last_page;
1162     page_bytes_t orig_first_page_bytes_used;
1163     os_vm_size_t byte_cnt;
1164     os_vm_size_t bytes_used;
1165     int ret;
1166 
1167     ret = thread_mutex_lock(&free_pages_lock);
1168     gc_assert(ret == 0);
1169 
1170     first_page = generation_alloc_start_page(gc_alloc_generation, page_type_flag, 1);
1171     if (first_page <= alloc_region->last_page) {
1172         first_page = alloc_region->last_page+1;
1173     }
1174 
1175     last_page=gc_find_freeish_pages(&first_page,nbytes, page_type_flag);
1176 
1177     gc_assert(first_page > alloc_region->last_page);
1178 
1179     set_generation_alloc_start_page(gc_alloc_generation, page_type_flag, 1, last_page);
1180 
1181     /* Set up the pages. */
1182     orig_first_page_bytes_used = page_table[first_page].bytes_used;
1183 
1184     /* If the first page was free then set up the gen, and
1185      * scan_start_offset. */
1186     if (page_table[first_page].bytes_used == 0) {
1187         page_table[first_page].allocated = page_type_flag;
1188         page_table[first_page].gen = gc_alloc_generation;
1189         page_table[first_page].scan_start_offset = 0;
1190         page_table[first_page].large_object = 1;
1191     }
1192 
1193     gc_assert(page_table[first_page].allocated == page_type_flag);
1194     gc_assert(page_table[first_page].gen == gc_alloc_generation);
1195     gc_assert(page_table[first_page].large_object == 1);
1196 
1197     byte_cnt = 0;
1198 
1199     /* Calc. the number of bytes used in this page. This is not
1200      * always the number of new bytes, unless it was free. */
1201     more = 0;
1202     if ((bytes_used = nbytes+orig_first_page_bytes_used) > GENCGC_CARD_BYTES) {
1203         bytes_used = GENCGC_CARD_BYTES;
1204         more = 1;
1205     }
1206     page_table[first_page].bytes_used = bytes_used;
1207     byte_cnt += bytes_used;
1208 
1209     next_page = first_page+1;
1210 
1211     /* All the rest of the pages should be free. We need to set their
1212      * scan_start_offset pointer to the start of the region, and set
1213      * the bytes_used. */
1214     while (more) {
1215         gc_assert(page_free_p(next_page));
1216         gc_assert(page_table[next_page].bytes_used == 0);
1217         page_table[next_page].allocated = page_type_flag;
1218         page_table[next_page].gen = gc_alloc_generation;
1219         page_table[next_page].large_object = 1;
1220 
1221         page_table[next_page].scan_start_offset =
1222             npage_bytes(next_page-first_page) - orig_first_page_bytes_used;
1223 
1224         /* Calculate the number of bytes used in this page. */
1225         more = 0;
1226         bytes_used=(nbytes+orig_first_page_bytes_used)-byte_cnt;
1227         if (bytes_used > GENCGC_CARD_BYTES) {
1228             bytes_used = GENCGC_CARD_BYTES;
1229             more = 1;
1230         }
1231         page_table[next_page].bytes_used = bytes_used;
1232         page_table[next_page].write_protected=0;
1233         page_table[next_page].dont_move=0;
1234         byte_cnt += bytes_used;
1235         next_page++;
1236     }
1237 
1238     gc_assert((byte_cnt-orig_first_page_bytes_used) == (size_t)nbytes);
1239 
1240     bytes_allocated += nbytes;
1241     generations[gc_alloc_generation].bytes_allocated += nbytes;
1242 
1243     /* Add the region to the new_areas if requested. */
1244     if (BOXED_PAGE_FLAG & page_type_flag)
1245         add_new_area(first_page,orig_first_page_bytes_used,nbytes);
1246 
1247     /* Bump up last_free_page */
1248     if (last_page+1 > last_free_page) {
1249         last_free_page = last_page+1;
1250         set_alloc_pointer((lispobj)(page_address(last_free_page)));
1251     }
1252     ret = thread_mutex_unlock(&free_pages_lock);
1253     gc_assert(ret == 0);
1254 
1255 #ifdef READ_PROTECT_FREE_PAGES
1256     os_protect(page_address(first_page),
1257                npage_bytes(1+last_page-first_page),
1258                OS_VM_PROT_ALL);
1259 #endif
1260 
1261     zero_dirty_pages(first_page, last_page);
1262 
1263     return page_address(first_page);
1264 }
1265 
1266 static page_index_t gencgc_alloc_start_page = -1;
1267 
1268 void
gc_heap_exhausted_error_or_lose(sword_t available,sword_t requested)1269 gc_heap_exhausted_error_or_lose (sword_t available, sword_t requested)
1270 {
1271     struct thread *thread = arch_os_get_current_thread();
1272     /* Write basic information before doing anything else: if we don't
1273      * call to lisp this is a must, and even if we do there is always
1274      * the danger that we bounce back here before the error has been
1275      * handled, or indeed even printed.
1276      */
1277     report_heap_exhaustion(available, requested, thread);
1278     if (gc_active_p || (available == 0)) {
1279         /* If we are in GC, or totally out of memory there is no way
1280          * to sanely transfer control to the lisp-side of things.
1281          */
1282         lose("Heap exhausted, game over.");
1283     }
1284     else {
1285         /* FIXME: assert free_pages_lock held */
1286         (void)thread_mutex_unlock(&free_pages_lock);
1287 #if !(defined(LISP_FEATURE_WIN32) && defined(LISP_FEATURE_SB_THREAD))
1288         gc_assert(get_pseudo_atomic_atomic(thread));
1289         clear_pseudo_atomic_atomic(thread);
1290         if (get_pseudo_atomic_interrupted(thread))
1291             do_pending_interrupt();
1292 #endif
1293         /* Another issue is that signalling HEAP-EXHAUSTED error leads
1294          * to running user code at arbitrary places, even in a
1295          * WITHOUT-INTERRUPTS which may lead to a deadlock without
1296          * running out of the heap. So at this point all bets are
1297          * off. */
1298         if (SymbolValue(INTERRUPTS_ENABLED,thread) == NIL)
1299             corruption_warning_and_maybe_lose
1300                 ("Signalling HEAP-EXHAUSTED in a WITHOUT-INTERRUPTS.");
1301         /* available and requested should be double word aligned, thus
1302            they can passed as fixnums and shifted later. */
1303         funcall2(StaticSymbolFunction(HEAP_EXHAUSTED_ERROR), available, requested);
1304         lose("HEAP-EXHAUSTED-ERROR fell through");
1305     }
1306 }
1307 
1308 page_index_t
gc_find_freeish_pages(page_index_t * restart_page_ptr,sword_t bytes,int page_type_flag)1309 gc_find_freeish_pages(page_index_t *restart_page_ptr, sword_t bytes,
1310                       int page_type_flag)
1311 {
1312     page_index_t most_bytes_found_from = 0, most_bytes_found_to = 0;
1313     page_index_t first_page, last_page, restart_page = *restart_page_ptr;
1314     os_vm_size_t nbytes = bytes;
1315     os_vm_size_t nbytes_goal = nbytes;
1316     os_vm_size_t bytes_found = 0;
1317     os_vm_size_t most_bytes_found = 0;
1318     boolean small_object = nbytes < GENCGC_CARD_BYTES;
1319     /* FIXME: assert(free_pages_lock is held); */
1320 
1321     if (nbytes_goal < gencgc_alloc_granularity)
1322         nbytes_goal = gencgc_alloc_granularity;
1323 
1324     /* Toggled by gc_and_save for heap compaction, normally -1. */
1325     if (gencgc_alloc_start_page != -1) {
1326         restart_page = gencgc_alloc_start_page;
1327     }
1328 
1329     /* FIXME: This is on bytes instead of nbytes pending cleanup of
1330      * long from the interface. */
1331     gc_assert(bytes>=0);
1332     /* Search for a page with at least nbytes of space. We prefer
1333      * not to split small objects on multiple pages, to reduce the
1334      * number of contiguous allocation regions spaning multiple
1335      * pages: this helps avoid excessive conservativism.
1336      *
1337      * For other objects, we guarantee that they start on their own
1338      * page boundary.
1339      */
1340     first_page = restart_page;
1341     while (first_page < page_table_pages) {
1342         bytes_found = 0;
1343         if (page_free_p(first_page)) {
1344                 gc_assert(0 == page_table[first_page].bytes_used);
1345                 bytes_found = GENCGC_CARD_BYTES;
1346         } else if (small_object &&
1347                    (page_table[first_page].allocated == page_type_flag) &&
1348                    (page_table[first_page].large_object == 0) &&
1349                    (page_table[first_page].gen == gc_alloc_generation) &&
1350                    (page_table[first_page].write_protected == 0) &&
1351                    (page_table[first_page].dont_move == 0)) {
1352             bytes_found = GENCGC_CARD_BYTES - page_table[first_page].bytes_used;
1353             if (bytes_found < nbytes) {
1354                 if (bytes_found > most_bytes_found)
1355                     most_bytes_found = bytes_found;
1356                 first_page++;
1357                 continue;
1358             }
1359         } else {
1360             first_page++;
1361             continue;
1362         }
1363 
1364         gc_assert(page_table[first_page].write_protected == 0);
1365         for (last_page = first_page+1;
1366              ((last_page < page_table_pages) &&
1367               page_free_p(last_page) &&
1368               (bytes_found < nbytes_goal));
1369              last_page++) {
1370             bytes_found += GENCGC_CARD_BYTES;
1371             gc_assert(0 == page_table[last_page].bytes_used);
1372             gc_assert(0 == page_table[last_page].write_protected);
1373         }
1374 
1375         if (bytes_found > most_bytes_found) {
1376             most_bytes_found = bytes_found;
1377             most_bytes_found_from = first_page;
1378             most_bytes_found_to = last_page;
1379         }
1380         if (bytes_found >= nbytes_goal)
1381             break;
1382 
1383         first_page = last_page;
1384     }
1385 
1386     bytes_found = most_bytes_found;
1387     restart_page = first_page + 1;
1388 
1389     /* Check for a failure */
1390     if (bytes_found < nbytes) {
1391         gc_assert(restart_page >= page_table_pages);
1392         gc_heap_exhausted_error_or_lose(most_bytes_found, nbytes);
1393     }
1394 
1395     gc_assert(most_bytes_found_to);
1396     *restart_page_ptr = most_bytes_found_from;
1397     return most_bytes_found_to-1;
1398 }
1399 
1400 /* Allocate bytes.  All the rest of the special-purpose allocation
1401  * functions will eventually call this  */
1402 
1403 void *
gc_alloc_with_region(sword_t nbytes,int page_type_flag,struct alloc_region * my_region,int quick_p)1404 gc_alloc_with_region(sword_t nbytes,int page_type_flag, struct alloc_region *my_region,
1405                      int quick_p)
1406 {
1407     void *new_free_pointer;
1408 
1409     if (nbytes>=LARGE_OBJECT_SIZE)
1410         return gc_alloc_large(nbytes, page_type_flag, my_region);
1411 
1412     /* Check whether there is room in the current alloc region. */
1413     new_free_pointer = my_region->free_pointer + nbytes;
1414 
1415     /* fprintf(stderr, "alloc %d bytes from %p to %p\n", nbytes,
1416        my_region->free_pointer, new_free_pointer); */
1417 
1418     if (new_free_pointer <= my_region->end_addr) {
1419         /* If so then allocate from the current alloc region. */
1420         void *new_obj = my_region->free_pointer;
1421         my_region->free_pointer = new_free_pointer;
1422 
1423         /* Unless a `quick' alloc was requested, check whether the
1424            alloc region is almost empty. */
1425         if (!quick_p &&
1426             void_diff(my_region->end_addr,my_region->free_pointer) <= 32) {
1427             /* If so, finished with the current region. */
1428             gc_alloc_update_page_tables(page_type_flag, my_region);
1429             /* Set up a new region. */
1430             gc_alloc_new_region(32 /*bytes*/, page_type_flag, my_region);
1431         }
1432 
1433         return((void *)new_obj);
1434     }
1435 
1436     /* Else not enough free space in the current region: retry with a
1437      * new region. */
1438 
1439     gc_alloc_update_page_tables(page_type_flag, my_region);
1440     gc_alloc_new_region(nbytes, page_type_flag, my_region);
1441     return gc_alloc_with_region(nbytes, page_type_flag, my_region,0);
1442 }
1443 
1444 /* Copy a large object. If the object is in a large object region then
1445  * it is simply promoted, else it is copied. If it's large enough then
1446  * it's copied to a large object region.
1447  *
1448  * Bignums and vectors may have shrunk. If the object is not copied
1449  * the space needs to be reclaimed, and the page_tables corrected. */
1450 static lispobj
general_copy_large_object(lispobj object,word_t nwords,boolean boxedp)1451 general_copy_large_object(lispobj object, word_t nwords, boolean boxedp)
1452 {
1453     int tag;
1454     lispobj *new;
1455     page_index_t first_page;
1456 
1457     gc_assert(is_lisp_pointer(object));
1458     gc_assert(from_space_p(object));
1459     gc_assert((nwords & 0x01) == 0);
1460 
1461     if ((nwords > 1024*1024) && gencgc_verbose) {
1462         FSHOW((stderr, "/general_copy_large_object: %d bytes\n",
1463                nwords*N_WORD_BYTES));
1464     }
1465 
1466     /* Check whether it's a large object. */
1467     first_page = find_page_index((void *)object);
1468     gc_assert(first_page >= 0);
1469 
1470     if (page_table[first_page].large_object) {
1471         /* Promote the object. Note: Unboxed objects may have been
1472          * allocated to a BOXED region so it may be necessary to
1473          * change the region to UNBOXED. */
1474         os_vm_size_t remaining_bytes;
1475         os_vm_size_t bytes_freed;
1476         page_index_t next_page;
1477         page_bytes_t old_bytes_used;
1478 
1479         /* FIXME: This comment is somewhat stale.
1480          *
1481          * Note: Any page write-protection must be removed, else a
1482          * later scavenge_newspace may incorrectly not scavenge these
1483          * pages. This would not be necessary if they are added to the
1484          * new areas, but let's do it for them all (they'll probably
1485          * be written anyway?). */
1486 
1487         gc_assert(page_starts_contiguous_block_p(first_page));
1488         next_page = first_page;
1489         remaining_bytes = nwords*N_WORD_BYTES;
1490 
1491         while (remaining_bytes > GENCGC_CARD_BYTES) {
1492             gc_assert(page_table[next_page].gen == from_space);
1493             gc_assert(page_table[next_page].large_object);
1494             gc_assert(page_table[next_page].scan_start_offset ==
1495                       npage_bytes(next_page-first_page));
1496             gc_assert(page_table[next_page].bytes_used == GENCGC_CARD_BYTES);
1497             /* Should have been unprotected by unprotect_oldspace()
1498              * for boxed objects, and after promotion unboxed ones
1499              * should not be on protected pages at all. */
1500             gc_assert(!page_table[next_page].write_protected);
1501 
1502             if (boxedp)
1503                 gc_assert(page_boxed_p(next_page));
1504             else {
1505                 gc_assert(page_allocated_no_region_p(next_page));
1506                 page_table[next_page].allocated = UNBOXED_PAGE_FLAG;
1507             }
1508             page_table[next_page].gen = new_space;
1509 
1510             remaining_bytes -= GENCGC_CARD_BYTES;
1511             next_page++;
1512         }
1513 
1514         /* Now only one page remains, but the object may have shrunk so
1515          * there may be more unused pages which will be freed. */
1516 
1517         /* Object may have shrunk but shouldn't have grown - check. */
1518         gc_assert(page_table[next_page].bytes_used >= remaining_bytes);
1519 
1520         page_table[next_page].gen = new_space;
1521 
1522         if (boxedp)
1523             gc_assert(page_boxed_p(next_page));
1524         else
1525             page_table[next_page].allocated = UNBOXED_PAGE_FLAG;
1526 
1527         /* Adjust the bytes_used. */
1528         old_bytes_used = page_table[next_page].bytes_used;
1529         page_table[next_page].bytes_used = remaining_bytes;
1530 
1531         bytes_freed = old_bytes_used - remaining_bytes;
1532 
1533         /* Free any remaining pages; needs care. */
1534         next_page++;
1535         while ((old_bytes_used == GENCGC_CARD_BYTES) &&
1536                (page_table[next_page].gen == from_space) &&
1537                /* FIXME: It is not obvious to me why this is necessary
1538                 * as a loop condition: it seems to me that the
1539                 * scan_start_offset test should be sufficient, but
1540                 * experimentally that is not the case. --NS
1541                 * 2011-11-28 */
1542                (boxedp ?
1543                 page_boxed_p(next_page) :
1544                 page_allocated_no_region_p(next_page)) &&
1545                page_table[next_page].large_object &&
1546                (page_table[next_page].scan_start_offset ==
1547                 npage_bytes(next_page - first_page))) {
1548             /* Checks out OK, free the page. Don't need to both zeroing
1549              * pages as this should have been done before shrinking the
1550              * object. These pages shouldn't be write-protected, even if
1551              * boxed they should be zero filled. */
1552             gc_assert(page_table[next_page].write_protected == 0);
1553 
1554             old_bytes_used = page_table[next_page].bytes_used;
1555             page_table[next_page].allocated = FREE_PAGE_FLAG;
1556             page_table[next_page].bytes_used = 0;
1557             bytes_freed += old_bytes_used;
1558             next_page++;
1559         }
1560 
1561         if ((bytes_freed > 0) && gencgc_verbose) {
1562             FSHOW((stderr,
1563                    "/general_copy_large_object bytes_freed=%"OS_VM_SIZE_FMT"\n",
1564                    bytes_freed));
1565         }
1566 
1567         generations[from_space].bytes_allocated -= nwords*N_WORD_BYTES
1568             + bytes_freed;
1569         generations[new_space].bytes_allocated += nwords*N_WORD_BYTES;
1570         bytes_allocated -= bytes_freed;
1571 
1572         /* Add the region to the new_areas if requested. */
1573         if (boxedp)
1574             add_new_area(first_page,0,nwords*N_WORD_BYTES);
1575 
1576         return(object);
1577 
1578     } else {
1579         /* Get tag of object. */
1580         tag = lowtag_of(object);
1581 
1582         /* Allocate space. */
1583         new = gc_general_alloc(nwords*N_WORD_BYTES,
1584                                (boxedp ? BOXED_PAGE_FLAG : UNBOXED_PAGE_FLAG),
1585                                ALLOC_QUICK);
1586 
1587         /* Copy the object. */
1588         memcpy(new,native_pointer(object),nwords*N_WORD_BYTES);
1589 
1590         /* Return Lisp pointer of new object. */
1591         return ((lispobj) new) | tag;
1592     }
1593 }
1594 
1595 lispobj
copy_large_object(lispobj object,sword_t nwords)1596 copy_large_object(lispobj object, sword_t nwords)
1597 {
1598     return general_copy_large_object(object, nwords, 1);
1599 }
1600 
1601 lispobj
copy_large_unboxed_object(lispobj object,sword_t nwords)1602 copy_large_unboxed_object(lispobj object, sword_t nwords)
1603 {
1604     return general_copy_large_object(object, nwords, 0);
1605 }
1606 
1607 /* to copy unboxed objects */
1608 lispobj
copy_unboxed_object(lispobj object,sword_t nwords)1609 copy_unboxed_object(lispobj object, sword_t nwords)
1610 {
1611     return gc_general_copy_object(object, nwords, UNBOXED_PAGE_FLAG);
1612 }
1613 
1614 
1615 /*
1616  * code and code-related objects
1617  */
1618 /*
1619 static lispobj trans_fun_header(lispobj object);
1620 static lispobj trans_boxed(lispobj object);
1621 */
1622 
1623 /* Scan a x86 compiled code object, looking for possible fixups that
1624  * have been missed after a move.
1625  *
1626  * Two types of fixups are needed:
1627  * 1. Absolute fixups to within the code object.
1628  * 2. Relative fixups to outside the code object.
1629  *
1630  * Currently only absolute fixups to the constant vector, or to the
1631  * code area are checked. */
1632 #ifdef LISP_FEATURE_X86
1633 void
sniff_code_object(struct code * code,os_vm_size_t displacement)1634 sniff_code_object(struct code *code, os_vm_size_t displacement)
1635 {
1636     sword_t nheader_words, ncode_words, nwords;
1637     os_vm_address_t constants_start_addr = NULL, constants_end_addr, p;
1638     os_vm_address_t code_start_addr, code_end_addr;
1639     os_vm_address_t code_addr = (os_vm_address_t)code;
1640     int fixup_found = 0;
1641 
1642     if (!check_code_fixups)
1643         return;
1644 
1645     FSHOW((stderr, "/sniffing code: %p, %lu\n", code, displacement));
1646 
1647     ncode_words = code_instruction_words(code->code_size);
1648     nheader_words = code_header_words(*(lispobj *)code);
1649     nwords = ncode_words + nheader_words;
1650 
1651     constants_start_addr = code_addr + 5*N_WORD_BYTES;
1652     constants_end_addr = code_addr + nheader_words*N_WORD_BYTES;
1653     code_start_addr = code_addr + nheader_words*N_WORD_BYTES;
1654     code_end_addr = code_addr + nwords*N_WORD_BYTES;
1655 
1656     /* Work through the unboxed code. */
1657     for (p = code_start_addr; p < code_end_addr; p++) {
1658         void *data = *(void **)p;
1659         unsigned d1 = *((unsigned char *)p - 1);
1660         unsigned d2 = *((unsigned char *)p - 2);
1661         unsigned d3 = *((unsigned char *)p - 3);
1662         unsigned d4 = *((unsigned char *)p - 4);
1663 #if QSHOW
1664         unsigned d5 = *((unsigned char *)p - 5);
1665         unsigned d6 = *((unsigned char *)p - 6);
1666 #endif
1667 
1668         /* Check for code references. */
1669         /* Check for a 32 bit word that looks like an absolute
1670            reference to within the code adea of the code object. */
1671         if ((data >= (void*)(code_start_addr-displacement))
1672             && (data < (void*)(code_end_addr-displacement))) {
1673             /* function header */
1674             if ((d4 == 0x5e)
1675                 && (((unsigned)p - 4 - 4*HeaderValue(*((unsigned *)p-1))) ==
1676                     (unsigned)code)) {
1677                 /* Skip the function header */
1678                 p += 6*4 - 4 - 1;
1679                 continue;
1680             }
1681             /* the case of PUSH imm32 */
1682             if (d1 == 0x68) {
1683                 fixup_found = 1;
1684                 FSHOW((stderr,
1685                        "/code ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1686                        p, d6, d5, d4, d3, d2, d1, data));
1687                 FSHOW((stderr, "/PUSH $0x%.8x\n", data));
1688             }
1689             /* the case of MOV [reg-8],imm32 */
1690             if ((d3 == 0xc7)
1691                 && (d2==0x40 || d2==0x41 || d2==0x42 || d2==0x43
1692                     || d2==0x45 || d2==0x46 || d2==0x47)
1693                 && (d1 == 0xf8)) {
1694                 fixup_found = 1;
1695                 FSHOW((stderr,
1696                        "/code ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1697                        p, d6, d5, d4, d3, d2, d1, data));
1698                 FSHOW((stderr, "/MOV [reg-8],$0x%.8x\n", data));
1699             }
1700             /* the case of LEA reg,[disp32] */
1701             if ((d2 == 0x8d) && ((d1 & 0xc7) == 5)) {
1702                 fixup_found = 1;
1703                 FSHOW((stderr,
1704                        "/code ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1705                        p, d6, d5, d4, d3, d2, d1, data));
1706                 FSHOW((stderr,"/LEA reg,[$0x%.8x]\n", data));
1707             }
1708         }
1709 
1710         /* Check for constant references. */
1711         /* Check for a 32 bit word that looks like an absolute
1712            reference to within the constant vector. Constant references
1713            will be aligned. */
1714         if ((data >= (void*)(constants_start_addr-displacement))
1715             && (data < (void*)(constants_end_addr-displacement))
1716             && (((unsigned)data & 0x3) == 0)) {
1717             /*  Mov eax,m32 */
1718             if (d1 == 0xa1) {
1719                 fixup_found = 1;
1720                 FSHOW((stderr,
1721                        "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1722                        p, d6, d5, d4, d3, d2, d1, data));
1723                 FSHOW((stderr,"/MOV eax,0x%.8x\n", data));
1724             }
1725 
1726             /*  the case of MOV m32,EAX */
1727             if (d1 == 0xa3) {
1728                 fixup_found = 1;
1729                 FSHOW((stderr,
1730                        "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1731                        p, d6, d5, d4, d3, d2, d1, data));
1732                 FSHOW((stderr, "/MOV 0x%.8x,eax\n", data));
1733             }
1734 
1735             /* the case of CMP m32,imm32 */
1736             if ((d1 == 0x3d) && (d2 == 0x81)) {
1737                 fixup_found = 1;
1738                 FSHOW((stderr,
1739                        "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1740                        p, d6, d5, d4, d3, d2, d1, data));
1741                 /* XX Check this */
1742                 FSHOW((stderr, "/CMP 0x%.8x,immed32\n", data));
1743             }
1744 
1745             /* Check for a mod=00, r/m=101 byte. */
1746             if ((d1 & 0xc7) == 5) {
1747                 /* Cmp m32,reg */
1748                 if (d2 == 0x39) {
1749                     fixup_found = 1;
1750                     FSHOW((stderr,
1751                            "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1752                            p, d6, d5, d4, d3, d2, d1, data));
1753                     FSHOW((stderr,"/CMP 0x%.8x,reg\n", data));
1754                 }
1755                 /* the case of CMP reg32,m32 */
1756                 if (d2 == 0x3b) {
1757                     fixup_found = 1;
1758                     FSHOW((stderr,
1759                            "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1760                            p, d6, d5, d4, d3, d2, d1, data));
1761                     FSHOW((stderr, "/CMP reg32,0x%.8x\n", data));
1762                 }
1763                 /* the case of MOV m32,reg32 */
1764                 if (d2 == 0x89) {
1765                     fixup_found = 1;
1766                     FSHOW((stderr,
1767                            "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1768                            p, d6, d5, d4, d3, d2, d1, data));
1769                     FSHOW((stderr, "/MOV 0x%.8x,reg32\n", data));
1770                 }
1771                 /* the case of MOV reg32,m32 */
1772                 if (d2 == 0x8b) {
1773                     fixup_found = 1;
1774                     FSHOW((stderr,
1775                            "/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1776                            p, d6, d5, d4, d3, d2, d1, data));
1777                     FSHOW((stderr, "/MOV reg32,0x%.8x\n", data));
1778                 }
1779                 /* the case of LEA reg32,m32 */
1780                 if (d2 == 0x8d) {
1781                     fixup_found = 1;
1782                     FSHOW((stderr,
1783                            "abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
1784                            p, d6, d5, d4, d3, d2, d1, data));
1785                     FSHOW((stderr, "/LEA reg32,0x%.8x\n", data));
1786                 }
1787             }
1788         }
1789     }
1790 
1791     /* If anything was found, print some information on the code
1792      * object. */
1793     if (fixup_found) {
1794         FSHOW((stderr,
1795                "/compiled code object at %x: header words = %d, code words = %d\n",
1796                code, nheader_words, ncode_words));
1797         FSHOW((stderr,
1798                "/const start = %x, end = %x\n",
1799                constants_start_addr, constants_end_addr));
1800         FSHOW((stderr,
1801                "/code start = %x, end = %x\n",
1802                code_start_addr, code_end_addr));
1803     }
1804 }
1805 #endif
1806 
1807 #ifdef LISP_FEATURE_X86
1808 void
gencgc_apply_code_fixups(struct code * old_code,struct code * new_code)1809 gencgc_apply_code_fixups(struct code *old_code, struct code *new_code)
1810 {
1811     sword_t nheader_words, ncode_words, nwords;
1812     os_vm_address_t constants_start_addr, constants_end_addr;
1813     os_vm_address_t code_start_addr, code_end_addr;
1814     os_vm_address_t code_addr = (os_vm_address_t)new_code;
1815     os_vm_address_t old_addr = (os_vm_address_t)old_code;
1816     os_vm_size_t displacement = code_addr - old_addr;
1817     lispobj fixups = NIL;
1818     struct vector *fixups_vector;
1819 
1820     ncode_words = code_instruction_words(new_code->code_size);
1821     nheader_words = code_header_words(*(lispobj *)new_code);
1822     nwords = ncode_words + nheader_words;
1823     /* FSHOW((stderr,
1824              "/compiled code object at %x: header words = %d, code words = %d\n",
1825              new_code, nheader_words, ncode_words)); */
1826     constants_start_addr = code_addr + 5*N_WORD_BYTES;
1827     constants_end_addr = code_addr + nheader_words*N_WORD_BYTES;
1828     code_start_addr = code_addr + nheader_words*N_WORD_BYTES;
1829     code_end_addr = code_addr + nwords*N_WORD_BYTES;
1830     /*
1831     FSHOW((stderr,
1832            "/const start = %x, end = %x\n",
1833            constants_start_addr,constants_end_addr));
1834     FSHOW((stderr,
1835            "/code start = %x; end = %x\n",
1836            code_start_addr,code_end_addr));
1837     */
1838 
1839     /* The first constant should be a pointer to the fixups for this
1840        code objects. Check. */
1841     fixups = new_code->constants[0];
1842 
1843     /* It will be 0 or the unbound-marker if there are no fixups (as
1844      * will be the case if the code object has been purified, for
1845      * example) and will be an other pointer if it is valid. */
1846     if ((fixups == 0) || (fixups == UNBOUND_MARKER_WIDETAG) ||
1847         !is_lisp_pointer(fixups)) {
1848         /* Check for possible errors. */
1849         if (check_code_fixups)
1850             sniff_code_object(new_code, displacement);
1851 
1852         return;
1853     }
1854 
1855     fixups_vector = (struct vector *)native_pointer(fixups);
1856 
1857     /* Could be pointing to a forwarding pointer. */
1858     /* FIXME is this always in from_space?  if so, could replace this code with
1859      * forwarding_pointer_p/forwarding_pointer_value */
1860     if (is_lisp_pointer(fixups) &&
1861         (find_page_index((void*)fixups_vector) != -1) &&
1862         (fixups_vector->header == 0x01)) {
1863         /* If so, then follow it. */
1864         /*SHOW("following pointer to a forwarding pointer");*/
1865         fixups_vector =
1866             (struct vector *)native_pointer((lispobj)fixups_vector->length);
1867     }
1868 
1869     /*SHOW("got fixups");*/
1870 
1871     if (widetag_of(fixups_vector->header) == SIMPLE_ARRAY_WORD_WIDETAG) {
1872         /* Got the fixups for the code block. Now work through the vector,
1873            and apply a fixup at each address. */
1874         sword_t length = fixnum_value(fixups_vector->length);
1875         sword_t i;
1876         for (i = 0; i < length; i++) {
1877             long offset = fixups_vector->data[i];
1878             /* Now check the current value of offset. */
1879             os_vm_address_t old_value = *(os_vm_address_t *)(code_start_addr + offset);
1880 
1881             /* If it's within the old_code object then it must be an
1882              * absolute fixup (relative ones are not saved) */
1883             if ((old_value >= old_addr)
1884                 && (old_value < (old_addr + nwords*N_WORD_BYTES)))
1885                 /* So add the dispacement. */
1886                 *(os_vm_address_t *)(code_start_addr + offset) =
1887                     old_value + displacement;
1888             else
1889                 /* It is outside the old code object so it must be a
1890                  * relative fixup (absolute fixups are not saved). So
1891                  * subtract the displacement. */
1892                 *(os_vm_address_t *)(code_start_addr + offset) =
1893                     old_value - displacement;
1894         }
1895     } else {
1896         /* This used to just print a note to stderr, but a bogus fixup seems to
1897          * indicate real heap corruption, so a hard hailure is in order. */
1898         lose("fixup vector %p has a bad widetag: %d\n",
1899              fixups_vector, widetag_of(fixups_vector->header));
1900     }
1901 
1902     /* Check for possible errors. */
1903     if (check_code_fixups) {
1904         sniff_code_object(new_code,displacement);
1905     }
1906 }
1907 #endif
1908 
1909 static lispobj
trans_boxed_large(lispobj object)1910 trans_boxed_large(lispobj object)
1911 {
1912     lispobj header;
1913     uword_t length;
1914 
1915     gc_assert(is_lisp_pointer(object));
1916 
1917     header = *((lispobj *) native_pointer(object));
1918     length = HeaderValue(header) + 1;
1919     length = CEILING(length, 2);
1920 
1921     return copy_large_object(object, length);
1922 }
1923 
1924 /*
1925  * weak pointers
1926  */
1927 
1928 /* XX This is a hack adapted from cgc.c. These don't work too
1929  * efficiently with the gencgc as a list of the weak pointers is
1930  * maintained within the objects which causes writes to the pages. A
1931  * limited attempt is made to avoid unnecessary writes, but this needs
1932  * a re-think. */
1933 #define WEAK_POINTER_NWORDS \
1934     CEILING((sizeof(struct weak_pointer) / sizeof(lispobj)), 2)
1935 
1936 static sword_t
scav_weak_pointer(lispobj * where,lispobj object)1937 scav_weak_pointer(lispobj *where, lispobj object)
1938 {
1939     /* Since we overwrite the 'next' field, we have to make
1940      * sure not to do so for pointers already in the list.
1941      * Instead of searching the list of weak_pointers each
1942      * time, we ensure that next is always NULL when the weak
1943      * pointer isn't in the list, and not NULL otherwise.
1944      * Since we can't use NULL to denote end of list, we
1945      * use a pointer back to the same weak_pointer.
1946      */
1947     struct weak_pointer * wp = (struct weak_pointer*)where;
1948 
1949     if (NULL == wp->next) {
1950         wp->next = weak_pointers;
1951         weak_pointers = wp;
1952         if (NULL == wp->next)
1953             wp->next = wp;
1954     }
1955 
1956     /* Do not let GC scavenge the value slot of the weak pointer.
1957      * (That is why it is a weak pointer.) */
1958 
1959     return WEAK_POINTER_NWORDS;
1960 }
1961 
1962 
1963 lispobj *
search_read_only_space(void * pointer)1964 search_read_only_space(void *pointer)
1965 {
1966     lispobj *start = (lispobj *) READ_ONLY_SPACE_START;
1967     lispobj *end = (lispobj *) SymbolValue(READ_ONLY_SPACE_FREE_POINTER,0);
1968     if ((pointer < (void *)start) || (pointer >= (void *)end))
1969         return NULL;
1970     return (gc_search_space(start,
1971                             (((lispobj *)pointer)+2)-start,
1972                             (lispobj *) pointer));
1973 }
1974 
1975 lispobj *
search_static_space(void * pointer)1976 search_static_space(void *pointer)
1977 {
1978     lispobj *start = (lispobj *)STATIC_SPACE_START;
1979     lispobj *end = (lispobj *)SymbolValue(STATIC_SPACE_FREE_POINTER,0);
1980     if ((pointer < (void *)start) || (pointer >= (void *)end))
1981         return NULL;
1982     return (gc_search_space(start,
1983                             (((lispobj *)pointer)+2)-start,
1984                             (lispobj *) pointer));
1985 }
1986 
1987 /* a faster version for searching the dynamic space. This will work even
1988  * if the object is in a current allocation region. */
1989 lispobj *
search_dynamic_space(void * pointer)1990 search_dynamic_space(void *pointer)
1991 {
1992     page_index_t page_index = find_page_index(pointer);
1993     lispobj *start;
1994 
1995     /* The address may be invalid, so do some checks. */
1996     if ((page_index == -1) || page_free_p(page_index))
1997         return NULL;
1998     start = (lispobj *)page_scan_start(page_index);
1999     return (gc_search_space(start,
2000                             (((lispobj *)pointer)+2)-start,
2001                             (lispobj *)pointer));
2002 }
2003 
2004 // Return the starting address of the object containing 'addr'
2005 // if and only if the object is one which would be evacuated from 'from_space'
2006 // were it allowed to be either discarded as garbage or moved.
2007 // 'addr_page_index' is the page containing 'addr' and must not be -1.
2008 // Return 0 if there is no such object - that is, if addr is past the
2009 // end of the used bytes, or its pages are not in 'from_space' etc.
2010 static lispobj*
conservative_root_p(void * addr,page_index_t addr_page_index)2011 conservative_root_p(void *addr, page_index_t addr_page_index)
2012 {
2013 #ifdef GENCGC_IS_PRECISE
2014     /* If we're in precise gencgc (non-x86oid as of this writing) then
2015      * we are only called on valid object pointers in the first place,
2016      * so we just have to do a bounds-check against the heap, a
2017      * generation check, and the already-pinned check. */
2018     if ((page_table[addr_page_index].gen != from_space)
2019         || (page_table[addr_page_index].dont_move != 0))
2020         return 0;
2021     return (lispobj*)1;
2022 #else
2023     /* quick check 1: Address is quite likely to have been invalid. */
2024     if (page_free_p(addr_page_index)
2025         || (page_table[addr_page_index].bytes_used == 0)
2026         || (page_table[addr_page_index].gen != from_space))
2027         return 0;
2028     gc_assert(!(page_table[addr_page_index].allocated&OPEN_REGION_PAGE_FLAG));
2029 
2030     /* quick check 2: Check the offset within the page.
2031      *
2032      */
2033     if (((uword_t)addr & (GENCGC_CARD_BYTES - 1)) >
2034         page_table[addr_page_index].bytes_used)
2035         return 0;
2036 
2037     /* Filter out anything which can't be a pointer to a Lisp object
2038      * (or, as a special case which also requires dont_move, a return
2039      * address referring to something in a CodeObject). This is
2040      * expensive but important, since it vastly reduces the
2041      * probability that random garbage will be bogusly interpreted as
2042      * a pointer which prevents a page from moving. */
2043     lispobj* object_start = search_dynamic_space(addr);
2044     if (!object_start) return 0;
2045 
2046     /* If the containing object is a code object, presume that the
2047      * pointer is valid, simply because it could be an unboxed return
2048      * address.
2049      * FIXME: only if the addr points to a simple-fun instruction area
2050      * should we skip the stronger tests. Otherwise, require a properly
2051      * tagged pointer to the code component or an embedded simple-fun
2052      * (or LRA?) just as with any other kind of object. */
2053     if (widetag_of(*object_start) == CODE_HEADER_WIDETAG)
2054       return object_start;
2055 
2056     /* Large object pages only contain ONE object, and it will never
2057      * be a CONS.  However, arrays and bignums can be allocated larger
2058      * than necessary and then shrunk to fit, leaving what look like
2059      * (0 . 0) CONSes at the end.  These appear valid to
2060      * properly_tagged_descriptor_p(), so pick them off here. */
2061     if (((lowtag_of((lispobj)addr) == LIST_POINTER_LOWTAG) &&
2062          page_table[addr_page_index].large_object)
2063         || !properly_tagged_descriptor_p((lispobj)addr, object_start))
2064         return 0;
2065 
2066     return object_start;
2067 #endif
2068 }
2069 
2070 boolean
in_dontmove_nativeptr_p(page_index_t page_index,lispobj * native_ptr)2071 in_dontmove_nativeptr_p(page_index_t page_index, lispobj *native_ptr)
2072 {
2073     in_use_marker_t *markers = pinned_dwords(page_index);
2074     if (markers) {
2075         lispobj *begin = page_address(page_index);
2076         int dword_in_page = (native_ptr - begin) / 2;
2077         return (markers[dword_in_page / N_WORD_BITS] >> (dword_in_page % N_WORD_BITS)) & 1;
2078     } else {
2079         return 0;
2080     }
2081 }
2082 
2083 /* Adjust large bignum and vector objects. This will adjust the
2084  * allocated region if the size has shrunk, and move unboxed objects
2085  * into unboxed pages. The pages are not promoted here, and the
2086  * promoted region is not added to the new_regions; this is really
2087  * only designed to be called from preserve_pointer(). Shouldn't fail
2088  * if this is missed, just may delay the moving of objects to unboxed
2089  * pages, and the freeing of pages. */
2090 static void
maybe_adjust_large_object(lispobj * where)2091 maybe_adjust_large_object(lispobj *where)
2092 {
2093     page_index_t first_page;
2094     page_index_t next_page;
2095     sword_t nwords;
2096 
2097     uword_t remaining_bytes;
2098     uword_t bytes_freed;
2099     uword_t old_bytes_used;
2100 
2101     int boxed;
2102 
2103     /* Check whether it's a vector or bignum object. */
2104     switch (widetag_of(where[0])) {
2105     case SIMPLE_VECTOR_WIDETAG:
2106         boxed = BOXED_PAGE_FLAG;
2107         break;
2108     case BIGNUM_WIDETAG:
2109     case SIMPLE_BASE_STRING_WIDETAG:
2110 #ifdef SIMPLE_CHARACTER_STRING_WIDETAG
2111     case SIMPLE_CHARACTER_STRING_WIDETAG:
2112 #endif
2113     case SIMPLE_BIT_VECTOR_WIDETAG:
2114     case SIMPLE_ARRAY_NIL_WIDETAG:
2115     case SIMPLE_ARRAY_UNSIGNED_BYTE_2_WIDETAG:
2116     case SIMPLE_ARRAY_UNSIGNED_BYTE_4_WIDETAG:
2117     case SIMPLE_ARRAY_UNSIGNED_BYTE_7_WIDETAG:
2118     case SIMPLE_ARRAY_UNSIGNED_BYTE_8_WIDETAG:
2119     case SIMPLE_ARRAY_UNSIGNED_BYTE_15_WIDETAG:
2120     case SIMPLE_ARRAY_UNSIGNED_BYTE_16_WIDETAG:
2121 
2122     case SIMPLE_ARRAY_UNSIGNED_FIXNUM_WIDETAG:
2123 
2124     case SIMPLE_ARRAY_UNSIGNED_BYTE_31_WIDETAG:
2125     case SIMPLE_ARRAY_UNSIGNED_BYTE_32_WIDETAG:
2126 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_63_WIDETAG
2127     case SIMPLE_ARRAY_UNSIGNED_BYTE_63_WIDETAG:
2128 #endif
2129 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_64_WIDETAG
2130     case SIMPLE_ARRAY_UNSIGNED_BYTE_64_WIDETAG:
2131 #endif
2132 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG
2133     case SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG:
2134 #endif
2135 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG
2136     case SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG:
2137 #endif
2138 
2139     case SIMPLE_ARRAY_FIXNUM_WIDETAG:
2140 
2141 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG
2142     case SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG:
2143 #endif
2144 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_64_WIDETAG
2145     case SIMPLE_ARRAY_SIGNED_BYTE_64_WIDETAG:
2146 #endif
2147     case SIMPLE_ARRAY_SINGLE_FLOAT_WIDETAG:
2148     case SIMPLE_ARRAY_DOUBLE_FLOAT_WIDETAG:
2149 #ifdef SIMPLE_ARRAY_LONG_FLOAT_WIDETAG
2150     case SIMPLE_ARRAY_LONG_FLOAT_WIDETAG:
2151 #endif
2152 #ifdef SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG
2153     case SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG:
2154 #endif
2155 #ifdef SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG
2156     case SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG:
2157 #endif
2158 #ifdef SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG
2159     case SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG:
2160 #endif
2161         boxed = UNBOXED_PAGE_FLAG;
2162         break;
2163     default:
2164         return;
2165     }
2166 
2167     /* Find its current size. */
2168     nwords = (sizetab[widetag_of(where[0])])(where);
2169 
2170     first_page = find_page_index((void *)where);
2171     gc_assert(first_page >= 0);
2172 
2173     /* Note: Any page write-protection must be removed, else a later
2174      * scavenge_newspace may incorrectly not scavenge these pages.
2175      * This would not be necessary if they are added to the new areas,
2176      * but lets do it for them all (they'll probably be written
2177      * anyway?). */
2178 
2179     gc_assert(page_starts_contiguous_block_p(first_page));
2180 
2181     next_page = first_page;
2182     remaining_bytes = nwords*N_WORD_BYTES;
2183     while (remaining_bytes > GENCGC_CARD_BYTES) {
2184         gc_assert(page_table[next_page].gen == from_space);
2185         gc_assert(page_allocated_no_region_p(next_page));
2186         gc_assert(page_table[next_page].large_object);
2187         gc_assert(page_table[next_page].scan_start_offset ==
2188                   npage_bytes(next_page-first_page));
2189         gc_assert(page_table[next_page].bytes_used == GENCGC_CARD_BYTES);
2190 
2191         page_table[next_page].allocated = boxed;
2192 
2193         /* Shouldn't be write-protected at this stage. Essential that the
2194          * pages aren't. */
2195         gc_assert(!page_table[next_page].write_protected);
2196         remaining_bytes -= GENCGC_CARD_BYTES;
2197         next_page++;
2198     }
2199 
2200     /* Now only one page remains, but the object may have shrunk so
2201      * there may be more unused pages which will be freed. */
2202 
2203     /* Object may have shrunk but shouldn't have grown - check. */
2204     gc_assert(page_table[next_page].bytes_used >= remaining_bytes);
2205 
2206     page_table[next_page].allocated = boxed;
2207     gc_assert(page_table[next_page].allocated ==
2208               page_table[first_page].allocated);
2209 
2210     /* Adjust the bytes_used. */
2211     old_bytes_used = page_table[next_page].bytes_used;
2212     page_table[next_page].bytes_used = remaining_bytes;
2213 
2214     bytes_freed = old_bytes_used - remaining_bytes;
2215 
2216     /* Free any remaining pages; needs care. */
2217     next_page++;
2218     while ((old_bytes_used == GENCGC_CARD_BYTES) &&
2219            (page_table[next_page].gen == from_space) &&
2220            page_allocated_no_region_p(next_page) &&
2221            page_table[next_page].large_object &&
2222            (page_table[next_page].scan_start_offset ==
2223             npage_bytes(next_page - first_page))) {
2224         /* It checks out OK, free the page. We don't need to both zeroing
2225          * pages as this should have been done before shrinking the
2226          * object. These pages shouldn't be write protected as they
2227          * should be zero filled. */
2228         gc_assert(page_table[next_page].write_protected == 0);
2229 
2230         old_bytes_used = page_table[next_page].bytes_used;
2231         page_table[next_page].allocated = FREE_PAGE_FLAG;
2232         page_table[next_page].bytes_used = 0;
2233         bytes_freed += old_bytes_used;
2234         next_page++;
2235     }
2236 
2237     if ((bytes_freed > 0) && gencgc_verbose) {
2238         FSHOW((stderr,
2239                "/maybe_adjust_large_object() freed %d\n",
2240                bytes_freed));
2241     }
2242 
2243     generations[from_space].bytes_allocated -= bytes_freed;
2244     bytes_allocated -= bytes_freed;
2245 
2246     return;
2247 }
2248 
2249 /*
2250  * Why is this restricted to protected objects only?
2251  * Because the rest of the page has been scavenged already,
2252  * and since that leaves forwarding pointers in the unprotected
2253  * areas you cannot scavenge it again until those are gone.
2254  */
2255 static void
scavenge_pinned_range(void * page_base,int start,int count)2256 scavenge_pinned_range(void* page_base, int start, int count)
2257 {
2258     // 'start' and 'count' are expressed in units of dwords
2259     scavenge((lispobj*)page_base + 2*start, 2*count);
2260 }
2261 
2262 static void
scavenge_pinned_ranges()2263 scavenge_pinned_ranges()
2264 {
2265     page_index_t page;
2266     for (page = 0; page < last_free_page; page++) {
2267         in_use_marker_t* bitmap = pinned_dwords(page);
2268         if (bitmap)
2269             bitmap_scan(bitmap,
2270                         GENCGC_CARD_BYTES / (2*N_WORD_BYTES) / N_WORD_BITS,
2271                         0, scavenge_pinned_range, page_address(page));
2272     }
2273 }
2274 
wipe_range(void * page_base,int start,int count)2275 static void wipe_range(void* page_base, int start, int count)
2276 {
2277     bzero((lispobj*)page_base + 2*start, count*2*N_WORD_BYTES);
2278 }
2279 
2280 static void
wipe_nonpinned_words()2281 wipe_nonpinned_words()
2282 {
2283     page_index_t i;
2284     in_use_marker_t* bitmap;
2285 
2286     for (i = 0; i < last_free_page; i++) {
2287         if (page_table[i].dont_move && (bitmap = pinned_dwords(i)) != 0) {
2288             bitmap_scan(bitmap,
2289                         GENCGC_CARD_BYTES / (2*N_WORD_BYTES) / N_WORD_BITS,
2290                         BIT_SCAN_INVERT | BIT_SCAN_CLEAR,
2291                         wipe_range, page_address(i));
2292             page_table[i].has_pin_map = 0;
2293             // move the page to newspace
2294             generations[new_space].bytes_allocated += page_table[i].bytes_used;
2295             generations[page_table[i].gen].bytes_allocated -= page_table[i].bytes_used;
2296             page_table[i].gen = new_space;
2297         }
2298     }
2299 #ifndef LISP_FEATURE_WIN32
2300     madvise(page_table_pinned_dwords, pins_map_size_in_bytes, MADV_DONTNEED);
2301 #endif
2302 }
2303 
2304 static void
pin_words(page_index_t pageindex,lispobj * mark_which_pointer)2305 pin_words(page_index_t pageindex, lispobj *mark_which_pointer)
2306 {
2307     struct page *page = &page_table[pageindex];
2308     gc_assert(mark_which_pointer);
2309     if (!page->has_pin_map) {
2310         page->has_pin_map = 1;
2311 #ifdef DEBUG
2312         {
2313           int i;
2314           in_use_marker_t* map = pinned_dwords(pageindex);
2315           for (i=0; i<n_dwords_in_card/N_WORD_BITS; ++i)
2316             gc_assert(map[i] == 0);
2317         }
2318 #endif
2319     }
2320     lispobj *page_base = page_address(pageindex);
2321     unsigned int begin_dword_index = (mark_which_pointer - page_base) / 2;
2322     in_use_marker_t *bitmap = pinned_dwords(pageindex);
2323     if (bitmap[begin_dword_index/N_WORD_BITS]
2324         & ((uword_t)1 << (begin_dword_index % N_WORD_BITS)))
2325       return; // already seen this object
2326 
2327     lispobj header = *mark_which_pointer;
2328     int size = 2;
2329     // Don't bother calling a sizing function for fixnums or pointers.
2330     // The object pointed to must be a cons.
2331     if (!fixnump(header) && !is_lisp_pointer(header)) {
2332         size = (sizetab[widetag_of(header)])(mark_which_pointer);
2333         if (size == 1 && (lowtag_of(header) == 9 || lowtag_of(header) == 2))
2334             size = 2;
2335     }
2336     gc_assert(size % 2 == 0);
2337     unsigned int end_dword_index = begin_dword_index + size / 2;
2338     unsigned int index;
2339     for (index = begin_dword_index; index < end_dword_index; index++)
2340         bitmap[index/N_WORD_BITS] |= (uword_t)1 << (index % N_WORD_BITS);
2341 }
2342 
2343 /* Take a possible pointer to a Lisp object and mark its page in the
2344  * page_table so that it will not be relocated during a GC.
2345  *
2346  * This involves locating the page it points to, then backing up to
2347  * the start of its region, then marking all pages dont_move from there
2348  * up to the first page that's not full or has a different generation
2349  *
2350  * It is assumed that all the page static flags have been cleared at
2351  * the start of a GC.
2352  *
2353  * It is also assumed that the current gc_alloc() region has been
2354  * flushed and the tables updated. */
2355 
2356 // TODO: there's probably a way to be a little more efficient here.
2357 // As things are, we start by finding the object that encloses 'addr',
2358 // then we see if 'addr' was a "valid" Lisp pointer to that object
2359 // - meaning we expect the correct lowtag on the pointer - except
2360 // that for code objects we don't require a correct lowtag
2361 // and we allow a pointer to anywhere in the object.
2362 //
2363 // It should be possible to avoid calling search_dynamic_space
2364 // more of the time. First, check if the page pointed to might hold code.
2365 // If it does, then we continue regardless of the pointer's lowtag
2366 // (because of the special allowance). If the page definitely does *not*
2367 // hold code, then we require up front that the lowtake make sense,
2368 // by doing the same checks that are in properly_tagged_descriptor_p.
2369 //
2370 // Problem: when code is allocated from a per-thread region,
2371 // does it ensure that the occupied pages are flagged as having code?
2372 
2373 static void
preserve_pointer(void * addr)2374 preserve_pointer(void *addr)
2375 {
2376 #ifdef LISP_FEATURE_IMMOBILE_SPACE
2377   /* Immobile space MUST be lower than dynamic space,
2378      or else this test needs to be revised */
2379     if (addr < (void*)IMMOBILE_SPACE_END) {
2380         extern void immobile_space_preserve_pointer(void*);
2381         immobile_space_preserve_pointer(addr);
2382         return;
2383     }
2384 #endif
2385     page_index_t addr_page_index = find_page_index(addr);
2386     lispobj *object_start;
2387 
2388     if (addr_page_index == -1
2389         || (object_start = conservative_root_p(addr, addr_page_index)) == 0)
2390         return;
2391 
2392     /* (Now that we know that addr_page_index is in range, it's
2393      * safe to index into page_table[] with it.) */
2394     unsigned int region_allocation = page_table[addr_page_index].allocated;
2395 
2396     /* Find the beginning of the region.  Note that there may be
2397      * objects in the region preceding the one that we were passed a
2398      * pointer to: if this is the case, we will write-protect all the
2399      * previous objects' pages too.     */
2400 
2401 #if 0
2402     /* I think this'd work just as well, but without the assertions.
2403      * -dan 2004.01.01 */
2404     page_index_t first_page = find_page_index(page_scan_start(addr_page_index))
2405 #else
2406     page_index_t first_page = addr_page_index;
2407     while (!page_starts_contiguous_block_p(first_page)) {
2408         --first_page;
2409         /* Do some checks. */
2410         gc_assert(page_table[first_page].bytes_used == GENCGC_CARD_BYTES);
2411         gc_assert(page_table[first_page].gen == from_space);
2412         gc_assert(page_table[first_page].allocated == region_allocation);
2413     }
2414 #endif
2415 
2416     /* Adjust any large objects before promotion as they won't be
2417      * copied after promotion. */
2418     if (page_table[first_page].large_object) {
2419         maybe_adjust_large_object(page_address(first_page));
2420         /* It may have moved to unboxed pages. */
2421         region_allocation = page_table[first_page].allocated;
2422     }
2423 
2424     /* Now work forward until the end of this contiguous area is found,
2425      * marking all pages as dont_move. */
2426     page_index_t i;
2427     for (i = first_page; ;i++) {
2428         gc_assert(page_table[i].allocated == region_allocation);
2429 
2430         /* Mark the page static. */
2431         page_table[i].dont_move = 1;
2432 
2433         /* It is essential that the pages are not write protected as
2434          * they may have pointers into the old-space which need
2435          * scavenging. They shouldn't be write protected at this
2436          * stage. */
2437         gc_assert(!page_table[i].write_protected);
2438 
2439         /* Check whether this is the last page in this contiguous block.. */
2440         if (page_ends_contiguous_block_p(i, from_space))
2441             break;
2442     }
2443 
2444 #if defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64)
2445     /* Do not do this for multi-page objects.  Those pages do not need
2446      * object wipeout anyway.
2447      */
2448     if (do_wipe_p && i == first_page) // single-page object
2449         pin_words(first_page, object_start);
2450 #endif
2451 
2452     /* Check that the page is now static. */
2453     gc_assert(page_table[addr_page_index].dont_move != 0);
2454 }
2455 
2456 /* If the given page is not write-protected, then scan it for pointers
2457  * to younger generations or the top temp. generation, if no
2458  * suspicious pointers are found then the page is write-protected.
2459  *
2460  * Care is taken to check for pointers to the current gc_alloc()
2461  * region if it is a younger generation or the temp. generation. This
2462  * frees the caller from doing a gc_alloc_update_page_tables(). Actually
2463  * the gc_alloc_generation does not need to be checked as this is only
2464  * called from scavenge_generation() when the gc_alloc generation is
2465  * younger, so it just checks if there is a pointer to the current
2466  * region.
2467  *
2468  * We return 1 if the page was write-protected, else 0. */
2469 static int
update_page_write_prot(page_index_t page)2470 update_page_write_prot(page_index_t page)
2471 {
2472     generation_index_t gen = page_table[page].gen;
2473     sword_t j;
2474     int wp_it = 1;
2475     void **page_addr = (void **)page_address(page);
2476     sword_t num_words = page_table[page].bytes_used / N_WORD_BYTES;
2477 
2478     /* Shouldn't be a free page. */
2479     gc_assert(page_allocated_p(page));
2480     gc_assert(page_table[page].bytes_used != 0);
2481 
2482     /* Skip if it's already write-protected, pinned, or unboxed */
2483     if (page_table[page].write_protected
2484         /* FIXME: What's the reason for not write-protecting pinned pages? */
2485         || page_table[page].dont_move
2486         || page_unboxed_p(page))
2487         return (0);
2488 
2489     /* Scan the page for pointers to younger generations or the
2490      * top temp. generation. */
2491 
2492     /* This is conservative: any word satisfying is_lisp_pointer() is
2493      * assumed to be a pointer. To do otherwise would require a family
2494      * of scavenge-like functions. */
2495     for (j = 0; j < num_words; j++) {
2496         void *ptr = *(page_addr+j);
2497         page_index_t index;
2498         lispobj __attribute__((unused)) header;
2499 
2500         if (!is_lisp_pointer((lispobj)ptr))
2501             continue;
2502         /* Check that it's in the dynamic space */
2503         if ((index = find_page_index(ptr)) != -1) {
2504             if (/* Does it point to a younger or the temp. generation? */
2505                 (page_allocated_p(index)
2506                  && (page_table[index].bytes_used != 0)
2507                  && ((page_table[index].gen < gen)
2508                      || (page_table[index].gen == SCRATCH_GENERATION)))
2509 
2510                 /* Or does it point within a current gc_alloc() region? */
2511                 || ((boxed_region.start_addr <= ptr)
2512                     && (ptr <= boxed_region.free_pointer))
2513                 || ((unboxed_region.start_addr <= ptr)
2514                     && (ptr <= unboxed_region.free_pointer))) {
2515                 wp_it = 0;
2516                 break;
2517             }
2518         }
2519 #ifdef LISP_FEATURE_IMMOBILE_SPACE
2520         else if ((index = find_immobile_page_index(ptr)) >= 0 &&
2521                  other_immediate_lowtag_p(header = *native_pointer((lispobj)ptr))) {
2522             // This is *possibly* a pointer to an object in immobile space,
2523             // given that above two conditions were satisfied.
2524             // But unlike in the dynamic space case, we need to read a byte
2525             // from the object to determine its generation, which requires care.
2526             // Consider an unboxed word that looks like a pointer to a word that
2527             // looks like fun-header-widetag. We can't naively back up to the
2528             // underlying code object since the alleged header might not be one.
2529             int obj_gen = gen; // Make comparison fail if we fall through
2530             if (lowtag_of((lispobj)ptr) != FUN_POINTER_LOWTAG) {
2531                 obj_gen = __immobile_obj_generation(native_pointer((lispobj)ptr));
2532             } else if (widetag_of(header) == SIMPLE_FUN_HEADER_WIDETAG) {
2533                 struct code* code =
2534                   code_obj_from_simple_fun((struct simple_fun *)
2535                                            ((lispobj)ptr - FUN_POINTER_LOWTAG));
2536                 // This is a heuristic, since we're not actually looking for
2537                 // an object boundary. Precise scanning of 'page' would obviate
2538                 // the guard conditions here.
2539                 if ((lispobj)code >= IMMOBILE_VARYOBJ_SUBSPACE_START
2540                     && widetag_of(code->header) == CODE_HEADER_WIDETAG)
2541                     obj_gen = __immobile_obj_generation((lispobj*)code);
2542             }
2543             // A bogus generation number implies a not-really-pointer,
2544             // but it won't cause misbehavior.
2545             if (obj_gen < gen || obj_gen == SCRATCH_GENERATION) {
2546                 wp_it = 0;
2547                 break;
2548            }
2549         }
2550 #endif
2551     }
2552 
2553     if (wp_it == 1) {
2554         /* Write-protect the page. */
2555         /*FSHOW((stderr, "/write-protecting page %d gen %d\n", page, gen));*/
2556 
2557         os_protect((void *)page_addr,
2558                    GENCGC_CARD_BYTES,
2559                    OS_VM_PROT_READ|OS_VM_PROT_EXECUTE);
2560 
2561         /* Note the page as protected in the page tables. */
2562         page_table[page].write_protected = 1;
2563     }
2564 
2565     return (wp_it);
2566 }
2567 
2568 /* Scavenge all generations from FROM to TO, inclusive, except for
2569  * new_space which needs special handling, as new objects may be
2570  * added which are not checked here - use scavenge_newspace generation.
2571  *
2572  * Write-protected pages should not have any pointers to the
2573  * from_space so do need scavenging; thus write-protected pages are
2574  * not always scavenged. There is some code to check that these pages
2575  * are not written; but to check fully the write-protected pages need
2576  * to be scavenged by disabling the code to skip them.
2577  *
2578  * Under the current scheme when a generation is GCed the younger
2579  * generations will be empty. So, when a generation is being GCed it
2580  * is only necessary to scavenge the older generations for pointers
2581  * not the younger. So a page that does not have pointers to younger
2582  * generations does not need to be scavenged.
2583  *
2584  * The write-protection can be used to note pages that don't have
2585  * pointers to younger pages. But pages can be written without having
2586  * pointers to younger generations. After the pages are scavenged here
2587  * they can be scanned for pointers to younger generations and if
2588  * there are none the page can be write-protected.
2589  *
2590  * One complication is when the newspace is the top temp. generation.
2591  *
2592  * Enabling SC_GEN_CK scavenges the write-protected pages and checks
2593  * that none were written, which they shouldn't be as they should have
2594  * no pointers to younger generations. This breaks down for weak
2595  * pointers as the objects contain a link to the next and are written
2596  * if a weak pointer is scavenged. Still it's a useful check. */
2597 static void
scavenge_generations(generation_index_t from,generation_index_t to)2598 scavenge_generations(generation_index_t from, generation_index_t to)
2599 {
2600     page_index_t i;
2601     page_index_t num_wp = 0;
2602 
2603 #define SC_GEN_CK 0
2604 #if SC_GEN_CK
2605     /* Clear the write_protected_cleared flags on all pages. */
2606     for (i = 0; i < page_table_pages; i++)
2607         page_table[i].write_protected_cleared = 0;
2608 #endif
2609 
2610     for (i = 0; i < last_free_page; i++) {
2611         generation_index_t generation = page_table[i].gen;
2612         if (page_boxed_p(i)
2613             && (page_table[i].bytes_used != 0)
2614             && (generation != new_space)
2615             && (generation >= from)
2616             && (generation <= to)) {
2617             page_index_t last_page,j;
2618             int write_protected=1;
2619 
2620             /* This should be the start of a region */
2621             gc_assert(page_starts_contiguous_block_p(i));
2622 
2623             /* Now work forward until the end of the region */
2624             for (last_page = i; ; last_page++) {
2625                 write_protected =
2626                     write_protected && page_table[last_page].write_protected;
2627                 if (page_ends_contiguous_block_p(last_page, generation))
2628                     break;
2629             }
2630             if (!write_protected) {
2631                 scavenge(page_address(i),
2632                          ((uword_t)(page_table[last_page].bytes_used
2633                                           + npage_bytes(last_page-i)))
2634                          /N_WORD_BYTES);
2635 
2636                 /* Now scan the pages and write protect those that
2637                  * don't have pointers to younger generations. */
2638                 if (enable_page_protection) {
2639                     for (j = i; j <= last_page; j++) {
2640                         num_wp += update_page_write_prot(j);
2641                     }
2642                 }
2643                 if ((gencgc_verbose > 1) && (num_wp != 0)) {
2644                     FSHOW((stderr,
2645                            "/write protected %d pages within generation %d\n",
2646                            num_wp, generation));
2647                 }
2648             }
2649             i = last_page;
2650         }
2651     }
2652 
2653 #if SC_GEN_CK
2654     /* Check that none of the write_protected pages in this generation
2655      * have been written to. */
2656     for (i = 0; i < page_table_pages; i++) {
2657         if (page_allocated_p(i)
2658             && (page_table[i].bytes_used != 0)
2659             && (page_table[i].gen == generation)
2660             && (page_table[i].write_protected_cleared != 0)) {
2661             FSHOW((stderr, "/scavenge_generation() %d\n", generation));
2662             FSHOW((stderr,
2663                    "/page bytes_used=%d scan_start_offset=%lu dont_move=%d\n",
2664                     page_table[i].bytes_used,
2665                     page_table[i].scan_start_offset,
2666                     page_table[i].dont_move));
2667             lose("write to protected page %d in scavenge_generation()\n", i);
2668         }
2669     }
2670 #endif
2671 }
2672 
2673 
2674 /* Scavenge a newspace generation. As it is scavenged new objects may
2675  * be allocated to it; these will also need to be scavenged. This
2676  * repeats until there are no more objects unscavenged in the
2677  * newspace generation.
2678  *
2679  * To help improve the efficiency, areas written are recorded by
2680  * gc_alloc() and only these scavenged. Sometimes a little more will be
2681  * scavenged, but this causes no harm. An easy check is done that the
2682  * scavenged bytes equals the number allocated in the previous
2683  * scavenge.
2684  *
2685  * Write-protected pages are not scanned except if they are marked
2686  * dont_move in which case they may have been promoted and still have
2687  * pointers to the from space.
2688  *
2689  * Write-protected pages could potentially be written by alloc however
2690  * to avoid having to handle re-scavenging of write-protected pages
2691  * gc_alloc() does not write to write-protected pages.
2692  *
2693  * New areas of objects allocated are recorded alternatively in the two
2694  * new_areas arrays below. */
2695 static struct new_area new_areas_1[NUM_NEW_AREAS];
2696 static struct new_area new_areas_2[NUM_NEW_AREAS];
2697 
2698 #ifdef LISP_FEATURE_IMMOBILE_SPACE
2699 extern unsigned int immobile_scav_queue_count;
2700 extern void
2701   gc_init_immobile(),
2702   update_immobile_nursery_bits(),
2703   scavenge_immobile_roots(generation_index_t,generation_index_t),
2704   scavenge_immobile_newspace(),
2705   sweep_immobile_space(int raise),
2706   write_protect_immobile_space();
2707 #else
2708 #define immobile_scav_queue_count 0
2709 #endif
2710 
2711 /* Do one full scan of the new space generation. This is not enough to
2712  * complete the job as new objects may be added to the generation in
2713  * the process which are not scavenged. */
2714 static void
scavenge_newspace_generation_one_scan(generation_index_t generation)2715 scavenge_newspace_generation_one_scan(generation_index_t generation)
2716 {
2717     page_index_t i;
2718 
2719     FSHOW((stderr,
2720            "/starting one full scan of newspace generation %d\n",
2721            generation));
2722     for (i = 0; i < last_free_page; i++) {
2723         /* Note that this skips over open regions when it encounters them. */
2724         if (page_boxed_p(i)
2725             && (page_table[i].bytes_used != 0)
2726             && (page_table[i].gen == generation)
2727             && ((page_table[i].write_protected == 0)
2728                 /* (This may be redundant as write_protected is now
2729                  * cleared before promotion.) */
2730                 || (page_table[i].dont_move == 1))) {
2731             page_index_t last_page;
2732             int all_wp=1;
2733 
2734             /* The scavenge will start at the scan_start_offset of
2735              * page i.
2736              *
2737              * We need to find the full extent of this contiguous
2738              * block in case objects span pages.
2739              *
2740              * Now work forward until the end of this contiguous area
2741              * is found. A small area is preferred as there is a
2742              * better chance of its pages being write-protected. */
2743             for (last_page = i; ;last_page++) {
2744                 /* If all pages are write-protected and movable,
2745                  * then no need to scavenge */
2746                 all_wp=all_wp && page_table[last_page].write_protected &&
2747                     !page_table[last_page].dont_move;
2748 
2749                 /* Check whether this is the last page in this
2750                  * contiguous block */
2751                 if (page_ends_contiguous_block_p(last_page, generation))
2752                     break;
2753             }
2754 
2755             /* Do a limited check for write-protected pages.  */
2756             if (!all_wp) {
2757                 sword_t nwords = (((uword_t)
2758                                (page_table[last_page].bytes_used
2759                                 + npage_bytes(last_page-i)
2760                                 + page_table[i].scan_start_offset))
2761                                / N_WORD_BYTES);
2762                 new_areas_ignore_page = last_page;
2763 
2764                 scavenge(page_scan_start(i), nwords);
2765 
2766             }
2767             i = last_page;
2768         }
2769     }
2770     FSHOW((stderr,
2771            "/done with one full scan of newspace generation %d\n",
2772            generation));
2773 }
2774 
2775 /* Do a complete scavenge of the newspace generation. */
2776 static void
scavenge_newspace_generation(generation_index_t generation)2777 scavenge_newspace_generation(generation_index_t generation)
2778 {
2779     size_t i;
2780 
2781     /* the new_areas array currently being written to by gc_alloc() */
2782     struct new_area (*current_new_areas)[] = &new_areas_1;
2783     size_t current_new_areas_index;
2784 
2785     /* the new_areas created by the previous scavenge cycle */
2786     struct new_area (*previous_new_areas)[] = NULL;
2787     size_t previous_new_areas_index;
2788 
2789     /* Flush the current regions updating the tables. */
2790     gc_alloc_update_all_page_tables(0);
2791 
2792     /* Turn on the recording of new areas by gc_alloc(). */
2793     new_areas = current_new_areas;
2794     new_areas_index = 0;
2795 
2796     /* Don't need to record new areas that get scavenged anyway during
2797      * scavenge_newspace_generation_one_scan. */
2798     record_new_objects = 1;
2799 
2800     /* Start with a full scavenge. */
2801     scavenge_newspace_generation_one_scan(generation);
2802 
2803     /* Record all new areas now. */
2804     record_new_objects = 2;
2805 
2806     /* Give a chance to weak hash tables to make other objects live.
2807      * FIXME: The algorithm implemented here for weak hash table gcing
2808      * is O(W^2+N) as Bruno Haible warns in
2809      * http://www.haible.de/bruno/papers/cs/weak/WeakDatastructures-writeup.html
2810      * see "Implementation 2". */
2811     scav_weak_hash_tables();
2812 
2813     /* Flush the current regions updating the tables. */
2814     gc_alloc_update_all_page_tables(0);
2815 
2816     /* Grab new_areas_index. */
2817     current_new_areas_index = new_areas_index;
2818 
2819     /*FSHOW((stderr,
2820              "The first scan is finished; current_new_areas_index=%d.\n",
2821              current_new_areas_index));*/
2822 
2823     while (current_new_areas_index > 0 || immobile_scav_queue_count) {
2824         /* Move the current to the previous new areas */
2825         previous_new_areas = current_new_areas;
2826         previous_new_areas_index = current_new_areas_index;
2827 
2828         /* Scavenge all the areas in previous new areas. Any new areas
2829          * allocated are saved in current_new_areas. */
2830 
2831         /* Allocate an array for current_new_areas; alternating between
2832          * new_areas_1 and 2 */
2833         if (previous_new_areas == &new_areas_1)
2834             current_new_areas = &new_areas_2;
2835         else
2836             current_new_areas = &new_areas_1;
2837 
2838         /* Set up for gc_alloc(). */
2839         new_areas = current_new_areas;
2840         new_areas_index = 0;
2841 
2842 #ifdef LISP_FEATURE_IMMOBILE_SPACE
2843         scavenge_immobile_newspace();
2844 #endif
2845         /* Check whether previous_new_areas had overflowed. */
2846         if (previous_new_areas_index >= NUM_NEW_AREAS) {
2847 
2848             /* New areas of objects allocated have been lost so need to do a
2849              * full scan to be sure! If this becomes a problem try
2850              * increasing NUM_NEW_AREAS. */
2851             if (gencgc_verbose) {
2852                 SHOW("new_areas overflow, doing full scavenge");
2853             }
2854 
2855             /* Don't need to record new areas that get scavenged
2856              * anyway during scavenge_newspace_generation_one_scan. */
2857             record_new_objects = 1;
2858 
2859             scavenge_newspace_generation_one_scan(generation);
2860 
2861             /* Record all new areas now. */
2862             record_new_objects = 2;
2863 
2864             scav_weak_hash_tables();
2865 
2866             /* Flush the current regions updating the tables. */
2867             gc_alloc_update_all_page_tables(0);
2868 
2869         } else {
2870 
2871             /* Work through previous_new_areas. */
2872             for (i = 0; i < previous_new_areas_index; i++) {
2873                 page_index_t page = (*previous_new_areas)[i].page;
2874                 size_t offset = (*previous_new_areas)[i].offset;
2875                 size_t size = (*previous_new_areas)[i].size / N_WORD_BYTES;
2876                 gc_assert((*previous_new_areas)[i].size % N_WORD_BYTES == 0);
2877                 scavenge(page_address(page)+offset, size);
2878             }
2879 
2880             scav_weak_hash_tables();
2881 
2882             /* Flush the current regions updating the tables. */
2883             gc_alloc_update_all_page_tables(0);
2884         }
2885 
2886         current_new_areas_index = new_areas_index;
2887 
2888         /*FSHOW((stderr,
2889                  "The re-scan has finished; current_new_areas_index=%d.\n",
2890                  current_new_areas_index));*/
2891     }
2892 
2893     /* Turn off recording of areas allocated by gc_alloc(). */
2894     record_new_objects = 0;
2895 
2896 #if SC_NS_GEN_CK
2897     {
2898         page_index_t i;
2899         /* Check that none of the write_protected pages in this generation
2900          * have been written to. */
2901         for (i = 0; i < page_table_pages; i++) {
2902             if (page_allocated_p(i)
2903                 && (page_table[i].bytes_used != 0)
2904                 && (page_table[i].gen == generation)
2905                 && (page_table[i].write_protected_cleared != 0)
2906                 && (page_table[i].dont_move == 0)) {
2907                 lose("write protected page %d written to in scavenge_newspace_generation\ngeneration=%d dont_move=%d\n",
2908                      i, generation, page_table[i].dont_move);
2909             }
2910         }
2911     }
2912 #endif
2913 }
2914 
2915 /* Un-write-protect all the pages in from_space. This is done at the
2916  * start of a GC else there may be many page faults while scavenging
2917  * the newspace (I've seen drive the system time to 99%). These pages
2918  * would need to be unprotected anyway before unmapping in
2919  * free_oldspace; not sure what effect this has on paging.. */
2920 static void
unprotect_oldspace(void)2921 unprotect_oldspace(void)
2922 {
2923     page_index_t i;
2924     void *region_addr = 0;
2925     void *page_addr = 0;
2926     uword_t region_bytes = 0;
2927 
2928     for (i = 0; i < last_free_page; i++) {
2929         if (page_allocated_p(i)
2930             && (page_table[i].bytes_used != 0)
2931             && (page_table[i].gen == from_space)) {
2932 
2933             /* Remove any write-protection. We should be able to rely
2934              * on the write-protect flag to avoid redundant calls. */
2935             if (page_table[i].write_protected) {
2936                 page_table[i].write_protected = 0;
2937                 page_addr = page_address(i);
2938                 if (!region_addr) {
2939                     /* First region. */
2940                     region_addr = page_addr;
2941                     region_bytes = GENCGC_CARD_BYTES;
2942                 } else if (region_addr + region_bytes == page_addr) {
2943                     /* Region continue. */
2944                     region_bytes += GENCGC_CARD_BYTES;
2945                 } else {
2946                     /* Unprotect previous region. */
2947                     os_protect(region_addr, region_bytes, OS_VM_PROT_ALL);
2948                     /* First page in new region. */
2949                     region_addr = page_addr;
2950                     region_bytes = GENCGC_CARD_BYTES;
2951                 }
2952             }
2953         }
2954     }
2955     if (region_addr) {
2956         /* Unprotect last region. */
2957         os_protect(region_addr, region_bytes, OS_VM_PROT_ALL);
2958     }
2959 }
2960 
2961 /* Work through all the pages and free any in from_space. This
2962  * assumes that all objects have been copied or promoted to an older
2963  * generation. Bytes_allocated and the generation bytes_allocated
2964  * counter are updated. The number of bytes freed is returned. */
2965 static uword_t
free_oldspace(void)2966 free_oldspace(void)
2967 {
2968     uword_t bytes_freed = 0;
2969     page_index_t first_page, last_page;
2970 
2971     first_page = 0;
2972 
2973     do {
2974         /* Find a first page for the next region of pages. */
2975         while ((first_page < last_free_page)
2976                && (page_free_p(first_page)
2977                    || (page_table[first_page].bytes_used == 0)
2978                    || (page_table[first_page].gen != from_space)))
2979             first_page++;
2980 
2981         if (first_page >= last_free_page)
2982             break;
2983 
2984         /* Find the last page of this region. */
2985         last_page = first_page;
2986 
2987         do {
2988             /* Free the page. */
2989             bytes_freed += page_table[last_page].bytes_used;
2990             generations[page_table[last_page].gen].bytes_allocated -=
2991                 page_table[last_page].bytes_used;
2992             page_table[last_page].allocated = FREE_PAGE_FLAG;
2993             page_table[last_page].bytes_used = 0;
2994             /* Should already be unprotected by unprotect_oldspace(). */
2995             gc_assert(!page_table[last_page].write_protected);
2996             last_page++;
2997         }
2998         while ((last_page < last_free_page)
2999                && page_allocated_p(last_page)
3000                && (page_table[last_page].bytes_used != 0)
3001                && (page_table[last_page].gen == from_space));
3002 
3003 #ifdef READ_PROTECT_FREE_PAGES
3004         os_protect(page_address(first_page),
3005                    npage_bytes(last_page-first_page),
3006                    OS_VM_PROT_NONE);
3007 #endif
3008         first_page = last_page;
3009     } while (first_page < last_free_page);
3010 
3011     bytes_allocated -= bytes_freed;
3012     return bytes_freed;
3013 }
3014 
3015 #if 0
3016 /* Print some information about a pointer at the given address. */
3017 static void
3018 print_ptr(lispobj *addr)
3019 {
3020     /* If addr is in the dynamic space then out the page information. */
3021     page_index_t pi1 = find_page_index((void*)addr);
3022 
3023     if (pi1 != -1)
3024         fprintf(stderr,"  %p: page %d  alloc %d  gen %d  bytes_used %d  offset %lu  dont_move %d\n",
3025                 addr,
3026                 pi1,
3027                 page_table[pi1].allocated,
3028                 page_table[pi1].gen,
3029                 page_table[pi1].bytes_used,
3030                 page_table[pi1].scan_start_offset,
3031                 page_table[pi1].dont_move);
3032     fprintf(stderr,"  %x %x %x %x (%x) %x %x %x %x\n",
3033             *(addr-4),
3034             *(addr-3),
3035             *(addr-2),
3036             *(addr-1),
3037             *(addr-0),
3038             *(addr+1),
3039             *(addr+2),
3040             *(addr+3),
3041             *(addr+4));
3042 }
3043 #endif
3044 
3045 static int
is_in_stack_space(lispobj ptr)3046 is_in_stack_space(lispobj ptr)
3047 {
3048     /* For space verification: Pointers can be valid if they point
3049      * to a thread stack space.  This would be faster if the thread
3050      * structures had page-table entries as if they were part of
3051      * the heap space. */
3052     struct thread *th;
3053     for_each_thread(th) {
3054         if ((th->control_stack_start <= (lispobj *)ptr) &&
3055             (th->control_stack_end >= (lispobj *)ptr)) {
3056             return 1;
3057         }
3058     }
3059     return 0;
3060 }
3061 
3062 // NOTE: This function can produces false failure indications,
3063 // usually related to dynamic space pointing to the stack of a
3064 // dead thread, but there may be other reasons as well.
3065 static void
verify_space(lispobj * start,size_t words)3066 verify_space(lispobj *start, size_t words)
3067 {
3068     extern int valid_lisp_pointer_p(lispobj);
3069     int is_in_dynamic_space = (find_page_index((void*)start) != -1);
3070     int is_in_readonly_space =
3071         (READ_ONLY_SPACE_START <= (uword_t)start &&
3072          (uword_t)start < SymbolValue(READ_ONLY_SPACE_FREE_POINTER,0));
3073 #ifdef LISP_FEATURE_IMMOBILE_SPACE
3074     int is_in_immobile_space =
3075         (IMMOBILE_SPACE_START <= (uword_t)start &&
3076          (uword_t)start < SymbolValue(IMMOBILE_SPACE_FREE_POINTER,0));
3077 #endif
3078 
3079     while (words > 0) {
3080         size_t count = 1;
3081         lispobj thing = *start;
3082 
3083         if (is_lisp_pointer(thing)) {
3084             page_index_t page_index = find_page_index((void*)thing);
3085             sword_t to_readonly_space =
3086                 (READ_ONLY_SPACE_START <= thing &&
3087                  thing < SymbolValue(READ_ONLY_SPACE_FREE_POINTER,0));
3088             sword_t to_static_space =
3089                 (STATIC_SPACE_START <= thing &&
3090                  thing < SymbolValue(STATIC_SPACE_FREE_POINTER,0));
3091 #ifdef LISP_FEATURE_IMMOBILE_SPACE
3092             sword_t to_immobile_space =
3093                 (IMMOBILE_SPACE_START <= thing &&
3094                  thing < SymbolValue(IMMOBILE_FIXEDOBJ_FREE_POINTER,0)) ||
3095                 (IMMOBILE_VARYOBJ_SUBSPACE_START <= thing &&
3096                  thing < SymbolValue(IMMOBILE_SPACE_FREE_POINTER,0));
3097 #endif
3098 
3099             /* Does it point to the dynamic space? */
3100             if (page_index != -1) {
3101                 /* If it's within the dynamic space it should point to a used page. */
3102                 if (!page_allocated_p(page_index))
3103                     lose ("Ptr %p @ %p sees free page.\n", thing, start);
3104                 if ((char*)thing - (char*)page_address(page_index)
3105                     >= page_table[page_index].bytes_used)
3106                     lose ("Ptr %p @ %p sees unallocated space.\n", thing, start);
3107                 /* Check that it doesn't point to a forwarding pointer! */
3108                 if (*((lispobj *)native_pointer(thing)) == 0x01) {
3109                     lose("Ptr %p @ %p sees forwarding ptr.\n", thing, start);
3110                 }
3111                 /* Check that its not in the RO space as it would then be a
3112                  * pointer from the RO to the dynamic space. */
3113                 if (is_in_readonly_space) {
3114                     lose("ptr to dynamic space %p from RO space %x\n",
3115                          thing, start);
3116                 }
3117 #ifdef LISP_FEATURE_IMMOBILE_SPACE
3118                 // verify all immobile space -> dynamic space pointers
3119                 if (is_in_immobile_space && !valid_lisp_pointer_p(thing)) {
3120                     lose("Ptr %p @ %p sees junk.\n", thing, start);
3121                 }
3122 #endif
3123                 /* Does it point to a plausible object? This check slows
3124                  * it down a lot (so it's commented out).
3125                  *
3126                  * "a lot" is serious: it ate 50 minutes cpu time on
3127                  * my duron 950 before I came back from lunch and
3128                  * killed it.
3129                  *
3130                  *   FIXME: Add a variable to enable this
3131                  * dynamically. */
3132                 /*
3133                 if (!valid_lisp_pointer_p((lispobj *)thing) {
3134                     lose("ptr %p to invalid object %p\n", thing, start);
3135                 }
3136                 */
3137 #ifdef LISP_FEATURE_IMMOBILE_SPACE
3138             } else if (to_immobile_space) {
3139                 // the object pointed to must not have been discarded as garbage
3140                 if (!other_immediate_lowtag_p(*native_pointer(thing))
3141                     || immobile_filler_p(native_pointer(thing)))
3142                     lose("Ptr %p @ %p sees trashed object.\n", (void*)thing, start);
3143                 // verify all pointers to immobile space
3144                 if (!valid_lisp_pointer_p(thing))
3145                     lose("Ptr %p @ %p sees junk.\n", thing, start);
3146 #endif
3147             } else {
3148                 extern char __attribute__((unused)) funcallable_instance_tramp;
3149                 /* Verify that it points to another valid space. */
3150                 if (!to_readonly_space && !to_static_space
3151                     && !is_in_stack_space(thing)) {
3152                     lose("Ptr %p @ %p sees junk.\n", thing, start);
3153                 }
3154             }
3155         } else {
3156             if (!(fixnump(thing))) {
3157                 /* skip fixnums */
3158                 switch(widetag_of(*start)) {
3159 
3160                     /* boxed objects */
3161                 case SIMPLE_VECTOR_WIDETAG:
3162                 case RATIO_WIDETAG:
3163                 case COMPLEX_WIDETAG:
3164                 case SIMPLE_ARRAY_WIDETAG:
3165                 case COMPLEX_BASE_STRING_WIDETAG:
3166 #ifdef COMPLEX_CHARACTER_STRING_WIDETAG
3167                 case COMPLEX_CHARACTER_STRING_WIDETAG:
3168 #endif
3169                 case COMPLEX_VECTOR_NIL_WIDETAG:
3170                 case COMPLEX_BIT_VECTOR_WIDETAG:
3171                 case COMPLEX_VECTOR_WIDETAG:
3172                 case COMPLEX_ARRAY_WIDETAG:
3173                 case CLOSURE_HEADER_WIDETAG:
3174                 case FUNCALLABLE_INSTANCE_HEADER_WIDETAG:
3175                 case VALUE_CELL_HEADER_WIDETAG:
3176                 case SYMBOL_HEADER_WIDETAG:
3177                 case CHARACTER_WIDETAG:
3178 #if N_WORD_BITS == 64
3179                 case SINGLE_FLOAT_WIDETAG:
3180 #endif
3181                 case UNBOUND_MARKER_WIDETAG:
3182                 case FDEFN_WIDETAG:
3183                     count = 1;
3184                     break;
3185 
3186                 case INSTANCE_HEADER_WIDETAG:
3187                     {
3188                         lispobj layout = instance_layout(start);
3189                         if (!layout) {
3190                             count = 1;
3191                             break;
3192                         }
3193                         sword_t nslots = instance_length(thing) | 1;
3194                         instance_scan_interleaved(verify_space, start+1, nslots,
3195                                                   native_pointer(layout));
3196                         count = 1 + nslots;
3197                         break;
3198                     }
3199                 case CODE_HEADER_WIDETAG:
3200                     {
3201                         /* Check that it's not in the dynamic space.
3202                          * FIXME: Isn't is supposed to be OK for code
3203                          * objects to be in the dynamic space these days? */
3204                         /* It is for byte compiled code, but there's
3205                          * no byte compilation in SBCL anymore. */
3206                         if (is_in_dynamic_space
3207                             /* Only when enabled */
3208                             && verify_dynamic_code_check) {
3209                             FSHOW((stderr,
3210                                    "/code object at %p in the dynamic space\n",
3211                                    start));
3212                         }
3213 
3214                         struct code *code = (struct code *) start;
3215                         sword_t nheader_words = code_header_words(code->header);
3216                         /* Scavenge the boxed section of the code data block */
3217                         verify_space(start + 1, nheader_words - 1);
3218 
3219                         /* Scavenge the boxed section of each function
3220                          * object in the code data block. */
3221                         for_each_simple_fun(i, fheaderp, code, 1, {
3222                             verify_space(SIMPLE_FUN_SCAV_START(fheaderp),
3223                                          SIMPLE_FUN_SCAV_NWORDS(fheaderp)); });
3224                         count = nheader_words + code_instruction_words(code->code_size);
3225                         break;
3226                     }
3227 
3228                     /* unboxed objects */
3229                 case BIGNUM_WIDETAG:
3230 #if N_WORD_BITS != 64
3231                 case SINGLE_FLOAT_WIDETAG:
3232 #endif
3233                 case DOUBLE_FLOAT_WIDETAG:
3234 #ifdef COMPLEX_LONG_FLOAT_WIDETAG
3235                 case LONG_FLOAT_WIDETAG:
3236 #endif
3237 #ifdef COMPLEX_SINGLE_FLOAT_WIDETAG
3238                 case COMPLEX_SINGLE_FLOAT_WIDETAG:
3239 #endif
3240 #ifdef COMPLEX_DOUBLE_FLOAT_WIDETAG
3241                 case COMPLEX_DOUBLE_FLOAT_WIDETAG:
3242 #endif
3243 #ifdef COMPLEX_LONG_FLOAT_WIDETAG
3244                 case COMPLEX_LONG_FLOAT_WIDETAG:
3245 #endif
3246 #ifdef SIMD_PACK_WIDETAG
3247                 case SIMD_PACK_WIDETAG:
3248 #endif
3249                 case SIMPLE_BASE_STRING_WIDETAG:
3250 #ifdef SIMPLE_CHARACTER_STRING_WIDETAG
3251                 case SIMPLE_CHARACTER_STRING_WIDETAG:
3252 #endif
3253                 case SIMPLE_BIT_VECTOR_WIDETAG:
3254                 case SIMPLE_ARRAY_NIL_WIDETAG:
3255                 case SIMPLE_ARRAY_UNSIGNED_BYTE_2_WIDETAG:
3256                 case SIMPLE_ARRAY_UNSIGNED_BYTE_4_WIDETAG:
3257                 case SIMPLE_ARRAY_UNSIGNED_BYTE_7_WIDETAG:
3258                 case SIMPLE_ARRAY_UNSIGNED_BYTE_8_WIDETAG:
3259                 case SIMPLE_ARRAY_UNSIGNED_BYTE_15_WIDETAG:
3260                 case SIMPLE_ARRAY_UNSIGNED_BYTE_16_WIDETAG:
3261 
3262                 case SIMPLE_ARRAY_UNSIGNED_FIXNUM_WIDETAG:
3263 
3264                 case SIMPLE_ARRAY_UNSIGNED_BYTE_31_WIDETAG:
3265                 case SIMPLE_ARRAY_UNSIGNED_BYTE_32_WIDETAG:
3266 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_63_WIDETAG
3267                 case SIMPLE_ARRAY_UNSIGNED_BYTE_63_WIDETAG:
3268 #endif
3269 #ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_64_WIDETAG
3270                 case SIMPLE_ARRAY_UNSIGNED_BYTE_64_WIDETAG:
3271 #endif
3272 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG
3273                 case SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG:
3274 #endif
3275 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG
3276                 case SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG:
3277 #endif
3278 
3279                 case SIMPLE_ARRAY_FIXNUM_WIDETAG:
3280 
3281 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG
3282                 case SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG:
3283 #endif
3284 #ifdef SIMPLE_ARRAY_SIGNED_BYTE_64_WIDETAG
3285                 case SIMPLE_ARRAY_SIGNED_BYTE_64_WIDETAG:
3286 #endif
3287                 case SIMPLE_ARRAY_SINGLE_FLOAT_WIDETAG:
3288                 case SIMPLE_ARRAY_DOUBLE_FLOAT_WIDETAG:
3289 #ifdef SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG
3290                 case SIMPLE_ARRAY_LONG_FLOAT_WIDETAG:
3291 #endif
3292 #ifdef SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG
3293                 case SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG:
3294 #endif
3295 #ifdef SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG
3296                 case SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG:
3297 #endif
3298 #ifdef SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG
3299                 case SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG:
3300 #endif
3301                 case SAP_WIDETAG:
3302                 case WEAK_POINTER_WIDETAG:
3303 #ifdef NO_TLS_VALUE_MARKER_WIDETAG
3304                 case NO_TLS_VALUE_MARKER_WIDETAG:
3305 #endif
3306                     count = (sizetab[widetag_of(*start)])(start);
3307                     break;
3308 
3309                 default:
3310                     lose("Unhandled widetag %p at %p\n",
3311                          widetag_of(*start), start);
3312                 }
3313             }
3314         }
3315         start += count;
3316         words -= count;
3317     }
3318 }
3319 
3320 static void verify_dynamic_space();
3321 
3322 static void
verify_gc(void)3323 verify_gc(void)
3324 {
3325     /* FIXME: It would be nice to make names consistent so that
3326      * foo_size meant size *in* *bytes* instead of size in some
3327      * arbitrary units. (Yes, this caused a bug, how did you guess?:-)
3328      * Some counts of lispobjs are called foo_count; it might be good
3329      * to grep for all foo_size and rename the appropriate ones to
3330      * foo_count. */
3331 #ifdef LISP_FEATURE_IMMOBILE_SPACE
3332 #  ifdef __linux__
3333     // Try this verification if marknsweep was compiled with extra debugging.
3334     // But weak symbols don't work on macOS.
3335     extern void __attribute__((weak)) check_varyobj_pages();
3336     if (&check_varyobj_pages) check_varyobj_pages();
3337 #  endif
3338     verify_space((lispobj*)IMMOBILE_SPACE_START,
3339                  (lispobj*)SymbolValue(IMMOBILE_FIXEDOBJ_FREE_POINTER,0)
3340                  - (lispobj*)IMMOBILE_SPACE_START);
3341     verify_space((lispobj*)IMMOBILE_VARYOBJ_SUBSPACE_START,
3342                  (lispobj*)SymbolValue(IMMOBILE_SPACE_FREE_POINTER,0)
3343                  - (lispobj*)IMMOBILE_VARYOBJ_SUBSPACE_START);
3344 #endif
3345     sword_t read_only_space_size =
3346         (lispobj*)SymbolValue(READ_ONLY_SPACE_FREE_POINTER,0)
3347         - (lispobj*)READ_ONLY_SPACE_START;
3348     sword_t static_space_size =
3349         (lispobj*)SymbolValue(STATIC_SPACE_FREE_POINTER,0)
3350         - (lispobj*)STATIC_SPACE_START;
3351     struct thread *th;
3352     for_each_thread(th) {
3353     sword_t binding_stack_size =
3354         (lispobj*)get_binding_stack_pointer(th)
3355             - (lispobj*)th->binding_stack_start;
3356         verify_space(th->binding_stack_start, binding_stack_size);
3357     }
3358     verify_space((lispobj*)READ_ONLY_SPACE_START, read_only_space_size);
3359     verify_space((lispobj*)STATIC_SPACE_START   , static_space_size);
3360     verify_dynamic_space();
3361 }
3362 
3363 void
walk_generation(void (* proc)(lispobj *,size_t),generation_index_t generation)3364 walk_generation(void (*proc)(lispobj*,size_t),
3365                 generation_index_t generation)
3366 {
3367     page_index_t i;
3368     int genmask = generation >= 0 ? 1 << generation : ~0;
3369 
3370     for (i = 0; i < last_free_page; i++) {
3371         if (page_allocated_p(i)
3372             && (page_table[i].bytes_used != 0)
3373             && ((1 << page_table[i].gen) & genmask)) {
3374             page_index_t last_page;
3375 
3376             /* This should be the start of a contiguous block */
3377             gc_assert(page_starts_contiguous_block_p(i));
3378 
3379             /* Need to find the full extent of this contiguous block in case
3380                objects span pages. */
3381 
3382             /* Now work forward until the end of this contiguous area is
3383                found. */
3384             for (last_page = i; ;last_page++)
3385                 /* Check whether this is the last page in this contiguous
3386                  * block. */
3387                 if (page_ends_contiguous_block_p(last_page, page_table[i].gen))
3388                     break;
3389 
3390             proc(page_address(i),
3391                  ((uword_t)(page_table[last_page].bytes_used
3392                            + npage_bytes(last_page-i)))
3393                          / N_WORD_BYTES);
3394             i = last_page;
3395         }
3396     }
3397 }
verify_generation(generation_index_t generation)3398 static void verify_generation(generation_index_t generation)
3399 {
3400   walk_generation(verify_space, generation);
3401 }
3402 
3403 /* Check that all the free space is zero filled. */
3404 static void
verify_zero_fill(void)3405 verify_zero_fill(void)
3406 {
3407     page_index_t page;
3408 
3409     for (page = 0; page < last_free_page; page++) {
3410         if (page_free_p(page)) {
3411             /* The whole page should be zero filled. */
3412             sword_t *start_addr = (sword_t *)page_address(page);
3413             sword_t i;
3414             for (i = 0; i < (sword_t)GENCGC_CARD_BYTES/N_WORD_BYTES; i++) {
3415                 if (start_addr[i] != 0) {
3416                     lose("free page not zero at %x\n", start_addr + i);
3417                 }
3418             }
3419         } else {
3420             sword_t free_bytes = GENCGC_CARD_BYTES - page_table[page].bytes_used;
3421             if (free_bytes > 0) {
3422                 sword_t *start_addr = (sword_t *)((uword_t)page_address(page)
3423                                           + page_table[page].bytes_used);
3424                 sword_t size = free_bytes / N_WORD_BYTES;
3425                 sword_t i;
3426                 for (i = 0; i < size; i++) {
3427                     if (start_addr[i] != 0) {
3428                         lose("free region not zero at %x\n", start_addr + i);
3429                     }
3430                 }
3431             }
3432         }
3433     }
3434 }
3435 
3436 /* External entry point for verify_zero_fill */
3437 void
gencgc_verify_zero_fill(void)3438 gencgc_verify_zero_fill(void)
3439 {
3440     /* Flush the alloc regions updating the tables. */
3441     gc_alloc_update_all_page_tables(1);
3442     SHOW("verifying zero fill");
3443     verify_zero_fill();
3444 }
3445 
3446 static void
verify_dynamic_space(void)3447 verify_dynamic_space(void)
3448 {
3449     verify_generation(-1);
3450     if (gencgc_enable_verify_zero_fill)
3451         verify_zero_fill();
3452 }
3453 
3454 /* Write-protect all the dynamic boxed pages in the given generation. */
3455 static void
write_protect_generation_pages(generation_index_t generation)3456 write_protect_generation_pages(generation_index_t generation)
3457 {
3458     page_index_t start;
3459 
3460     gc_assert(generation < SCRATCH_GENERATION);
3461 
3462     for (start = 0; start < last_free_page; start++) {
3463         if (protect_page_p(start, generation)) {
3464             void *page_start;
3465             page_index_t last;
3466 
3467             /* Note the page as protected in the page tables. */
3468             page_table[start].write_protected = 1;
3469 
3470             for (last = start + 1; last < last_free_page; last++) {
3471                 if (!protect_page_p(last, generation))
3472                   break;
3473                 page_table[last].write_protected = 1;
3474             }
3475 
3476             page_start = (void *)page_address(start);
3477 
3478             os_protect(page_start,
3479                        npage_bytes(last - start),
3480                        OS_VM_PROT_READ | OS_VM_PROT_EXECUTE);
3481 
3482             start = last;
3483         }
3484     }
3485 
3486     if (gencgc_verbose > 1) {
3487         FSHOW((stderr,
3488                "/write protected %d of %d pages in generation %d\n",
3489                count_write_protect_generation_pages(generation),
3490                count_generation_pages(generation),
3491                generation));
3492     }
3493 }
3494 
3495 #if defined(LISP_FEATURE_SB_THREAD) && (defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64))
3496 static void
preserve_context_registers(os_context_t * c)3497 preserve_context_registers (os_context_t *c)
3498 {
3499     void **ptr;
3500     /* On Darwin the signal context isn't a contiguous block of memory,
3501      * so just preserve_pointering its contents won't be sufficient.
3502      */
3503 #if defined(LISP_FEATURE_DARWIN)||defined(LISP_FEATURE_WIN32)
3504 #if defined LISP_FEATURE_X86
3505     preserve_pointer((void*)*os_context_register_addr(c,reg_EAX));
3506     preserve_pointer((void*)*os_context_register_addr(c,reg_ECX));
3507     preserve_pointer((void*)*os_context_register_addr(c,reg_EDX));
3508     preserve_pointer((void*)*os_context_register_addr(c,reg_EBX));
3509     preserve_pointer((void*)*os_context_register_addr(c,reg_ESI));
3510     preserve_pointer((void*)*os_context_register_addr(c,reg_EDI));
3511     preserve_pointer((void*)*os_context_pc_addr(c));
3512 #elif defined LISP_FEATURE_X86_64
3513     preserve_pointer((void*)*os_context_register_addr(c,reg_RAX));
3514     preserve_pointer((void*)*os_context_register_addr(c,reg_RCX));
3515     preserve_pointer((void*)*os_context_register_addr(c,reg_RDX));
3516     preserve_pointer((void*)*os_context_register_addr(c,reg_RBX));
3517     preserve_pointer((void*)*os_context_register_addr(c,reg_RSI));
3518     preserve_pointer((void*)*os_context_register_addr(c,reg_RDI));
3519     preserve_pointer((void*)*os_context_register_addr(c,reg_R8));
3520     preserve_pointer((void*)*os_context_register_addr(c,reg_R9));
3521     preserve_pointer((void*)*os_context_register_addr(c,reg_R10));
3522     preserve_pointer((void*)*os_context_register_addr(c,reg_R11));
3523     preserve_pointer((void*)*os_context_register_addr(c,reg_R12));
3524     preserve_pointer((void*)*os_context_register_addr(c,reg_R13));
3525     preserve_pointer((void*)*os_context_register_addr(c,reg_R14));
3526     preserve_pointer((void*)*os_context_register_addr(c,reg_R15));
3527     preserve_pointer((void*)*os_context_pc_addr(c));
3528 #else
3529     #error "preserve_context_registers needs to be tweaked for non-x86 Darwin"
3530 #endif
3531 #endif
3532 #if !defined(LISP_FEATURE_WIN32)
3533     for(ptr = ((void **)(c+1))-1; ptr>=(void **)c; ptr--) {
3534         preserve_pointer(*ptr);
3535     }
3536 #endif
3537 }
3538 #endif
3539 
3540 static void
move_pinned_pages_to_newspace()3541 move_pinned_pages_to_newspace()
3542 {
3543     page_index_t i;
3544 
3545     /* scavenge() will evacuate all oldspace pages, but no newspace
3546      * pages.  Pinned pages are precisely those pages which must not
3547      * be evacuated, so move them to newspace directly. */
3548 
3549     for (i = 0; i < last_free_page; i++) {
3550         if (page_table[i].dont_move &&
3551             /* dont_move is cleared lazily, so validate the space as well. */
3552             page_table[i].gen == from_space) {
3553             if (pinned_dwords(i) && do_wipe_p) {
3554                 // do not move to newspace after all, this will be word-wiped
3555                 continue;
3556             }
3557             page_table[i].gen = new_space;
3558             /* And since we're moving the pages wholesale, also adjust
3559              * the generation allocation counters. */
3560             generations[new_space].bytes_allocated += page_table[i].bytes_used;
3561             generations[from_space].bytes_allocated -= page_table[i].bytes_used;
3562         }
3563     }
3564 }
3565 
3566 /* Garbage collect a generation. If raise is 0 then the remains of the
3567  * generation are not raised to the next generation. */
3568 static void
garbage_collect_generation(generation_index_t generation,int raise)3569 garbage_collect_generation(generation_index_t generation, int raise)
3570 {
3571     page_index_t i;
3572     uword_t static_space_size;
3573     struct thread *th;
3574 
3575     gc_assert(generation <= HIGHEST_NORMAL_GENERATION);
3576 
3577     /* The oldest generation can't be raised. */
3578     gc_assert((generation != HIGHEST_NORMAL_GENERATION) || (raise == 0));
3579 
3580     /* Check if weak hash tables were processed in the previous GC. */
3581     gc_assert(weak_hash_tables == NULL);
3582 
3583     /* Initialize the weak pointer list. */
3584     weak_pointers = NULL;
3585 
3586     /* When a generation is not being raised it is transported to a
3587      * temporary generation (NUM_GENERATIONS), and lowered when
3588      * done. Set up this new generation. There should be no pages
3589      * allocated to it yet. */
3590     if (!raise) {
3591          gc_assert(generations[SCRATCH_GENERATION].bytes_allocated == 0);
3592     }
3593 
3594     /* Set the global src and dest. generations */
3595     from_space = generation;
3596     if (raise)
3597         new_space = generation+1;
3598     else
3599         new_space = SCRATCH_GENERATION;
3600 
3601     /* Change to a new space for allocation, resetting the alloc_start_page */
3602     gc_alloc_generation = new_space;
3603     generations[new_space].alloc_start_page = 0;
3604     generations[new_space].alloc_unboxed_start_page = 0;
3605     generations[new_space].alloc_large_start_page = 0;
3606     generations[new_space].alloc_large_unboxed_start_page = 0;
3607 
3608     /* Before any pointers are preserved, the dont_move flags on the
3609      * pages need to be cleared. */
3610     for (i = 0; i < last_free_page; i++)
3611         if(page_table[i].gen==from_space) {
3612             page_table[i].dont_move = 0;
3613             gc_assert(pinned_dwords(i) == NULL);
3614         }
3615 
3616     /* Un-write-protect the old-space pages. This is essential for the
3617      * promoted pages as they may contain pointers into the old-space
3618      * which need to be scavenged. It also helps avoid unnecessary page
3619      * faults as forwarding pointers are written into them. They need to
3620      * be un-protected anyway before unmapping later. */
3621     unprotect_oldspace();
3622 
3623     /* Scavenge the stacks' conservative roots. */
3624 
3625     /* there are potentially two stacks for each thread: the main
3626      * stack, which may contain Lisp pointers, and the alternate stack.
3627      * We don't ever run Lisp code on the altstack, but it may
3628      * host a sigcontext with lisp objects in it */
3629 
3630     /* what we need to do: (1) find the stack pointer for the main
3631      * stack; scavenge it (2) find the interrupt context on the
3632      * alternate stack that might contain lisp values, and scavenge
3633      * that */
3634 
3635     /* we assume that none of the preceding applies to the thread that
3636      * initiates GC.  If you ever call GC from inside an altstack
3637      * handler, you will lose. */
3638 
3639 #if defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64)
3640     /* And if we're saving a core, there's no point in being conservative. */
3641     if (conservative_stack) {
3642         for_each_thread(th) {
3643             void **ptr;
3644             void **esp=(void **)-1;
3645             if (th->state == STATE_DEAD)
3646                 continue;
3647 # if defined(LISP_FEATURE_SB_SAFEPOINT)
3648             /* Conservative collect_garbage is always invoked with a
3649              * foreign C call or an interrupt handler on top of every
3650              * existing thread, so the stored SP in each thread
3651              * structure is valid, no matter which thread we are looking
3652              * at.  For threads that were running Lisp code, the pitstop
3653              * and edge functions maintain this value within the
3654              * interrupt or exception handler. */
3655             esp = os_get_csp(th);
3656             assert_on_stack(th, esp);
3657 
3658             /* In addition to pointers on the stack, also preserve the
3659              * return PC, the only value from the context that we need
3660              * in addition to the SP.  The return PC gets saved by the
3661              * foreign call wrapper, and removed from the control stack
3662              * into a register. */
3663             preserve_pointer(th->pc_around_foreign_call);
3664 
3665             /* And on platforms with interrupts: scavenge ctx registers. */
3666 
3667             /* Disabled on Windows, because it does not have an explicit
3668              * stack of `interrupt_contexts'.  The reported CSP has been
3669              * chosen so that the current context on the stack is
3670              * covered by the stack scan.  See also set_csp_from_context(). */
3671 #  ifndef LISP_FEATURE_WIN32
3672             if (th != arch_os_get_current_thread()) {
3673                 long k = fixnum_value(
3674                     SymbolValue(FREE_INTERRUPT_CONTEXT_INDEX,th));
3675                 while (k > 0)
3676                     preserve_context_registers(th->interrupt_contexts[--k]);
3677             }
3678 #  endif
3679 # elif defined(LISP_FEATURE_SB_THREAD)
3680             sword_t i,free;
3681             if(th==arch_os_get_current_thread()) {
3682                 /* Somebody is going to burn in hell for this, but casting
3683                  * it in two steps shuts gcc up about strict aliasing. */
3684                 esp = (void **)((void *)&raise);
3685             } else {
3686                 void **esp1;
3687                 free=fixnum_value(SymbolValue(FREE_INTERRUPT_CONTEXT_INDEX,th));
3688                 for(i=free-1;i>=0;i--) {
3689                     os_context_t *c=th->interrupt_contexts[i];
3690                     esp1 = (void **) *os_context_register_addr(c,reg_SP);
3691                     if (esp1>=(void **)th->control_stack_start &&
3692                         esp1<(void **)th->control_stack_end) {
3693                         if(esp1<esp) esp=esp1;
3694                         preserve_context_registers(c);
3695                     }
3696                 }
3697             }
3698 # else
3699             esp = (void **)((void *)&raise);
3700 # endif
3701             if (!esp || esp == (void*) -1)
3702                 lose("garbage_collect: no SP known for thread %x (OS %x)",
3703                      th, th->os_thread);
3704             for (ptr = ((void **)th->control_stack_end)-1; ptr >= esp;  ptr--) {
3705                 preserve_pointer(*ptr);
3706             }
3707         }
3708     }
3709 #else
3710     /* Non-x86oid systems don't have "conservative roots" as such, but
3711      * the same mechanism is used for objects pinned for use by alien
3712      * code. */
3713     for_each_thread(th) {
3714         lispobj pin_list = SymbolTlValue(PINNED_OBJECTS,th);
3715         while (pin_list != NIL) {
3716             struct cons *list_entry =
3717                 (struct cons *)native_pointer(pin_list);
3718             preserve_pointer(list_entry->car);
3719             pin_list = list_entry->cdr;
3720         }
3721     }
3722 #endif
3723 
3724 #if QSHOW
3725     if (gencgc_verbose > 1) {
3726         sword_t num_dont_move_pages = count_dont_move_pages();
3727         fprintf(stderr,
3728                 "/non-movable pages due to conservative pointers = %ld (%lu bytes)\n",
3729                 num_dont_move_pages,
3730                 npage_bytes(num_dont_move_pages));
3731     }
3732 #endif
3733 
3734     /* Now that all of the pinned (dont_move) pages are known, and
3735      * before we start to scavenge (and thus relocate) objects,
3736      * relocate the pinned pages to newspace, so that the scavenger
3737      * will not attempt to relocate their contents. */
3738     move_pinned_pages_to_newspace();
3739 
3740     /* Scavenge all the rest of the roots. */
3741 
3742 #if !defined(LISP_FEATURE_X86) && !defined(LISP_FEATURE_X86_64)
3743     /*
3744      * If not x86, we need to scavenge the interrupt context(s) and the
3745      * control stack.
3746      */
3747     {
3748         struct thread *th;
3749         for_each_thread(th) {
3750             scavenge_interrupt_contexts(th);
3751             scavenge_control_stack(th);
3752         }
3753 
3754 # ifdef LISP_FEATURE_SB_SAFEPOINT
3755         /* In this case, scrub all stacks right here from the GCing thread
3756          * instead of doing what the comment below says.  Suboptimal, but
3757          * easier. */
3758         for_each_thread(th)
3759             scrub_thread_control_stack(th);
3760 # else
3761         /* Scrub the unscavenged control stack space, so that we can't run
3762          * into any stale pointers in a later GC (this is done by the
3763          * stop-for-gc handler in the other threads). */
3764         scrub_control_stack();
3765 # endif
3766     }
3767 #endif
3768 
3769     /* Scavenge the Lisp functions of the interrupt handlers, taking
3770      * care to avoid SIG_DFL and SIG_IGN. */
3771     for (i = 0; i < NSIG; i++) {
3772         union interrupt_handler handler = interrupt_handlers[i];
3773         if (!ARE_SAME_HANDLER(handler.c, SIG_IGN) &&
3774             !ARE_SAME_HANDLER(handler.c, SIG_DFL)) {
3775             scavenge((lispobj *)(interrupt_handlers + i), 1);
3776         }
3777     }
3778     /* Scavenge the binding stacks. */
3779     {
3780         struct thread *th;
3781         for_each_thread(th) {
3782             sword_t len= (lispobj *)get_binding_stack_pointer(th) -
3783                 th->binding_stack_start;
3784             scavenge((lispobj *) th->binding_stack_start,len);
3785 #ifdef LISP_FEATURE_SB_THREAD
3786             /* do the tls as well */
3787             len=(SymbolValue(FREE_TLS_INDEX,0) >> WORD_SHIFT) -
3788                 (sizeof (struct thread))/(sizeof (lispobj));
3789             scavenge((lispobj *) (th+1),len);
3790 #endif
3791         }
3792     }
3793 
3794     /* The original CMU CL code had scavenge-read-only-space code
3795      * controlled by the Lisp-level variable
3796      * *SCAVENGE-READ-ONLY-SPACE*. It was disabled by default, and it
3797      * wasn't documented under what circumstances it was useful or
3798      * safe to turn it on, so it's been turned off in SBCL. If you
3799      * want/need this functionality, and can test and document it,
3800      * please submit a patch. */
3801 #if 0
3802     if (SymbolValue(SCAVENGE_READ_ONLY_SPACE) != NIL) {
3803         uword_t read_only_space_size =
3804             (lispobj*)SymbolValue(READ_ONLY_SPACE_FREE_POINTER) -
3805             (lispobj*)READ_ONLY_SPACE_START;
3806         FSHOW((stderr,
3807                "/scavenge read only space: %d bytes\n",
3808                read_only_space_size * sizeof(lispobj)));
3809         scavenge( (lispobj *) READ_ONLY_SPACE_START, read_only_space_size);
3810     }
3811 #endif
3812 
3813     /* Scavenge static space. */
3814     static_space_size =
3815         (lispobj *)SymbolValue(STATIC_SPACE_FREE_POINTER,0) -
3816         (lispobj *)STATIC_SPACE_START;
3817     if (gencgc_verbose > 1) {
3818         FSHOW((stderr,
3819                "/scavenge static space: %d bytes\n",
3820                static_space_size * sizeof(lispobj)));
3821     }
3822     scavenge( (lispobj *) STATIC_SPACE_START, static_space_size);
3823 
3824     /* All generations but the generation being GCed need to be
3825      * scavenged. The new_space generation needs special handling as
3826      * objects may be moved in - it is handled separately below. */
3827 #ifdef LISP_FEATURE_IMMOBILE_SPACE
3828     scavenge_immobile_roots(generation+1, SCRATCH_GENERATION);
3829 #endif
3830     scavenge_generations(generation+1, PSEUDO_STATIC_GENERATION);
3831 
3832     scavenge_pinned_ranges();
3833 
3834     /* Finally scavenge the new_space generation. Keep going until no
3835      * more objects are moved into the new generation */
3836     scavenge_newspace_generation(new_space);
3837 
3838     /* FIXME: I tried reenabling this check when debugging unrelated
3839      * GC weirdness ca. sbcl-0.6.12.45, and it failed immediately.
3840      * Since the current GC code seems to work well, I'm guessing that
3841      * this debugging code is just stale, but I haven't tried to
3842      * figure it out. It should be figured out and then either made to
3843      * work or just deleted. */
3844 
3845 #define RESCAN_CHECK 0
3846 #if RESCAN_CHECK
3847     /* As a check re-scavenge the newspace once; no new objects should
3848      * be found. */
3849     {
3850         os_vm_size_t old_bytes_allocated = bytes_allocated;
3851         os_vm_size_t bytes_allocated;
3852 
3853         /* Start with a full scavenge. */
3854         scavenge_newspace_generation_one_scan(new_space);
3855 
3856         /* Flush the current regions, updating the tables. */
3857         gc_alloc_update_all_page_tables(1);
3858 
3859         bytes_allocated = bytes_allocated - old_bytes_allocated;
3860 
3861         if (bytes_allocated != 0) {
3862             lose("Rescan of new_space allocated %d more bytes.\n",
3863                  bytes_allocated);
3864         }
3865     }
3866 #endif
3867 
3868     scan_weak_hash_tables();
3869     scan_weak_pointers();
3870     wipe_nonpinned_words();
3871 #ifdef LISP_FEATURE_IMMOBILE_SPACE
3872     // Do this last, because until wipe_nonpinned_words() happens,
3873     // not all page table entries have the 'gen' value updated,
3874     // which we need to correctly find all old->young pointers.
3875     sweep_immobile_space(raise);
3876 #endif
3877 
3878     /* Flush the current regions, updating the tables. */
3879     gc_alloc_update_all_page_tables(0);
3880 
3881     /* Free the pages in oldspace, but not those marked dont_move. */
3882     free_oldspace();
3883 
3884     /* If the GC is not raising the age then lower the generation back
3885      * to its normal generation number */
3886     if (!raise) {
3887         for (i = 0; i < last_free_page; i++)
3888             if ((page_table[i].bytes_used != 0)
3889                 && (page_table[i].gen == SCRATCH_GENERATION))
3890                 page_table[i].gen = generation;
3891         gc_assert(generations[generation].bytes_allocated == 0);
3892         generations[generation].bytes_allocated =
3893             generations[SCRATCH_GENERATION].bytes_allocated;
3894         generations[SCRATCH_GENERATION].bytes_allocated = 0;
3895     }
3896 
3897     /* Reset the alloc_start_page for generation. */
3898     generations[generation].alloc_start_page = 0;
3899     generations[generation].alloc_unboxed_start_page = 0;
3900     generations[generation].alloc_large_start_page = 0;
3901     generations[generation].alloc_large_unboxed_start_page = 0;
3902 
3903     if (generation >= verify_gens) {
3904         if (gencgc_verbose) {
3905             SHOW("verifying");
3906         }
3907         verify_gc();
3908     }
3909 
3910     /* Set the new gc trigger for the GCed generation. */
3911     generations[generation].gc_trigger =
3912         generations[generation].bytes_allocated
3913         + generations[generation].bytes_consed_between_gc;
3914 
3915     if (raise)
3916         generations[generation].num_gc = 0;
3917     else
3918         ++generations[generation].num_gc;
3919 
3920 }
3921 
3922 /* Update last_free_page, then SymbolValue(ALLOCATION_POINTER). */
3923 sword_t
update_dynamic_space_free_pointer(void)3924 update_dynamic_space_free_pointer(void)
3925 {
3926     page_index_t last_page = -1, i;
3927 
3928     for (i = 0; i < last_free_page; i++)
3929         if (page_allocated_p(i) && (page_table[i].bytes_used != 0))
3930             last_page = i;
3931 
3932     last_free_page = last_page+1;
3933 
3934     set_alloc_pointer((lispobj)(page_address(last_free_page)));
3935     return 0; /* dummy value: return something ... */
3936 }
3937 
3938 static void
remap_page_range(page_index_t from,page_index_t to)3939 remap_page_range (page_index_t from, page_index_t to)
3940 {
3941     /* There's a mysterious Solaris/x86 problem with using mmap
3942      * tricks for memory zeroing. See sbcl-devel thread
3943      * "Re: patch: standalone executable redux".
3944      */
3945 #if defined(LISP_FEATURE_SUNOS)
3946     zero_and_mark_pages(from, to);
3947 #else
3948     const page_index_t
3949             release_granularity = gencgc_release_granularity/GENCGC_CARD_BYTES,
3950                    release_mask = release_granularity-1,
3951                             end = to+1,
3952                    aligned_from = (from+release_mask)&~release_mask,
3953                     aligned_end = (end&~release_mask);
3954 
3955     if (aligned_from < aligned_end) {
3956         zero_pages_with_mmap(aligned_from, aligned_end-1);
3957         if (aligned_from != from)
3958             zero_and_mark_pages(from, aligned_from-1);
3959         if (aligned_end != end)
3960             zero_and_mark_pages(aligned_end, end-1);
3961     } else {
3962         zero_and_mark_pages(from, to);
3963     }
3964 #endif
3965 }
3966 
3967 static void
remap_free_pages(page_index_t from,page_index_t to,int forcibly)3968 remap_free_pages (page_index_t from, page_index_t to, int forcibly)
3969 {
3970     page_index_t first_page, last_page;
3971 
3972     if (forcibly)
3973         return remap_page_range(from, to);
3974 
3975     for (first_page = from; first_page <= to; first_page++) {
3976         if (page_allocated_p(first_page) ||
3977             (page_table[first_page].need_to_zero == 0))
3978             continue;
3979 
3980         last_page = first_page + 1;
3981         while (page_free_p(last_page) &&
3982                (last_page <= to) &&
3983                (page_table[last_page].need_to_zero == 1))
3984             last_page++;
3985 
3986         remap_page_range(first_page, last_page-1);
3987 
3988         first_page = last_page;
3989     }
3990 }
3991 
3992 generation_index_t small_generation_limit = 1;
3993 
3994 /* GC all generations newer than last_gen, raising the objects in each
3995  * to the next older generation - we finish when all generations below
3996  * last_gen are empty.  Then if last_gen is due for a GC, or if
3997  * last_gen==NUM_GENERATIONS (the scratch generation?  eh?) we GC that
3998  * too.  The valid range for last_gen is: 0,1,...,NUM_GENERATIONS.
3999  *
4000  * We stop collecting at gencgc_oldest_gen_to_gc, even if this is less than
4001  * last_gen (oh, and note that by default it is NUM_GENERATIONS-1) */
4002 void
collect_garbage(generation_index_t last_gen)4003 collect_garbage(generation_index_t last_gen)
4004 {
4005     generation_index_t gen = 0, i;
4006     int raise, more = 0;
4007     int gen_to_wp;
4008     /* The largest value of last_free_page seen since the time
4009      * remap_free_pages was called. */
4010     static page_index_t high_water_mark = 0;
4011 
4012     FSHOW((stderr, "/entering collect_garbage(%d)\n", last_gen));
4013     log_generation_stats(gc_logfile, "=== GC Start ===");
4014 
4015     gc_active_p = 1;
4016 
4017     if (last_gen > HIGHEST_NORMAL_GENERATION+1) {
4018         FSHOW((stderr,
4019                "/collect_garbage: last_gen = %d, doing a level 0 GC\n",
4020                last_gen));
4021         last_gen = 0;
4022     }
4023 
4024     /* Flush the alloc regions updating the tables. */
4025     gc_alloc_update_all_page_tables(1);
4026 
4027     /* Verify the new objects created by Lisp code. */
4028     if (pre_verify_gen_0) {
4029         FSHOW((stderr, "pre-checking generation 0\n"));
4030         verify_generation(0);
4031     }
4032 
4033     if (gencgc_verbose > 1)
4034         print_generation_stats();
4035 
4036 #ifdef LISP_FEATURE_IMMOBILE_SPACE
4037     /* Immobile space generation bits are lazily updated for gen0
4038        (not touched on every object allocation) so do it now */
4039     update_immobile_nursery_bits();
4040 #endif
4041 
4042     do {
4043         /* Collect the generation. */
4044 
4045         if (more || (gen >= gencgc_oldest_gen_to_gc)) {
4046             /* Never raise the oldest generation. Never raise the extra generation
4047              * collected due to more-flag. */
4048             raise = 0;
4049             more = 0;
4050         } else {
4051             raise =
4052                 (gen < last_gen)
4053                 || (generations[gen].num_gc >= generations[gen].number_of_gcs_before_promotion);
4054             /* If we would not normally raise this one, but we're
4055              * running low on space in comparison to the object-sizes
4056              * we've been seeing, raise it and collect the next one
4057              * too. */
4058             if (!raise && gen == last_gen) {
4059                 more = (2*large_allocation) >= (dynamic_space_size - bytes_allocated);
4060                 raise = more;
4061             }
4062         }
4063 
4064         if (gencgc_verbose > 1) {
4065             FSHOW((stderr,
4066                    "starting GC of generation %d with raise=%d alloc=%d trig=%d GCs=%d\n",
4067                    gen,
4068                    raise,
4069                    generations[gen].bytes_allocated,
4070                    generations[gen].gc_trigger,
4071                    generations[gen].num_gc));
4072         }
4073 
4074         /* If an older generation is being filled, then update its
4075          * memory age. */
4076         if (raise == 1) {
4077             generations[gen+1].cum_sum_bytes_allocated +=
4078                 generations[gen+1].bytes_allocated;
4079         }
4080 
4081         garbage_collect_generation(gen, raise);
4082 
4083         /* Reset the memory age cum_sum. */
4084         generations[gen].cum_sum_bytes_allocated = 0;
4085 
4086         if (gencgc_verbose > 1) {
4087             FSHOW((stderr, "GC of generation %d finished:\n", gen));
4088             print_generation_stats();
4089         }
4090 
4091         gen++;
4092     } while ((gen <= gencgc_oldest_gen_to_gc)
4093              && ((gen < last_gen)
4094                  || more
4095                  || (raise
4096                      && (generations[gen].bytes_allocated
4097                          > generations[gen].gc_trigger)
4098                      && (generation_average_age(gen)
4099                          > generations[gen].minimum_age_before_gc))));
4100 
4101     /* Now if gen-1 was raised all generations before gen are empty.
4102      * If it wasn't raised then all generations before gen-1 are empty.
4103      *
4104      * Now objects within this gen's pages cannot point to younger
4105      * generations unless they are written to. This can be exploited
4106      * by write-protecting the pages of gen; then when younger
4107      * generations are GCed only the pages which have been written
4108      * need scanning. */
4109     if (raise)
4110         gen_to_wp = gen;
4111     else
4112         gen_to_wp = gen - 1;
4113 
4114     /* There's not much point in WPing pages in generation 0 as it is
4115      * never scavenged (except promoted pages). */
4116     if ((gen_to_wp > 0) && enable_page_protection) {
4117         /* Check that they are all empty. */
4118         for (i = 0; i < gen_to_wp; i++) {
4119             if (generations[i].bytes_allocated)
4120                 lose("trying to write-protect gen. %d when gen. %d nonempty\n",
4121                      gen_to_wp, i);
4122         }
4123         write_protect_generation_pages(gen_to_wp);
4124     }
4125 #ifdef LISP_FEATURE_IMMOBILE_SPACE
4126     write_protect_immobile_space();
4127 #endif
4128 
4129     /* Set gc_alloc() back to generation 0. The current regions should
4130      * be flushed after the above GCs. */
4131     gc_assert((boxed_region.free_pointer - boxed_region.start_addr) == 0);
4132     gc_alloc_generation = 0;
4133 
4134     /* Save the high-water mark before updating last_free_page */
4135     if (last_free_page > high_water_mark)
4136         high_water_mark = last_free_page;
4137 
4138     update_dynamic_space_free_pointer();
4139 
4140     /* Update auto_gc_trigger. Make sure we trigger the next GC before
4141      * running out of heap! */
4142     if (bytes_consed_between_gcs <= (dynamic_space_size - bytes_allocated))
4143         auto_gc_trigger = bytes_allocated + bytes_consed_between_gcs;
4144     else
4145         auto_gc_trigger = bytes_allocated + (dynamic_space_size - bytes_allocated)/2;
4146 
4147     if(gencgc_verbose)
4148         fprintf(stderr,"Next gc when %"OS_VM_SIZE_FMT" bytes have been consed\n",
4149                 auto_gc_trigger);
4150 
4151     /* If we did a big GC (arbitrarily defined as gen > 1), release memory
4152      * back to the OS.
4153      */
4154     if (gen > small_generation_limit) {
4155         if (last_free_page > high_water_mark)
4156             high_water_mark = last_free_page;
4157         remap_free_pages(0, high_water_mark, 0);
4158         high_water_mark = 0;
4159     }
4160 
4161     gc_active_p = 0;
4162     large_allocation = 0;
4163 
4164     log_generation_stats(gc_logfile, "=== GC End ===");
4165     SHOW("returning from collect_garbage");
4166 }
4167 
4168 void
gc_init(void)4169 gc_init(void)
4170 {
4171     page_index_t i;
4172 
4173 #if defined(LISP_FEATURE_SB_SAFEPOINT)
4174     alloc_gc_page();
4175 #endif
4176 
4177     /* Compute the number of pages needed for the dynamic space.
4178      * Dynamic space size should be aligned on page size. */
4179     page_table_pages = dynamic_space_size/GENCGC_CARD_BYTES;
4180     gc_assert(dynamic_space_size == npage_bytes(page_table_pages));
4181 
4182     /* Default nursery size to 5% of the total dynamic space size,
4183      * min 1Mb. */
4184     bytes_consed_between_gcs = dynamic_space_size/(os_vm_size_t)20;
4185     if (bytes_consed_between_gcs < (1024*1024))
4186         bytes_consed_between_gcs = 1024*1024;
4187 
4188     /* The page_table must be allocated using "calloc" to initialize
4189      * the page structures correctly. There used to be a separate
4190      * initialization loop (now commented out; see below) but that was
4191      * unnecessary and did hurt startup time. */
4192     page_table = calloc(page_table_pages, sizeof(struct page));
4193     gc_assert(page_table);
4194 #ifdef LISP_FEATURE_IMMOBILE_SPACE
4195     gc_init_immobile();
4196 #endif
4197 
4198     size_t pins_map_size_in_bytes =
4199       (n_dwords_in_card / N_WORD_BITS) * sizeof (uword_t) * page_table_pages;
4200     /* We use mmap directly here so that we can use a minimum of
4201        system calls per page during GC.
4202        All we need here now is a madvise(DONTNEED) at the end of GC. */
4203     page_table_pinned_dwords
4204       = (in_use_marker_t*)os_validate(NULL, pins_map_size_in_bytes);
4205     /* We do not need to zero */
4206     gc_assert(page_table_pinned_dwords);
4207 
4208     gc_init_tables();
4209     scavtab[WEAK_POINTER_WIDETAG] = scav_weak_pointer;
4210     transother[SIMPLE_ARRAY_WIDETAG] = trans_boxed_large;
4211 
4212     heap_base = (void*)DYNAMIC_SPACE_START;
4213 
4214     /* The page structures are initialized implicitly when page_table
4215      * is allocated with "calloc" above. Formerly we had the following
4216      * explicit initialization here (comments converted to C99 style
4217      * for readability as C's block comments don't nest):
4218      *
4219      * // Initialize each page structure.
4220      * for (i = 0; i < page_table_pages; i++) {
4221      *     // Initialize all pages as free.
4222      *     page_table[i].allocated = FREE_PAGE_FLAG;
4223      *     page_table[i].bytes_used = 0;
4224      *
4225      *     // Pages are not write-protected at startup.
4226      *     page_table[i].write_protected = 0;
4227      * }
4228      *
4229      * Without this loop the image starts up much faster when dynamic
4230      * space is large -- which it is on 64-bit platforms already by
4231      * default -- and when "calloc" for large arrays is implemented
4232      * using copy-on-write of a page of zeroes -- which it is at least
4233      * on Linux. In this case the pages that page_table_pages is stored
4234      * in are mapped and cleared not before the corresponding part of
4235      * dynamic space is used. For example, this saves clearing 16 MB of
4236      * memory at startup if the page size is 4 KB and the size of
4237      * dynamic space is 4 GB.
4238      * FREE_PAGE_FLAG must be 0 for this to work correctly which is
4239      * asserted below: */
4240     {
4241       /* Compile time assertion: If triggered, declares an array
4242        * of dimension -1 forcing a syntax error. The intent of the
4243        * assignment is to avoid an "unused variable" warning. */
4244       char assert_free_page_flag_0[(FREE_PAGE_FLAG) ? -1 : 1];
4245       assert_free_page_flag_0[0] = assert_free_page_flag_0[0];
4246     }
4247 
4248     bytes_allocated = 0;
4249 
4250     /* Initialize the generations. */
4251     for (i = 0; i < NUM_GENERATIONS; i++) {
4252         generations[i].alloc_start_page = 0;
4253         generations[i].alloc_unboxed_start_page = 0;
4254         generations[i].alloc_large_start_page = 0;
4255         generations[i].alloc_large_unboxed_start_page = 0;
4256         generations[i].bytes_allocated = 0;
4257         generations[i].gc_trigger = 2000000;
4258         generations[i].num_gc = 0;
4259         generations[i].cum_sum_bytes_allocated = 0;
4260         /* the tune-able parameters */
4261         generations[i].bytes_consed_between_gc
4262             = bytes_consed_between_gcs/(os_vm_size_t)HIGHEST_NORMAL_GENERATION;
4263         generations[i].number_of_gcs_before_promotion = 1;
4264         generations[i].minimum_age_before_gc = 0.75;
4265     }
4266 
4267     /* Initialize gc_alloc. */
4268     gc_alloc_generation = 0;
4269     gc_set_region_empty(&boxed_region);
4270     gc_set_region_empty(&unboxed_region);
4271 
4272     last_free_page = 0;
4273 }
4274 
4275 /*  Pick up the dynamic space from after a core load.
4276  *
4277  *  The ALLOCATION_POINTER points to the end of the dynamic space.
4278  */
4279 
4280 static void
gencgc_pickup_dynamic(void)4281 gencgc_pickup_dynamic(void)
4282 {
4283     page_index_t page = 0;
4284     void *alloc_ptr = (void *)get_alloc_pointer();
4285     lispobj *prev=(lispobj *)page_address(page);
4286     generation_index_t gen = PSEUDO_STATIC_GENERATION;
4287 
4288     bytes_allocated = 0;
4289 
4290     do {
4291         lispobj *first,*ptr= (lispobj *)page_address(page);
4292 
4293         if (!gencgc_partial_pickup || page_allocated_p(page)) {
4294           /* It is possible, though rare, for the saved page table
4295            * to contain free pages below alloc_ptr. */
4296           page_table[page].gen = gen;
4297           page_table[page].bytes_used = GENCGC_CARD_BYTES;
4298           page_table[page].large_object = 0;
4299           page_table[page].write_protected = 0;
4300           page_table[page].write_protected_cleared = 0;
4301           page_table[page].dont_move = 0;
4302           page_table[page].need_to_zero = 1;
4303 
4304           bytes_allocated += GENCGC_CARD_BYTES;
4305         }
4306 
4307         if (!gencgc_partial_pickup) {
4308             page_table[page].allocated = BOXED_PAGE_FLAG;
4309             first=gc_search_space(prev,(ptr+2)-prev,ptr);
4310             if(ptr == first)
4311                 prev=ptr;
4312             page_table[page].scan_start_offset =
4313                 page_address(page) - (void *)prev;
4314         }
4315         page++;
4316     } while (page_address(page) < alloc_ptr);
4317 
4318     last_free_page = page;
4319 
4320     generations[gen].bytes_allocated = bytes_allocated;
4321 
4322     gc_alloc_update_all_page_tables(1);
4323     write_protect_generation_pages(gen);
4324 }
4325 
4326 void
gc_initialize_pointers(void)4327 gc_initialize_pointers(void)
4328 {
4329     gencgc_pickup_dynamic();
4330 }
4331 
4332 
4333 /* alloc(..) is the external interface for memory allocation. It
4334  * allocates to generation 0. It is not called from within the garbage
4335  * collector as it is only external uses that need the check for heap
4336  * size (GC trigger) and to disable the interrupts (interrupts are
4337  * always disabled during a GC).
4338  *
4339  * The vops that call alloc(..) assume that the returned space is zero-filled.
4340  * (E.g. the most significant word of a 2-word bignum in MOVE-FROM-UNSIGNED.)
4341  *
4342  * The check for a GC trigger is only performed when the current
4343  * region is full, so in most cases it's not needed. */
4344 
4345 static inline lispobj *
general_alloc_internal(sword_t nbytes,int page_type_flag,struct alloc_region * region,struct thread * thread)4346 general_alloc_internal(sword_t nbytes, int page_type_flag, struct alloc_region *region,
4347                        struct thread *thread)
4348 {
4349 #ifndef LISP_FEATURE_WIN32
4350     lispobj alloc_signal;
4351 #endif
4352     void *new_obj;
4353     void *new_free_pointer;
4354     os_vm_size_t trigger_bytes = 0;
4355 
4356     gc_assert(nbytes > 0);
4357 
4358     /* Check for alignment allocation problems. */
4359     gc_assert((((uword_t)region->free_pointer & LOWTAG_MASK) == 0)
4360               && ((nbytes & LOWTAG_MASK) == 0));
4361 
4362 #if !(defined(LISP_FEATURE_WIN32) && defined(LISP_FEATURE_SB_THREAD))
4363     /* Must be inside a PA section. */
4364     gc_assert(get_pseudo_atomic_atomic(thread));
4365 #endif
4366 
4367     if ((os_vm_size_t) nbytes > large_allocation)
4368         large_allocation = nbytes;
4369 
4370     /* maybe we can do this quickly ... */
4371     new_free_pointer = region->free_pointer + nbytes;
4372     if (new_free_pointer <= region->end_addr) {
4373         new_obj = (void*)(region->free_pointer);
4374         region->free_pointer = new_free_pointer;
4375         return(new_obj);        /* yup */
4376     }
4377 
4378     /* We don't want to count nbytes against auto_gc_trigger unless we
4379      * have to: it speeds up the tenuring of objects and slows down
4380      * allocation. However, unless we do so when allocating _very_
4381      * large objects we are in danger of exhausting the heap without
4382      * running sufficient GCs.
4383      */
4384     if ((os_vm_size_t) nbytes >= bytes_consed_between_gcs)
4385         trigger_bytes = nbytes;
4386 
4387     /* we have to go the long way around, it seems. Check whether we
4388      * should GC in the near future
4389      */
4390     if (auto_gc_trigger && (bytes_allocated+trigger_bytes > auto_gc_trigger)) {
4391         /* Don't flood the system with interrupts if the need to gc is
4392          * already noted. This can happen for example when SUB-GC
4393          * allocates or after a gc triggered in a WITHOUT-GCING. */
4394         if (SymbolValue(GC_PENDING,thread) == NIL) {
4395             /* set things up so that GC happens when we finish the PA
4396              * section */
4397             SetSymbolValue(GC_PENDING,T,thread);
4398             if (SymbolValue(GC_INHIBIT,thread) == NIL) {
4399 #ifdef LISP_FEATURE_SB_SAFEPOINT
4400                 thread_register_gc_trigger();
4401 #else
4402                 set_pseudo_atomic_interrupted(thread);
4403 #ifdef GENCGC_IS_PRECISE
4404                 /* PPC calls alloc() from a trap
4405                  * look up the most context if it's from a trap. */
4406                 {
4407                     os_context_t *context =
4408                         thread->interrupt_data->allocation_trap_context;
4409                     maybe_save_gc_mask_and_block_deferrables
4410                         (context ? os_context_sigmask_addr(context) : NULL);
4411                 }
4412 #else
4413                 maybe_save_gc_mask_and_block_deferrables(NULL);
4414 #endif
4415 #endif
4416             }
4417         }
4418     }
4419     new_obj = gc_alloc_with_region(nbytes, page_type_flag, region, 0);
4420 
4421 #ifndef LISP_FEATURE_WIN32
4422     /* for sb-prof, and not supported on Windows yet */
4423     alloc_signal = SymbolValue(ALLOC_SIGNAL,thread);
4424     if ((alloc_signal & FIXNUM_TAG_MASK) == 0) {
4425         if ((sword_t) alloc_signal <= 0) {
4426             SetSymbolValue(ALLOC_SIGNAL, T, thread);
4427             raise(SIGPROF);
4428         } else {
4429             SetSymbolValue(ALLOC_SIGNAL,
4430                            alloc_signal - (1 << N_FIXNUM_TAG_BITS),
4431                            thread);
4432         }
4433     }
4434 #endif
4435 
4436     return (new_obj);
4437 }
4438 
4439 lispobj *
general_alloc(sword_t nbytes,int page_type_flag)4440 general_alloc(sword_t nbytes, int page_type_flag)
4441 {
4442     struct thread *thread = arch_os_get_current_thread();
4443     /* Select correct region, and call general_alloc_internal with it.
4444      * For other then boxed allocation we must lock first, since the
4445      * region is shared. */
4446     if (BOXED_PAGE_FLAG & page_type_flag) {
4447 #ifdef LISP_FEATURE_SB_THREAD
4448         struct alloc_region *region = (thread ? &(thread->alloc_region) : &boxed_region);
4449 #else
4450         struct alloc_region *region = &boxed_region;
4451 #endif
4452         return general_alloc_internal(nbytes, page_type_flag, region, thread);
4453     } else if (UNBOXED_PAGE_FLAG == page_type_flag) {
4454         lispobj * obj;
4455         gc_assert(0 == thread_mutex_lock(&allocation_lock));
4456         obj = general_alloc_internal(nbytes, page_type_flag, &unboxed_region, thread);
4457         gc_assert(0 == thread_mutex_unlock(&allocation_lock));
4458         return obj;
4459     } else {
4460         lose("bad page type flag: %d", page_type_flag);
4461     }
4462 }
4463 
4464 lispobj AMD64_SYSV_ABI *
alloc(sword_t nbytes)4465 alloc(sword_t nbytes)
4466 {
4467 #ifdef LISP_FEATURE_SB_SAFEPOINT_STRICTLY
4468     struct thread *self = arch_os_get_current_thread();
4469     int was_pseudo_atomic = get_pseudo_atomic_atomic(self);
4470     if (!was_pseudo_atomic)
4471         set_pseudo_atomic_atomic(self);
4472 #else
4473     gc_assert(get_pseudo_atomic_atomic(arch_os_get_current_thread()));
4474 #endif
4475 
4476     lispobj *result = general_alloc(nbytes, BOXED_PAGE_FLAG);
4477 
4478 #ifdef LISP_FEATURE_SB_SAFEPOINT_STRICTLY
4479     if (!was_pseudo_atomic)
4480         clear_pseudo_atomic_atomic(self);
4481 #endif
4482 
4483     return result;
4484 }
4485 
4486 /*
4487  * shared support for the OS-dependent signal handlers which
4488  * catch GENCGC-related write-protect violations
4489  */
4490 void unhandled_sigmemoryfault(void* addr);
4491 
4492 /* Depending on which OS we're running under, different signals might
4493  * be raised for a violation of write protection in the heap. This
4494  * function factors out the common generational GC magic which needs
4495  * to invoked in this case, and should be called from whatever signal
4496  * handler is appropriate for the OS we're running under.
4497  *
4498  * Return true if this signal is a normal generational GC thing that
4499  * we were able to handle, or false if it was abnormal and control
4500  * should fall through to the general SIGSEGV/SIGBUS/whatever logic.
4501  *
4502  * We have two control flags for this: one causes us to ignore faults
4503  * on unprotected pages completely, and the second complains to stderr
4504  * but allows us to continue without losing.
4505  */
4506 extern boolean ignore_memoryfaults_on_unprotected_pages;
4507 boolean ignore_memoryfaults_on_unprotected_pages = 0;
4508 
4509 extern boolean continue_after_memoryfault_on_unprotected_pages;
4510 boolean continue_after_memoryfault_on_unprotected_pages = 0;
4511 
4512 int
gencgc_handle_wp_violation(void * fault_addr)4513 gencgc_handle_wp_violation(void* fault_addr)
4514 {
4515     page_index_t page_index = find_page_index(fault_addr);
4516 
4517 #if QSHOW_SIGNALS
4518     FSHOW((stderr,
4519            "heap WP violation? fault_addr=%p, page_index=%"PAGE_INDEX_FMT"\n",
4520            fault_addr, page_index));
4521 #endif
4522 
4523     /* Check whether the fault is within the dynamic space. */
4524     if (page_index == (-1)) {
4525 #ifdef LISP_FEATURE_IMMOBILE_SPACE
4526         extern int immobile_space_handle_wp_violation(void*);
4527         if (immobile_space_handle_wp_violation(fault_addr))
4528             return 1;
4529 #endif
4530 
4531         /* It can be helpful to be able to put a breakpoint on this
4532          * case to help diagnose low-level problems. */
4533         unhandled_sigmemoryfault(fault_addr);
4534 
4535         /* not within the dynamic space -- not our responsibility */
4536         return 0;
4537 
4538     } else {
4539         int ret;
4540         ret = thread_mutex_lock(&free_pages_lock);
4541         gc_assert(ret == 0);
4542         if (page_table[page_index].write_protected) {
4543             /* Unprotect the page. */
4544             os_protect(page_address(page_index), GENCGC_CARD_BYTES, OS_VM_PROT_ALL);
4545             page_table[page_index].write_protected_cleared = 1;
4546             page_table[page_index].write_protected = 0;
4547         } else if (!ignore_memoryfaults_on_unprotected_pages) {
4548             /* The only acceptable reason for this signal on a heap
4549              * access is that GENCGC write-protected the page.
4550              * However, if two CPUs hit a wp page near-simultaneously,
4551              * we had better not have the second one lose here if it
4552              * does this test after the first one has already set wp=0
4553              */
4554             if(page_table[page_index].write_protected_cleared != 1) {
4555                 void lisp_backtrace(int frames);
4556                 lisp_backtrace(10);
4557                 fprintf(stderr,
4558                         "Fault @ %p, page %"PAGE_INDEX_FMT" not marked as write-protected:\n"
4559                         "  boxed_region.first_page: %"PAGE_INDEX_FMT","
4560                         "  boxed_region.last_page %"PAGE_INDEX_FMT"\n"
4561                         "  page.scan_start_offset: %"OS_VM_SIZE_FMT"\n"
4562                         "  page.bytes_used: %"PAGE_BYTES_FMT"\n"
4563                         "  page.allocated: %d\n"
4564                         "  page.write_protected: %d\n"
4565                         "  page.write_protected_cleared: %d\n"
4566                         "  page.generation: %d\n",
4567                         fault_addr,
4568                         page_index,
4569                         boxed_region.first_page,
4570                         boxed_region.last_page,
4571                         page_table[page_index].scan_start_offset,
4572                         page_table[page_index].bytes_used,
4573                         page_table[page_index].allocated,
4574                         page_table[page_index].write_protected,
4575                         page_table[page_index].write_protected_cleared,
4576                         page_table[page_index].gen);
4577                 if (!continue_after_memoryfault_on_unprotected_pages)
4578                     lose("Feh.\n");
4579             }
4580         }
4581         ret = thread_mutex_unlock(&free_pages_lock);
4582         gc_assert(ret == 0);
4583         /* Don't worry, we can handle it. */
4584         return 1;
4585     }
4586 }
4587 /* This is to be called when we catch a SIGSEGV/SIGBUS, determine that
4588  * it's not just a case of the program hitting the write barrier, and
4589  * are about to let Lisp deal with it. It's basically just a
4590  * convenient place to set a gdb breakpoint. */
4591 void
unhandled_sigmemoryfault(void * addr)4592 unhandled_sigmemoryfault(void *addr)
4593 {}
4594 
4595 static void
update_thread_page_tables(struct thread * th)4596 update_thread_page_tables(struct thread *th)
4597 {
4598     gc_alloc_update_page_tables(BOXED_PAGE_FLAG, &th->alloc_region);
4599 #if defined(LISP_FEATURE_SB_SAFEPOINT_STRICTLY) && !defined(LISP_FEATURE_WIN32)
4600     gc_alloc_update_page_tables(BOXED_PAGE_FLAG, &th->sprof_alloc_region);
4601 #endif
4602 }
4603 
4604 /* GC is single-threaded and all memory allocations during a
4605    collection happen in the GC thread, so it is sufficient to update
4606    all the the page tables once at the beginning of a collection and
4607    update only page tables of the GC thread during the collection. */
gc_alloc_update_all_page_tables(int for_all_threads)4608 void gc_alloc_update_all_page_tables(int for_all_threads)
4609 {
4610     /* Flush the alloc regions updating the tables. */
4611     struct thread *th;
4612     if (for_all_threads) {
4613         for_each_thread(th) {
4614             update_thread_page_tables(th);
4615         }
4616     }
4617     else {
4618         th = arch_os_get_current_thread();
4619         if (th) {
4620             update_thread_page_tables(th);
4621         }
4622     }
4623     gc_alloc_update_page_tables(UNBOXED_PAGE_FLAG, &unboxed_region);
4624     gc_alloc_update_page_tables(BOXED_PAGE_FLAG, &boxed_region);
4625 }
4626 
4627 void
gc_set_region_empty(struct alloc_region * region)4628 gc_set_region_empty(struct alloc_region *region)
4629 {
4630     region->first_page = 0;
4631     region->last_page = -1;
4632     region->start_addr = page_address(0);
4633     region->free_pointer = page_address(0);
4634     region->end_addr = page_address(0);
4635 }
4636 
4637 static void
zero_all_free_pages()4638 zero_all_free_pages()
4639 {
4640     page_index_t i;
4641 
4642     for (i = 0; i < last_free_page; i++) {
4643         if (page_free_p(i)) {
4644 #ifdef READ_PROTECT_FREE_PAGES
4645             os_protect(page_address(i),
4646                        GENCGC_CARD_BYTES,
4647                        OS_VM_PROT_ALL);
4648 #endif
4649             zero_pages(i, i);
4650         }
4651     }
4652 }
4653 
4654 /* Things to do before doing a final GC before saving a core (without
4655  * purify).
4656  *
4657  * + Pages in large_object pages aren't moved by the GC, so we need to
4658  *   unset that flag from all pages.
4659  * + The pseudo-static generation isn't normally collected, but it seems
4660  *   reasonable to collect it at least when saving a core. So move the
4661  *   pages to a normal generation.
4662  */
4663 static void
prepare_for_final_gc()4664 prepare_for_final_gc ()
4665 {
4666     page_index_t i;
4667 
4668 #ifdef LISP_FEATURE_IMMOBILE_SPACE
4669     extern void prepare_immobile_space_for_final_gc();
4670     prepare_immobile_space_for_final_gc ();
4671 #endif
4672     do_wipe_p = 0;
4673     for (i = 0; i < last_free_page; i++) {
4674         page_table[i].large_object = 0;
4675         if (page_table[i].gen == PSEUDO_STATIC_GENERATION) {
4676             int used = page_table[i].bytes_used;
4677             page_table[i].gen = HIGHEST_NORMAL_GENERATION;
4678             generations[PSEUDO_STATIC_GENERATION].bytes_allocated -= used;
4679             generations[HIGHEST_NORMAL_GENERATION].bytes_allocated += used;
4680         }
4681     }
4682 }
4683 
4684 
4685 /* Do a non-conservative GC, and then save a core with the initial
4686  * function being set to the value of the static symbol
4687  * SB!VM:RESTART-LISP-FUNCTION */
4688 void
gc_and_save(char * filename,boolean prepend_runtime,boolean save_runtime_options,boolean compressed,int compression_level,int application_type)4689 gc_and_save(char *filename, boolean prepend_runtime,
4690             boolean save_runtime_options, boolean compressed,
4691             int compression_level, int application_type)
4692 {
4693     FILE *file;
4694     void *runtime_bytes = NULL;
4695     size_t runtime_size;
4696 
4697     file = prepare_to_save(filename, prepend_runtime, &runtime_bytes,
4698                            &runtime_size);
4699     if (file == NULL)
4700        return;
4701 
4702     conservative_stack = 0;
4703 
4704     /* The filename might come from Lisp, and be moved by the now
4705      * non-conservative GC. */
4706     filename = strdup(filename);
4707 
4708     /* Collect twice: once into relatively high memory, and then back
4709      * into low memory. This compacts the retained data into the lower
4710      * pages, minimizing the size of the core file.
4711      */
4712     prepare_for_final_gc();
4713     gencgc_alloc_start_page = last_free_page;
4714     collect_garbage(HIGHEST_NORMAL_GENERATION+1);
4715 
4716     prepare_for_final_gc();
4717     gencgc_alloc_start_page = -1;
4718     collect_garbage(HIGHEST_NORMAL_GENERATION+1);
4719 
4720     if (prepend_runtime)
4721         save_runtime_to_filehandle(file, runtime_bytes, runtime_size,
4722                                    application_type);
4723 
4724     /* The dumper doesn't know that pages need to be zeroed before use. */
4725     zero_all_free_pages();
4726     save_to_filehandle(file, filename, SymbolValue(RESTART_LISP_FUNCTION,0),
4727                        prepend_runtime, save_runtime_options,
4728                        compressed ? compression_level : COMPRESSION_LEVEL_NONE);
4729     /* Oops. Save still managed to fail. Since we've mangled the stack
4730      * beyond hope, there's not much we can do.
4731      * (beyond FUNCALLing RESTART_LISP_FUNCTION, but I suspect that's
4732      * going to be rather unsatisfactory too... */
4733     lose("Attempt to save core after non-conservative GC failed.\n");
4734 }
4735