1 /* $NetBSD: hash_bigkey.c,v 1.25 2015/11/18 18:22:42 christos Exp $ */
2
3 /*-
4 * Copyright (c) 1990, 1993, 1994
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Margo Seltzer.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 */
34
35 #if HAVE_NBTOOL_CONFIG_H
36 #include "nbtool_config.h"
37 #endif
38
39 #include <sys/cdefs.h>
40 __RCSID("$NetBSD: hash_bigkey.c,v 1.25 2015/11/18 18:22:42 christos Exp $");
41
42 /*
43 * PACKAGE: hash
44 * DESCRIPTION:
45 * Big key/data handling for the hashing package.
46 *
47 * ROUTINES:
48 * External
49 * __big_keydata
50 * __big_split
51 * __big_insert
52 * __big_return
53 * __big_delete
54 * __find_last_page
55 * Internal
56 * collect_key
57 * collect_data
58 */
59
60 #include <sys/param.h>
61
62 #include <errno.h>
63 #include <stdio.h>
64 #include <stdlib.h>
65 #include <string.h>
66 #include <assert.h>
67
68 #include <db.h>
69 #include "hash.h"
70 #include "page.h"
71 #include "extern.h"
72
73 static int collect_key(HTAB *, BUFHEAD *, int, DBT *, int);
74 static int collect_data(HTAB *, BUFHEAD *, int, int);
75
76 /*
77 * Big_insert
78 *
79 * You need to do an insert and the key/data pair is too big
80 *
81 * Returns:
82 * 0 ==> OK
83 *-1 ==> ERROR
84 */
85 int
__big_insert(HTAB * hashp,BUFHEAD * bufp,const DBT * key,const DBT * val)86 __big_insert(HTAB *hashp, BUFHEAD *bufp, const DBT *key, const DBT *val)
87 {
88 uint16_t *p, n;
89 size_t key_size, val_size;
90 uint16_t space, move_bytes, off;
91 char *cp, *key_data, *val_data;
92 size_t temp;
93
94 cp = bufp->page; /* Character pointer of p. */
95 p = (uint16_t *)(void *)cp;
96
97 key_data = (char *)key->data;
98 _DBFIT(key->size, int);
99 key_size = key->size;
100 val_data = (char *)val->data;
101 _DBFIT(val->size, int);
102 val_size = val->size;
103
104 /* First move the Key */
105
106 temp = FREESPACE(p) - BIGOVERHEAD;
107 _DBFIT(temp, uint16_t);
108 space = (uint16_t)temp;
109 while (key_size) {
110 size_t kspace = MIN(space, key_size);
111 _DBFIT(kspace, uint16_t);
112 move_bytes = (uint16_t)kspace;
113 off = OFFSET(p) - move_bytes;
114 memmove(cp + off, key_data, (size_t)move_bytes);
115 key_size -= move_bytes;
116 key_data += move_bytes;
117 n = p[0];
118 p[++n] = off;
119 p[0] = ++n;
120 temp = off - PAGE_META(n);
121 _DBFIT(temp, uint16_t);
122 FREESPACE(p) = (uint16_t)temp;
123 OFFSET(p) = off;
124 p[n] = PARTIAL_KEY;
125 bufp = __add_ovflpage(hashp, bufp);
126 if (!bufp)
127 return (-1);
128 n = p[0];
129 if (!key_size) {
130 space = FREESPACE(p);
131 if (space) {
132 size_t vspace = MIN(space, val_size);
133 _DBFIT(vspace, uint16_t);
134 move_bytes = (uint16_t)vspace;
135 /*
136 * If the data would fit exactly in the
137 * remaining space, we must overflow it to the
138 * next page; otherwise the invariant that the
139 * data must end on a page with FREESPACE
140 * non-zero would fail.
141 */
142 if (space == val_size && val_size == val->size)
143 goto toolarge;
144 off = OFFSET(p) - move_bytes;
145 memmove(cp + off, val_data, (size_t)move_bytes);
146 val_data += move_bytes;
147 val_size -= move_bytes;
148 p[n] = off;
149 p[n - 2] = FULL_KEY_DATA;
150 FREESPACE(p) = FREESPACE(p) - move_bytes;
151 OFFSET(p) = off;
152 } else {
153 toolarge:
154 p[n - 2] = FULL_KEY;
155 }
156 }
157 p = (uint16_t *)(void *)bufp->page;
158 cp = bufp->page;
159 bufp->flags |= BUF_MOD;
160 temp = FREESPACE(p) - BIGOVERHEAD;
161 _DBFIT(temp, uint16_t);
162 space = (uint16_t)temp;
163 }
164
165 /* Now move the data */
166 temp = FREESPACE(p) - BIGOVERHEAD;
167 _DBFIT(temp, uint16_t);
168 space = (uint16_t)temp;
169 while (val_size) {
170 size_t vspace = MIN(space, val_size);
171 _DBFIT(vspace, uint16_t);
172 move_bytes = (uint16_t)vspace;
173 /*
174 * Here's the hack to make sure that if the data ends on the
175 * same page as the key ends, FREESPACE is at least one.
176 */
177 if (space == val_size && val_size == val->size)
178 move_bytes--;
179 off = OFFSET(p) - move_bytes;
180 memmove(cp + off, val_data, (size_t)move_bytes);
181 val_size -= move_bytes;
182 val_data += move_bytes;
183 n = p[0];
184 p[++n] = off;
185 p[0] = ++n;
186 temp = off - PAGE_META(n);
187 _DBFIT(temp, uint16_t);
188 FREESPACE(p) = (uint16_t)temp;
189 OFFSET(p) = off;
190 if (val_size) {
191 p[n] = FULL_KEY;
192 bufp = __add_ovflpage(hashp, bufp);
193 if (!bufp)
194 return (-1);
195 cp = bufp->page;
196 p = (uint16_t *)(void *)cp;
197 } else
198 p[n] = FULL_KEY_DATA;
199 bufp->flags |= BUF_MOD;
200 temp = FREESPACE(p) - BIGOVERHEAD;
201 _DBFIT(temp, uint16_t);
202 space = (uint16_t)temp;
203 }
204 return (0);
205 }
206
207 /*
208 * Called when bufp's page contains a partial key (index should be 1)
209 *
210 * All pages in the big key/data pair except bufp are freed. We cannot
211 * free bufp because the page pointing to it is lost and we can't get rid
212 * of its pointer.
213 *
214 * Returns:
215 * 0 => OK
216 *-1 => ERROR
217 */
218 int
__big_delete(HTAB * hashp,BUFHEAD * bufp)219 __big_delete(HTAB *hashp, BUFHEAD *bufp)
220 {
221 BUFHEAD *last_bfp, *rbufp;
222 uint16_t *bp, pageno;
223 int key_done, n;
224 size_t temp;
225
226 rbufp = bufp;
227 last_bfp = NULL;
228 bp = (uint16_t *)(void *)bufp->page;
229 pageno = 0;
230 key_done = 0;
231
232 while (!key_done || (bp[2] != FULL_KEY_DATA)) {
233 if (bp[2] == FULL_KEY || bp[2] == FULL_KEY_DATA)
234 key_done = 1;
235
236 /*
237 * If there is freespace left on a FULL_KEY_DATA page, then
238 * the data is short and fits entirely on this page, and this
239 * is the last page.
240 */
241 if (bp[2] == FULL_KEY_DATA && FREESPACE(bp))
242 break;
243 pageno = bp[bp[0] - 1];
244 rbufp->flags |= BUF_MOD;
245 rbufp = __get_buf(hashp, (uint32_t)pageno, rbufp, 0);
246 if (last_bfp)
247 __free_ovflpage(hashp, last_bfp);
248 last_bfp = rbufp;
249 if (!rbufp)
250 return (-1); /* Error. */
251 bp = (uint16_t *)(void *)rbufp->page;
252 }
253
254 /*
255 * If we get here then rbufp points to the last page of the big
256 * key/data pair. Bufp points to the first one -- it should now be
257 * empty pointing to the next page after this pair. Can't free it
258 * because we don't have the page pointing to it.
259 */
260
261 /* This is information from the last page of the pair. */
262 n = bp[0];
263 pageno = bp[n - 1];
264
265 /* Now, bp is the first page of the pair. */
266 bp = (uint16_t *)(void *)bufp->page;
267 if (n > 2) {
268 /* There is an overflow page. */
269 bp[1] = pageno;
270 bp[2] = OVFLPAGE;
271 bufp->ovfl = rbufp->ovfl;
272 } else
273 /* This is the last page. */
274 bufp->ovfl = NULL;
275 n -= 2;
276 bp[0] = n;
277 temp = HASH_BSIZE(hashp) - PAGE_META(n);
278 _DBFIT(temp, uint16_t);
279 FREESPACE(bp) = (uint16_t)temp;
280 OFFSET(bp) = HASH_BSIZE(hashp);
281
282 bufp->flags |= BUF_MOD;
283 if (rbufp)
284 __free_ovflpage(hashp, rbufp);
285 if (last_bfp && last_bfp != rbufp)
286 __free_ovflpage(hashp, last_bfp);
287
288 hashp->NKEYS--;
289 return (0);
290 }
291 /*
292 * Returns:
293 * 0 = key not found
294 * -1 = get next overflow page
295 * -2 means key not found and this is big key/data
296 * -3 error
297 */
298 int
__find_bigpair(HTAB * hashp,BUFHEAD * bufp,int ndx,char * key,int size)299 __find_bigpair(HTAB *hashp, BUFHEAD *bufp, int ndx, char *key, int size)
300 {
301 uint16_t *bp;
302 char *p;
303 int ksize;
304 uint16_t bytes;
305 char *kkey;
306
307 bp = (uint16_t *)(void *)bufp->page;
308 p = bufp->page;
309 ksize = size;
310 kkey = key;
311
312 for (bytes = HASH_BSIZE(hashp) - bp[ndx];
313 bytes <= size && bp[ndx + 1] == PARTIAL_KEY;
314 bytes = HASH_BSIZE(hashp) - bp[ndx]) {
315 if (memcmp(p + bp[ndx], kkey, (size_t)bytes))
316 return (-2);
317 kkey += bytes;
318 ksize -= bytes;
319 bufp = __get_buf(hashp, (uint32_t)bp[ndx + 2], bufp, 0);
320 if (!bufp)
321 return (-3);
322 p = bufp->page;
323 bp = (uint16_t *)(void *)p;
324 ndx = 1;
325 }
326
327 if (bytes != ksize || memcmp(p + bp[ndx], kkey, (size_t)bytes)) {
328 #ifdef HASH_STATISTICS
329 ++hash_collisions;
330 #endif
331 return (-2);
332 } else
333 return (ndx);
334 }
335
336 /*
337 * Given the buffer pointer of the first overflow page of a big pair,
338 * find the end of the big pair
339 *
340 * This will set bpp to the buffer header of the last page of the big pair.
341 * It will return the pageno of the overflow page following the last page
342 * of the pair; 0 if there isn't any (i.e. big pair is the last key in the
343 * bucket)
344 */
345 uint16_t
__find_last_page(HTAB * hashp,BUFHEAD ** bpp)346 __find_last_page(HTAB *hashp, BUFHEAD **bpp)
347 {
348 BUFHEAD *bufp;
349 uint16_t *bp, pageno;
350 int n;
351
352 bufp = *bpp;
353 bp = (uint16_t *)(void *)bufp->page;
354 for (;;) {
355 n = bp[0];
356
357 /*
358 * This is the last page if: the tag is FULL_KEY_DATA and
359 * either only 2 entries OVFLPAGE marker is explicit there
360 * is freespace on the page.
361 */
362 if (bp[2] == FULL_KEY_DATA &&
363 ((n == 2) || (bp[n] == OVFLPAGE) || (FREESPACE(bp))))
364 break;
365
366 pageno = bp[n - 1];
367 bufp = __get_buf(hashp, (uint32_t)pageno, bufp, 0);
368 if (!bufp)
369 return (0); /* Need to indicate an error! */
370 bp = (uint16_t *)(void *)bufp->page;
371 }
372
373 *bpp = bufp;
374 if (bp[0] > 2)
375 return (bp[3]);
376 else
377 return (0);
378 }
379
380 /*
381 * Return the data for the key/data pair that begins on this page at this
382 * index (index should always be 1).
383 */
384 int
__big_return(HTAB * hashp,BUFHEAD * bufp,int ndx,DBT * val,int set_current)385 __big_return(HTAB *hashp, BUFHEAD *bufp, int ndx, DBT *val, int set_current)
386 {
387 BUFHEAD *save_p;
388 uint16_t *bp, len, off, save_addr;
389 char *tp;
390
391 bp = (uint16_t *)(void *)bufp->page;
392 while (bp[ndx + 1] == PARTIAL_KEY) {
393 bufp = __get_buf(hashp, (uint32_t)bp[bp[0] - 1], bufp, 0);
394 if (!bufp)
395 return (-1);
396 bp = (uint16_t *)(void *)bufp->page;
397 ndx = 1;
398 }
399
400 if (bp[ndx + 1] == FULL_KEY) {
401 bufp = __get_buf(hashp, (uint32_t)bp[bp[0] - 1], bufp, 0);
402 if (!bufp)
403 return (-1);
404 bp = (uint16_t *)(void *)bufp->page;
405 save_p = bufp;
406 save_addr = save_p->addr;
407 off = bp[1];
408 len = 0;
409 } else
410 if (!FREESPACE(bp)) {
411 /*
412 * This is a hack. We can't distinguish between
413 * FULL_KEY_DATA that contains complete data or
414 * incomplete data, so we require that if the data
415 * is complete, there is at least 1 byte of free
416 * space left.
417 */
418 off = bp[bp[0]];
419 len = bp[1] - off;
420 save_p = bufp;
421 save_addr = bufp->addr;
422 bufp = __get_buf(hashp, (uint32_t)bp[bp[0] - 1], bufp,
423 0);
424 if (!bufp)
425 return (-1);
426 bp = (uint16_t *)(void *)bufp->page;
427 } else {
428 /* The data is all on one page. */
429 tp = (char *)(void *)bp;
430 off = bp[bp[0]];
431 val->data = (uint8_t *)tp + off;
432 val->size = bp[1] - off;
433 if (set_current) {
434 if (bp[0] == 2) { /* No more buckets in
435 * chain */
436 hashp->cpage = NULL;
437 hashp->cbucket++;
438 hashp->cndx = 1;
439 } else {
440 hashp->cpage = __get_buf(hashp,
441 (uint32_t)bp[bp[0] - 1], bufp, 0);
442 if (!hashp->cpage)
443 return (-1);
444 hashp->cndx = 1;
445 if (!((uint16_t *)(void *)
446 hashp->cpage->page)[0]) {
447 hashp->cbucket++;
448 hashp->cpage = NULL;
449 }
450 }
451 }
452 return (0);
453 }
454
455 val->size = collect_data(hashp, bufp, (int)len, set_current);
456 if (val->size == (size_t)-1)
457 return (-1);
458 if (save_p->addr != save_addr) {
459 /* We are pretty short on buffers. */
460 errno = EINVAL; /* OUT OF BUFFERS */
461 return (-1);
462 }
463 memmove(hashp->tmp_buf, (save_p->page) + off, (size_t)len);
464 val->data = (uint8_t *)hashp->tmp_buf;
465 return (0);
466 }
467 /*
468 * Count how big the total datasize is by recursing through the pages. Then
469 * allocate a buffer and copy the data as you recurse up.
470 */
471 static int
collect_data(HTAB * hashp,BUFHEAD * bufp,int len,int set)472 collect_data(HTAB *hashp, BUFHEAD *bufp, int len, int set)
473 {
474 uint16_t *bp;
475 char *p;
476 BUFHEAD *xbp;
477 uint16_t save_addr;
478 int mylen, totlen;
479
480 p = bufp->page;
481 bp = (uint16_t *)(void *)p;
482 mylen = HASH_BSIZE(hashp) - bp[1];
483 save_addr = bufp->addr;
484
485 if (bp[2] == FULL_KEY_DATA) { /* End of Data */
486 totlen = len + mylen;
487 if (hashp->tmp_buf)
488 free(hashp->tmp_buf);
489 if ((hashp->tmp_buf = calloc(1, (size_t)totlen)) == NULL)
490 return (-1);
491 if (set) {
492 hashp->cndx = 1;
493 if (bp[0] == 2) { /* No more buckets in chain */
494 hashp->cpage = NULL;
495 hashp->cbucket++;
496 } else {
497 hashp->cpage =
498 __get_buf(hashp, (uint32_t)bp[bp[0] - 1],
499 bufp, 0);
500 if (!hashp->cpage)
501 return (-1);
502 else if (!((uint16_t *)(void *)hashp->cpage->page)[0]) {
503 hashp->cbucket++;
504 hashp->cpage = NULL;
505 }
506 }
507 }
508 } else {
509 xbp = __get_buf(hashp, (uint32_t)bp[bp[0] - 1], bufp, 0);
510 if (!xbp || ((totlen =
511 collect_data(hashp, xbp, len + mylen, set)) < 1))
512 return (-1);
513 }
514 if (bufp->addr != save_addr) {
515 errno = EINVAL; /* Out of buffers. */
516 return (-1);
517 }
518 memmove(&hashp->tmp_buf[len], (bufp->page) + bp[1], (size_t)mylen);
519 return (totlen);
520 }
521
522 /*
523 * Fill in the key and data for this big pair.
524 */
525 int
__big_keydata(HTAB * hashp,BUFHEAD * bufp,DBT * key,DBT * val,int set)526 __big_keydata(HTAB *hashp, BUFHEAD *bufp, DBT *key, DBT *val, int set)
527 {
528 key->size = collect_key(hashp, bufp, 0, val, set);
529 if (key->size == (size_t)-1)
530 return (-1);
531 key->data = (uint8_t *)hashp->tmp_key;
532 return (0);
533 }
534
535 /*
536 * Count how big the total key size is by recursing through the pages. Then
537 * collect the data, allocate a buffer and copy the key as you recurse up.
538 */
539 static int
collect_key(HTAB * hashp,BUFHEAD * bufp,int len,DBT * val,int set)540 collect_key(HTAB *hashp, BUFHEAD *bufp, int len, DBT *val, int set)
541 {
542 BUFHEAD *xbp;
543 char *p;
544 int mylen, totlen;
545 uint16_t *bp, save_addr;
546
547 p = bufp->page;
548 bp = (uint16_t *)(void *)p;
549 mylen = HASH_BSIZE(hashp) - bp[1];
550
551 save_addr = bufp->addr;
552 totlen = len + mylen;
553 if (bp[2] == FULL_KEY || bp[2] == FULL_KEY_DATA) { /* End of Key. */
554 if (hashp->tmp_key != NULL)
555 free(hashp->tmp_key);
556 if ((hashp->tmp_key = calloc(1, (size_t)totlen)) == NULL)
557 return (-1);
558 if (__big_return(hashp, bufp, 1, val, set))
559 return (-1);
560 } else {
561 xbp = __get_buf(hashp, (uint32_t)bp[bp[0] - 1], bufp, 0);
562 if (!xbp || ((totlen =
563 collect_key(hashp, xbp, totlen, val, set)) < 1))
564 return (-1);
565 }
566 if (bufp->addr != save_addr) {
567 errno = EINVAL; /* MIS -- OUT OF BUFFERS */
568 return (-1);
569 }
570 memmove(&hashp->tmp_key[len], (bufp->page) + bp[1], (size_t)mylen);
571 return (totlen);
572 }
573
574 /*
575 * Returns:
576 * 0 => OK
577 * -1 => error
578 */
579 int
__big_split(HTAB * hashp,BUFHEAD * op,BUFHEAD * np,BUFHEAD * big_keyp,int addr,uint32_t obucket,SPLIT_RETURN * ret)580 __big_split(
581 HTAB *hashp,
582 BUFHEAD *op, /* Pointer to where to put keys that go in old bucket */
583 BUFHEAD *np, /* Pointer to new bucket page */
584 /* Pointer to first page containing the big key/data */
585 BUFHEAD *big_keyp,
586 int addr, /* Address of big_keyp */
587 uint32_t obucket,/* Old Bucket */
588 SPLIT_RETURN *ret
589 )
590 {
591 BUFHEAD *tmpp;
592 uint16_t *tp;
593 BUFHEAD *bp;
594 DBT key, val;
595 uint32_t change;
596 uint16_t free_space, n, off;
597 size_t temp;
598
599 bp = big_keyp;
600
601 /* Now figure out where the big key/data goes */
602 if (__big_keydata(hashp, big_keyp, &key, &val, 0))
603 return (-1);
604 change = (__call_hash(hashp, key.data, (int)key.size) != obucket);
605
606 if ((ret->next_addr = __find_last_page(hashp, &big_keyp)) != 0) {
607 if (!(ret->nextp =
608 __get_buf(hashp, (uint32_t)ret->next_addr, big_keyp, 0)))
609 return (-1);
610 } else
611 ret->nextp = NULL;
612
613 /* Now make one of np/op point to the big key/data pair */
614 _DIAGASSERT(np->ovfl == NULL);
615 if (change)
616 tmpp = np;
617 else
618 tmpp = op;
619
620 tmpp->flags |= BUF_MOD;
621 #ifdef DEBUG1
622 (void)fprintf(stderr,
623 "BIG_SPLIT: %d->ovfl was %d is now %d\n", tmpp->addr,
624 (tmpp->ovfl ? tmpp->ovfl->addr : 0), (bp ? bp->addr : 0));
625 #endif
626 tmpp->ovfl = bp; /* one of op/np point to big_keyp */
627 tp = (uint16_t *)(void *)tmpp->page;
628 _DIAGASSERT(FREESPACE(tp) >= OVFLSIZE);
629 n = tp[0];
630 off = OFFSET(tp);
631 free_space = FREESPACE(tp);
632 tp[++n] = (uint16_t)addr;
633 tp[++n] = OVFLPAGE;
634 tp[0] = n;
635 OFFSET(tp) = off;
636 temp = free_space - OVFLSIZE;
637 _DBFIT(temp, uint16_t);
638 FREESPACE(tp) = (uint16_t)temp;
639
640 /*
641 * Finally, set the new and old return values. BIG_KEYP contains a
642 * pointer to the last page of the big key_data pair. Make sure that
643 * big_keyp has no following page (2 elements) or create an empty
644 * following page.
645 */
646
647 ret->newp = np;
648 ret->oldp = op;
649
650 tp = (uint16_t *)(void *)big_keyp->page;
651 big_keyp->flags |= BUF_MOD;
652 if (tp[0] > 2) {
653 /*
654 * There may be either one or two offsets on this page. If
655 * there is one, then the overflow page is linked on normally
656 * and tp[4] is OVFLPAGE. If there are two, tp[4] contains
657 * the second offset and needs to get stuffed in after the
658 * next overflow page is added.
659 */
660 n = tp[4];
661 free_space = FREESPACE(tp);
662 off = OFFSET(tp);
663 tp[0] -= 2;
664 temp = free_space + OVFLSIZE;
665 _DBFIT(temp, uint16_t);
666 FREESPACE(tp) = (uint16_t)temp;
667 OFFSET(tp) = off;
668 tmpp = __add_ovflpage(hashp, big_keyp);
669 if (!tmpp)
670 return (-1);
671 tp[4] = n;
672 } else
673 tmpp = big_keyp;
674
675 if (change)
676 ret->newp = tmpp;
677 else
678 ret->oldp = tmpp;
679 return (0);
680 }
681