1 /*=========================================================================
2  *
3  *  Copyright Insight Software Consortium
4  *
5  *  Licensed under the Apache License, Version 2.0 (the "License");
6  *  you may not use this file except in compliance with the License.
7  *  You may obtain a copy of the License at
8  *
9  *         http://www.apache.org/licenses/LICENSE-2.0.txt
10  *
11  *  Unless required by applicable law or agreed to in writing, software
12  *  distributed under the License is distributed on an "AS IS" BASIS,
13  *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14  *  See the License for the specific language governing permissions and
15  *  limitations under the License.
16  *
17  *=========================================================================*/
18 #ifndef itkNumericTraitsVectorPixel_h
19 #define itkNumericTraitsVectorPixel_h
20 
21 #include "itkNumericTraits.h"
22 #include "itkVector.h"
23 
24 namespace itk
25 {
26 /** \brief NumericTraits for Vector
27  * \tparam T Component type for Vector
28  * \tparam D Space dimension (Dimension of Vector)
29  */
30 template< typename T, unsigned int D >
31 class NumericTraits< Vector< T, D > >
32 {
33 private:
34 
35   using ElementAbsType = typename NumericTraits< T >::AbsType;
36   using ElementAccumulateType = typename NumericTraits< T >::AccumulateType;
37   using ElementFloatType = typename NumericTraits< T >::FloatType;
38   using ElementPrintType = typename NumericTraits< T >::PrintType;
39   using ElementRealType = typename NumericTraits< T >::RealType;
40 
41 public:
42 
43   /** Return the type of the native component type. */
44   using ValueType = T;
45   using Self = Vector< T, D >;
46 
47   /** Unsigned component type */
48   using AbsType = Vector< ElementAbsType, D >;
49 
50   /** Accumulation of addition and multiplication. */
51   using AccumulateType = Vector< ElementAccumulateType, D >;
52 
53   /** Typedef for operations that use floating point instead of real precision
54     */
55   using FloatType = Vector< ElementFloatType, D >;
56 
57   /** Return the type that can be printed. */
58   using PrintType = Vector< ElementPrintType, D >;
59 
60   /** Type for real-valued scalar operations. */
61   using RealType = Vector< ElementRealType, D >;
62 
63   /** Type for real-valued scalar operations. */
64   using ScalarRealType = ElementRealType;
65 
66   /** Measurement vector type */
67   using MeasurementVectorType = Self;
68 
69   /** Component wise defined element
70    *
71    * \note minimum value for floating pointer types is defined as
72    * minimum positive normalize value.
73    */
max(const Self &)74   static const Self max(const Self &)
75   {
76     return Self( NumericTraits< T >::max() );
77   }
78 
min(const Self &)79   static const Self min(const Self &)
80   {
81     return Self( NumericTraits< T >::min() );
82   }
83 
max()84   static const Self max()
85   {
86     return Self( NumericTraits< T >::max() );
87   }
88 
min()89   static const Self min()
90   {
91     return Self( NumericTraits< T >::min() );
92   }
93 
NonpositiveMin()94   static const Self NonpositiveMin()
95   {
96     return Self( NumericTraits< T >::NonpositiveMin() );
97   }
98 
ZeroValue()99   static const Self ZeroValue()
100   {
101     return Self( NumericTraits< T >::ZeroValue() );
102   }
103 
OneValue()104   static const Self OneValue()
105   {
106     return Self( NumericTraits< T >::OneValue() );
107   }
108 
NonpositiveMin(const Self &)109   static const Self NonpositiveMin(const Self &)
110   {
111     return NonpositiveMin();
112   }
113 
ZeroValue(const Self &)114   static const Self ZeroValue(const Self &)
115   {
116     return ZeroValue();
117   }
118 
OneValue(const Self &)119   static const Self OneValue(const Self &)
120   {
121     return OneValue();
122   }
123 
IsPositive(const Self & a)124   static bool IsPositive( const Self & a)
125   {
126     bool flag = false;
127     for (unsigned int i=0; i < GetLength( a ); i++)
128       {
129       if ( a[i] > NumericTraits< ValueType >::ZeroValue() )
130         {
131         flag = true;
132         }
133       }
134     return flag;
135   }
136 
IsNonpositive(const Self & a)137   static bool IsNonpositive( const Self & a)
138   {
139     bool flag = false;
140     for (unsigned int i=0; i < GetLength( a ); i++)
141       {
142       if ( ! (a[i] > 0.0 ) )
143         {
144         flag = true;
145         }
146       }
147     return flag;
148   }
149 
IsNegative(const Self & a)150   static bool IsNegative( const Self & a)
151   {
152     bool flag = false;
153     for (unsigned int i=0; i < GetLength( a ); i++)
154       {
155       if ( a[i] < 0.0 )
156         {
157         flag = true;
158         }
159       }
160     return flag;
161   }
162 
IsNonnegative(const Self & a)163   static bool IsNonnegative( const Self & a)
164   {
165     bool flag = false;
166     for (unsigned int i=0; i < GetLength( a ); i++)
167       {
168       if ( ! (a[i] < 0.0 ))
169         {
170         flag = true;
171         }
172       }
173     return flag;
174   }
175 
176   static constexpr bool IsSigned = NumericTraits< ValueType >::IsSigned;
177   static constexpr bool IsInteger = NumericTraits< ValueType >::IsInteger;
178   static constexpr bool IsComplex = NumericTraits< ValueType >::IsComplex;
179 
180   /** Fixed length vectors cannot be resized, so an exception will
181    *  be thrown if the input size is not valid.  If the size is valid
182    *  the vector will be filled with zeros. */
SetLength(Vector<T,D> & m,const unsigned int s)183   static void SetLength(Vector< T, D > & m, const unsigned int s)
184   {
185     if ( s != D )
186       {
187       itkGenericExceptionMacro(<< "Cannot set the size of a Vector of length "
188                                << D << " to " << s);
189       }
190     m.Fill(NumericTraits< T >::ZeroValue());
191   }
192 
193   /** Return the size of the vector. */
GetLength(const Vector<T,D> &)194   static unsigned int GetLength(const Vector< T, D > &)
195   {
196     return D;
197   }
198 
199   /** Return the size of the vector. */
GetLength()200   static unsigned int GetLength()
201   {
202     return D;
203   }
204 
AssignToArray(const Self & v,MeasurementVectorType & mv)205   static void AssignToArray( const Self & v, MeasurementVectorType & mv )
206   {
207     mv = v;
208   }
209 
210   template<typename TArray>
AssignToArray(const Self & v,TArray & mv)211   static void AssignToArray( const Self & v, TArray & mv )
212   {
213     for( unsigned int i=0; i<D; i++ )
214       {
215       mv[i] = v[i];
216       }
217   }
218 
219   /** \note: the functions are preferred over the member variables as
220    * they are defined for all partial specialization
221    */
222   static const Self ITKCommon_EXPORT Zero;
223   static const Self ITKCommon_EXPORT One;
224 };
225 } // end namespace itk
226 
227 #endif // itkNumericTraitsVectorPixel_h
228