1 /* $OpenBSD: kern_clock.c,v 1.124 2024/07/08 13:17:11 claudio Exp $ */
2 /* $NetBSD: kern_clock.c,v 1.34 1996/06/09 04:51:03 briggs Exp $ */
3
4 /*-
5 * Copyright (c) 1982, 1986, 1991, 1993
6 * The Regents of the University of California. All rights reserved.
7 * (c) UNIX System Laboratories, Inc.
8 * All or some portions of this file are derived from material licensed
9 * to the University of California by American Telephone and Telegraph
10 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
11 * the permission of UNIX System Laboratories, Inc.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. Neither the name of the University nor the names of its contributors
22 * may be used to endorse or promote products derived from this software
23 * without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94
38 */
39
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/clockintr.h>
43 #include <sys/timeout.h>
44 #include <sys/kernel.h>
45 #include <sys/limits.h>
46 #include <sys/proc.h>
47 #include <sys/user.h>
48 #include <sys/resourcevar.h>
49 #include <sys/sysctl.h>
50 #include <sys/sched.h>
51 #include <sys/timetc.h>
52
53 /*
54 * Clock handling routines.
55 *
56 * This code is written to operate with two timers that run independently of
57 * each other. The main clock, running hz times per second, is used to keep
58 * track of real time. The second timer handles kernel and user profiling,
59 * and does resource use estimation. If the second timer is programmable,
60 * it is randomized to avoid aliasing between the two clocks. For example,
61 * the randomization prevents an adversary from always giving up the cpu
62 * just before its quantum expires. Otherwise, it would never accumulate
63 * cpu ticks. The mean frequency of the second timer is stathz.
64 *
65 * If no second timer exists, stathz will be zero; in this case we drive
66 * profiling and statistics off the main clock. This WILL NOT be accurate;
67 * do not do it unless absolutely necessary.
68 *
69 * The statistics clock may (or may not) be run at a higher rate while
70 * profiling. This profile clock runs at profhz. We require that profhz
71 * be an integral multiple of stathz.
72 *
73 * If the statistics clock is running fast, it must be divided by the ratio
74 * profhz/stathz for statistics. (For profiling, every tick counts.)
75 */
76
77 int stathz;
78 int profhz;
79 int profprocs;
80 int ticks = INT_MAX - (15 * 60 * HZ);
81
82 /* Don't force early wrap around, triggers bug in inteldrm */
83 volatile unsigned long jiffies;
84
85 uint64_t hardclock_period; /* [I] hardclock period (ns) */
86 uint64_t statclock_avg; /* [I] average statclock period (ns) */
87 uint64_t statclock_min; /* [I] minimum statclock period (ns) */
88 uint32_t statclock_mask; /* [I] set of allowed offsets */
89 int statclock_is_randomized; /* [I] fixed or pseudorandom period? */
90
91 /*
92 * Initialize clock frequencies and start both clocks running.
93 */
94 void
initclocks(void)95 initclocks(void)
96 {
97 uint64_t half_avg;
98 uint32_t var;
99
100 /*
101 * Let the machine-specific code do its bit.
102 */
103 cpu_initclocks();
104
105 KASSERT(hz > 0 && hz <= 1000000000);
106 hardclock_period = 1000000000 / hz;
107 roundrobin_period = hardclock_period * 10;
108
109 KASSERT(stathz >= 1 && stathz <= 1000000000);
110
111 /*
112 * Compute the average statclock() period. Then find var, the
113 * largest 32-bit power of two such that var <= statclock_avg / 2.
114 */
115 statclock_avg = 1000000000 / stathz;
116 half_avg = statclock_avg / 2;
117 for (var = 1U << 31; var > half_avg; var /= 2)
118 continue;
119
120 /*
121 * Set a lower bound for the range using statclock_avg and var.
122 * The mask for that range is just (var - 1).
123 */
124 statclock_min = statclock_avg - (var / 2);
125 statclock_mask = var - 1;
126
127 KASSERT(profhz >= stathz && profhz <= 1000000000);
128 KASSERT(profhz % stathz == 0);
129 profclock_period = 1000000000 / profhz;
130
131 inittimecounter();
132
133 /* Start dispatching clock interrupts on the primary CPU. */
134 cpu_startclock();
135 }
136
137 /*
138 * The real-time timer, interrupting hz times per second.
139 */
140 void
hardclock(struct clockframe * frame)141 hardclock(struct clockframe *frame)
142 {
143 tc_ticktock();
144 ticks++;
145 jiffies++;
146
147 /*
148 * Update the timeout wheel.
149 */
150 timeout_hardclock_update();
151 }
152
153 /*
154 * Compute number of hz in the specified amount of time.
155 */
156 int
tvtohz(const struct timeval * tv)157 tvtohz(const struct timeval *tv)
158 {
159 unsigned long nticks;
160 time_t sec;
161 long usec;
162
163 /*
164 * If the number of usecs in the whole seconds part of the time
165 * fits in a long, then the total number of usecs will
166 * fit in an unsigned long. Compute the total and convert it to
167 * ticks, rounding up and adding 1 to allow for the current tick
168 * to expire. Rounding also depends on unsigned long arithmetic
169 * to avoid overflow.
170 *
171 * Otherwise, if the number of ticks in the whole seconds part of
172 * the time fits in a long, then convert the parts to
173 * ticks separately and add, using similar rounding methods and
174 * overflow avoidance. This method would work in the previous
175 * case but it is slightly slower and assumes that hz is integral.
176 *
177 * Otherwise, round the time down to the maximum
178 * representable value.
179 *
180 * If ints have 32 bits, then the maximum value for any timeout in
181 * 10ms ticks is 248 days.
182 */
183 sec = tv->tv_sec;
184 usec = tv->tv_usec;
185 if (sec < 0 || (sec == 0 && usec <= 0))
186 nticks = 0;
187 else if (sec <= LONG_MAX / 1000000)
188 nticks = (sec * 1000000 + (unsigned long)usec + (tick - 1))
189 / tick + 1;
190 else if (sec <= LONG_MAX / hz)
191 nticks = sec * hz
192 + ((unsigned long)usec + (tick - 1)) / tick + 1;
193 else
194 nticks = LONG_MAX;
195 if (nticks > INT_MAX)
196 nticks = INT_MAX;
197 return ((int)nticks);
198 }
199
200 int
tstohz(const struct timespec * ts)201 tstohz(const struct timespec *ts)
202 {
203 struct timeval tv;
204 TIMESPEC_TO_TIMEVAL(&tv, ts);
205
206 /* Round up. */
207 if ((ts->tv_nsec % 1000) != 0) {
208 tv.tv_usec += 1;
209 if (tv.tv_usec >= 1000000) {
210 tv.tv_usec -= 1000000;
211 tv.tv_sec += 1;
212 }
213 }
214
215 return (tvtohz(&tv));
216 }
217
218 /*
219 * Start profiling on a process.
220 *
221 * Kernel profiling passes proc0 which never exits and hence
222 * keeps the profile clock running constantly.
223 */
224 void
startprofclock(struct process * pr)225 startprofclock(struct process *pr)
226 {
227 int s;
228
229 if ((pr->ps_flags & PS_PROFIL) == 0) {
230 atomic_setbits_int(&pr->ps_flags, PS_PROFIL);
231 if (++profprocs == 1) {
232 s = splstatclock();
233 setstatclockrate(profhz);
234 splx(s);
235 }
236 }
237 }
238
239 /*
240 * Stop profiling on a process.
241 */
242 void
stopprofclock(struct process * pr)243 stopprofclock(struct process *pr)
244 {
245 int s;
246
247 if (pr->ps_flags & PS_PROFIL) {
248 atomic_clearbits_int(&pr->ps_flags, PS_PROFIL);
249 if (--profprocs == 0) {
250 s = splstatclock();
251 setstatclockrate(stathz);
252 splx(s);
253 }
254 }
255 }
256
257 /*
258 * Statistics clock. Grab profile sample, and if divider reaches 0,
259 * do process and kernel statistics.
260 */
261 void
statclock(struct clockrequest * cr,void * cf,void * arg)262 statclock(struct clockrequest *cr, void *cf, void *arg)
263 {
264 uint64_t count, i;
265 struct clockframe *frame = cf;
266 struct cpu_info *ci = curcpu();
267 struct schedstate_percpu *spc = &ci->ci_schedstate;
268 struct proc *p = curproc;
269 struct process *pr;
270
271 if (statclock_is_randomized) {
272 count = clockrequest_advance_random(cr, statclock_min,
273 statclock_mask);
274 } else {
275 count = clockrequest_advance(cr, statclock_avg);
276 }
277
278 if (CLKF_USERMODE(frame)) {
279 pr = p->p_p;
280 /*
281 * Came from user mode; CPU was in user state.
282 * If this process is being profiled record the tick.
283 */
284 tu_enter(&p->p_tu);
285 p->p_tu.tu_uticks += count;
286 tu_leave(&p->p_tu);
287 if (pr->ps_nice > NZERO)
288 spc->spc_cp_time[CP_NICE] += count;
289 else
290 spc->spc_cp_time[CP_USER] += count;
291 } else {
292 /*
293 * Came from kernel mode, so we were:
294 * - spinning on a lock
295 * - handling an interrupt,
296 * - doing syscall or trap work on behalf of the current
297 * user process, or
298 * - spinning in the idle loop.
299 * Whichever it is, charge the time as appropriate.
300 * Note that we charge interrupts to the current process,
301 * regardless of whether they are ``for'' that process,
302 * so that we know how much of its real time was spent
303 * in ``non-process'' (i.e., interrupt) work.
304 */
305 if (CLKF_INTR(frame)) {
306 if (p != NULL) {
307 tu_enter(&p->p_tu);
308 p->p_tu.tu_iticks += count;
309 tu_leave(&p->p_tu);
310 }
311 spc->spc_cp_time[spc->spc_spinning ?
312 CP_SPIN : CP_INTR] += count;
313 } else if (p != NULL && p != spc->spc_idleproc) {
314 tu_enter(&p->p_tu);
315 p->p_tu.tu_sticks += count;
316 tu_leave(&p->p_tu);
317 spc->spc_cp_time[spc->spc_spinning ?
318 CP_SPIN : CP_SYS] += count;
319 } else
320 spc->spc_cp_time[spc->spc_spinning ?
321 CP_SPIN : CP_IDLE] += count;
322 }
323
324 if (p != NULL) {
325 p->p_cpticks += count;
326 /*
327 * schedclock() runs every fourth statclock().
328 */
329 for (i = 0; i < count; i++) {
330 if ((++spc->spc_schedticks & 3) == 0)
331 schedclock(p);
332 }
333 }
334 }
335
336 /*
337 * Return information about system clocks.
338 */
339 int
sysctl_clockrate(char * where,size_t * sizep,void * newp)340 sysctl_clockrate(char *where, size_t *sizep, void *newp)
341 {
342 struct clockinfo clkinfo;
343
344 /*
345 * Construct clockinfo structure.
346 */
347 memset(&clkinfo, 0, sizeof clkinfo);
348 clkinfo.tick = tick;
349 clkinfo.hz = hz;
350 clkinfo.profhz = profhz;
351 clkinfo.stathz = stathz;
352 return (sysctl_rdstruct(where, sizep, newp, &clkinfo, sizeof(clkinfo)));
353 }
354