1 //===- ADT/SCCIterator.h - Strongly Connected Comp. Iter. -------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 ///
10 /// This builds on the llvm/ADT/GraphTraits.h file to find the strongly
11 /// connected components (SCCs) of a graph in O(N+E) time using Tarjan's DFS
12 /// algorithm.
13 ///
14 /// The SCC iterator has the important property that if a node in SCC S1 has an
15 /// edge to a node in SCC S2, then it visits S1 *after* S2.
16 ///
17 /// To visit S1 *before* S2, use the scc_iterator on the Inverse graph. (NOTE:
18 /// This requires some simple wrappers and is not supported yet.)
19 ///
20 //===----------------------------------------------------------------------===//
21
22 #ifndef LLVM_ADT_SCCITERATOR_H
23 #define LLVM_ADT_SCCITERATOR_H
24
25 #include "llvm/ADT/DenseMap.h"
26 #include "llvm/ADT/GraphTraits.h"
27 #include "llvm/ADT/iterator.h"
28 #include <cassert>
29 #include <cstddef>
30 #include <iterator>
31 #include <queue>
32 #include <set>
33 #include <unordered_map>
34 #include <unordered_set>
35 #include <vector>
36
37 namespace llvm {
38
39 /// Enumerate the SCCs of a directed graph in reverse topological order
40 /// of the SCC DAG.
41 ///
42 /// This is implemented using Tarjan's DFS algorithm using an internal stack to
43 /// build up a vector of nodes in a particular SCC. Note that it is a forward
44 /// iterator and thus you cannot backtrack or re-visit nodes.
45 template <class GraphT, class GT = GraphTraits<GraphT>>
46 class scc_iterator : public iterator_facade_base<
47 scc_iterator<GraphT, GT>, std::forward_iterator_tag,
48 const std::vector<typename GT::NodeRef>, ptrdiff_t> {
49 using NodeRef = typename GT::NodeRef;
50 using ChildItTy = typename GT::ChildIteratorType;
51 using SccTy = std::vector<NodeRef>;
52 using reference = typename scc_iterator::reference;
53
54 /// Element of VisitStack during DFS.
55 struct StackElement {
56 NodeRef Node; ///< The current node pointer.
57 ChildItTy NextChild; ///< The next child, modified inplace during DFS.
58 unsigned MinVisited; ///< Minimum uplink value of all children of Node.
59
StackElementStackElement60 StackElement(NodeRef Node, const ChildItTy &Child, unsigned Min)
61 : Node(Node), NextChild(Child), MinVisited(Min) {}
62
63 bool operator==(const StackElement &Other) const {
64 return Node == Other.Node &&
65 NextChild == Other.NextChild &&
66 MinVisited == Other.MinVisited;
67 }
68 };
69
70 /// The visit counters used to detect when a complete SCC is on the stack.
71 /// visitNum is the global counter.
72 ///
73 /// nodeVisitNumbers are per-node visit numbers, also used as DFS flags.
74 unsigned visitNum;
75 DenseMap<NodeRef, unsigned> nodeVisitNumbers;
76
77 /// Stack holding nodes of the SCC.
78 std::vector<NodeRef> SCCNodeStack;
79
80 /// The current SCC, retrieved using operator*().
81 SccTy CurrentSCC;
82
83 /// DFS stack, Used to maintain the ordering. The top contains the current
84 /// node, the next child to visit, and the minimum uplink value of all child
85 std::vector<StackElement> VisitStack;
86
87 /// A single "visit" within the non-recursive DFS traversal.
88 void DFSVisitOne(NodeRef N);
89
90 /// The stack-based DFS traversal; defined below.
91 void DFSVisitChildren();
92
93 /// Compute the next SCC using the DFS traversal.
94 void GetNextSCC();
95
scc_iterator(NodeRef entryN)96 scc_iterator(NodeRef entryN) : visitNum(0) {
97 DFSVisitOne(entryN);
98 GetNextSCC();
99 }
100
101 /// End is when the DFS stack is empty.
102 scc_iterator() = default;
103
104 public:
begin(const GraphT & G)105 static scc_iterator begin(const GraphT &G) {
106 return scc_iterator(GT::getEntryNode(G));
107 }
end(const GraphT &)108 static scc_iterator end(const GraphT &) { return scc_iterator(); }
109
110 /// Direct loop termination test which is more efficient than
111 /// comparison with \c end().
isAtEnd()112 bool isAtEnd() const {
113 assert(!CurrentSCC.empty() || VisitStack.empty());
114 return CurrentSCC.empty();
115 }
116
117 bool operator==(const scc_iterator &x) const {
118 return VisitStack == x.VisitStack && CurrentSCC == x.CurrentSCC;
119 }
120
121 scc_iterator &operator++() {
122 GetNextSCC();
123 return *this;
124 }
125
126 reference operator*() const {
127 assert(!CurrentSCC.empty() && "Dereferencing END SCC iterator!");
128 return CurrentSCC;
129 }
130
131 /// Test if the current SCC has a cycle.
132 ///
133 /// If the SCC has more than one node, this is trivially true. If not, it may
134 /// still contain a cycle if the node has an edge back to itself.
135 bool hasCycle() const;
136
137 /// This informs the \c scc_iterator that the specified \c Old node
138 /// has been deleted, and \c New is to be used in its place.
ReplaceNode(NodeRef Old,NodeRef New)139 void ReplaceNode(NodeRef Old, NodeRef New) {
140 assert(nodeVisitNumbers.count(Old) && "Old not in scc_iterator?");
141 // Do the assignment in two steps, in case 'New' is not yet in the map, and
142 // inserting it causes the map to grow.
143 auto tempVal = nodeVisitNumbers[Old];
144 nodeVisitNumbers[New] = tempVal;
145 nodeVisitNumbers.erase(Old);
146 }
147 };
148
149 template <class GraphT, class GT>
DFSVisitOne(NodeRef N)150 void scc_iterator<GraphT, GT>::DFSVisitOne(NodeRef N) {
151 ++visitNum;
152 nodeVisitNumbers[N] = visitNum;
153 SCCNodeStack.push_back(N);
154 VisitStack.push_back(StackElement(N, GT::child_begin(N), visitNum));
155 #if 0 // Enable if needed when debugging.
156 dbgs() << "TarjanSCC: Node " << N <<
157 " : visitNum = " << visitNum << "\n";
158 #endif
159 }
160
161 template <class GraphT, class GT>
DFSVisitChildren()162 void scc_iterator<GraphT, GT>::DFSVisitChildren() {
163 assert(!VisitStack.empty());
164 while (VisitStack.back().NextChild != GT::child_end(VisitStack.back().Node)) {
165 // TOS has at least one more child so continue DFS
166 NodeRef childN = *VisitStack.back().NextChild++;
167 typename DenseMap<NodeRef, unsigned>::iterator Visited =
168 nodeVisitNumbers.find(childN);
169 if (Visited == nodeVisitNumbers.end()) {
170 // this node has never been seen.
171 DFSVisitOne(childN);
172 continue;
173 }
174
175 unsigned childNum = Visited->second;
176 if (VisitStack.back().MinVisited > childNum)
177 VisitStack.back().MinVisited = childNum;
178 }
179 }
180
GetNextSCC()181 template <class GraphT, class GT> void scc_iterator<GraphT, GT>::GetNextSCC() {
182 CurrentSCC.clear(); // Prepare to compute the next SCC
183 while (!VisitStack.empty()) {
184 DFSVisitChildren();
185
186 // Pop the leaf on top of the VisitStack.
187 NodeRef visitingN = VisitStack.back().Node;
188 unsigned minVisitNum = VisitStack.back().MinVisited;
189 assert(VisitStack.back().NextChild == GT::child_end(visitingN));
190 VisitStack.pop_back();
191
192 // Propagate MinVisitNum to parent so we can detect the SCC starting node.
193 if (!VisitStack.empty() && VisitStack.back().MinVisited > minVisitNum)
194 VisitStack.back().MinVisited = minVisitNum;
195
196 #if 0 // Enable if needed when debugging.
197 dbgs() << "TarjanSCC: Popped node " << visitingN <<
198 " : minVisitNum = " << minVisitNum << "; Node visit num = " <<
199 nodeVisitNumbers[visitingN] << "\n";
200 #endif
201
202 if (minVisitNum != nodeVisitNumbers[visitingN])
203 continue;
204
205 // A full SCC is on the SCCNodeStack! It includes all nodes below
206 // visitingN on the stack. Copy those nodes to CurrentSCC,
207 // reset their minVisit values, and return (this suspends
208 // the DFS traversal till the next ++).
209 do {
210 CurrentSCC.push_back(SCCNodeStack.back());
211 SCCNodeStack.pop_back();
212 nodeVisitNumbers[CurrentSCC.back()] = ~0U;
213 } while (CurrentSCC.back() != visitingN);
214 return;
215 }
216 }
217
218 template <class GraphT, class GT>
hasCycle()219 bool scc_iterator<GraphT, GT>::hasCycle() const {
220 assert(!CurrentSCC.empty() && "Dereferencing END SCC iterator!");
221 if (CurrentSCC.size() > 1)
222 return true;
223 NodeRef N = CurrentSCC.front();
224 for (ChildItTy CI = GT::child_begin(N), CE = GT::child_end(N); CI != CE;
225 ++CI)
226 if (*CI == N)
227 return true;
228 return false;
229 }
230
231 /// Construct the begin iterator for a deduced graph type T.
scc_begin(const T & G)232 template <class T> scc_iterator<T> scc_begin(const T &G) {
233 return scc_iterator<T>::begin(G);
234 }
235
236 /// Construct the end iterator for a deduced graph type T.
scc_end(const T & G)237 template <class T> scc_iterator<T> scc_end(const T &G) {
238 return scc_iterator<T>::end(G);
239 }
240
241 /// Sort the nodes of a directed SCC in the decreasing order of the edge
242 /// weights. The instantiating GraphT type should have weighted edge type
243 /// declared in its graph traits in order to use this iterator.
244 ///
245 /// This is implemented using Kruskal's minimal spanning tree algorithm followed
246 /// by a BFS walk. First a maximum spanning tree (forest) is built based on all
247 /// edges within the SCC collection. Then a BFS walk is initiated on tree nodes
248 /// that do not have a predecessor. Finally, the BFS order computed is the
249 /// traversal order of the nodes of the SCC. Such order ensures that
250 /// high-weighted edges are visited first during the tranversal.
251 template <class GraphT, class GT = GraphTraits<GraphT>>
252 class scc_member_iterator {
253 using NodeType = typename GT::NodeType;
254 using EdgeType = typename GT::EdgeType;
255 using NodesType = std::vector<NodeType *>;
256
257 // Auxilary node information used during the MST calculation.
258 struct NodeInfo {
259 NodeInfo *Group = this;
260 uint32_t Rank = 0;
261 bool Visited = true;
262 };
263
264 // Find the root group of the node and compress the path from node to the
265 // root.
find(NodeInfo * Node)266 NodeInfo *find(NodeInfo *Node) {
267 if (Node->Group != Node)
268 Node->Group = find(Node->Group);
269 return Node->Group;
270 }
271
272 // Union the source and target node into the same group and return true.
273 // Returns false if they are already in the same group.
unionGroups(const EdgeType * Edge)274 bool unionGroups(const EdgeType *Edge) {
275 NodeInfo *G1 = find(&NodeInfoMap[Edge->Source]);
276 NodeInfo *G2 = find(&NodeInfoMap[Edge->Target]);
277
278 // If the edge forms a cycle, do not add it to MST
279 if (G1 == G2)
280 return false;
281
282 // Make the smaller rank tree a direct child or the root of high rank tree.
283 if (G1->Rank < G1->Rank)
284 G1->Group = G2;
285 else {
286 G2->Group = G1;
287 // If the ranks are the same, increment root of one tree by one.
288 if (G1->Rank == G2->Rank)
289 G2->Rank++;
290 }
291 return true;
292 }
293
294 std::unordered_map<NodeType *, NodeInfo> NodeInfoMap;
295 NodesType Nodes;
296
297 public:
298 scc_member_iterator(const NodesType &InputNodes);
299
300 NodesType &operator*() { return Nodes; }
301 };
302
303 template <class GraphT, class GT>
scc_member_iterator(const NodesType & InputNodes)304 scc_member_iterator<GraphT, GT>::scc_member_iterator(
305 const NodesType &InputNodes) {
306 if (InputNodes.size() <= 1) {
307 Nodes = InputNodes;
308 return;
309 }
310
311 // Initialize auxilary node information.
312 NodeInfoMap.clear();
313 for (auto *Node : InputNodes) {
314 // This is specifically used to construct a `NodeInfo` object in place. An
315 // insert operation will involve a copy construction which invalidate the
316 // initial value of the `Group` field which should be `this`.
317 (void)NodeInfoMap[Node].Group;
318 }
319
320 // Sort edges by weights.
321 struct EdgeComparer {
322 bool operator()(const EdgeType *L, const EdgeType *R) const {
323 return L->Weight > R->Weight;
324 }
325 };
326
327 std::multiset<const EdgeType *, EdgeComparer> SortedEdges;
328 for (auto *Node : InputNodes) {
329 for (auto &Edge : Node->Edges) {
330 if (NodeInfoMap.count(Edge.Target))
331 SortedEdges.insert(&Edge);
332 }
333 }
334
335 // Traverse all the edges and compute the Maximum Weight Spanning Tree
336 // using Kruskal's algorithm.
337 std::unordered_set<const EdgeType *> MSTEdges;
338 for (auto *Edge : SortedEdges) {
339 if (unionGroups(Edge))
340 MSTEdges.insert(Edge);
341 }
342
343 // Do BFS on MST, starting from nodes that have no incoming edge. These nodes
344 // are "roots" of the MST forest. This ensures that nodes are visited before
345 // their decsendents are, thus ensures hot edges are processed before cold
346 // edges, based on how MST is computed.
347 for (const auto *Edge : MSTEdges)
348 NodeInfoMap[Edge->Target].Visited = false;
349
350 std::queue<NodeType *> Queue;
351 // Initialze the queue with MST roots. Note that walking through SortedEdges
352 // instead of NodeInfoMap ensures an ordered deterministic push.
353 for (auto *Edge : SortedEdges) {
354 if (NodeInfoMap[Edge->Source].Visited) {
355 Queue.push(Edge->Source);
356 NodeInfoMap[Edge->Source].Visited = false;
357 }
358 }
359
360 while (!Queue.empty()) {
361 auto *Node = Queue.front();
362 Queue.pop();
363 Nodes.push_back(Node);
364 for (auto &Edge : Node->Edges) {
365 if (MSTEdges.count(&Edge) && !NodeInfoMap[Edge.Target].Visited) {
366 NodeInfoMap[Edge.Target].Visited = true;
367 Queue.push(Edge.Target);
368 }
369 }
370 }
371
372 assert(InputNodes.size() == Nodes.size() && "missing nodes in MST");
373 std::reverse(Nodes.begin(), Nodes.end());
374 }
375 } // end namespace llvm
376
377 #endif // LLVM_ADT_SCCITERATOR_H
378