1 //===- ConstantRange.h - Represent a range ----------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Represent a range of possible values that may occur when the program is run 10 // for an integral value. This keeps track of a lower and upper bound for the 11 // constant, which MAY wrap around the end of the numeric range. To do this, it 12 // keeps track of a [lower, upper) bound, which specifies an interval just like 13 // STL iterators. When used with boolean values, the following are important 14 // ranges: : 15 // 16 // [F, F) = {} = Empty set 17 // [T, F) = {T} 18 // [F, T) = {F} 19 // [T, T) = {F, T} = Full set 20 // 21 // The other integral ranges use min/max values for special range values. For 22 // example, for 8-bit types, it uses: 23 // [0, 0) = {} = Empty set 24 // [255, 255) = {0..255} = Full Set 25 // 26 // Note that ConstantRange can be used to represent either signed or 27 // unsigned ranges. 28 // 29 //===----------------------------------------------------------------------===// 30 31 #ifndef LLVM_IR_CONSTANTRANGE_H 32 #define LLVM_IR_CONSTANTRANGE_H 33 34 #include "llvm/ADT/APInt.h" 35 #include "llvm/IR/InstrTypes.h" 36 #include "llvm/IR/Instruction.h" 37 #include "llvm/Support/Compiler.h" 38 #include <cstdint> 39 40 namespace llvm { 41 42 class MDNode; 43 class raw_ostream; 44 struct KnownBits; 45 46 /// This class represents a range of values. 47 class [[nodiscard]] ConstantRange { 48 APInt Lower, Upper; 49 50 /// Create empty constant range with same bitwidth. getEmpty()51 ConstantRange getEmpty() const { 52 return ConstantRange(getBitWidth(), false); 53 } 54 55 /// Create full constant range with same bitwidth. getFull()56 ConstantRange getFull() const { 57 return ConstantRange(getBitWidth(), true); 58 } 59 60 public: 61 /// Initialize a full or empty set for the specified bit width. 62 explicit ConstantRange(uint32_t BitWidth, bool isFullSet); 63 64 /// Initialize a range to hold the single specified value. 65 ConstantRange(APInt Value); 66 67 /// Initialize a range of values explicitly. This will assert out if 68 /// Lower==Upper and Lower != Min or Max value for its type. It will also 69 /// assert out if the two APInt's are not the same bit width. 70 ConstantRange(APInt Lower, APInt Upper); 71 72 /// Create empty constant range with the given bit width. getEmpty(uint32_t BitWidth)73 static ConstantRange getEmpty(uint32_t BitWidth) { 74 return ConstantRange(BitWidth, false); 75 } 76 77 /// Create full constant range with the given bit width. getFull(uint32_t BitWidth)78 static ConstantRange getFull(uint32_t BitWidth) { 79 return ConstantRange(BitWidth, true); 80 } 81 82 /// Create non-empty constant range with the given bounds. If Lower and 83 /// Upper are the same, a full range is returned. getNonEmpty(APInt Lower,APInt Upper)84 static ConstantRange getNonEmpty(APInt Lower, APInt Upper) { 85 if (Lower == Upper) 86 return getFull(Lower.getBitWidth()); 87 return ConstantRange(std::move(Lower), std::move(Upper)); 88 } 89 90 /// Initialize a range based on a known bits constraint. The IsSigned flag 91 /// indicates whether the constant range should not wrap in the signed or 92 /// unsigned domain. 93 static ConstantRange fromKnownBits(const KnownBits &Known, bool IsSigned); 94 95 /// Produce the smallest range such that all values that may satisfy the given 96 /// predicate with any value contained within Other is contained in the 97 /// returned range. Formally, this returns a superset of 98 /// 'union over all y in Other . { x : icmp op x y is true }'. If the exact 99 /// answer is not representable as a ConstantRange, the return value will be a 100 /// proper superset of the above. 101 /// 102 /// Example: Pred = ult and Other = i8 [2, 5) returns Result = [0, 4) 103 static ConstantRange makeAllowedICmpRegion(CmpInst::Predicate Pred, 104 const ConstantRange &Other); 105 106 /// Produce the largest range such that all values in the returned range 107 /// satisfy the given predicate with all values contained within Other. 108 /// Formally, this returns a subset of 109 /// 'intersection over all y in Other . { x : icmp op x y is true }'. If the 110 /// exact answer is not representable as a ConstantRange, the return value 111 /// will be a proper subset of the above. 112 /// 113 /// Example: Pred = ult and Other = i8 [2, 5) returns [0, 2) 114 static ConstantRange makeSatisfyingICmpRegion(CmpInst::Predicate Pred, 115 const ConstantRange &Other); 116 117 /// Produce the exact range such that all values in the returned range satisfy 118 /// the given predicate with any value contained within Other. Formally, this 119 /// returns the exact answer when the superset of 'union over all y in Other 120 /// is exactly same as the subset of intersection over all y in Other. 121 /// { x : icmp op x y is true}'. 122 /// 123 /// Example: Pred = ult and Other = i8 3 returns [0, 3) 124 static ConstantRange makeExactICmpRegion(CmpInst::Predicate Pred, 125 const APInt &Other); 126 127 /// Does the predicate \p Pred hold between ranges this and \p Other? 128 /// NOTE: false does not mean that inverse predicate holds! 129 bool icmp(CmpInst::Predicate Pred, const ConstantRange &Other) const; 130 131 /// Return true iff CR1 ult CR2 is equivalent to CR1 slt CR2. 132 /// Does not depend on strictness/direction of the predicate. 133 static bool 134 areInsensitiveToSignednessOfICmpPredicate(const ConstantRange &CR1, 135 const ConstantRange &CR2); 136 137 /// Return true iff CR1 ult CR2 is equivalent to CR1 sge CR2. 138 /// Does not depend on strictness/direction of the predicate. 139 static bool 140 areInsensitiveToSignednessOfInvertedICmpPredicate(const ConstantRange &CR1, 141 const ConstantRange &CR2); 142 143 /// If the comparison between constant ranges this and Other 144 /// is insensitive to the signedness of the comparison predicate, 145 /// return a predicate equivalent to \p Pred, with flipped signedness 146 /// (i.e. unsigned instead of signed or vice versa), and maybe inverted, 147 /// otherwise returns CmpInst::Predicate::BAD_ICMP_PREDICATE. 148 static CmpInst::Predicate 149 getEquivalentPredWithFlippedSignedness(CmpInst::Predicate Pred, 150 const ConstantRange &CR1, 151 const ConstantRange &CR2); 152 153 /// Produce the largest range containing all X such that "X BinOp Y" is 154 /// guaranteed not to wrap (overflow) for *all* Y in Other. However, there may 155 /// be *some* Y in Other for which additional X not contained in the result 156 /// also do not overflow. 157 /// 158 /// NoWrapKind must be one of OBO::NoUnsignedWrap or OBO::NoSignedWrap. 159 /// 160 /// Examples: 161 /// typedef OverflowingBinaryOperator OBO; 162 /// #define MGNR makeGuaranteedNoWrapRegion 163 /// MGNR(Add, [i8 1, 2), OBO::NoSignedWrap) == [-128, 127) 164 /// MGNR(Add, [i8 1, 2), OBO::NoUnsignedWrap) == [0, -1) 165 /// MGNR(Add, [i8 0, 1), OBO::NoUnsignedWrap) == Full Set 166 /// MGNR(Add, [i8 -1, 6), OBO::NoSignedWrap) == [INT_MIN+1, INT_MAX-4) 167 /// MGNR(Sub, [i8 1, 2), OBO::NoSignedWrap) == [-127, 128) 168 /// MGNR(Sub, [i8 1, 2), OBO::NoUnsignedWrap) == [1, 0) 169 static ConstantRange makeGuaranteedNoWrapRegion(Instruction::BinaryOps BinOp, 170 const ConstantRange &Other, 171 unsigned NoWrapKind); 172 173 /// Produce the range that contains X if and only if "X BinOp Other" does 174 /// not wrap. 175 static ConstantRange makeExactNoWrapRegion(Instruction::BinaryOps BinOp, 176 const APInt &Other, 177 unsigned NoWrapKind); 178 179 /// Returns true if ConstantRange calculations are supported for intrinsic 180 /// with \p IntrinsicID. 181 static bool isIntrinsicSupported(Intrinsic::ID IntrinsicID); 182 183 /// Compute range of intrinsic result for the given operand ranges. 184 static ConstantRange intrinsic(Intrinsic::ID IntrinsicID, 185 ArrayRef<ConstantRange> Ops); 186 187 /// Set up \p Pred and \p RHS such that 188 /// ConstantRange::makeExactICmpRegion(Pred, RHS) == *this. Return true if 189 /// successful. 190 bool getEquivalentICmp(CmpInst::Predicate &Pred, APInt &RHS) const; 191 192 /// Set up \p Pred, \p RHS and \p Offset such that (V + Offset) Pred RHS 193 /// is true iff V is in the range. Prefers using Offset == 0 if possible. 194 void 195 getEquivalentICmp(CmpInst::Predicate &Pred, APInt &RHS, APInt &Offset) const; 196 197 /// Return the lower value for this range. getLower()198 const APInt &getLower() const { return Lower; } 199 200 /// Return the upper value for this range. getUpper()201 const APInt &getUpper() const { return Upper; } 202 203 /// Get the bit width of this ConstantRange. getBitWidth()204 uint32_t getBitWidth() const { return Lower.getBitWidth(); } 205 206 /// Return true if this set contains all of the elements possible 207 /// for this data-type. 208 bool isFullSet() const; 209 210 /// Return true if this set contains no members. 211 bool isEmptySet() const; 212 213 /// Return true if this set wraps around the unsigned domain. Special cases: 214 /// * Empty set: Not wrapped. 215 /// * Full set: Not wrapped. 216 /// * [X, 0) == [X, Max]: Not wrapped. 217 bool isWrappedSet() const; 218 219 /// Return true if the exclusive upper bound wraps around the unsigned 220 /// domain. Special cases: 221 /// * Empty set: Not wrapped. 222 /// * Full set: Not wrapped. 223 /// * [X, 0): Wrapped. 224 bool isUpperWrapped() const; 225 226 /// Return true if this set wraps around the signed domain. Special cases: 227 /// * Empty set: Not wrapped. 228 /// * Full set: Not wrapped. 229 /// * [X, SignedMin) == [X, SignedMax]: Not wrapped. 230 bool isSignWrappedSet() const; 231 232 /// Return true if the (exclusive) upper bound wraps around the signed 233 /// domain. Special cases: 234 /// * Empty set: Not wrapped. 235 /// * Full set: Not wrapped. 236 /// * [X, SignedMin): Wrapped. 237 bool isUpperSignWrapped() const; 238 239 /// Return true if the specified value is in the set. 240 bool contains(const APInt &Val) const; 241 242 /// Return true if the other range is a subset of this one. 243 bool contains(const ConstantRange &CR) const; 244 245 /// If this set contains a single element, return it, otherwise return null. getSingleElement()246 const APInt *getSingleElement() const { 247 if (Upper == Lower + 1) 248 return &Lower; 249 return nullptr; 250 } 251 252 /// If this set contains all but a single element, return it, otherwise return 253 /// null. getSingleMissingElement()254 const APInt *getSingleMissingElement() const { 255 if (Lower == Upper + 1) 256 return &Upper; 257 return nullptr; 258 } 259 260 /// Return true if this set contains exactly one member. isSingleElement()261 bool isSingleElement() const { return getSingleElement() != nullptr; } 262 263 /// Compare set size of this range with the range CR. 264 bool isSizeStrictlySmallerThan(const ConstantRange &CR) const; 265 266 /// Compare set size of this range with Value. 267 bool isSizeLargerThan(uint64_t MaxSize) const; 268 269 /// Return true if all values in this range are negative. 270 bool isAllNegative() const; 271 272 /// Return true if all values in this range are non-negative. 273 bool isAllNonNegative() const; 274 275 /// Return the largest unsigned value contained in the ConstantRange. 276 APInt getUnsignedMax() const; 277 278 /// Return the smallest unsigned value contained in the ConstantRange. 279 APInt getUnsignedMin() const; 280 281 /// Return the largest signed value contained in the ConstantRange. 282 APInt getSignedMax() const; 283 284 /// Return the smallest signed value contained in the ConstantRange. 285 APInt getSignedMin() const; 286 287 /// Return true if this range is equal to another range. 288 bool operator==(const ConstantRange &CR) const { 289 return Lower == CR.Lower && Upper == CR.Upper; 290 } 291 bool operator!=(const ConstantRange &CR) const { 292 return !operator==(CR); 293 } 294 295 /// Compute the maximal number of active bits needed to represent every value 296 /// in this range. 297 unsigned getActiveBits() const; 298 299 /// Compute the maximal number of bits needed to represent every value 300 /// in this signed range. 301 unsigned getMinSignedBits() const; 302 303 /// Subtract the specified constant from the endpoints of this constant range. 304 ConstantRange subtract(const APInt &CI) const; 305 306 /// Subtract the specified range from this range (aka relative complement of 307 /// the sets). 308 ConstantRange difference(const ConstantRange &CR) const; 309 310 /// If represented precisely, the result of some range operations may consist 311 /// of multiple disjoint ranges. As only a single range may be returned, any 312 /// range covering these disjoint ranges constitutes a valid result, but some 313 /// may be more useful than others depending on context. The preferred range 314 /// type specifies whether a range that is non-wrapping in the unsigned or 315 /// signed domain, or has the smallest size, is preferred. If a signedness is 316 /// preferred but all ranges are non-wrapping or all wrapping, then the 317 /// smallest set size is preferred. If there are multiple smallest sets, any 318 /// one of them may be returned. 319 enum PreferredRangeType { Smallest, Unsigned, Signed }; 320 321 /// Return the range that results from the intersection of this range with 322 /// another range. If the intersection is disjoint, such that two results 323 /// are possible, the preferred range is determined by the PreferredRangeType. 324 ConstantRange intersectWith(const ConstantRange &CR, 325 PreferredRangeType Type = Smallest) const; 326 327 /// Return the range that results from the union of this range 328 /// with another range. The resultant range is guaranteed to include the 329 /// elements of both sets, but may contain more. For example, [3, 9) union 330 /// [12,15) is [3, 15), which includes 9, 10, and 11, which were not included 331 /// in either set before. 332 ConstantRange unionWith(const ConstantRange &CR, 333 PreferredRangeType Type = Smallest) const; 334 335 /// Intersect the two ranges and return the result if it can be represented 336 /// exactly, otherwise return std::nullopt. 337 std::optional<ConstantRange> 338 exactIntersectWith(const ConstantRange &CR) const; 339 340 /// Union the two ranges and return the result if it can be represented 341 /// exactly, otherwise return std::nullopt. 342 std::optional<ConstantRange> exactUnionWith(const ConstantRange &CR) const; 343 344 /// Return a new range representing the possible values resulting 345 /// from an application of the specified cast operator to this range. \p 346 /// BitWidth is the target bitwidth of the cast. For casts which don't 347 /// change bitwidth, it must be the same as the source bitwidth. For casts 348 /// which do change bitwidth, the bitwidth must be consistent with the 349 /// requested cast and source bitwidth. 350 ConstantRange castOp(Instruction::CastOps CastOp, 351 uint32_t BitWidth) const; 352 353 /// Return a new range in the specified integer type, which must 354 /// be strictly larger than the current type. The returned range will 355 /// correspond to the possible range of values if the source range had been 356 /// zero extended to BitWidth. 357 ConstantRange zeroExtend(uint32_t BitWidth) const; 358 359 /// Return a new range in the specified integer type, which must 360 /// be strictly larger than the current type. The returned range will 361 /// correspond to the possible range of values if the source range had been 362 /// sign extended to BitWidth. 363 ConstantRange signExtend(uint32_t BitWidth) const; 364 365 /// Return a new range in the specified integer type, which must be 366 /// strictly smaller than the current type. The returned range will 367 /// correspond to the possible range of values if the source range had been 368 /// truncated to the specified type. 369 ConstantRange truncate(uint32_t BitWidth) const; 370 371 /// Make this range have the bit width given by \p BitWidth. The 372 /// value is zero extended, truncated, or left alone to make it that width. 373 ConstantRange zextOrTrunc(uint32_t BitWidth) const; 374 375 /// Make this range have the bit width given by \p BitWidth. The 376 /// value is sign extended, truncated, or left alone to make it that width. 377 ConstantRange sextOrTrunc(uint32_t BitWidth) const; 378 379 /// Return a new range representing the possible values resulting 380 /// from an application of the specified binary operator to an left hand side 381 /// of this range and a right hand side of \p Other. 382 ConstantRange binaryOp(Instruction::BinaryOps BinOp, 383 const ConstantRange &Other) const; 384 385 /// Return a new range representing the possible values resulting 386 /// from an application of the specified overflowing binary operator to a 387 /// left hand side of this range and a right hand side of \p Other given 388 /// the provided knowledge about lack of wrapping \p NoWrapKind. 389 ConstantRange overflowingBinaryOp(Instruction::BinaryOps BinOp, 390 const ConstantRange &Other, 391 unsigned NoWrapKind) const; 392 393 /// Return a new range representing the possible values resulting 394 /// from an addition of a value in this range and a value in \p Other. 395 ConstantRange add(const ConstantRange &Other) const; 396 397 /// Return a new range representing the possible values resulting 398 /// from an addition with wrap type \p NoWrapKind of a value in this 399 /// range and a value in \p Other. 400 /// If the result range is disjoint, the preferred range is determined by the 401 /// \p PreferredRangeType. 402 ConstantRange addWithNoWrap(const ConstantRange &Other, unsigned NoWrapKind, 403 PreferredRangeType RangeType = Smallest) const; 404 405 /// Return a new range representing the possible values resulting 406 /// from a subtraction of a value in this range and a value in \p Other. 407 ConstantRange sub(const ConstantRange &Other) const; 408 409 /// Return a new range representing the possible values resulting 410 /// from an subtraction with wrap type \p NoWrapKind of a value in this 411 /// range and a value in \p Other. 412 /// If the result range is disjoint, the preferred range is determined by the 413 /// \p PreferredRangeType. 414 ConstantRange subWithNoWrap(const ConstantRange &Other, unsigned NoWrapKind, 415 PreferredRangeType RangeType = Smallest) const; 416 417 /// Return a new range representing the possible values resulting 418 /// from a multiplication of a value in this range and a value in \p Other, 419 /// treating both this and \p Other as unsigned ranges. 420 ConstantRange multiply(const ConstantRange &Other) const; 421 422 /// Return range of possible values for a signed multiplication of this and 423 /// \p Other. However, if overflow is possible always return a full range 424 /// rather than trying to determine a more precise result. 425 ConstantRange smul_fast(const ConstantRange &Other) const; 426 427 /// Return a new range representing the possible values resulting 428 /// from a signed maximum of a value in this range and a value in \p Other. 429 ConstantRange smax(const ConstantRange &Other) const; 430 431 /// Return a new range representing the possible values resulting 432 /// from an unsigned maximum of a value in this range and a value in \p Other. 433 ConstantRange umax(const ConstantRange &Other) const; 434 435 /// Return a new range representing the possible values resulting 436 /// from a signed minimum of a value in this range and a value in \p Other. 437 ConstantRange smin(const ConstantRange &Other) const; 438 439 /// Return a new range representing the possible values resulting 440 /// from an unsigned minimum of a value in this range and a value in \p Other. 441 ConstantRange umin(const ConstantRange &Other) const; 442 443 /// Return a new range representing the possible values resulting 444 /// from an unsigned division of a value in this range and a value in 445 /// \p Other. 446 ConstantRange udiv(const ConstantRange &Other) const; 447 448 /// Return a new range representing the possible values resulting 449 /// from a signed division of a value in this range and a value in 450 /// \p Other. Division by zero and division of SignedMin by -1 are considered 451 /// undefined behavior, in line with IR, and do not contribute towards the 452 /// result. 453 ConstantRange sdiv(const ConstantRange &Other) const; 454 455 /// Return a new range representing the possible values resulting 456 /// from an unsigned remainder operation of a value in this range and a 457 /// value in \p Other. 458 ConstantRange urem(const ConstantRange &Other) const; 459 460 /// Return a new range representing the possible values resulting 461 /// from a signed remainder operation of a value in this range and a 462 /// value in \p Other. 463 ConstantRange srem(const ConstantRange &Other) const; 464 465 /// Return a new range representing the possible values resulting from 466 /// a binary-xor of a value in this range by an all-one value, 467 /// aka bitwise complement operation. 468 ConstantRange binaryNot() const; 469 470 /// Return a new range representing the possible values resulting 471 /// from a binary-and of a value in this range by a value in \p Other. 472 ConstantRange binaryAnd(const ConstantRange &Other) const; 473 474 /// Return a new range representing the possible values resulting 475 /// from a binary-or of a value in this range by a value in \p Other. 476 ConstantRange binaryOr(const ConstantRange &Other) const; 477 478 /// Return a new range representing the possible values resulting 479 /// from a binary-xor of a value in this range by a value in \p Other. 480 ConstantRange binaryXor(const ConstantRange &Other) const; 481 482 /// Return a new range representing the possible values resulting 483 /// from a left shift of a value in this range by a value in \p Other. 484 /// TODO: This isn't fully implemented yet. 485 ConstantRange shl(const ConstantRange &Other) const; 486 487 /// Return a new range representing the possible values resulting from a 488 /// logical right shift of a value in this range and a value in \p Other. 489 ConstantRange lshr(const ConstantRange &Other) const; 490 491 /// Return a new range representing the possible values resulting from a 492 /// arithmetic right shift of a value in this range and a value in \p Other. 493 ConstantRange ashr(const ConstantRange &Other) const; 494 495 /// Perform an unsigned saturating addition of two constant ranges. 496 ConstantRange uadd_sat(const ConstantRange &Other) const; 497 498 /// Perform a signed saturating addition of two constant ranges. 499 ConstantRange sadd_sat(const ConstantRange &Other) const; 500 501 /// Perform an unsigned saturating subtraction of two constant ranges. 502 ConstantRange usub_sat(const ConstantRange &Other) const; 503 504 /// Perform a signed saturating subtraction of two constant ranges. 505 ConstantRange ssub_sat(const ConstantRange &Other) const; 506 507 /// Perform an unsigned saturating multiplication of two constant ranges. 508 ConstantRange umul_sat(const ConstantRange &Other) const; 509 510 /// Perform a signed saturating multiplication of two constant ranges. 511 ConstantRange smul_sat(const ConstantRange &Other) const; 512 513 /// Perform an unsigned saturating left shift of this constant range by a 514 /// value in \p Other. 515 ConstantRange ushl_sat(const ConstantRange &Other) const; 516 517 /// Perform a signed saturating left shift of this constant range by a 518 /// value in \p Other. 519 ConstantRange sshl_sat(const ConstantRange &Other) const; 520 521 /// Return a new range that is the logical not of the current set. 522 ConstantRange inverse() const; 523 524 /// Calculate absolute value range. If the original range contains signed 525 /// min, then the resulting range will contain signed min if and only if 526 /// \p IntMinIsPoison is false. 527 ConstantRange abs(bool IntMinIsPoison = false) const; 528 529 /// Represents whether an operation on the given constant range is known to 530 /// always or never overflow. 531 enum class OverflowResult { 532 /// Always overflows in the direction of signed/unsigned min value. 533 AlwaysOverflowsLow, 534 /// Always overflows in the direction of signed/unsigned max value. 535 AlwaysOverflowsHigh, 536 /// May or may not overflow. 537 MayOverflow, 538 /// Never overflows. 539 NeverOverflows, 540 }; 541 542 /// Return whether unsigned add of the two ranges always/never overflows. 543 OverflowResult unsignedAddMayOverflow(const ConstantRange &Other) const; 544 545 /// Return whether signed add of the two ranges always/never overflows. 546 OverflowResult signedAddMayOverflow(const ConstantRange &Other) const; 547 548 /// Return whether unsigned sub of the two ranges always/never overflows. 549 OverflowResult unsignedSubMayOverflow(const ConstantRange &Other) const; 550 551 /// Return whether signed sub of the two ranges always/never overflows. 552 OverflowResult signedSubMayOverflow(const ConstantRange &Other) const; 553 554 /// Return whether unsigned mul of the two ranges always/never overflows. 555 OverflowResult unsignedMulMayOverflow(const ConstantRange &Other) const; 556 557 /// Return known bits for values in this range. 558 KnownBits toKnownBits() const; 559 560 /// Print out the bounds to a stream. 561 void print(raw_ostream &OS) const; 562 563 /// Allow printing from a debugger easily. 564 void dump() const; 565 }; 566 567 inline raw_ostream &operator<<(raw_ostream &OS, const ConstantRange &CR) { 568 CR.print(OS); 569 return OS; 570 } 571 572 /// Parse out a conservative ConstantRange from !range metadata. 573 /// 574 /// E.g. if RangeMD is !{i32 0, i32 10, i32 15, i32 20} then return [0, 20). 575 ConstantRange getConstantRangeFromMetadata(const MDNode &RangeMD); 576 577 } // end namespace llvm 578 579 #endif // LLVM_IR_CONSTANTRANGE_H 580