1 //===-- llvm/Instruction.h - Instruction class definition -------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the declaration of the Instruction class, which is the
10 // base class for all of the LLVM instructions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_IR_INSTRUCTION_H
15 #define LLVM_IR_INSTRUCTION_H
16 
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/Bitfields.h"
19 #include "llvm/ADT/None.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/ADT/ilist_node.h"
22 #include "llvm/IR/DebugLoc.h"
23 #include "llvm/IR/SymbolTableListTraits.h"
24 #include "llvm/IR/User.h"
25 #include "llvm/IR/Value.h"
26 #include "llvm/Support/AtomicOrdering.h"
27 #include "llvm/Support/Casting.h"
28 #include <algorithm>
29 #include <cassert>
30 #include <cstdint>
31 #include <utility>
32 
33 namespace llvm {
34 
35 class BasicBlock;
36 class FastMathFlags;
37 class MDNode;
38 class Module;
39 struct AAMDNodes;
40 
41 template <> struct ilist_alloc_traits<Instruction> {
42   static inline void deleteNode(Instruction *V);
43 };
44 
45 class Instruction : public User,
46                     public ilist_node_with_parent<Instruction, BasicBlock> {
47   BasicBlock *Parent;
48   DebugLoc DbgLoc;                         // 'dbg' Metadata cache.
49 
50   /// Relative order of this instruction in its parent basic block. Used for
51   /// O(1) local dominance checks between instructions.
52   mutable unsigned Order = 0;
53 
54 protected:
55   // The 15 first bits of `Value::SubclassData` are available for subclasses of
56   // `Instruction` to use.
57   using OpaqueField = Bitfield::Element<uint16_t, 0, 15>;
58 
59   // Template alias so that all Instruction storing alignment use the same
60   // definiton.
61   // Valid alignments are powers of two from 2^0 to 2^MaxAlignmentExponent =
62   // 2^29. We store them as Log2(Alignment), so we need 5 bits to encode the 30
63   // possible values.
64   template <unsigned Offset>
65   using AlignmentBitfieldElementT =
66       typename Bitfield::Element<unsigned, Offset, 5,
67                                  Value::MaxAlignmentExponent>;
68 
69   template <unsigned Offset>
70   using BoolBitfieldElementT = typename Bitfield::Element<bool, Offset, 1>;
71 
72   template <unsigned Offset>
73   using AtomicOrderingBitfieldElementT =
74       typename Bitfield::Element<AtomicOrdering, Offset, 3,
75                                  AtomicOrdering::LAST>;
76 
77 private:
78   // The last bit is used to store whether the instruction has metadata attached
79   // or not.
80   using HasMetadataField = Bitfield::Element<bool, 15, 1>;
81 
82 protected:
83   ~Instruction(); // Use deleteValue() to delete a generic Instruction.
84 
85 public:
86   Instruction(const Instruction &) = delete;
87   Instruction &operator=(const Instruction &) = delete;
88 
89   /// Specialize the methods defined in Value, as we know that an instruction
90   /// can only be used by other instructions.
91   Instruction       *user_back()       { return cast<Instruction>(*user_begin());}
92   const Instruction *user_back() const { return cast<Instruction>(*user_begin());}
93 
94   inline const BasicBlock *getParent() const { return Parent; }
95   inline       BasicBlock *getParent()       { return Parent; }
96 
97   /// Return the module owning the function this instruction belongs to
98   /// or nullptr it the function does not have a module.
99   ///
100   /// Note: this is undefined behavior if the instruction does not have a
101   /// parent, or the parent basic block does not have a parent function.
102   const Module *getModule() const;
103   Module *getModule() {
104     return const_cast<Module *>(
105                            static_cast<const Instruction *>(this)->getModule());
106   }
107 
108   /// Return the function this instruction belongs to.
109   ///
110   /// Note: it is undefined behavior to call this on an instruction not
111   /// currently inserted into a function.
112   const Function *getFunction() const;
113   Function *getFunction() {
114     return const_cast<Function *>(
115                          static_cast<const Instruction *>(this)->getFunction());
116   }
117 
118   /// This method unlinks 'this' from the containing basic block, but does not
119   /// delete it.
120   void removeFromParent();
121 
122   /// This method unlinks 'this' from the containing basic block and deletes it.
123   ///
124   /// \returns an iterator pointing to the element after the erased one
125   SymbolTableList<Instruction>::iterator eraseFromParent();
126 
127   /// Insert an unlinked instruction into a basic block immediately before
128   /// the specified instruction.
129   void insertBefore(Instruction *InsertPos);
130 
131   /// Insert an unlinked instruction into a basic block immediately after the
132   /// specified instruction.
133   void insertAfter(Instruction *InsertPos);
134 
135   /// Unlink this instruction from its current basic block and insert it into
136   /// the basic block that MovePos lives in, right before MovePos.
137   void moveBefore(Instruction *MovePos);
138 
139   /// Unlink this instruction and insert into BB before I.
140   ///
141   /// \pre I is a valid iterator into BB.
142   void moveBefore(BasicBlock &BB, SymbolTableList<Instruction>::iterator I);
143 
144   /// Unlink this instruction from its current basic block and insert it into
145   /// the basic block that MovePos lives in, right after MovePos.
146   void moveAfter(Instruction *MovePos);
147 
148   /// Given an instruction Other in the same basic block as this instruction,
149   /// return true if this instruction comes before Other. In this worst case,
150   /// this takes linear time in the number of instructions in the block. The
151   /// results are cached, so in common cases when the block remains unmodified,
152   /// it takes constant time.
153   bool comesBefore(const Instruction *Other) const;
154 
155   //===--------------------------------------------------------------------===//
156   // Subclass classification.
157   //===--------------------------------------------------------------------===//
158 
159   /// Returns a member of one of the enums like Instruction::Add.
160   unsigned getOpcode() const { return getValueID() - InstructionVal; }
161 
162   const char *getOpcodeName() const { return getOpcodeName(getOpcode()); }
163   bool isTerminator() const { return isTerminator(getOpcode()); }
164   bool isUnaryOp() const { return isUnaryOp(getOpcode()); }
165   bool isBinaryOp() const { return isBinaryOp(getOpcode()); }
166   bool isIntDivRem() const { return isIntDivRem(getOpcode()); }
167   bool isShift() const { return isShift(getOpcode()); }
168   bool isCast() const { return isCast(getOpcode()); }
169   bool isFuncletPad() const { return isFuncletPad(getOpcode()); }
170   bool isExceptionalTerminator() const {
171     return isExceptionalTerminator(getOpcode());
172   }
173   bool isIndirectTerminator() const {
174     return isIndirectTerminator(getOpcode());
175   }
176 
177   static const char* getOpcodeName(unsigned OpCode);
178 
179   static inline bool isTerminator(unsigned OpCode) {
180     return OpCode >= TermOpsBegin && OpCode < TermOpsEnd;
181   }
182 
183   static inline bool isUnaryOp(unsigned Opcode) {
184     return Opcode >= UnaryOpsBegin && Opcode < UnaryOpsEnd;
185   }
186   static inline bool isBinaryOp(unsigned Opcode) {
187     return Opcode >= BinaryOpsBegin && Opcode < BinaryOpsEnd;
188   }
189 
190   static inline bool isIntDivRem(unsigned Opcode) {
191     return Opcode == UDiv || Opcode == SDiv || Opcode == URem || Opcode == SRem;
192   }
193 
194   /// Determine if the Opcode is one of the shift instructions.
195   static inline bool isShift(unsigned Opcode) {
196     return Opcode >= Shl && Opcode <= AShr;
197   }
198 
199   /// Return true if this is a logical shift left or a logical shift right.
200   inline bool isLogicalShift() const {
201     return getOpcode() == Shl || getOpcode() == LShr;
202   }
203 
204   /// Return true if this is an arithmetic shift right.
205   inline bool isArithmeticShift() const {
206     return getOpcode() == AShr;
207   }
208 
209   /// Determine if the Opcode is and/or/xor.
210   static inline bool isBitwiseLogicOp(unsigned Opcode) {
211     return Opcode == And || Opcode == Or || Opcode == Xor;
212   }
213 
214   /// Return true if this is and/or/xor.
215   inline bool isBitwiseLogicOp() const {
216     return isBitwiseLogicOp(getOpcode());
217   }
218 
219   /// Determine if the OpCode is one of the CastInst instructions.
220   static inline bool isCast(unsigned OpCode) {
221     return OpCode >= CastOpsBegin && OpCode < CastOpsEnd;
222   }
223 
224   /// Determine if the OpCode is one of the FuncletPadInst instructions.
225   static inline bool isFuncletPad(unsigned OpCode) {
226     return OpCode >= FuncletPadOpsBegin && OpCode < FuncletPadOpsEnd;
227   }
228 
229   /// Returns true if the OpCode is a terminator related to exception handling.
230   static inline bool isExceptionalTerminator(unsigned OpCode) {
231     switch (OpCode) {
232     case Instruction::CatchSwitch:
233     case Instruction::CatchRet:
234     case Instruction::CleanupRet:
235     case Instruction::Invoke:
236     case Instruction::Resume:
237       return true;
238     default:
239       return false;
240     }
241   }
242 
243   /// Returns true if the OpCode is a terminator with indirect targets.
244   static inline bool isIndirectTerminator(unsigned OpCode) {
245     switch (OpCode) {
246     case Instruction::IndirectBr:
247     case Instruction::CallBr:
248       return true;
249     default:
250       return false;
251     }
252   }
253 
254   //===--------------------------------------------------------------------===//
255   // Metadata manipulation.
256   //===--------------------------------------------------------------------===//
257 
258   /// Return true if this instruction has any metadata attached to it.
259   bool hasMetadata() const { return DbgLoc || Value::hasMetadata(); }
260 
261   /// Return true if this instruction has metadata attached to it other than a
262   /// debug location.
263   bool hasMetadataOtherThanDebugLoc() const { return Value::hasMetadata(); }
264 
265   /// Return true if this instruction has the given type of metadata attached.
266   bool hasMetadata(unsigned KindID) const {
267     return getMetadata(KindID) != nullptr;
268   }
269 
270   /// Return true if this instruction has the given type of metadata attached.
271   bool hasMetadata(StringRef Kind) const {
272     return getMetadata(Kind) != nullptr;
273   }
274 
275   /// Get the metadata of given kind attached to this Instruction.
276   /// If the metadata is not found then return null.
277   MDNode *getMetadata(unsigned KindID) const {
278     if (!hasMetadata()) return nullptr;
279     return getMetadataImpl(KindID);
280   }
281 
282   /// Get the metadata of given kind attached to this Instruction.
283   /// If the metadata is not found then return null.
284   MDNode *getMetadata(StringRef Kind) const {
285     if (!hasMetadata()) return nullptr;
286     return getMetadataImpl(Kind);
287   }
288 
289   /// Get all metadata attached to this Instruction. The first element of each
290   /// pair returned is the KindID, the second element is the metadata value.
291   /// This list is returned sorted by the KindID.
292   void
293   getAllMetadata(SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs) const {
294     if (hasMetadata())
295       getAllMetadataImpl(MDs);
296   }
297 
298   /// This does the same thing as getAllMetadata, except that it filters out the
299   /// debug location.
300   void getAllMetadataOtherThanDebugLoc(
301       SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs) const {
302     Value::getAllMetadata(MDs);
303   }
304 
305   /// Fills the AAMDNodes structure with AA metadata from this instruction.
306   /// When Merge is true, the existing AA metadata is merged with that from this
307   /// instruction providing the most-general result.
308   void getAAMetadata(AAMDNodes &N, bool Merge = false) const;
309 
310   /// Set the metadata of the specified kind to the specified node. This updates
311   /// or replaces metadata if already present, or removes it if Node is null.
312   void setMetadata(unsigned KindID, MDNode *Node);
313   void setMetadata(StringRef Kind, MDNode *Node);
314 
315   /// Copy metadata from \p SrcInst to this instruction. \p WL, if not empty,
316   /// specifies the list of meta data that needs to be copied. If \p WL is
317   /// empty, all meta data will be copied.
318   void copyMetadata(const Instruction &SrcInst,
319                     ArrayRef<unsigned> WL = ArrayRef<unsigned>());
320 
321   /// If the instruction has "branch_weights" MD_prof metadata and the MDNode
322   /// has three operands (including name string), swap the order of the
323   /// metadata.
324   void swapProfMetadata();
325 
326   /// Drop all unknown metadata except for debug locations.
327   /// @{
328   /// Passes are required to drop metadata they don't understand. This is a
329   /// convenience method for passes to do so.
330   void dropUnknownNonDebugMetadata(ArrayRef<unsigned> KnownIDs);
331   void dropUnknownNonDebugMetadata() {
332     return dropUnknownNonDebugMetadata(None);
333   }
334   void dropUnknownNonDebugMetadata(unsigned ID1) {
335     return dropUnknownNonDebugMetadata(makeArrayRef(ID1));
336   }
337   void dropUnknownNonDebugMetadata(unsigned ID1, unsigned ID2) {
338     unsigned IDs[] = {ID1, ID2};
339     return dropUnknownNonDebugMetadata(IDs);
340   }
341   /// @}
342 
343   /// Adds an !annotation metadata node with \p Annotation to this instruction.
344   /// If this instruction already has !annotation metadata, append \p Annotation
345   /// to the existing node.
346   void addAnnotationMetadata(StringRef Annotation);
347 
348   /// Sets the metadata on this instruction from the AAMDNodes structure.
349   void setAAMetadata(const AAMDNodes &N);
350 
351   /// Retrieve the raw weight values of a conditional branch or select.
352   /// Returns true on success with profile weights filled in.
353   /// Returns false if no metadata or invalid metadata was found.
354   bool extractProfMetadata(uint64_t &TrueVal, uint64_t &FalseVal) const;
355 
356   /// Retrieve total raw weight values of a branch.
357   /// Returns true on success with profile total weights filled in.
358   /// Returns false if no metadata was found.
359   bool extractProfTotalWeight(uint64_t &TotalVal) const;
360 
361   /// Set the debug location information for this instruction.
362   void setDebugLoc(DebugLoc Loc) { DbgLoc = std::move(Loc); }
363 
364   /// Return the debug location for this node as a DebugLoc.
365   const DebugLoc &getDebugLoc() const { return DbgLoc; }
366 
367   /// Set or clear the nuw flag on this instruction, which must be an operator
368   /// which supports this flag. See LangRef.html for the meaning of this flag.
369   void setHasNoUnsignedWrap(bool b = true);
370 
371   /// Set or clear the nsw flag on this instruction, which must be an operator
372   /// which supports this flag. See LangRef.html for the meaning of this flag.
373   void setHasNoSignedWrap(bool b = true);
374 
375   /// Set or clear the exact flag on this instruction, which must be an operator
376   /// which supports this flag. See LangRef.html for the meaning of this flag.
377   void setIsExact(bool b = true);
378 
379   /// Determine whether the no unsigned wrap flag is set.
380   bool hasNoUnsignedWrap() const;
381 
382   /// Determine whether the no signed wrap flag is set.
383   bool hasNoSignedWrap() const;
384 
385   /// Drops flags that may cause this instruction to evaluate to poison despite
386   /// having non-poison inputs.
387   void dropPoisonGeneratingFlags();
388 
389   /// Determine whether the exact flag is set.
390   bool isExact() const;
391 
392   /// Set or clear all fast-math-flags on this instruction, which must be an
393   /// operator which supports this flag. See LangRef.html for the meaning of
394   /// this flag.
395   void setFast(bool B);
396 
397   /// Set or clear the reassociation flag on this instruction, which must be
398   /// an operator which supports this flag. See LangRef.html for the meaning of
399   /// this flag.
400   void setHasAllowReassoc(bool B);
401 
402   /// Set or clear the no-nans flag on this instruction, which must be an
403   /// operator which supports this flag. See LangRef.html for the meaning of
404   /// this flag.
405   void setHasNoNaNs(bool B);
406 
407   /// Set or clear the no-infs flag on this instruction, which must be an
408   /// operator which supports this flag. See LangRef.html for the meaning of
409   /// this flag.
410   void setHasNoInfs(bool B);
411 
412   /// Set or clear the no-signed-zeros flag on this instruction, which must be
413   /// an operator which supports this flag. See LangRef.html for the meaning of
414   /// this flag.
415   void setHasNoSignedZeros(bool B);
416 
417   /// Set or clear the allow-reciprocal flag on this instruction, which must be
418   /// an operator which supports this flag. See LangRef.html for the meaning of
419   /// this flag.
420   void setHasAllowReciprocal(bool B);
421 
422   /// Set or clear the allow-contract flag on this instruction, which must be
423   /// an operator which supports this flag. See LangRef.html for the meaning of
424   /// this flag.
425   void setHasAllowContract(bool B);
426 
427   /// Set or clear the approximate-math-functions flag on this instruction,
428   /// which must be an operator which supports this flag. See LangRef.html for
429   /// the meaning of this flag.
430   void setHasApproxFunc(bool B);
431 
432   /// Convenience function for setting multiple fast-math flags on this
433   /// instruction, which must be an operator which supports these flags. See
434   /// LangRef.html for the meaning of these flags.
435   void setFastMathFlags(FastMathFlags FMF);
436 
437   /// Convenience function for transferring all fast-math flag values to this
438   /// instruction, which must be an operator which supports these flags. See
439   /// LangRef.html for the meaning of these flags.
440   void copyFastMathFlags(FastMathFlags FMF);
441 
442   /// Determine whether all fast-math-flags are set.
443   bool isFast() const;
444 
445   /// Determine whether the allow-reassociation flag is set.
446   bool hasAllowReassoc() const;
447 
448   /// Determine whether the no-NaNs flag is set.
449   bool hasNoNaNs() const;
450 
451   /// Determine whether the no-infs flag is set.
452   bool hasNoInfs() const;
453 
454   /// Determine whether the no-signed-zeros flag is set.
455   bool hasNoSignedZeros() const;
456 
457   /// Determine whether the allow-reciprocal flag is set.
458   bool hasAllowReciprocal() const;
459 
460   /// Determine whether the allow-contract flag is set.
461   bool hasAllowContract() const;
462 
463   /// Determine whether the approximate-math-functions flag is set.
464   bool hasApproxFunc() const;
465 
466   /// Convenience function for getting all the fast-math flags, which must be an
467   /// operator which supports these flags. See LangRef.html for the meaning of
468   /// these flags.
469   FastMathFlags getFastMathFlags() const;
470 
471   /// Copy I's fast-math flags
472   void copyFastMathFlags(const Instruction *I);
473 
474   /// Convenience method to copy supported exact, fast-math, and (optionally)
475   /// wrapping flags from V to this instruction.
476   void copyIRFlags(const Value *V, bool IncludeWrapFlags = true);
477 
478   /// Logical 'and' of any supported wrapping, exact, and fast-math flags of
479   /// V and this instruction.
480   void andIRFlags(const Value *V);
481 
482   /// Merge 2 debug locations and apply it to the Instruction. If the
483   /// instruction is a CallIns, we need to traverse the inline chain to find
484   /// the common scope. This is not efficient for N-way merging as each time
485   /// you merge 2 iterations, you need to rebuild the hashmap to find the
486   /// common scope. However, we still choose this API because:
487   ///  1) Simplicity: it takes 2 locations instead of a list of locations.
488   ///  2) In worst case, it increases the complexity from O(N*I) to
489   ///     O(2*N*I), where N is # of Instructions to merge, and I is the
490   ///     maximum level of inline stack. So it is still linear.
491   ///  3) Merging of call instructions should be extremely rare in real
492   ///     applications, thus the N-way merging should be in code path.
493   /// The DebugLoc attached to this instruction will be overwritten by the
494   /// merged DebugLoc.
495   void applyMergedLocation(const DILocation *LocA, const DILocation *LocB);
496 
497   /// Updates the debug location given that the instruction has been hoisted
498   /// from a block to a predecessor of that block.
499   /// Note: it is undefined behavior to call this on an instruction not
500   /// currently inserted into a function.
501   void updateLocationAfterHoist();
502 
503   /// Drop the instruction's debug location. This does not guarantee removal
504   /// of the !dbg source location attachment, as it must set a line 0 location
505   /// with scope information attached on call instructions. To guarantee
506   /// removal of the !dbg attachment, use the \ref setDebugLoc() API.
507   /// Note: it is undefined behavior to call this on an instruction not
508   /// currently inserted into a function.
509   void dropLocation();
510 
511 private:
512   // These are all implemented in Metadata.cpp.
513   MDNode *getMetadataImpl(unsigned KindID) const;
514   MDNode *getMetadataImpl(StringRef Kind) const;
515   void
516   getAllMetadataImpl(SmallVectorImpl<std::pair<unsigned, MDNode *>> &) const;
517 
518 public:
519   //===--------------------------------------------------------------------===//
520   // Predicates and helper methods.
521   //===--------------------------------------------------------------------===//
522 
523   /// Return true if the instruction is associative:
524   ///
525   ///   Associative operators satisfy:  x op (y op z) === (x op y) op z
526   ///
527   /// In LLVM, the Add, Mul, And, Or, and Xor operators are associative.
528   ///
529   bool isAssociative() const LLVM_READONLY;
530   static bool isAssociative(unsigned Opcode) {
531     return Opcode == And || Opcode == Or || Opcode == Xor ||
532            Opcode == Add || Opcode == Mul;
533   }
534 
535   /// Return true if the instruction is commutative:
536   ///
537   ///   Commutative operators satisfy: (x op y) === (y op x)
538   ///
539   /// In LLVM, these are the commutative operators, plus SetEQ and SetNE, when
540   /// applied to any type.
541   ///
542   bool isCommutative() const LLVM_READONLY;
543   static bool isCommutative(unsigned Opcode) {
544     switch (Opcode) {
545     case Add: case FAdd:
546     case Mul: case FMul:
547     case And: case Or: case Xor:
548       return true;
549     default:
550       return false;
551   }
552   }
553 
554   /// Return true if the instruction is idempotent:
555   ///
556   ///   Idempotent operators satisfy:  x op x === x
557   ///
558   /// In LLVM, the And and Or operators are idempotent.
559   ///
560   bool isIdempotent() const { return isIdempotent(getOpcode()); }
561   static bool isIdempotent(unsigned Opcode) {
562     return Opcode == And || Opcode == Or;
563   }
564 
565   /// Return true if the instruction is nilpotent:
566   ///
567   ///   Nilpotent operators satisfy:  x op x === Id,
568   ///
569   ///   where Id is the identity for the operator, i.e. a constant such that
570   ///     x op Id === x and Id op x === x for all x.
571   ///
572   /// In LLVM, the Xor operator is nilpotent.
573   ///
574   bool isNilpotent() const { return isNilpotent(getOpcode()); }
575   static bool isNilpotent(unsigned Opcode) {
576     return Opcode == Xor;
577   }
578 
579   /// Return true if this instruction may modify memory.
580   bool mayWriteToMemory() const;
581 
582   /// Return true if this instruction may read memory.
583   bool mayReadFromMemory() const;
584 
585   /// Return true if this instruction may read or write memory.
586   bool mayReadOrWriteMemory() const {
587     return mayReadFromMemory() || mayWriteToMemory();
588   }
589 
590   /// Return true if this instruction has an AtomicOrdering of unordered or
591   /// higher.
592   bool isAtomic() const;
593 
594   /// Return true if this atomic instruction loads from memory.
595   bool hasAtomicLoad() const;
596 
597   /// Return true if this atomic instruction stores to memory.
598   bool hasAtomicStore() const;
599 
600   /// Return true if this instruction has a volatile memory access.
601   bool isVolatile() const;
602 
603   /// Return true if this instruction may throw an exception.
604   bool mayThrow() const;
605 
606   /// Return true if this instruction behaves like a memory fence: it can load
607   /// or store to memory location without being given a memory location.
608   bool isFenceLike() const {
609     switch (getOpcode()) {
610     default:
611       return false;
612     // This list should be kept in sync with the list in mayWriteToMemory for
613     // all opcodes which don't have a memory location.
614     case Instruction::Fence:
615     case Instruction::CatchPad:
616     case Instruction::CatchRet:
617     case Instruction::Call:
618     case Instruction::Invoke:
619       return true;
620     }
621   }
622 
623   /// Return true if the instruction may have side effects.
624   ///
625   /// Note that this does not consider malloc and alloca to have side
626   /// effects because the newly allocated memory is completely invisible to
627   /// instructions which don't use the returned value.  For cases where this
628   /// matters, isSafeToSpeculativelyExecute may be more appropriate.
629   bool mayHaveSideEffects() const { return mayWriteToMemory() || mayThrow(); }
630 
631   /// Return true if the instruction can be removed if the result is unused.
632   ///
633   /// When constant folding some instructions cannot be removed even if their
634   /// results are unused. Specifically terminator instructions and calls that
635   /// may have side effects cannot be removed without semantically changing the
636   /// generated program.
637   bool isSafeToRemove() const;
638 
639   /// Return true if the instruction will return (unwinding is considered as
640   /// a form of returning control flow here).
641   bool willReturn() const;
642 
643   /// Return true if the instruction is a variety of EH-block.
644   bool isEHPad() const {
645     switch (getOpcode()) {
646     case Instruction::CatchSwitch:
647     case Instruction::CatchPad:
648     case Instruction::CleanupPad:
649     case Instruction::LandingPad:
650       return true;
651     default:
652       return false;
653     }
654   }
655 
656   /// Return true if the instruction is a llvm.lifetime.start or
657   /// llvm.lifetime.end marker.
658   bool isLifetimeStartOrEnd() const;
659 
660   /// Return true if the instruction is a llvm.launder.invariant.group or
661   /// llvm.strip.invariant.group.
662   bool isLaunderOrStripInvariantGroup() const;
663 
664   /// Return true if the instruction is a DbgInfoIntrinsic or PseudoProbeInst.
665   bool isDebugOrPseudoInst() const;
666 
667   /// Return a pointer to the next non-debug instruction in the same basic
668   /// block as 'this', or nullptr if no such instruction exists. Skip any pseudo
669   /// operations if \c SkipPseudoOp is true.
670   const Instruction *
671   getNextNonDebugInstruction(bool SkipPseudoOp = false) const;
672   Instruction *getNextNonDebugInstruction(bool SkipPseudoOp = false) {
673     return const_cast<Instruction *>(
674         static_cast<const Instruction *>(this)->getNextNonDebugInstruction(
675             SkipPseudoOp));
676   }
677 
678   /// Return a pointer to the previous non-debug instruction in the same basic
679   /// block as 'this', or nullptr if no such instruction exists. Skip any pseudo
680   /// operations if \c SkipPseudoOp is true.
681   const Instruction *
682   getPrevNonDebugInstruction(bool SkipPseudoOp = false) const;
683   Instruction *getPrevNonDebugInstruction(bool SkipPseudoOp = false) {
684     return const_cast<Instruction *>(
685         static_cast<const Instruction *>(this)->getPrevNonDebugInstruction(
686             SkipPseudoOp));
687   }
688 
689   /// Create a copy of 'this' instruction that is identical in all ways except
690   /// the following:
691   ///   * The instruction has no parent
692   ///   * The instruction has no name
693   ///
694   Instruction *clone() const;
695 
696   /// Return true if the specified instruction is exactly identical to the
697   /// current one. This means that all operands match and any extra information
698   /// (e.g. load is volatile) agree.
699   bool isIdenticalTo(const Instruction *I) const;
700 
701   /// This is like isIdenticalTo, except that it ignores the
702   /// SubclassOptionalData flags, which may specify conditions under which the
703   /// instruction's result is undefined.
704   bool isIdenticalToWhenDefined(const Instruction *I) const;
705 
706   /// When checking for operation equivalence (using isSameOperationAs) it is
707   /// sometimes useful to ignore certain attributes.
708   enum OperationEquivalenceFlags {
709     /// Check for equivalence ignoring load/store alignment.
710     CompareIgnoringAlignment = 1<<0,
711     /// Check for equivalence treating a type and a vector of that type
712     /// as equivalent.
713     CompareUsingScalarTypes = 1<<1
714   };
715 
716   /// This function determines if the specified instruction executes the same
717   /// operation as the current one. This means that the opcodes, type, operand
718   /// types and any other factors affecting the operation must be the same. This
719   /// is similar to isIdenticalTo except the operands themselves don't have to
720   /// be identical.
721   /// @returns true if the specified instruction is the same operation as
722   /// the current one.
723   /// Determine if one instruction is the same operation as another.
724   bool isSameOperationAs(const Instruction *I, unsigned flags = 0) const;
725 
726   /// Return true if there are any uses of this instruction in blocks other than
727   /// the specified block. Note that PHI nodes are considered to evaluate their
728   /// operands in the corresponding predecessor block.
729   bool isUsedOutsideOfBlock(const BasicBlock *BB) const;
730 
731   /// Return the number of successors that this instruction has. The instruction
732   /// must be a terminator.
733   unsigned getNumSuccessors() const;
734 
735   /// Return the specified successor. This instruction must be a terminator.
736   BasicBlock *getSuccessor(unsigned Idx) const;
737 
738   /// Update the specified successor to point at the provided block. This
739   /// instruction must be a terminator.
740   void setSuccessor(unsigned Idx, BasicBlock *BB);
741 
742   /// Replace specified successor OldBB to point at the provided block.
743   /// This instruction must be a terminator.
744   void replaceSuccessorWith(BasicBlock *OldBB, BasicBlock *NewBB);
745 
746   /// Methods for support type inquiry through isa, cast, and dyn_cast:
747   static bool classof(const Value *V) {
748     return V->getValueID() >= Value::InstructionVal;
749   }
750 
751   //----------------------------------------------------------------------
752   // Exported enumerations.
753   //
754   enum TermOps {       // These terminate basic blocks
755 #define  FIRST_TERM_INST(N)             TermOpsBegin = N,
756 #define HANDLE_TERM_INST(N, OPC, CLASS) OPC = N,
757 #define   LAST_TERM_INST(N)             TermOpsEnd = N+1
758 #include "llvm/IR/Instruction.def"
759   };
760 
761   enum UnaryOps {
762 #define  FIRST_UNARY_INST(N)             UnaryOpsBegin = N,
763 #define HANDLE_UNARY_INST(N, OPC, CLASS) OPC = N,
764 #define   LAST_UNARY_INST(N)             UnaryOpsEnd = N+1
765 #include "llvm/IR/Instruction.def"
766   };
767 
768   enum BinaryOps {
769 #define  FIRST_BINARY_INST(N)             BinaryOpsBegin = N,
770 #define HANDLE_BINARY_INST(N, OPC, CLASS) OPC = N,
771 #define   LAST_BINARY_INST(N)             BinaryOpsEnd = N+1
772 #include "llvm/IR/Instruction.def"
773   };
774 
775   enum MemoryOps {
776 #define  FIRST_MEMORY_INST(N)             MemoryOpsBegin = N,
777 #define HANDLE_MEMORY_INST(N, OPC, CLASS) OPC = N,
778 #define   LAST_MEMORY_INST(N)             MemoryOpsEnd = N+1
779 #include "llvm/IR/Instruction.def"
780   };
781 
782   enum CastOps {
783 #define  FIRST_CAST_INST(N)             CastOpsBegin = N,
784 #define HANDLE_CAST_INST(N, OPC, CLASS) OPC = N,
785 #define   LAST_CAST_INST(N)             CastOpsEnd = N+1
786 #include "llvm/IR/Instruction.def"
787   };
788 
789   enum FuncletPadOps {
790 #define  FIRST_FUNCLETPAD_INST(N)             FuncletPadOpsBegin = N,
791 #define HANDLE_FUNCLETPAD_INST(N, OPC, CLASS) OPC = N,
792 #define   LAST_FUNCLETPAD_INST(N)             FuncletPadOpsEnd = N+1
793 #include "llvm/IR/Instruction.def"
794   };
795 
796   enum OtherOps {
797 #define  FIRST_OTHER_INST(N)             OtherOpsBegin = N,
798 #define HANDLE_OTHER_INST(N, OPC, CLASS) OPC = N,
799 #define   LAST_OTHER_INST(N)             OtherOpsEnd = N+1
800 #include "llvm/IR/Instruction.def"
801   };
802 
803 private:
804   friend class SymbolTableListTraits<Instruction>;
805   friend class BasicBlock; // For renumbering.
806 
807   // Shadow Value::setValueSubclassData with a private forwarding method so that
808   // subclasses cannot accidentally use it.
809   void setValueSubclassData(unsigned short D) {
810     Value::setValueSubclassData(D);
811   }
812 
813   unsigned short getSubclassDataFromValue() const {
814     return Value::getSubclassDataFromValue();
815   }
816 
817   void setParent(BasicBlock *P);
818 
819 protected:
820   // Instruction subclasses can stick up to 15 bits of stuff into the
821   // SubclassData field of instruction with these members.
822 
823   template <typename BitfieldElement>
824   typename BitfieldElement::Type getSubclassData() const {
825     static_assert(
826         std::is_same<BitfieldElement, HasMetadataField>::value ||
827             !Bitfield::isOverlapping<BitfieldElement, HasMetadataField>(),
828         "Must not overlap with the metadata bit");
829     return Bitfield::get<BitfieldElement>(getSubclassDataFromValue());
830   }
831 
832   template <typename BitfieldElement>
833   void setSubclassData(typename BitfieldElement::Type Value) {
834     static_assert(
835         std::is_same<BitfieldElement, HasMetadataField>::value ||
836             !Bitfield::isOverlapping<BitfieldElement, HasMetadataField>(),
837         "Must not overlap with the metadata bit");
838     auto Storage = getSubclassDataFromValue();
839     Bitfield::set<BitfieldElement>(Storage, Value);
840     setValueSubclassData(Storage);
841   }
842 
843   Instruction(Type *Ty, unsigned iType, Use *Ops, unsigned NumOps,
844               Instruction *InsertBefore = nullptr);
845   Instruction(Type *Ty, unsigned iType, Use *Ops, unsigned NumOps,
846               BasicBlock *InsertAtEnd);
847 
848 private:
849   /// Create a copy of this instruction.
850   Instruction *cloneImpl() const;
851 };
852 
853 inline void ilist_alloc_traits<Instruction>::deleteNode(Instruction *V) {
854   V->deleteValue();
855 }
856 
857 } // end namespace llvm
858 
859 #endif // LLVM_IR_INSTRUCTION_H
860