1% Copyright 2001-4 by Roger S. Bivand 2\encoding{latin1} 3\name{moran.mc} 4\alias{moran.mc} 5\title{Permutation test for Moran's I statistic} 6\description{ 7 A permutation test for Moran's I statistic calculated by using nsim random permutations of x for the given spatial weighting scheme, to establish the rank of the observed statistic in relation to the nsim simulated values. 8} 9\usage{ 10moran.mc(x, listw, nsim, zero.policy=NULL, alternative="greater", 11 na.action=na.fail, spChk=NULL, return_boot=FALSE, adjust.n=TRUE) 12} 13\arguments{ 14 \item{x}{a numeric vector the same length as the neighbours list in listw} 15 \item{listw}{a \code{listw} object created for example by \code{nb2listw}} 16 \item{nsim}{number of permutations} 17 \item{zero.policy}{default NULL, use global option value; if TRUE assign zero to the lagged value of zones without neighbours, if FALSE assign NA} 18 \item{alternative}{a character string specifying the alternative hypothesis, must be one of "greater" (default), or "less".} 19 \item{na.action}{a function (default \code{na.fail}), can also be \code{na.omit} or \code{na.exclude} - in these cases the weights list will be subsetted to remove NAs in the data. It may be necessary to set zero.policy to TRUE because this subsetting may create no-neighbour observations. Note that only weights lists created without using the glist argument to \code{nb2listw} may be subsetted. \code{na.pass} is not permitted because it is meaningless in a permutation test.} 20 \item{spChk}{should the data vector names be checked against the spatial objects for identity integrity, TRUE, or FALSE, default NULL to use \code{get.spChkOption()}} 21 \item{return_boot}{return an object of class \code{boot} from the equivalent permutation bootstrap rather than an object of class \code{htest}} 22 \item{adjust.n}{default TRUE, if FALSE the number of observations is not adjusted for no-neighbour observations, if TRUE, the number of observations is adjusted} 23} 24 25\value{ 26A list with class \code{htest} and \code{mc.sim} containing the following components: 27 \item{statistic}{the value of the observed Moran's I.} 28 \item{parameter}{the rank of the observed Moran's I.} 29 \item{p.value}{the pseudo p-value of the test.} 30 \item{alternative}{a character string describing the alternative hypothesis.} 31 \item{method}{a character string giving the method used.} 32 \item{data.name}{a character string giving the name(s) of the data, and the number of simulations.} 33 \item{res}{nsim simulated values of statistic, final value is observed statistic} 34} 35\references{Cliff, A. D., Ord, J. K. 1981 Spatial processes, Pion, p. 63-5.} 36\author{Roger Bivand \email{Roger.Bivand@nhh.no}} 37 38\seealso{\code{\link{moran}}, \code{\link{moran.test}}} 39 40\examples{ 41data(oldcol) 42colw <- nb2listw(COL.nb, style="W") 43nsim <- 99 44set.seed(1234) 45sim1 <- moran.mc(COL.OLD$CRIME, listw=colw, nsim=nsim) 46sim1 47mean(sim1$res[1:nsim]) 48var(sim1$res[1:nsim]) 49summary(sim1$res[1:nsim]) 50colold.lags <- nblag(COL.nb, 3) 51set.seed(1234) 52sim2 <- moran.mc(COL.OLD$CRIME, nb2listw(colold.lags[[2]], 53 style="W"), nsim=nsim) 54summary(sim2$res[1:nsim]) 55sim3 <- moran.mc(COL.OLD$CRIME, nb2listw(colold.lags[[3]], 56 style="W"), nsim=nsim) 57summary(sim3$res[1:nsim]) 58} 59\keyword{spatial} 60