1 /* $NetBSD: nfa.c,v 1.3 2017/01/02 17:45:27 christos Exp $ */
2
3 /* nfa - NFA construction routines */
4
5 /* Copyright (c) 1990 The Regents of the University of California. */
6 /* All rights reserved. */
7
8 /* This code is derived from software contributed to Berkeley by */
9 /* Vern Paxson. */
10
11 /* The United States Government has rights in this work pursuant */
12 /* to contract no. DE-AC03-76SF00098 between the United States */
13 /* Department of Energy and the University of California. */
14
15 /* This file is part of flex. */
16
17 /* Redistribution and use in source and binary forms, with or without */
18 /* modification, are permitted provided that the following conditions */
19 /* are met: */
20
21 /* 1. Redistributions of source code must retain the above copyright */
22 /* notice, this list of conditions and the following disclaimer. */
23 /* 2. Redistributions in binary form must reproduce the above copyright */
24 /* notice, this list of conditions and the following disclaimer in the */
25 /* documentation and/or other materials provided with the distribution. */
26
27 /* Neither the name of the University nor the names of its contributors */
28 /* may be used to endorse or promote products derived from this software */
29 /* without specific prior written permission. */
30
31 /* THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR */
32 /* IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED */
33 /* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR */
34 /* PURPOSE. */
35 #include "flexdef.h"
36 __RCSID("$NetBSD: nfa.c,v 1.3 2017/01/02 17:45:27 christos Exp $");
37
38
39
40 /* declare functions that have forward references */
41
42 int dupmachine(int);
43 void mkxtion(int, int);
44
45
46 /* add_accept - add an accepting state to a machine
47 *
48 * accepting_number becomes mach's accepting number.
49 */
50
add_accept(int mach,int accepting_number)51 void add_accept (int mach, int accepting_number)
52 {
53 /* Hang the accepting number off an epsilon state. if it is associated
54 * with a state that has a non-epsilon out-transition, then the state
55 * will accept BEFORE it makes that transition, i.e., one character
56 * too soon.
57 */
58
59 if (transchar[finalst[mach]] == SYM_EPSILON)
60 accptnum[finalst[mach]] = accepting_number;
61
62 else {
63 int astate = mkstate (SYM_EPSILON);
64
65 accptnum[astate] = accepting_number;
66 (void) link_machines (mach, astate);
67 }
68 }
69
70
71 /* copysingl - make a given number of copies of a singleton machine
72 *
73 * synopsis
74 *
75 * newsng = copysingl( singl, num );
76 *
77 * newsng - a new singleton composed of num copies of singl
78 * singl - a singleton machine
79 * num - the number of copies of singl to be present in newsng
80 */
81
copysingl(int singl,int num)82 int copysingl (int singl, int num)
83 {
84 int copy, i;
85
86 copy = mkstate (SYM_EPSILON);
87
88 for (i = 1; i <= num; ++i)
89 copy = link_machines (copy, dupmachine (singl));
90
91 return copy;
92 }
93
94
95 /* dumpnfa - debugging routine to write out an nfa */
96
dumpnfa(int state1)97 void dumpnfa (int state1)
98 {
99 int sym, tsp1, tsp2, anum, ns;
100
101 fprintf (stderr,
102 _
103 ("\n\n********** beginning dump of nfa with start state %d\n"),
104 state1);
105
106 /* We probably should loop starting at firstst[state1] and going to
107 * lastst[state1], but they're not maintained properly when we "or"
108 * all of the rules together. So we use our knowledge that the machine
109 * starts at state 1 and ends at lastnfa.
110 */
111
112 /* for ( ns = firstst[state1]; ns <= lastst[state1]; ++ns ) */
113 for (ns = 1; ns <= lastnfa; ++ns) {
114 fprintf (stderr, _("state # %4d\t"), ns);
115
116 sym = transchar[ns];
117 tsp1 = trans1[ns];
118 tsp2 = trans2[ns];
119 anum = accptnum[ns];
120
121 fprintf (stderr, "%3d: %4d, %4d", sym, tsp1, tsp2);
122
123 if (anum != NIL)
124 fprintf (stderr, " [%d]", anum);
125
126 fprintf (stderr, "\n");
127 }
128
129 fprintf (stderr, _("********** end of dump\n"));
130 }
131
132
133 /* dupmachine - make a duplicate of a given machine
134 *
135 * synopsis
136 *
137 * copy = dupmachine( mach );
138 *
139 * copy - holds duplicate of mach
140 * mach - machine to be duplicated
141 *
142 * note that the copy of mach is NOT an exact duplicate; rather, all the
143 * transition states values are adjusted so that the copy is self-contained,
144 * as the original should have been.
145 *
146 * also note that the original MUST be contiguous, with its low and high
147 * states accessible by the arrays firstst and lastst
148 */
149
dupmachine(int mach)150 int dupmachine (int mach)
151 {
152 int i, init, state_offset;
153 int state = 0;
154 int last = lastst[mach];
155
156 for (i = firstst[mach]; i <= last; ++i) {
157 state = mkstate (transchar[i]);
158
159 if (trans1[i] != NO_TRANSITION) {
160 mkxtion (finalst[state], trans1[i] + state - i);
161
162 if (transchar[i] == SYM_EPSILON &&
163 trans2[i] != NO_TRANSITION)
164 mkxtion (finalst[state],
165 trans2[i] + state - i);
166 }
167
168 accptnum[state] = accptnum[i];
169 }
170
171 if (state == 0)
172 flexfatal (_("empty machine in dupmachine()"));
173
174 state_offset = state - i + 1;
175
176 init = mach + state_offset;
177 firstst[init] = firstst[mach] + state_offset;
178 finalst[init] = finalst[mach] + state_offset;
179 lastst[init] = lastst[mach] + state_offset;
180
181 return init;
182 }
183
184
185 /* finish_rule - finish up the processing for a rule
186 *
187 * An accepting number is added to the given machine. If variable_trail_rule
188 * is true then the rule has trailing context and both the head and trail
189 * are variable size. Otherwise if headcnt or trailcnt is non-zero then
190 * the machine recognizes a pattern with trailing context and headcnt is
191 * the number of characters in the matched part of the pattern, or zero
192 * if the matched part has variable length. trailcnt is the number of
193 * trailing context characters in the pattern, or zero if the trailing
194 * context has variable length.
195 */
196
finish_rule(int mach,int variable_trail_rule,int headcnt,int trailcnt,int pcont_act)197 void finish_rule (int mach, int variable_trail_rule, int headcnt, int trailcnt,
198 int pcont_act)
199 {
200 char action_text[MAXLINE];
201
202 add_accept (mach, num_rules);
203
204 /* We did this in new_rule(), but it often gets the wrong
205 * number because we do it before we start parsing the current rule.
206 */
207 rule_linenum[num_rules] = linenum;
208
209 /* If this is a continued action, then the line-number has already
210 * been updated, giving us the wrong number.
211 */
212 if (continued_action)
213 --rule_linenum[num_rules];
214
215
216 /* If the previous rule was continued action, then we inherit the
217 * previous newline flag, possibly overriding the current one.
218 */
219 if (pcont_act && rule_has_nl[num_rules - 1])
220 rule_has_nl[num_rules] = true;
221
222 snprintf (action_text, sizeof(action_text), "case %d:\n", num_rules);
223 add_action (action_text);
224 if (rule_has_nl[num_rules]) {
225 snprintf (action_text, sizeof(action_text), "/* rule %d can match eol */\n",
226 num_rules);
227 add_action (action_text);
228 }
229
230
231 if (variable_trail_rule) {
232 rule_type[num_rules] = RULE_VARIABLE;
233
234 if (performance_report > 0)
235 fprintf (stderr,
236 _
237 ("Variable trailing context rule at line %d\n"),
238 rule_linenum[num_rules]);
239
240 variable_trailing_context_rules = true;
241 }
242
243 else {
244 rule_type[num_rules] = RULE_NORMAL;
245
246 if (headcnt > 0 || trailcnt > 0) {
247 /* Do trailing context magic to not match the trailing
248 * characters.
249 */
250 char *scanner_cp = "YY_G(yy_c_buf_p) = yy_cp";
251 char *scanner_bp = "yy_bp";
252
253 add_action
254 ("*yy_cp = YY_G(yy_hold_char); /* undo effects of setting up yytext */\n");
255
256 if (headcnt > 0) {
257 if (rule_has_nl[num_rules]) {
258 snprintf (action_text, sizeof(action_text),
259 "YY_LINENO_REWIND_TO(%s + %d);\n", scanner_bp, headcnt);
260 add_action (action_text);
261 }
262 snprintf (action_text, sizeof(action_text), "%s = %s + %d;\n",
263 scanner_cp, scanner_bp, headcnt);
264 add_action (action_text);
265 }
266
267 else {
268 if (rule_has_nl[num_rules]) {
269 snprintf (action_text, sizeof(action_text),
270 "YY_LINENO_REWIND_TO(yy_cp - %d);\n", trailcnt);
271 add_action (action_text);
272 }
273
274 snprintf (action_text, sizeof(action_text), "%s -= %d;\n",
275 scanner_cp, trailcnt);
276 add_action (action_text);
277 }
278
279 add_action
280 ("YY_DO_BEFORE_ACTION; /* set up yytext again */\n");
281 }
282 }
283
284 /* Okay, in the action code at this point yytext and yyleng have
285 * their proper final values for this rule, so here's the point
286 * to do any user action. But don't do it for continued actions,
287 * as that'll result in multiple YY_RULE_SETUP's.
288 */
289 if (!continued_action)
290 add_action ("YY_RULE_SETUP\n");
291
292 line_directive_out(NULL, 1);
293 add_action("[[");
294 }
295
296
297 /* link_machines - connect two machines together
298 *
299 * synopsis
300 *
301 * new = link_machines( first, last );
302 *
303 * new - a machine constructed by connecting first to last
304 * first - the machine whose successor is to be last
305 * last - the machine whose predecessor is to be first
306 *
307 * note: this routine concatenates the machine first with the machine
308 * last to produce a machine new which will pattern-match first first
309 * and then last, and will fail if either of the sub-patterns fails.
310 * FIRST is set to new by the operation. last is unmolested.
311 */
312
link_machines(int first,int last)313 int link_machines (int first, int last)
314 {
315 if (first == NIL)
316 return last;
317
318 else if (last == NIL)
319 return first;
320
321 else {
322 mkxtion (finalst[first], last);
323 finalst[first] = finalst[last];
324 lastst[first] = MAX (lastst[first], lastst[last]);
325 firstst[first] = MIN (firstst[first], firstst[last]);
326
327 return first;
328 }
329 }
330
331
332 /* mark_beginning_as_normal - mark each "beginning" state in a machine
333 * as being a "normal" (i.e., not trailing context-
334 * associated) states
335 *
336 * The "beginning" states are the epsilon closure of the first state
337 */
338
mark_beginning_as_normal(int mach)339 void mark_beginning_as_normal (int mach)
340 {
341 switch (state_type[mach]) {
342 case STATE_NORMAL:
343 /* Oh, we've already visited here. */
344 return;
345
346 case STATE_TRAILING_CONTEXT:
347 state_type[mach] = STATE_NORMAL;
348
349 if (transchar[mach] == SYM_EPSILON) {
350 if (trans1[mach] != NO_TRANSITION)
351 mark_beginning_as_normal (trans1[mach]);
352
353 if (trans2[mach] != NO_TRANSITION)
354 mark_beginning_as_normal (trans2[mach]);
355 }
356 break;
357
358 default:
359 flexerror (_
360 ("bad state type in mark_beginning_as_normal()"));
361 break;
362 }
363 }
364
365
366 /* mkbranch - make a machine that branches to two machines
367 *
368 * synopsis
369 *
370 * branch = mkbranch( first, second );
371 *
372 * branch - a machine which matches either first's pattern or second's
373 * first, second - machines whose patterns are to be or'ed (the | operator)
374 *
375 * Note that first and second are NEITHER destroyed by the operation. Also,
376 * the resulting machine CANNOT be used with any other "mk" operation except
377 * more mkbranch's. Compare with mkor()
378 */
379
mkbranch(int first,int second)380 int mkbranch (int first, int second)
381 {
382 int eps;
383
384 if (first == NO_TRANSITION)
385 return second;
386
387 else if (second == NO_TRANSITION)
388 return first;
389
390 eps = mkstate (SYM_EPSILON);
391
392 mkxtion (eps, first);
393 mkxtion (eps, second);
394
395 return eps;
396 }
397
398
399 /* mkclos - convert a machine into a closure
400 *
401 * synopsis
402 * new = mkclos( state );
403 *
404 * new - a new state which matches the closure of "state"
405 */
406
mkclos(int state)407 int mkclos (int state)
408 {
409 return mkopt (mkposcl (state));
410 }
411
412
413 /* mkopt - make a machine optional
414 *
415 * synopsis
416 *
417 * new = mkopt( mach );
418 *
419 * new - a machine which optionally matches whatever mach matched
420 * mach - the machine to make optional
421 *
422 * notes:
423 * 1. mach must be the last machine created
424 * 2. mach is destroyed by the call
425 */
426
mkopt(int mach)427 int mkopt (int mach)
428 {
429 int eps;
430
431 if (!SUPER_FREE_EPSILON (finalst[mach])) {
432 eps = mkstate (SYM_EPSILON);
433 mach = link_machines (mach, eps);
434 }
435
436 /* Can't skimp on the following if FREE_EPSILON(mach) is true because
437 * some state interior to "mach" might point back to the beginning
438 * for a closure.
439 */
440 eps = mkstate (SYM_EPSILON);
441 mach = link_machines (eps, mach);
442
443 mkxtion (mach, finalst[mach]);
444
445 return mach;
446 }
447
448
449 /* mkor - make a machine that matches either one of two machines
450 *
451 * synopsis
452 *
453 * new = mkor( first, second );
454 *
455 * new - a machine which matches either first's pattern or second's
456 * first, second - machines whose patterns are to be or'ed (the | operator)
457 *
458 * note that first and second are both destroyed by the operation
459 * the code is rather convoluted because an attempt is made to minimize
460 * the number of epsilon states needed
461 */
462
mkor(int first,int second)463 int mkor (int first, int second)
464 {
465 int eps, orend;
466
467 if (first == NIL)
468 return second;
469
470 else if (second == NIL)
471 return first;
472
473 else {
474 /* See comment in mkopt() about why we can't use the first
475 * state of "first" or "second" if they satisfy "FREE_EPSILON".
476 */
477 eps = mkstate (SYM_EPSILON);
478
479 first = link_machines (eps, first);
480
481 mkxtion (first, second);
482
483 if (SUPER_FREE_EPSILON (finalst[first]) &&
484 accptnum[finalst[first]] == NIL) {
485 orend = finalst[first];
486 mkxtion (finalst[second], orend);
487 }
488
489 else if (SUPER_FREE_EPSILON (finalst[second]) &&
490 accptnum[finalst[second]] == NIL) {
491 orend = finalst[second];
492 mkxtion (finalst[first], orend);
493 }
494
495 else {
496 eps = mkstate (SYM_EPSILON);
497
498 first = link_machines (first, eps);
499 orend = finalst[first];
500
501 mkxtion (finalst[second], orend);
502 }
503 }
504
505 finalst[first] = orend;
506 return first;
507 }
508
509
510 /* mkposcl - convert a machine into a positive closure
511 *
512 * synopsis
513 * new = mkposcl( state );
514 *
515 * new - a machine matching the positive closure of "state"
516 */
517
mkposcl(int state)518 int mkposcl (int state)
519 {
520 int eps;
521
522 if (SUPER_FREE_EPSILON (finalst[state])) {
523 mkxtion (finalst[state], state);
524 return state;
525 }
526
527 else {
528 eps = mkstate (SYM_EPSILON);
529 mkxtion (eps, state);
530 return link_machines (state, eps);
531 }
532 }
533
534
535 /* mkrep - make a replicated machine
536 *
537 * synopsis
538 * new = mkrep( mach, lb, ub );
539 *
540 * new - a machine that matches whatever "mach" matched from "lb"
541 * number of times to "ub" number of times
542 *
543 * note
544 * if "ub" is INFINITE_REPEAT then "new" matches "lb" or more occurrences of "mach"
545 */
546
mkrep(int mach,int lb,int ub)547 int mkrep (int mach, int lb, int ub)
548 {
549 int base_mach, tail, copy, i;
550
551 base_mach = copysingl (mach, lb - 1);
552
553 if (ub == INFINITE_REPEAT) {
554 copy = dupmachine (mach);
555 mach = link_machines (mach,
556 link_machines (base_mach,
557 mkclos (copy)));
558 }
559
560 else {
561 tail = mkstate (SYM_EPSILON);
562
563 for (i = lb; i < ub; ++i) {
564 copy = dupmachine (mach);
565 tail = mkopt (link_machines (copy, tail));
566 }
567
568 mach =
569 link_machines (mach,
570 link_machines (base_mach, tail));
571 }
572
573 return mach;
574 }
575
576
577 /* mkstate - create a state with a transition on a given symbol
578 *
579 * synopsis
580 *
581 * state = mkstate( sym );
582 *
583 * state - a new state matching sym
584 * sym - the symbol the new state is to have an out-transition on
585 *
586 * note that this routine makes new states in ascending order through the
587 * state array (and increments LASTNFA accordingly). The routine DUPMACHINE
588 * relies on machines being made in ascending order and that they are
589 * CONTIGUOUS. Change it and you will have to rewrite DUPMACHINE (kludge
590 * that it admittedly is)
591 */
592
mkstate(int sym)593 int mkstate (int sym)
594 {
595 if (++lastnfa >= current_mns) {
596 if ((current_mns += MNS_INCREMENT) >= maximum_mns)
597 lerr(_
598 ("input rules are too complicated (>= %d NFA states)"),
599 current_mns);
600
601 ++num_reallocs;
602
603 firstst = reallocate_integer_array (firstst, current_mns);
604 lastst = reallocate_integer_array (lastst, current_mns);
605 finalst = reallocate_integer_array (finalst, current_mns);
606 transchar =
607 reallocate_integer_array (transchar, current_mns);
608 trans1 = reallocate_integer_array (trans1, current_mns);
609 trans2 = reallocate_integer_array (trans2, current_mns);
610 accptnum =
611 reallocate_integer_array (accptnum, current_mns);
612 assoc_rule =
613 reallocate_integer_array (assoc_rule, current_mns);
614 state_type =
615 reallocate_integer_array (state_type, current_mns);
616 }
617
618 firstst[lastnfa] = lastnfa;
619 finalst[lastnfa] = lastnfa;
620 lastst[lastnfa] = lastnfa;
621 transchar[lastnfa] = sym;
622 trans1[lastnfa] = NO_TRANSITION;
623 trans2[lastnfa] = NO_TRANSITION;
624 accptnum[lastnfa] = NIL;
625 assoc_rule[lastnfa] = num_rules;
626 state_type[lastnfa] = current_state_type;
627
628 /* Fix up equivalence classes base on this transition. Note that any
629 * character which has its own transition gets its own equivalence
630 * class. Thus only characters which are only in character classes
631 * have a chance at being in the same equivalence class. E.g. "a|b"
632 * puts 'a' and 'b' into two different equivalence classes. "[ab]"
633 * puts them in the same equivalence class (barring other differences
634 * elsewhere in the input).
635 */
636
637 if (sym < 0) {
638 /* We don't have to update the equivalence classes since
639 * that was already done when the ccl was created for the
640 * first time.
641 */
642 }
643
644 else if (sym == SYM_EPSILON)
645 ++numeps;
646
647 else {
648 check_char (sym);
649
650 if (useecs)
651 /* Map NUL's to csize. */
652 mkechar (sym ? sym : csize, nextecm, ecgroup);
653 }
654
655 return lastnfa;
656 }
657
658
659 /* mkxtion - make a transition from one state to another
660 *
661 * synopsis
662 *
663 * mkxtion( statefrom, stateto );
664 *
665 * statefrom - the state from which the transition is to be made
666 * stateto - the state to which the transition is to be made
667 */
668
mkxtion(int statefrom,int stateto)669 void mkxtion (int statefrom, int stateto)
670 {
671 if (trans1[statefrom] == NO_TRANSITION)
672 trans1[statefrom] = stateto;
673
674 else if ((transchar[statefrom] != SYM_EPSILON) ||
675 (trans2[statefrom] != NO_TRANSITION))
676 flexfatal (_("found too many transitions in mkxtion()"));
677
678 else { /* second out-transition for an epsilon state */
679 ++eps2;
680 trans2[statefrom] = stateto;
681 }
682 }
683
684 /* new_rule - initialize for a new rule */
685
new_rule(void)686 void new_rule (void)
687 {
688 if (++num_rules >= current_max_rules) {
689 ++num_reallocs;
690 current_max_rules += MAX_RULES_INCREMENT;
691 rule_type = reallocate_integer_array (rule_type,
692 current_max_rules);
693 rule_linenum = reallocate_integer_array (rule_linenum,
694 current_max_rules);
695 rule_useful = reallocate_integer_array (rule_useful,
696 current_max_rules);
697 rule_has_nl = reallocate_bool_array (rule_has_nl,
698 current_max_rules);
699 }
700
701 if (num_rules > MAX_RULE)
702 lerr (_("too many rules (> %d)!"), MAX_RULE);
703
704 rule_linenum[num_rules] = linenum;
705 rule_useful[num_rules] = false;
706 rule_has_nl[num_rules] = false;
707 }
708