1#cython: language_level=3 2# This file is part of QuTiP: Quantum Toolbox in Python. 3# 4# Copyright (c) 2011 and later, Paul D. Nation and Robert J. Johansson. 5# All rights reserved. 6# 7# Redistribution and use in source and binary forms, with or without 8# modification, are permitted provided that the following conditions are 9# met: 10# 11# 1. Redistributions of source code must retain the above copyright notice, 12# this list of conditions and the following disclaimer. 13# 14# 2. Redistributions in binary form must reproduce the above copyright 15# notice, this list of conditions and the following disclaimer in the 16# documentation and/or other materials provided with the distribution. 17# 18# 3. Neither the name of the QuTiP: Quantum Toolbox in Python nor the names 19# of its contributors may be used to endorse or promote products derived 20# from this software without specific prior written permission. 21# 22# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 23# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 24# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A 25# PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 26# HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 27# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 28# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 29# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 30# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 31# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 32# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 33############################################################################### 34import numpy as np 35cimport numpy as np 36cimport cython 37cimport libc.math 38 39DTYPE = np.float64 40ctypedef np.float64_t DTYPE_t 41 42ITYPE = np.int32 43ctypedef np.int32_t ITYPE_t 44 45CTYPE = np.complex128 46ctypedef np.complex128_t CTYPE_t 47 48CTYPE = np.int64 49ctypedef np.int64_t LTYPE_t 50 51@cython.boundscheck(False) 52@cython.wraparound(False) 53cpdef CTYPE_t cy_overlap(object op1, object op2): 54 55 cdef Py_ssize_t row 56 cdef CTYPE_t tr = 0.0 57 58 op1 = op1.T.tocsr() 59 60 cdef int col1, row1_idx_start, row1_idx_end 61 cdef np.ndarray[CTYPE_t, ndim=1, mode="c"] data1 = op1.data.conj() 62 cdef np.ndarray[ITYPE_t, ndim=1, mode="c"] idx1 = op1.indices 63 cdef np.ndarray[ITYPE_t, ndim=1, mode="c"] ptr1 = op1.indptr 64 65 cdef int col2, row2_idx_start, row2_idx_end 66 cdef np.ndarray[CTYPE_t, ndim=1, mode="c"] data2 = op2.data 67 cdef np.ndarray[ITYPE_t, ndim=1, mode="c"] idx2 = op2.indices 68 cdef np.ndarray[ITYPE_t, ndim=1, mode="c"] ptr2 = op2.indptr 69 70 cdef int num_rows = ptr1.shape[0]-1 71 72 for row in range(num_rows): 73 74 row1_idx_start = ptr1[row] 75 row1_idx_end = ptr1[row + 1] 76 for row1_idx from row1_idx_start <= row1_idx < row1_idx_end: 77 col1 = idx1[row1_idx] 78 79 row2_idx_start = ptr2[col1] 80 row2_idx_end = ptr2[col1 + 1] 81 for row2_idx from row2_idx_start <= row2_idx < row2_idx_end: 82 col2 = idx2[row2_idx] 83 84 if col2 == row: 85 tr += data1[row1_idx] * data2[row2_idx] 86 87 return tr / op1.shape[0] 88 89 90@cython.boundscheck(False) 91@cython.wraparound(False) 92cpdef cy_grape_inner(U, np.ndarray[DTYPE_t, ndim=3, mode="c"] u, 93 int r, int J, int M, U_b_list, U_f_list, H_ops, 94 float dt, float eps, float alpha, float beta, 95 int phase_sensitive, 96 int use_u_limits, float u_min, float u_max): 97 98 cdef int j, k 99 100 for m in range(M-1): 101 P = U_b_list[m] * U 102 for j in range(J): 103 Q = 1j * dt * H_ops[j] * U_f_list[m] 104 105 if phase_sensitive: 106 du = - cy_overlap(P, Q) 107 else: 108 du = - 2 * cy_overlap(P, Q) * cy_overlap(U_f_list[m], P) 109 110 if alpha > 0.0: 111 # penalty term for high power control signals u 112 du += -2 * alpha * u[r, j, m] * dt 113 114 if beta: 115 # penalty term for late control signals u 116 du += -2 * beta * m ** 2 * u[r, j, m] * dt 117 118 u[r + 1, j, m] = u[r, j, m] + eps * du.real 119 120 if use_u_limits: 121 if u[r + 1, j, m] < u_min: 122 u[r + 1, j, m] = u_min 123 elif u[r + 1, j, m] > u_max: 124 u[r + 1, j, m] = u_max 125 126 for j in range(J): 127 u[r + 1, j, M-1] = u[r + 1, j, M-2] 128