1########################################################################
2##
3## Copyright (C) 1999-2021 The Octave Project Developers
4##
5## See the file COPYRIGHT.md in the top-level directory of this
6## distribution or <https://octave.org/copyright/>.
7##
8## This file is part of Octave.
9##
10## Octave is free software: you can redistribute it and/or modify it
11## under the terms of the GNU General Public License as published by
12## the Free Software Foundation, either version 3 of the License, or
13## (at your option) any later version.
14##
15## Octave is distributed in the hope that it will be useful, but
16## WITHOUT ANY WARRANTY; without even the implied warranty of
17## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18## GNU General Public License for more details.
19##
20## You should have received a copy of the GNU General Public License
21## along with Octave; see the file COPYING.  If not, see
22## <https://www.gnu.org/licenses/>.
23##
24########################################################################
25
26## -*- texinfo -*-
27## @deftypefn  {} {@var{hsv_map} =} rgb2hsv (@var{rgb_map})
28## @deftypefnx {} {@var{hsv_img} =} rgb2hsv (@var{rgb_img})
29## Transform a colormap or image from RGB to HSV color space.
30##
31## A color in the RGB space consists of red, green, and blue intensities.
32##
33## A color in HSV space is represented by hue, saturation and value
34## (brightness) levels in a cylindrical coordinate system.  Hue is the
35## azimuth and describes the dominant color.  Saturation is the radial
36## distance and gives the amount of hue mixed into the color.  Value is
37## the height and is the amount of light in the color.
38##
39## Output class and size will be the same as input.
40##
41## @seealso{hsv2rgb, rgb2ind, rgb2gray}
42## @end deftypefn
43
44function hsv = rgb2hsv (rgb)
45
46  if (nargin != 1)
47    print_usage ();
48  endif
49
50  [rgb, sz, is_im, is_nd] ...
51    = colorspace_conversion_input_check ("rgb2hsv", "RGB", rgb);
52
53  ## get the max and min for each row
54  s = min (rgb, [], 2);
55  v = max (rgb, [], 2);
56
57  ## set hue to zero for undefined values (gray has no hue)
58  h = zeros (rows (rgb), 1);
59  notgray = (s != v);
60
61  ## blue hue
62  idx = (v == rgb(:,3) & notgray);
63  if (any (idx))
64    h(idx) = 2/3 + 1/6 * (rgb(idx,1) - rgb(idx,2)) ./ (v(idx) - s(idx));
65  endif
66
67  ## green hue
68  idx = (v == rgb(:,2) & notgray);
69  if (any (idx))
70    h(idx) = 1/3 + 1/6 * (rgb(idx,3) - rgb(idx,1)) ./ (v(idx) - s(idx));
71  endif
72
73  ## red hue
74  idx = (v == rgb(:,1) & notgray);
75  if (any (idx))
76    h(idx) =       1/6 * (rgb(idx,2) - rgb(idx,3)) ./ (v(idx) - s(idx));
77  endif
78  h(h < 0) += 1;   # correct for negative red
79
80  ## set the saturation
81  s(! notgray) = 0;
82  s(notgray) = 1 - s(notgray) ./ v(notgray);
83
84  hsv = [h, s, v];
85  hsv = colorspace_conversion_revert (hsv, sz, is_im, is_nd);
86
87endfunction
88
89
90## Test pure colors and gray
91%!assert (rgb2hsv ([1 0 0]), [0 1 1])
92%!assert (rgb2hsv ([0 1 0]), [1/3 1 1])
93%!assert (rgb2hsv ([0 0 1]), [2/3 1 1])
94%!assert (rgb2hsv ([1 1 0]), [1/6 1 1])
95%!assert (rgb2hsv ([0 1 1]), [1/2 1 1])
96%!assert (rgb2hsv ([1 0 1]), [5/6 1 1])
97%!assert (rgb2hsv ([0.5 0.5 0.5]), [0 0 0.5])
98
99## Test tolarant input checking on floats
100%!assert (rgb2hsv ([1.5 1 1]), [0 1/3 1.5], eps)
101
102%!test
103%! rgb_map = rand (64, 3);
104%! assert (hsv2rgb (rgb2hsv (rgb_map)), rgb_map, 1e-6);
105
106%!test
107%! rgb_img = rand (64, 64, 3);
108%! assert (hsv2rgb (rgb2hsv (rgb_img)), rgb_img, 1e-6);
109
110## support sparse input
111%!assert (rgb2hsv (sparse ([0 0 1])), sparse ([2/3 1 1]))
112%!assert (rgb2hsv (sparse ([0 1 1])), sparse ([1/2 1 1]))
113%!assert (rgb2hsv (sparse ([1 1 1])), sparse ([0 0 1]))
114
115## Test input validation
116%!error rgb2hsv ()
117%!error rgb2hsv (1,2)
118%!error <invalid data type 'cell'> rgb2hsv ({1})
119%!error <RGB must be a colormap or RGB image> rgb2hsv (ones (2,2))
120
121## Test ND input
122%!test
123%! rgb = rand (16, 16, 3, 5);
124%! hsv = zeros (size (rgb));
125%! for i = 1:5
126%!   hsv(:,:,:,i) = rgb2hsv (rgb(:,:,:,i));
127%! endfor
128%! assert (rgb2hsv (rgb), hsv);
129
130## Test output class and size for input images.
131## Most of the tests only test for colormap input.
132
133%!test
134%! hsv = rgb2hsv (rand (10, 10, 3));
135%! assert (class (hsv), "double");
136%! assert (size (hsv), [10 10 3]);
137
138%!test
139%! hsv = rgb2hsv (rand (10, 10, 3, "single"));
140%! assert (class (hsv), "single");
141%! assert (size (hsv), [10 10 3]);
142
143%!test
144%! rgb = (rand (10, 10, 3) * 3 ) - 0.5; # values outside range [0 1]
145%! hsv = rgb2hsv (rgb);
146%! assert (class (hsv), "double");
147%! assert (size (hsv), [10 10 3]);
148
149%!test
150%! rgb = (rand (10, 10, 3, "single") * 3 ) - 0.5; # values outside range [0 1]
151%! hsv = rgb2hsv (rgb);
152%! assert (class (hsv), "single");
153%! assert (size (hsv), [10 10 3]);
154
155%!test
156%! hsv = rgb2hsv (randi ([0 255], 10, 10, 3, "uint8"));
157%! assert (class (hsv), "double");
158%! assert (size (hsv), [10 10 3]);
159
160%!test
161%! hsv = rgb2hsv (randi ([0 65535], 10, 10, 3, "uint16"));
162%! assert (class (hsv), "double");
163%! assert (size (hsv), [10 10 3]);
164
165%!test
166%! hsv = rgb2hsv (randi ([-128 127], 10, 10, 3, "int8"));
167%! assert (class (hsv), "double");
168%! assert (size (hsv), [10 10 3]);
169
170%!test
171%! rgb_double = reshape ([1 0 1 .5 1 1 0 .5 0 1 1 .5], [2 2 3]);
172%! rgb_uint8  = reshape (uint8 ([255 0 255 128 255 255 0 128 0 255 255 128]),
173%!                       [2 2 3]);
174%! rgb_int16 = int16 (double (rgb_double * uint16 (65535)) -32768);
175%! expected = reshape ([1/6 1/2 5/6 0 1 1 1 0 1 1 1 .5], [2 2 3]);
176%!
177%! assert (rgb2hsv (rgb_double), expected);
178%! assert (rgb2hsv (rgb_uint8), expected, 0.005);
179%! assert (rgb2hsv (single (rgb_double)), single (expected));
180