xref: /openbsd/gnu/usr.bin/binutils/gdb/solib-irix.c (revision 11efff7f)
1 /* Shared library support for IRIX.
2    Copyright 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001, 2002, 2004
3    Free Software Foundation, Inc.
4 
5    This file was created using portions of irix5-nat.c originally
6    contributed to GDB by Ian Lance Taylor.
7 
8    This file is part of GDB.
9 
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation; either version 2 of the License, or
13    (at your option) any later version.
14 
15    This program is distributed in the hope that it will be useful,
16    but WITHOUT ANY WARRANTY; without even the implied warranty of
17    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18    GNU General Public License for more details.
19 
20    You should have received a copy of the GNU General Public License
21    along with this program; if not, write to the Free Software
22    Foundation, Inc., 59 Temple Place - Suite 330,
23    Boston, MA 02111-1307, USA.  */
24 
25 #include "defs.h"
26 
27 #include "symtab.h"
28 #include "bfd.h"
29 /* FIXME: ezannoni/2004-02-13 Verify that the include below is
30    really needed.  */
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "gdbcore.h"
34 #include "target.h"
35 #include "inferior.h"
36 
37 #include "solist.h"
38 
39 /* Link map info to include in an allocate so_list entry.  Unlike some
40    of the other solib backends, this (Irix) backend chooses to decode
41    the link map info obtained from the target and store it as (mostly)
42    CORE_ADDRs which need no further decoding.  This is more convenient
43    because there are three different link map formats to worry about.
44    We use a single routine (fetch_lm_info) to read (and decode) the target
45    specific link map data.  */
46 
47 struct lm_info
48 {
49   CORE_ADDR addr;		/* address of obj_info or obj_list
50 				   struct on target (from which the
51 				   following information is obtained).  */
52   CORE_ADDR next;		/* address of next item in list.  */
53   CORE_ADDR reloc_offset;	/* amount to relocate by  */
54   CORE_ADDR pathname_addr;	/* address of pathname  */
55   int pathname_len;		/* length of pathname */
56 };
57 
58 /* It's not desirable to use the system header files to obtain the
59    structure of the obj_list or obj_info structs.  Therefore, we use a
60    platform neutral representation which has been derived from the IRIX
61    header files.  */
62 
63 typedef struct
64 {
65   char b[4];
66 }
67 gdb_int32_bytes;
68 typedef struct
69 {
70   char b[8];
71 }
72 gdb_int64_bytes;
73 
74 /* The "old" obj_list struct.  This is used with old (o32) binaries.
75    The ``data'' member points at a much larger and more complicated
76    struct which we will only refer to by offsets.  See
77    fetch_lm_info().  */
78 
79 struct irix_obj_list
80 {
81   gdb_int32_bytes data;
82   gdb_int32_bytes next;
83   gdb_int32_bytes prev;
84 };
85 
86 /* The ELF32 and ELF64 versions of the above struct.  The oi_magic value
87    corresponds to the ``data'' value in the "old" struct.  When this value
88    is 0xffffffff, the data will be in one of the following formats.  The
89    ``oi_size'' field is used to decide which one we actually have.  */
90 
91 struct irix_elf32_obj_info
92 {
93   gdb_int32_bytes oi_magic;
94   gdb_int32_bytes oi_size;
95   gdb_int32_bytes oi_next;
96   gdb_int32_bytes oi_prev;
97   gdb_int32_bytes oi_ehdr;
98   gdb_int32_bytes oi_orig_ehdr;
99   gdb_int32_bytes oi_pathname;
100   gdb_int32_bytes oi_pathname_len;
101 };
102 
103 struct irix_elf64_obj_info
104 {
105   gdb_int32_bytes oi_magic;
106   gdb_int32_bytes oi_size;
107   gdb_int64_bytes oi_next;
108   gdb_int64_bytes oi_prev;
109   gdb_int64_bytes oi_ehdr;
110   gdb_int64_bytes oi_orig_ehdr;
111   gdb_int64_bytes oi_pathname;
112   gdb_int32_bytes oi_pathname_len;
113   gdb_int32_bytes padding;
114 };
115 
116 /* Union of all of the above (plus a split out magic field).  */
117 
118 union irix_obj_info
119 {
120   gdb_int32_bytes magic;
121   struct irix_obj_list ol32;
122   struct irix_elf32_obj_info oi32;
123   struct irix_elf64_obj_info oi64;
124 };
125 
126 /* MIPS sign extends its 32 bit addresses.  We could conceivably use
127    extract_typed_address here, but to do so, we'd have to construct an
128    appropriate type.  Calling extract_signed_integer seems simpler.  */
129 
130 static CORE_ADDR
extract_mips_address(void * addr,int len)131 extract_mips_address (void *addr, int len)
132 {
133   return extract_signed_integer (addr, len);
134 }
135 
136 /* Fetch and return the link map data associated with ADDR.  Note that
137    this routine automatically determines which (of three) link map
138    formats is in use by the target.  */
139 
140 struct lm_info
fetch_lm_info(CORE_ADDR addr)141 fetch_lm_info (CORE_ADDR addr)
142 {
143   struct lm_info li;
144   union irix_obj_info buf;
145 
146   li.addr = addr;
147 
148   /* The smallest region that we'll need is for buf.ol32.  We'll read
149      that first.  We'll read more of the buffer later if we have to deal
150      with one of the other cases.  (We don't want to incur a memory error
151      if we were to read a larger region that generates an error due to
152      being at the end of a page or the like.)  */
153   read_memory (addr, (char *) &buf, sizeof (buf.ol32));
154 
155   if (extract_unsigned_integer (&buf.magic, sizeof (buf.magic)) != 0xffffffff)
156     {
157       /* Use buf.ol32... */
158       char obj_buf[432];
159       CORE_ADDR obj_addr = extract_mips_address (&buf.ol32.data,
160 						 sizeof (buf.ol32.data));
161       li.next = extract_mips_address (&buf.ol32.next, sizeof (buf.ol32.next));
162 
163       read_memory (obj_addr, obj_buf, sizeof (obj_buf));
164 
165       li.pathname_addr = extract_mips_address (&obj_buf[236], 4);
166       li.pathname_len = 0;	/* unknown */
167       li.reloc_offset = extract_mips_address (&obj_buf[196], 4)
168 	- extract_mips_address (&obj_buf[248], 4);
169 
170     }
171   else if (extract_unsigned_integer (&buf.oi32.oi_size,
172 				     sizeof (buf.oi32.oi_size))
173 	   == sizeof (buf.oi32))
174     {
175       /* Use buf.oi32...  */
176 
177       /* Read rest of buffer.  */
178       read_memory (addr + sizeof (buf.ol32),
179 		   ((char *) &buf) + sizeof (buf.ol32),
180 		   sizeof (buf.oi32) - sizeof (buf.ol32));
181 
182       /* Fill in fields using buffer contents.  */
183       li.next = extract_mips_address (&buf.oi32.oi_next,
184 				      sizeof (buf.oi32.oi_next));
185       li.reloc_offset = extract_mips_address (&buf.oi32.oi_ehdr,
186 					      sizeof (buf.oi32.oi_ehdr))
187 	- extract_mips_address (&buf.oi32.oi_orig_ehdr,
188 				sizeof (buf.oi32.oi_orig_ehdr));
189       li.pathname_addr = extract_mips_address (&buf.oi32.oi_pathname,
190 					       sizeof (buf.oi32.oi_pathname));
191       li.pathname_len = extract_unsigned_integer (&buf.oi32.oi_pathname_len,
192 						  sizeof (buf.oi32.
193 							  oi_pathname_len));
194     }
195   else if (extract_unsigned_integer (&buf.oi64.oi_size,
196 				     sizeof (buf.oi64.oi_size))
197 	   == sizeof (buf.oi64))
198     {
199       /* Use buf.oi64...  */
200 
201       /* Read rest of buffer.  */
202       read_memory (addr + sizeof (buf.ol32),
203 		   ((char *) &buf) + sizeof (buf.ol32),
204 		   sizeof (buf.oi64) - sizeof (buf.ol32));
205 
206       /* Fill in fields using buffer contents.  */
207       li.next = extract_mips_address (&buf.oi64.oi_next,
208 				      sizeof (buf.oi64.oi_next));
209       li.reloc_offset = extract_mips_address (&buf.oi64.oi_ehdr,
210 					      sizeof (buf.oi64.oi_ehdr))
211 	- extract_mips_address (&buf.oi64.oi_orig_ehdr,
212 				sizeof (buf.oi64.oi_orig_ehdr));
213       li.pathname_addr = extract_mips_address (&buf.oi64.oi_pathname,
214 					       sizeof (buf.oi64.oi_pathname));
215       li.pathname_len = extract_unsigned_integer (&buf.oi64.oi_pathname_len,
216 						  sizeof (buf.oi64.
217 							  oi_pathname_len));
218     }
219   else
220     {
221       error ("Unable to fetch shared library obj_info or obj_list info.");
222     }
223 
224   return li;
225 }
226 
227 /* The symbol which starts off the list of shared libraries.  */
228 #define DEBUG_BASE "__rld_obj_head"
229 
230 char shadow_contents[BREAKPOINT_MAX];	/* Stash old bkpt addr contents */
231 
232 static CORE_ADDR debug_base;	/* Base of dynamic linker structures */
233 static CORE_ADDR breakpoint_addr;	/* Address where end bkpt is set */
234 
235 /*
236 
237    LOCAL FUNCTION
238 
239    locate_base -- locate the base address of dynamic linker structs
240 
241    SYNOPSIS
242 
243    CORE_ADDR locate_base (void)
244 
245    DESCRIPTION
246 
247    For both the SunOS and SVR4 shared library implementations, if the
248    inferior executable has been linked dynamically, there is a single
249    address somewhere in the inferior's data space which is the key to
250    locating all of the dynamic linker's runtime structures.  This
251    address is the value of the symbol defined by the macro DEBUG_BASE.
252    The job of this function is to find and return that address, or to
253    return 0 if there is no such address (the executable is statically
254    linked for example).
255 
256    For SunOS, the job is almost trivial, since the dynamic linker and
257    all of it's structures are statically linked to the executable at
258    link time.  Thus the symbol for the address we are looking for has
259    already been added to the minimal symbol table for the executable's
260    objfile at the time the symbol file's symbols were read, and all we
261    have to do is look it up there.  Note that we explicitly do NOT want
262    to find the copies in the shared library.
263 
264    The SVR4 version is much more complicated because the dynamic linker
265    and it's structures are located in the shared C library, which gets
266    run as the executable's "interpreter" by the kernel.  We have to go
267    to a lot more work to discover the address of DEBUG_BASE.  Because
268    of this complexity, we cache the value we find and return that value
269    on subsequent invocations.  Note there is no copy in the executable
270    symbol tables.
271 
272    Irix 5 is basically like SunOS.
273 
274    Note that we can assume nothing about the process state at the time
275    we need to find this address.  We may be stopped on the first instruc-
276    tion of the interpreter (C shared library), the first instruction of
277    the executable itself, or somewhere else entirely (if we attached
278    to the process for example).
279 
280  */
281 
282 static CORE_ADDR
locate_base(void)283 locate_base (void)
284 {
285   struct minimal_symbol *msymbol;
286   CORE_ADDR address = 0;
287 
288   msymbol = lookup_minimal_symbol (DEBUG_BASE, NULL, symfile_objfile);
289   if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
290     {
291       address = SYMBOL_VALUE_ADDRESS (msymbol);
292     }
293   return (address);
294 }
295 
296 /*
297 
298    LOCAL FUNCTION
299 
300    disable_break -- remove the "mapping changed" breakpoint
301 
302    SYNOPSIS
303 
304    static int disable_break ()
305 
306    DESCRIPTION
307 
308    Removes the breakpoint that gets hit when the dynamic linker
309    completes a mapping change.
310 
311  */
312 
313 static int
disable_break(void)314 disable_break (void)
315 {
316   int status = 1;
317 
318 
319   /* Note that breakpoint address and original contents are in our address
320      space, so we just need to write the original contents back. */
321 
322   if (memory_remove_breakpoint (breakpoint_addr, shadow_contents) != 0)
323     {
324       status = 0;
325     }
326 
327   /* Note that it is possible that we have stopped at a location that
328      is different from the location where we inserted our breakpoint.
329      On mips-irix, we can actually land in __dbx_init(), so we should
330      not check the PC against our breakpoint address here.  See procfs.c
331      for more details.  */
332 
333   return (status);
334 }
335 
336 /*
337 
338    LOCAL FUNCTION
339 
340    enable_break -- arrange for dynamic linker to hit breakpoint
341 
342    SYNOPSIS
343 
344    int enable_break (void)
345 
346    DESCRIPTION
347 
348    This functions inserts a breakpoint at the entry point of the
349    main executable, where all shared libraries are mapped in.
350  */
351 
352 static int
enable_break(void)353 enable_break (void)
354 {
355   if (symfile_objfile != NULL
356       && target_insert_breakpoint (entry_point_address (),
357 				   shadow_contents) == 0)
358     {
359       breakpoint_addr = entry_point_address ();
360       return 1;
361     }
362 
363   return 0;
364 }
365 
366 /*
367 
368    LOCAL FUNCTION
369 
370    irix_solib_create_inferior_hook -- shared library startup support
371 
372    SYNOPSIS
373 
374    void solib_create_inferior_hook()
375 
376    DESCRIPTION
377 
378    When gdb starts up the inferior, it nurses it along (through the
379    shell) until it is ready to execute it's first instruction.  At this
380    point, this function gets called via expansion of the macro
381    SOLIB_CREATE_INFERIOR_HOOK.
382 
383    For SunOS executables, this first instruction is typically the
384    one at "_start", or a similar text label, regardless of whether
385    the executable is statically or dynamically linked.  The runtime
386    startup code takes care of dynamically linking in any shared
387    libraries, once gdb allows the inferior to continue.
388 
389    For SVR4 executables, this first instruction is either the first
390    instruction in the dynamic linker (for dynamically linked
391    executables) or the instruction at "start" for statically linked
392    executables.  For dynamically linked executables, the system
393    first exec's /lib/libc.so.N, which contains the dynamic linker,
394    and starts it running.  The dynamic linker maps in any needed
395    shared libraries, maps in the actual user executable, and then
396    jumps to "start" in the user executable.
397 
398    For both SunOS shared libraries, and SVR4 shared libraries, we
399    can arrange to cooperate with the dynamic linker to discover the
400    names of shared libraries that are dynamically linked, and the
401    base addresses to which they are linked.
402 
403    This function is responsible for discovering those names and
404    addresses, and saving sufficient information about them to allow
405    their symbols to be read at a later time.
406 
407    FIXME
408 
409    Between enable_break() and disable_break(), this code does not
410    properly handle hitting breakpoints which the user might have
411    set in the startup code or in the dynamic linker itself.  Proper
412    handling will probably have to wait until the implementation is
413    changed to use the "breakpoint handler function" method.
414 
415    Also, what if child has exit()ed?  Must exit loop somehow.
416  */
417 
418 static void
irix_solib_create_inferior_hook(void)419 irix_solib_create_inferior_hook (void)
420 {
421   if (!enable_break ())
422     {
423       warning ("shared library handler failed to enable breakpoint");
424       return;
425     }
426 
427   /* Now run the target.  It will eventually hit the breakpoint, at
428      which point all of the libraries will have been mapped in and we
429      can go groveling around in the dynamic linker structures to find
430      out what we need to know about them. */
431 
432   clear_proceed_status ();
433   stop_soon = STOP_QUIETLY;
434   stop_signal = TARGET_SIGNAL_0;
435   do
436     {
437       target_resume (pid_to_ptid (-1), 0, stop_signal);
438       wait_for_inferior ();
439     }
440   while (stop_signal != TARGET_SIGNAL_TRAP);
441 
442   /* We are now either at the "mapping complete" breakpoint (or somewhere
443      else, a condition we aren't prepared to deal with anyway), so adjust
444      the PC as necessary after a breakpoint, disable the breakpoint, and
445      add any shared libraries that were mapped in. */
446 
447   if (!disable_break ())
448     {
449       warning ("shared library handler failed to disable breakpoint");
450     }
451 
452   /* solib_add will call reinit_frame_cache.
453      But we are stopped in the startup code and we might not have symbols
454      for the startup code, so heuristic_proc_start could be called
455      and will put out an annoying warning.
456      Delaying the resetting of stop_soon until after symbol loading
457      suppresses the warning.  */
458   solib_add ((char *) 0, 0, (struct target_ops *) 0, auto_solib_add);
459   stop_soon = NO_STOP_QUIETLY;
460   re_enable_breakpoints_in_shlibs ();
461 }
462 
463 /* LOCAL FUNCTION
464 
465    current_sos -- build a list of currently loaded shared objects
466 
467    SYNOPSIS
468 
469    struct so_list *current_sos ()
470 
471    DESCRIPTION
472 
473    Build a list of `struct so_list' objects describing the shared
474    objects currently loaded in the inferior.  This list does not
475    include an entry for the main executable file.
476 
477    Note that we only gather information directly available from the
478    inferior --- we don't examine any of the shared library files
479    themselves.  The declaration of `struct so_list' says which fields
480    we provide values for.  */
481 
482 static struct so_list *
irix_current_sos(void)483 irix_current_sos (void)
484 {
485   CORE_ADDR lma;
486   char addr_buf[8];
487   struct so_list *head = 0;
488   struct so_list **link_ptr = &head;
489   int is_first = 1;
490   struct lm_info lm;
491 
492   /* Make sure we've looked up the inferior's dynamic linker's base
493      structure.  */
494   if (!debug_base)
495     {
496       debug_base = locate_base ();
497 
498       /* If we can't find the dynamic linker's base structure, this
499          must not be a dynamically linked executable.  Hmm.  */
500       if (!debug_base)
501 	return 0;
502     }
503 
504   read_memory (debug_base, addr_buf, TARGET_ADDR_BIT / TARGET_CHAR_BIT);
505   lma = extract_mips_address (addr_buf, TARGET_ADDR_BIT / TARGET_CHAR_BIT);
506 
507   while (lma)
508     {
509       lm = fetch_lm_info (lma);
510       if (!is_first)
511 	{
512 	  int errcode;
513 	  char *name_buf;
514 	  int name_size;
515 	  struct so_list *new
516 	    = (struct so_list *) xmalloc (sizeof (struct so_list));
517 	  struct cleanup *old_chain = make_cleanup (xfree, new);
518 
519 	  memset (new, 0, sizeof (*new));
520 
521 	  new->lm_info = xmalloc (sizeof (struct lm_info));
522 	  make_cleanup (xfree, new->lm_info);
523 
524 	  *new->lm_info = lm;
525 
526 	  /* Extract this shared object's name.  */
527 	  name_size = lm.pathname_len;
528 	  if (name_size == 0)
529 	    name_size = SO_NAME_MAX_PATH_SIZE - 1;
530 
531 	  if (name_size >= SO_NAME_MAX_PATH_SIZE)
532 	    {
533 	      name_size = SO_NAME_MAX_PATH_SIZE - 1;
534 	      warning
535 		("current_sos: truncating name of %d characters to only %d characters",
536 		 lm.pathname_len, name_size);
537 	    }
538 
539 	  target_read_string (lm.pathname_addr, &name_buf,
540 			      name_size, &errcode);
541 	  if (errcode != 0)
542 	    {
543 	      warning ("current_sos: Can't read pathname for load map: %s\n",
544 		       safe_strerror (errcode));
545 	    }
546 	  else
547 	    {
548 	      strncpy (new->so_name, name_buf, name_size);
549 	      new->so_name[name_size] = '\0';
550 	      xfree (name_buf);
551 	      strcpy (new->so_original_name, new->so_name);
552 	    }
553 
554 	  new->next = 0;
555 	  *link_ptr = new;
556 	  link_ptr = &new->next;
557 
558 	  discard_cleanups (old_chain);
559 	}
560       is_first = 0;
561       lma = lm.next;
562     }
563 
564   return head;
565 }
566 
567 /*
568 
569   LOCAL FUNCTION
570 
571   irix_open_symbol_file_object
572 
573   SYNOPSIS
574 
575   void irix_open_symbol_file_object (void *from_tty)
576 
577   DESCRIPTION
578 
579   If no open symbol file, attempt to locate and open the main symbol
580   file.  On IRIX, this is the first link map entry.  If its name is
581   here, we can open it.  Useful when attaching to a process without
582   first loading its symbol file.
583 
584   If FROM_TTYP dereferences to a non-zero integer, allow messages to
585   be printed.  This parameter is a pointer rather than an int because
586   open_symbol_file_object() is called via catch_errors() and
587   catch_errors() requires a pointer argument. */
588 
589 static int
irix_open_symbol_file_object(void * from_ttyp)590 irix_open_symbol_file_object (void *from_ttyp)
591 {
592   CORE_ADDR lma;
593   char addr_buf[8];
594   struct lm_info lm;
595   struct cleanup *cleanups;
596   int errcode;
597   int from_tty = *(int *) from_ttyp;
598   char *filename;
599 
600   if (symfile_objfile)
601     if (!query ("Attempt to reload symbols from process? "))
602       return 0;
603 
604   if ((debug_base = locate_base ()) == 0)
605     return 0;			/* failed somehow...  */
606 
607   /* First link map member should be the executable.  */
608   read_memory (debug_base, addr_buf, TARGET_ADDR_BIT / TARGET_CHAR_BIT);
609   lma = extract_mips_address (addr_buf, TARGET_ADDR_BIT / TARGET_CHAR_BIT);
610   if (lma == 0)
611     return 0;			/* failed somehow...  */
612 
613   lm = fetch_lm_info (lma);
614 
615   if (lm.pathname_addr == 0)
616     return 0;			/* No filename.  */
617 
618   /* Now fetch the filename from target memory.  */
619   target_read_string (lm.pathname_addr, &filename, SO_NAME_MAX_PATH_SIZE - 1,
620 		      &errcode);
621 
622   if (errcode)
623     {
624       warning ("failed to read exec filename from attached file: %s",
625 	       safe_strerror (errcode));
626       return 0;
627     }
628 
629   cleanups = make_cleanup (xfree, filename);
630   /* Have a pathname: read the symbol file.  */
631   symbol_file_add_main (filename, from_tty);
632 
633   do_cleanups (cleanups);
634 
635   return 1;
636 }
637 
638 
639 /*
640 
641    LOCAL FUNCTION
642 
643    irix_special_symbol_handling -- additional shared library symbol handling
644 
645    SYNOPSIS
646 
647    void irix_special_symbol_handling ()
648 
649    DESCRIPTION
650 
651    Once the symbols from a shared object have been loaded in the usual
652    way, we are called to do any system specific symbol handling that
653    is needed.
654 
655    For SunOS4, this consisted of grunging around in the dynamic
656    linkers structures to find symbol definitions for "common" symbols
657    and adding them to the minimal symbol table for the runtime common
658    objfile.
659 
660    However, for IRIX, there's nothing to do.
661 
662  */
663 
664 static void
irix_special_symbol_handling(void)665 irix_special_symbol_handling (void)
666 {
667 }
668 
669 /* Using the solist entry SO, relocate the addresses in SEC.  */
670 
671 static void
irix_relocate_section_addresses(struct so_list * so,struct section_table * sec)672 irix_relocate_section_addresses (struct so_list *so,
673 				 struct section_table *sec)
674 {
675   sec->addr += so->lm_info->reloc_offset;
676   sec->endaddr += so->lm_info->reloc_offset;
677 }
678 
679 /* Free the lm_info struct.  */
680 
681 static void
irix_free_so(struct so_list * so)682 irix_free_so (struct so_list *so)
683 {
684   xfree (so->lm_info);
685 }
686 
687 /* Clear backend specific state.  */
688 
689 static void
irix_clear_solib(void)690 irix_clear_solib (void)
691 {
692   debug_base = 0;
693 }
694 
695 /* Return 1 if PC lies in the dynamic symbol resolution code of the
696    run time loader.  */
697 static int
irix_in_dynsym_resolve_code(CORE_ADDR pc)698 irix_in_dynsym_resolve_code (CORE_ADDR pc)
699 {
700   return 0;
701 }
702 
703 static struct target_so_ops irix_so_ops;
704 
705 void
_initialize_irix_solib(void)706 _initialize_irix_solib (void)
707 {
708   irix_so_ops.relocate_section_addresses = irix_relocate_section_addresses;
709   irix_so_ops.free_so = irix_free_so;
710   irix_so_ops.clear_solib = irix_clear_solib;
711   irix_so_ops.solib_create_inferior_hook = irix_solib_create_inferior_hook;
712   irix_so_ops.special_symbol_handling = irix_special_symbol_handling;
713   irix_so_ops.current_sos = irix_current_sos;
714   irix_so_ops.open_symbol_file_object = irix_open_symbol_file_object;
715   irix_so_ops.in_dynsym_resolve_code = irix_in_dynsym_resolve_code;
716 
717   /* FIXME: Don't do this here.  *_gdbarch_init() should set so_ops. */
718   current_target_so_ops = &irix_so_ops;
719 }
720