1 /* $NetBSD: kern_tc.c,v 1.46 2013/09/14 20:52:43 martin Exp $ */
2
3 /*-
4 * Copyright (c) 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*-
33 * ----------------------------------------------------------------------------
34 * "THE BEER-WARE LICENSE" (Revision 42):
35 * <phk@FreeBSD.ORG> wrote this file. As long as you retain this notice you
36 * can do whatever you want with this stuff. If we meet some day, and you think
37 * this stuff is worth it, you can buy me a beer in return. Poul-Henning Kamp
38 * ---------------------------------------------------------------------------
39 */
40
41 #include <sys/cdefs.h>
42 /* __FBSDID("$FreeBSD: src/sys/kern/kern_tc.c,v 1.166 2005/09/19 22:16:31 andre Exp $"); */
43 __KERNEL_RCSID(0, "$NetBSD: kern_tc.c,v 1.46 2013/09/14 20:52:43 martin Exp $");
44
45 #ifdef _KERNEL_OPT
46 #include "opt_ntp.h"
47 #endif
48
49 #include <sys/param.h>
50 #include <sys/kernel.h>
51 #include <sys/reboot.h> /* XXX just to get AB_VERBOSE */
52 #include <sys/sysctl.h>
53 #include <sys/syslog.h>
54 #include <sys/systm.h>
55 #include <sys/timepps.h>
56 #include <sys/timetc.h>
57 #include <sys/timex.h>
58 #include <sys/evcnt.h>
59 #include <sys/kauth.h>
60 #include <sys/mutex.h>
61 #include <sys/atomic.h>
62 #include <sys/xcall.h>
63
64 /*
65 * A large step happens on boot. This constant detects such steps.
66 * It is relatively small so that ntp_update_second gets called enough
67 * in the typical 'missed a couple of seconds' case, but doesn't loop
68 * forever when the time step is large.
69 */
70 #define LARGE_STEP 200
71
72 /*
73 * Implement a dummy timecounter which we can use until we get a real one
74 * in the air. This allows the console and other early stuff to use
75 * time services.
76 */
77
78 static u_int
dummy_get_timecount(struct timecounter * tc)79 dummy_get_timecount(struct timecounter *tc)
80 {
81 static u_int now;
82
83 return (++now);
84 }
85
86 static struct timecounter dummy_timecounter = {
87 dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000, NULL, NULL,
88 };
89
90 struct timehands {
91 /* These fields must be initialized by the driver. */
92 struct timecounter *th_counter; /* active timecounter */
93 int64_t th_adjustment; /* frequency adjustment */
94 /* (NTP/adjtime) */
95 u_int64_t th_scale; /* scale factor (counter */
96 /* tick->time) */
97 u_int64_t th_offset_count; /* offset at last time */
98 /* update (tc_windup()) */
99 struct bintime th_offset; /* bin (up)time at windup */
100 struct timeval th_microtime; /* cached microtime */
101 struct timespec th_nanotime; /* cached nanotime */
102 /* Fields not to be copied in tc_windup start with th_generation. */
103 volatile u_int th_generation; /* current genration */
104 struct timehands *th_next; /* next timehand */
105 };
106
107 static struct timehands th0;
108 static struct timehands th9 = { .th_next = &th0, };
109 static struct timehands th8 = { .th_next = &th9, };
110 static struct timehands th7 = { .th_next = &th8, };
111 static struct timehands th6 = { .th_next = &th7, };
112 static struct timehands th5 = { .th_next = &th6, };
113 static struct timehands th4 = { .th_next = &th5, };
114 static struct timehands th3 = { .th_next = &th4, };
115 static struct timehands th2 = { .th_next = &th3, };
116 static struct timehands th1 = { .th_next = &th2, };
117 static struct timehands th0 = {
118 .th_counter = &dummy_timecounter,
119 .th_scale = (uint64_t)-1 / 1000000,
120 .th_offset = { .sec = 1, .frac = 0 },
121 .th_generation = 1,
122 .th_next = &th1,
123 };
124
125 static struct timehands *volatile timehands = &th0;
126 struct timecounter *timecounter = &dummy_timecounter;
127 static struct timecounter *timecounters = &dummy_timecounter;
128
129 volatile time_t time_second = 1;
130 volatile time_t time_uptime = 1;
131
132 static struct bintime timebasebin;
133
134 static int timestepwarnings;
135
136 kmutex_t timecounter_lock;
137 static u_int timecounter_mods;
138 static volatile int timecounter_removals = 1;
139 static u_int timecounter_bad;
140
141 #ifdef __FreeBSD__
142 SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
143 ×tepwarnings, 0, "");
144 #endif /* __FreeBSD__ */
145
146 /*
147 * sysctl helper routine for kern.timercounter.hardware
148 */
149 static int
sysctl_kern_timecounter_hardware(SYSCTLFN_ARGS)150 sysctl_kern_timecounter_hardware(SYSCTLFN_ARGS)
151 {
152 struct sysctlnode node;
153 int error;
154 char newname[MAX_TCNAMELEN];
155 struct timecounter *newtc, *tc;
156
157 tc = timecounter;
158
159 strlcpy(newname, tc->tc_name, sizeof(newname));
160
161 node = *rnode;
162 node.sysctl_data = newname;
163 node.sysctl_size = sizeof(newname);
164
165 error = sysctl_lookup(SYSCTLFN_CALL(&node));
166
167 if (error ||
168 newp == NULL ||
169 strncmp(newname, tc->tc_name, sizeof(newname)) == 0)
170 return error;
171
172 if (l != NULL && (error = kauth_authorize_system(l->l_cred,
173 KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_TIMECOUNTERS, newname,
174 NULL, NULL)) != 0)
175 return (error);
176
177 if (!cold)
178 mutex_spin_enter(&timecounter_lock);
179 error = EINVAL;
180 for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
181 if (strcmp(newname, newtc->tc_name) != 0)
182 continue;
183 /* Warm up new timecounter. */
184 (void)newtc->tc_get_timecount(newtc);
185 (void)newtc->tc_get_timecount(newtc);
186 timecounter = newtc;
187 error = 0;
188 break;
189 }
190 if (!cold)
191 mutex_spin_exit(&timecounter_lock);
192 return error;
193 }
194
195 static int
sysctl_kern_timecounter_choice(SYSCTLFN_ARGS)196 sysctl_kern_timecounter_choice(SYSCTLFN_ARGS)
197 {
198 char buf[MAX_TCNAMELEN+48];
199 char *where;
200 const char *spc;
201 struct timecounter *tc;
202 size_t needed, left, slen;
203 int error, mods;
204
205 if (newp != NULL)
206 return (EPERM);
207 if (namelen != 0)
208 return (EINVAL);
209
210 mutex_spin_enter(&timecounter_lock);
211 retry:
212 spc = "";
213 error = 0;
214 needed = 0;
215 left = *oldlenp;
216 where = oldp;
217 for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
218 if (where == NULL) {
219 needed += sizeof(buf); /* be conservative */
220 } else {
221 slen = snprintf(buf, sizeof(buf), "%s%s(q=%d, f=%" PRId64
222 " Hz)", spc, tc->tc_name, tc->tc_quality,
223 tc->tc_frequency);
224 if (left < slen + 1)
225 break;
226 mods = timecounter_mods;
227 mutex_spin_exit(&timecounter_lock);
228 error = copyout(buf, where, slen + 1);
229 mutex_spin_enter(&timecounter_lock);
230 if (mods != timecounter_mods) {
231 goto retry;
232 }
233 spc = " ";
234 where += slen;
235 needed += slen;
236 left -= slen;
237 }
238 }
239 mutex_spin_exit(&timecounter_lock);
240
241 *oldlenp = needed;
242 return (error);
243 }
244
245 SYSCTL_SETUP(sysctl_timecounter_setup, "sysctl timecounter setup")
246 {
247 const struct sysctlnode *node;
248
249 sysctl_createv(clog, 0, NULL, &node,
250 CTLFLAG_PERMANENT,
251 CTLTYPE_NODE, "timecounter",
252 SYSCTL_DESCR("time counter information"),
253 NULL, 0, NULL, 0,
254 CTL_KERN, CTL_CREATE, CTL_EOL);
255
256 if (node != NULL) {
257 sysctl_createv(clog, 0, NULL, NULL,
258 CTLFLAG_PERMANENT,
259 CTLTYPE_STRING, "choice",
260 SYSCTL_DESCR("available counters"),
261 sysctl_kern_timecounter_choice, 0, NULL, 0,
262 CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
263
264 sysctl_createv(clog, 0, NULL, NULL,
265 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
266 CTLTYPE_STRING, "hardware",
267 SYSCTL_DESCR("currently active time counter"),
268 sysctl_kern_timecounter_hardware, 0, NULL, MAX_TCNAMELEN,
269 CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
270
271 sysctl_createv(clog, 0, NULL, NULL,
272 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
273 CTLTYPE_INT, "timestepwarnings",
274 SYSCTL_DESCR("log time steps"),
275 NULL, 0, ×tepwarnings, 0,
276 CTL_KERN, node->sysctl_num, CTL_CREATE, CTL_EOL);
277 }
278 }
279
280 #ifdef TC_COUNTERS
281 #define TC_STATS(name) \
282 static struct evcnt n##name = \
283 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "timecounter", #name); \
284 EVCNT_ATTACH_STATIC(n##name)
285 TC_STATS(binuptime); TC_STATS(nanouptime); TC_STATS(microuptime);
286 TC_STATS(bintime); TC_STATS(nanotime); TC_STATS(microtime);
287 TC_STATS(getbinuptime); TC_STATS(getnanouptime); TC_STATS(getmicrouptime);
288 TC_STATS(getbintime); TC_STATS(getnanotime); TC_STATS(getmicrotime);
289 TC_STATS(setclock);
290 #define TC_COUNT(var) var.ev_count++
291 #undef TC_STATS
292 #else
293 #define TC_COUNT(var) /* nothing */
294 #endif /* TC_COUNTERS */
295
296 static void tc_windup(void);
297
298 /*
299 * Return the difference between the timehands' counter value now and what
300 * was when we copied it to the timehands' offset_count.
301 */
302 static inline u_int
tc_delta(struct timehands * th)303 tc_delta(struct timehands *th)
304 {
305 struct timecounter *tc;
306
307 tc = th->th_counter;
308 return ((tc->tc_get_timecount(tc) -
309 th->th_offset_count) & tc->tc_counter_mask);
310 }
311
312 /*
313 * Functions for reading the time. We have to loop until we are sure that
314 * the timehands that we operated on was not updated under our feet. See
315 * the comment in <sys/timevar.h> for a description of these 12 functions.
316 */
317
318 void
binuptime(struct bintime * bt)319 binuptime(struct bintime *bt)
320 {
321 struct timehands *th;
322 lwp_t *l;
323 u_int lgen, gen;
324
325 TC_COUNT(nbinuptime);
326
327 /*
328 * Provide exclusion against tc_detach().
329 *
330 * We record the number of timecounter removals before accessing
331 * timecounter state. Note that the LWP can be using multiple
332 * "generations" at once, due to interrupts (interrupted while in
333 * this function). Hardware interrupts will borrow the interrupted
334 * LWP's l_tcgen value for this purpose, and can themselves be
335 * interrupted by higher priority interrupts. In this case we need
336 * to ensure that the oldest generation in use is recorded.
337 *
338 * splsched() is too expensive to use, so we take care to structure
339 * this code in such a way that it is not required. Likewise, we
340 * do not disable preemption.
341 *
342 * Memory barriers are also too expensive to use for such a
343 * performance critical function. The good news is that we do not
344 * need memory barriers for this type of exclusion, as the thread
345 * updating timecounter_removals will issue a broadcast cross call
346 * before inspecting our l_tcgen value (this elides memory ordering
347 * issues).
348 */
349 l = curlwp;
350 lgen = l->l_tcgen;
351 if (__predict_true(lgen == 0)) {
352 l->l_tcgen = timecounter_removals;
353 }
354 __insn_barrier();
355
356 do {
357 th = timehands;
358 gen = th->th_generation;
359 *bt = th->th_offset;
360 bintime_addx(bt, th->th_scale * tc_delta(th));
361 } while (gen == 0 || gen != th->th_generation);
362
363 __insn_barrier();
364 l->l_tcgen = lgen;
365 }
366
367 void
nanouptime(struct timespec * tsp)368 nanouptime(struct timespec *tsp)
369 {
370 struct bintime bt;
371
372 TC_COUNT(nnanouptime);
373 binuptime(&bt);
374 bintime2timespec(&bt, tsp);
375 }
376
377 void
microuptime(struct timeval * tvp)378 microuptime(struct timeval *tvp)
379 {
380 struct bintime bt;
381
382 TC_COUNT(nmicrouptime);
383 binuptime(&bt);
384 bintime2timeval(&bt, tvp);
385 }
386
387 void
bintime(struct bintime * bt)388 bintime(struct bintime *bt)
389 {
390
391 TC_COUNT(nbintime);
392 binuptime(bt);
393 bintime_add(bt, &timebasebin);
394 }
395
396 void
nanotime(struct timespec * tsp)397 nanotime(struct timespec *tsp)
398 {
399 struct bintime bt;
400
401 TC_COUNT(nnanotime);
402 bintime(&bt);
403 bintime2timespec(&bt, tsp);
404 }
405
406 void
microtime(struct timeval * tvp)407 microtime(struct timeval *tvp)
408 {
409 struct bintime bt;
410
411 TC_COUNT(nmicrotime);
412 bintime(&bt);
413 bintime2timeval(&bt, tvp);
414 }
415
416 void
getbinuptime(struct bintime * bt)417 getbinuptime(struct bintime *bt)
418 {
419 struct timehands *th;
420 u_int gen;
421
422 TC_COUNT(ngetbinuptime);
423 do {
424 th = timehands;
425 gen = th->th_generation;
426 *bt = th->th_offset;
427 } while (gen == 0 || gen != th->th_generation);
428 }
429
430 void
getnanouptime(struct timespec * tsp)431 getnanouptime(struct timespec *tsp)
432 {
433 struct timehands *th;
434 u_int gen;
435
436 TC_COUNT(ngetnanouptime);
437 do {
438 th = timehands;
439 gen = th->th_generation;
440 bintime2timespec(&th->th_offset, tsp);
441 } while (gen == 0 || gen != th->th_generation);
442 }
443
444 void
getmicrouptime(struct timeval * tvp)445 getmicrouptime(struct timeval *tvp)
446 {
447 struct timehands *th;
448 u_int gen;
449
450 TC_COUNT(ngetmicrouptime);
451 do {
452 th = timehands;
453 gen = th->th_generation;
454 bintime2timeval(&th->th_offset, tvp);
455 } while (gen == 0 || gen != th->th_generation);
456 }
457
458 void
getbintime(struct bintime * bt)459 getbintime(struct bintime *bt)
460 {
461 struct timehands *th;
462 u_int gen;
463
464 TC_COUNT(ngetbintime);
465 do {
466 th = timehands;
467 gen = th->th_generation;
468 *bt = th->th_offset;
469 } while (gen == 0 || gen != th->th_generation);
470 bintime_add(bt, &timebasebin);
471 }
472
473 void
getnanotime(struct timespec * tsp)474 getnanotime(struct timespec *tsp)
475 {
476 struct timehands *th;
477 u_int gen;
478
479 TC_COUNT(ngetnanotime);
480 do {
481 th = timehands;
482 gen = th->th_generation;
483 *tsp = th->th_nanotime;
484 } while (gen == 0 || gen != th->th_generation);
485 }
486
487 void
getmicrotime(struct timeval * tvp)488 getmicrotime(struct timeval *tvp)
489 {
490 struct timehands *th;
491 u_int gen;
492
493 TC_COUNT(ngetmicrotime);
494 do {
495 th = timehands;
496 gen = th->th_generation;
497 *tvp = th->th_microtime;
498 } while (gen == 0 || gen != th->th_generation);
499 }
500
501 /*
502 * Initialize a new timecounter and possibly use it.
503 */
504 void
tc_init(struct timecounter * tc)505 tc_init(struct timecounter *tc)
506 {
507 u_int u;
508
509 u = tc->tc_frequency / tc->tc_counter_mask;
510 /* XXX: We need some margin here, 10% is a guess */
511 u *= 11;
512 u /= 10;
513 if (u > hz && tc->tc_quality >= 0) {
514 tc->tc_quality = -2000;
515 aprint_verbose(
516 "timecounter: Timecounter \"%s\" frequency %ju Hz",
517 tc->tc_name, (uintmax_t)tc->tc_frequency);
518 aprint_verbose(" -- Insufficient hz, needs at least %u\n", u);
519 } else if (tc->tc_quality >= 0 || bootverbose) {
520 aprint_verbose(
521 "timecounter: Timecounter \"%s\" frequency %ju Hz "
522 "quality %d\n", tc->tc_name, (uintmax_t)tc->tc_frequency,
523 tc->tc_quality);
524 }
525
526 mutex_spin_enter(&timecounter_lock);
527 tc->tc_next = timecounters;
528 timecounters = tc;
529 timecounter_mods++;
530 /*
531 * Never automatically use a timecounter with negative quality.
532 * Even though we run on the dummy counter, switching here may be
533 * worse since this timecounter may not be monotonous.
534 */
535 if (tc->tc_quality >= 0 && (tc->tc_quality > timecounter->tc_quality ||
536 (tc->tc_quality == timecounter->tc_quality &&
537 tc->tc_frequency > timecounter->tc_frequency))) {
538 (void)tc->tc_get_timecount(tc);
539 (void)tc->tc_get_timecount(tc);
540 timecounter = tc;
541 tc_windup();
542 }
543 mutex_spin_exit(&timecounter_lock);
544 }
545
546 /*
547 * Pick a new timecounter due to the existing counter going bad.
548 */
549 static void
tc_pick(void)550 tc_pick(void)
551 {
552 struct timecounter *best, *tc;
553
554 KASSERT(mutex_owned(&timecounter_lock));
555
556 for (best = tc = timecounters; tc != NULL; tc = tc->tc_next) {
557 if (tc->tc_quality > best->tc_quality)
558 best = tc;
559 else if (tc->tc_quality < best->tc_quality)
560 continue;
561 else if (tc->tc_frequency > best->tc_frequency)
562 best = tc;
563 }
564 (void)best->tc_get_timecount(best);
565 (void)best->tc_get_timecount(best);
566 timecounter = best;
567 }
568
569 /*
570 * A timecounter has gone bad, arrange to pick a new one at the next
571 * clock tick.
572 */
573 void
tc_gonebad(struct timecounter * tc)574 tc_gonebad(struct timecounter *tc)
575 {
576
577 tc->tc_quality = -100;
578 membar_producer();
579 atomic_inc_uint(&timecounter_bad);
580 }
581
582 /*
583 * Stop using a timecounter and remove it from the timecounters list.
584 */
585 int
tc_detach(struct timecounter * target)586 tc_detach(struct timecounter *target)
587 {
588 struct timecounter *tc;
589 struct timecounter **tcp = NULL;
590 int removals;
591 uint64_t where;
592 lwp_t *l;
593
594 /* First, find the timecounter. */
595 mutex_spin_enter(&timecounter_lock);
596 for (tcp = &timecounters, tc = timecounters;
597 tc != NULL;
598 tcp = &tc->tc_next, tc = tc->tc_next) {
599 if (tc == target)
600 break;
601 }
602 if (tc == NULL) {
603 mutex_spin_exit(&timecounter_lock);
604 return ESRCH;
605 }
606
607 /* And now, remove it. */
608 *tcp = tc->tc_next;
609 if (timecounter == target) {
610 tc_pick();
611 tc_windup();
612 }
613 timecounter_mods++;
614 removals = timecounter_removals++;
615 mutex_spin_exit(&timecounter_lock);
616
617 /*
618 * We now have to determine if any threads in the system are still
619 * making use of this timecounter.
620 *
621 * We issue a broadcast cross call to elide memory ordering issues,
622 * then scan all LWPs in the system looking at each's timecounter
623 * generation number. We need to see a value of zero (not actively
624 * using a timecounter) or a value greater than our removal value.
625 *
626 * We may race with threads that read `timecounter_removals' and
627 * and then get preempted before updating `l_tcgen'. This is not
628 * a problem, since it means that these threads have not yet started
629 * accessing timecounter state. All we do need is one clean
630 * snapshot of the system where every thread appears not to be using
631 * old timecounter state.
632 */
633 for (;;) {
634 where = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
635 xc_wait(where);
636
637 mutex_enter(proc_lock);
638 LIST_FOREACH(l, &alllwp, l_list) {
639 if (l->l_tcgen == 0 || l->l_tcgen > removals) {
640 /*
641 * Not using timecounter or old timecounter
642 * state at time of our xcall or later.
643 */
644 continue;
645 }
646 break;
647 }
648 mutex_exit(proc_lock);
649
650 /*
651 * If the timecounter is still in use, wait at least 10ms
652 * before retrying.
653 */
654 if (l == NULL) {
655 return 0;
656 }
657 (void)kpause("tcdetach", false, mstohz(10), NULL);
658 }
659 }
660
661 /* Report the frequency of the current timecounter. */
662 u_int64_t
tc_getfrequency(void)663 tc_getfrequency(void)
664 {
665
666 return (timehands->th_counter->tc_frequency);
667 }
668
669 /*
670 * Step our concept of UTC. This is done by modifying our estimate of
671 * when we booted.
672 */
673 void
tc_setclock(const struct timespec * ts)674 tc_setclock(const struct timespec *ts)
675 {
676 struct timespec ts2;
677 struct bintime bt, bt2;
678
679 mutex_spin_enter(&timecounter_lock);
680 TC_COUNT(nsetclock);
681 binuptime(&bt2);
682 timespec2bintime(ts, &bt);
683 bintime_sub(&bt, &bt2);
684 bintime_add(&bt2, &timebasebin);
685 timebasebin = bt;
686 tc_windup();
687 mutex_spin_exit(&timecounter_lock);
688
689 if (timestepwarnings) {
690 bintime2timespec(&bt2, &ts2);
691 log(LOG_INFO,
692 "Time stepped from %lld.%09ld to %lld.%09ld\n",
693 (long long)ts2.tv_sec, ts2.tv_nsec,
694 (long long)ts->tv_sec, ts->tv_nsec);
695 }
696 }
697
698 /*
699 * Initialize the next struct timehands in the ring and make
700 * it the active timehands. Along the way we might switch to a different
701 * timecounter and/or do seconds processing in NTP. Slightly magic.
702 */
703 static void
tc_windup(void)704 tc_windup(void)
705 {
706 struct bintime bt;
707 struct timehands *th, *tho;
708 u_int64_t scale;
709 u_int delta, ncount, ogen;
710 int i, s_update;
711 time_t t;
712
713 KASSERT(mutex_owned(&timecounter_lock));
714
715 s_update = 0;
716
717 /*
718 * Make the next timehands a copy of the current one, but do not
719 * overwrite the generation or next pointer. While we update
720 * the contents, the generation must be zero. Ensure global
721 * visibility of the generation before proceeding.
722 */
723 tho = timehands;
724 th = tho->th_next;
725 ogen = th->th_generation;
726 th->th_generation = 0;
727 membar_producer();
728 bcopy(tho, th, offsetof(struct timehands, th_generation));
729
730 /*
731 * Capture a timecounter delta on the current timecounter and if
732 * changing timecounters, a counter value from the new timecounter.
733 * Update the offset fields accordingly.
734 */
735 delta = tc_delta(th);
736 if (th->th_counter != timecounter)
737 ncount = timecounter->tc_get_timecount(timecounter);
738 else
739 ncount = 0;
740 th->th_offset_count += delta;
741 bintime_addx(&th->th_offset, th->th_scale * delta);
742
743 /*
744 * Hardware latching timecounters may not generate interrupts on
745 * PPS events, so instead we poll them. There is a finite risk that
746 * the hardware might capture a count which is later than the one we
747 * got above, and therefore possibly in the next NTP second which might
748 * have a different rate than the current NTP second. It doesn't
749 * matter in practice.
750 */
751 if (tho->th_counter->tc_poll_pps)
752 tho->th_counter->tc_poll_pps(tho->th_counter);
753
754 /*
755 * Deal with NTP second processing. The for loop normally
756 * iterates at most once, but in extreme situations it might
757 * keep NTP sane if timeouts are not run for several seconds.
758 * At boot, the time step can be large when the TOD hardware
759 * has been read, so on really large steps, we call
760 * ntp_update_second only twice. We need to call it twice in
761 * case we missed a leap second.
762 * If NTP is not compiled in ntp_update_second still calculates
763 * the adjustment resulting from adjtime() calls.
764 */
765 bt = th->th_offset;
766 bintime_add(&bt, &timebasebin);
767 i = bt.sec - tho->th_microtime.tv_sec;
768 if (i > LARGE_STEP)
769 i = 2;
770 for (; i > 0; i--) {
771 t = bt.sec;
772 ntp_update_second(&th->th_adjustment, &bt.sec);
773 s_update = 1;
774 if (bt.sec != t)
775 timebasebin.sec += bt.sec - t;
776 }
777
778 /* Update the UTC timestamps used by the get*() functions. */
779 /* XXX shouldn't do this here. Should force non-`get' versions. */
780 bintime2timeval(&bt, &th->th_microtime);
781 bintime2timespec(&bt, &th->th_nanotime);
782 /* Now is a good time to change timecounters. */
783 if (th->th_counter != timecounter) {
784 th->th_counter = timecounter;
785 th->th_offset_count = ncount;
786 s_update = 1;
787 }
788
789 /*-
790 * Recalculate the scaling factor. We want the number of 1/2^64
791 * fractions of a second per period of the hardware counter, taking
792 * into account the th_adjustment factor which the NTP PLL/adjtime(2)
793 * processing provides us with.
794 *
795 * The th_adjustment is nanoseconds per second with 32 bit binary
796 * fraction and we want 64 bit binary fraction of second:
797 *
798 * x = a * 2^32 / 10^9 = a * 4.294967296
799 *
800 * The range of th_adjustment is +/- 5000PPM so inside a 64bit int
801 * we can only multiply by about 850 without overflowing, but that
802 * leaves suitably precise fractions for multiply before divide.
803 *
804 * Divide before multiply with a fraction of 2199/512 results in a
805 * systematic undercompensation of 10PPM of th_adjustment. On a
806 * 5000PPM adjustment this is a 0.05PPM error. This is acceptable.
807 *
808 * We happily sacrifice the lowest of the 64 bits of our result
809 * to the goddess of code clarity.
810 *
811 */
812 if (s_update) {
813 scale = (u_int64_t)1 << 63;
814 scale += (th->th_adjustment / 1024) * 2199;
815 scale /= th->th_counter->tc_frequency;
816 th->th_scale = scale * 2;
817 }
818 /*
819 * Now that the struct timehands is again consistent, set the new
820 * generation number, making sure to not make it zero. Ensure
821 * changes are globally visible before changing.
822 */
823 if (++ogen == 0)
824 ogen = 1;
825 membar_producer();
826 th->th_generation = ogen;
827
828 /*
829 * Go live with the new struct timehands. Ensure changes are
830 * globally visible before changing.
831 */
832 time_second = th->th_microtime.tv_sec;
833 time_uptime = th->th_offset.sec;
834 membar_producer();
835 timehands = th;
836
837 /*
838 * Force users of the old timehand to move on. This is
839 * necessary for MP systems; we need to ensure that the
840 * consumers will move away from the old timehand before
841 * we begin updating it again when we eventually wrap
842 * around.
843 */
844 if (++tho->th_generation == 0)
845 tho->th_generation = 1;
846 }
847
848 /*
849 * RFC 2783 PPS-API implementation.
850 */
851
852 int
pps_ioctl(u_long cmd,void * data,struct pps_state * pps)853 pps_ioctl(u_long cmd, void *data, struct pps_state *pps)
854 {
855 pps_params_t *app;
856 pps_info_t *pipi;
857 #ifdef PPS_SYNC
858 int *epi;
859 #endif
860
861 KASSERT(mutex_owned(&timecounter_lock));
862
863 KASSERT(pps != NULL);
864
865 switch (cmd) {
866 case PPS_IOC_CREATE:
867 return (0);
868 case PPS_IOC_DESTROY:
869 return (0);
870 case PPS_IOC_SETPARAMS:
871 app = (pps_params_t *)data;
872 if (app->mode & ~pps->ppscap)
873 return (EINVAL);
874 pps->ppsparam = *app;
875 return (0);
876 case PPS_IOC_GETPARAMS:
877 app = (pps_params_t *)data;
878 *app = pps->ppsparam;
879 app->api_version = PPS_API_VERS_1;
880 return (0);
881 case PPS_IOC_GETCAP:
882 *(int*)data = pps->ppscap;
883 return (0);
884 case PPS_IOC_FETCH:
885 pipi = (pps_info_t *)data;
886 pps->ppsinfo.current_mode = pps->ppsparam.mode;
887 *pipi = pps->ppsinfo;
888 return (0);
889 case PPS_IOC_KCBIND:
890 #ifdef PPS_SYNC
891 epi = (int *)data;
892 /* XXX Only root should be able to do this */
893 if (*epi & ~pps->ppscap)
894 return (EINVAL);
895 pps->kcmode = *epi;
896 return (0);
897 #else
898 return (EOPNOTSUPP);
899 #endif
900 default:
901 return (EPASSTHROUGH);
902 }
903 }
904
905 void
pps_init(struct pps_state * pps)906 pps_init(struct pps_state *pps)
907 {
908
909 KASSERT(mutex_owned(&timecounter_lock));
910
911 pps->ppscap |= PPS_TSFMT_TSPEC;
912 if (pps->ppscap & PPS_CAPTUREASSERT)
913 pps->ppscap |= PPS_OFFSETASSERT;
914 if (pps->ppscap & PPS_CAPTURECLEAR)
915 pps->ppscap |= PPS_OFFSETCLEAR;
916 }
917
918 /*
919 * capture a timetamp in the pps structure
920 */
921 void
pps_capture(struct pps_state * pps)922 pps_capture(struct pps_state *pps)
923 {
924 struct timehands *th;
925
926 KASSERT(mutex_owned(&timecounter_lock));
927 KASSERT(pps != NULL);
928
929 th = timehands;
930 pps->capgen = th->th_generation;
931 pps->capth = th;
932 pps->capcount = (u_int64_t)tc_delta(th) + th->th_offset_count;
933 if (pps->capgen != th->th_generation)
934 pps->capgen = 0;
935 }
936
937 #ifdef PPS_DEBUG
938 int ppsdebug = 0;
939 #endif
940
941 /*
942 * process a pps_capture()ed event
943 */
944 void
pps_event(struct pps_state * pps,int event)945 pps_event(struct pps_state *pps, int event)
946 {
947 pps_ref_event(pps, event, NULL, PPS_REFEVNT_PPS|PPS_REFEVNT_CAPTURE);
948 }
949
950 /*
951 * extended pps api / kernel pll/fll entry point
952 *
953 * feed reference time stamps to PPS engine
954 *
955 * will simulate a PPS event and feed
956 * the NTP PLL/FLL if requested.
957 *
958 * the ref time stamps should be roughly once
959 * a second but do not need to be exactly in phase
960 * with the UTC second but should be close to it.
961 * this relaxation of requirements allows callout
962 * driven timestamping mechanisms to feed to pps
963 * capture/kernel pll logic.
964 *
965 * calling pattern is:
966 * pps_capture() (for PPS_REFEVNT_{CAPTURE|CAPCUR})
967 * read timestamp from reference source
968 * pps_ref_event()
969 *
970 * supported refmodes:
971 * PPS_REFEVNT_CAPTURE
972 * use system timestamp of pps_capture()
973 * PPS_REFEVNT_CURRENT
974 * use system timestamp of this call
975 * PPS_REFEVNT_CAPCUR
976 * use average of read capture and current system time stamp
977 * PPS_REFEVNT_PPS
978 * assume timestamp on second mark - ref_ts is ignored
979 *
980 */
981
982 void
pps_ref_event(struct pps_state * pps,int event,struct bintime * ref_ts,int refmode)983 pps_ref_event(struct pps_state *pps,
984 int event,
985 struct bintime *ref_ts,
986 int refmode
987 )
988 {
989 struct bintime bt; /* current time */
990 struct bintime btd; /* time difference */
991 struct bintime bt_ref; /* reference time */
992 struct timespec ts, *tsp, *osp;
993 struct timehands *th;
994 u_int64_t tcount, acount, dcount, *pcount;
995 int foff, gen;
996 #ifdef PPS_SYNC
997 int fhard;
998 #endif
999 pps_seq_t *pseq;
1000
1001 KASSERT(mutex_owned(&timecounter_lock));
1002
1003 KASSERT(pps != NULL);
1004
1005 /* pick up current time stamp if needed */
1006 if (refmode & (PPS_REFEVNT_CURRENT|PPS_REFEVNT_CAPCUR)) {
1007 /* pick up current time stamp */
1008 th = timehands;
1009 gen = th->th_generation;
1010 tcount = (u_int64_t)tc_delta(th) + th->th_offset_count;
1011 if (gen != th->th_generation)
1012 gen = 0;
1013
1014 /* If the timecounter was wound up underneath us, bail out. */
1015 if (pps->capgen == 0 ||
1016 pps->capgen != pps->capth->th_generation ||
1017 gen == 0 ||
1018 gen != pps->capgen) {
1019 #ifdef PPS_DEBUG
1020 if (ppsdebug & 0x1) {
1021 log(LOG_DEBUG,
1022 "pps_ref_event(pps=%p, event=%d, ...): DROP (wind-up)\n",
1023 pps, event);
1024 }
1025 #endif
1026 return;
1027 }
1028 } else {
1029 tcount = 0; /* keep GCC happy */
1030 }
1031
1032 #ifdef PPS_DEBUG
1033 if (ppsdebug & 0x1) {
1034 struct timespec tmsp;
1035
1036 if (ref_ts == NULL) {
1037 tmsp.tv_sec = 0;
1038 tmsp.tv_nsec = 0;
1039 } else {
1040 bintime2timespec(ref_ts, &tmsp);
1041 }
1042
1043 log(LOG_DEBUG,
1044 "pps_ref_event(pps=%p, event=%d, ref_ts=%"PRIi64
1045 ".%09"PRIi32", refmode=0x%1x)\n",
1046 pps, event, tmsp.tv_sec, (int32_t)tmsp.tv_nsec, refmode);
1047 }
1048 #endif
1049
1050 /* setup correct event references */
1051 if (event == PPS_CAPTUREASSERT) {
1052 tsp = &pps->ppsinfo.assert_timestamp;
1053 osp = &pps->ppsparam.assert_offset;
1054 foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
1055 #ifdef PPS_SYNC
1056 fhard = pps->kcmode & PPS_CAPTUREASSERT;
1057 #endif
1058 pcount = &pps->ppscount[0];
1059 pseq = &pps->ppsinfo.assert_sequence;
1060 } else {
1061 tsp = &pps->ppsinfo.clear_timestamp;
1062 osp = &pps->ppsparam.clear_offset;
1063 foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
1064 #ifdef PPS_SYNC
1065 fhard = pps->kcmode & PPS_CAPTURECLEAR;
1066 #endif
1067 pcount = &pps->ppscount[1];
1068 pseq = &pps->ppsinfo.clear_sequence;
1069 }
1070
1071 /* determine system time stamp according to refmode */
1072 dcount = 0; /* keep GCC happy */
1073 switch (refmode & PPS_REFEVNT_RMASK) {
1074 case PPS_REFEVNT_CAPTURE:
1075 acount = pps->capcount; /* use capture timestamp */
1076 break;
1077
1078 case PPS_REFEVNT_CURRENT:
1079 acount = tcount; /* use current timestamp */
1080 break;
1081
1082 case PPS_REFEVNT_CAPCUR:
1083 /*
1084 * calculate counter value between pps_capture() and
1085 * pps_ref_event()
1086 */
1087 dcount = tcount - pps->capcount;
1088 acount = (dcount / 2) + pps->capcount;
1089 break;
1090
1091 default: /* ignore call error silently */
1092 return;
1093 }
1094
1095 /*
1096 * If the timecounter changed, we cannot compare the count values, so
1097 * we have to drop the rest of the PPS-stuff until the next event.
1098 */
1099 if (pps->ppstc != pps->capth->th_counter) {
1100 pps->ppstc = pps->capth->th_counter;
1101 pps->capcount = acount;
1102 *pcount = acount;
1103 pps->ppscount[2] = acount;
1104 #ifdef PPS_DEBUG
1105 if (ppsdebug & 0x1) {
1106 log(LOG_DEBUG,
1107 "pps_ref_event(pps=%p, event=%d, ...): DROP (time-counter change)\n",
1108 pps, event);
1109 }
1110 #endif
1111 return;
1112 }
1113
1114 pps->capcount = acount;
1115
1116 /* Convert the count to a bintime. */
1117 bt = pps->capth->th_offset;
1118 bintime_addx(&bt, pps->capth->th_scale * (acount - pps->capth->th_offset_count));
1119 bintime_add(&bt, &timebasebin);
1120
1121 if ((refmode & PPS_REFEVNT_PPS) == 0) {
1122 /* determine difference to reference time stamp */
1123 bt_ref = *ref_ts;
1124
1125 btd = bt;
1126 bintime_sub(&btd, &bt_ref);
1127
1128 /*
1129 * simulate a PPS timestamp by dropping the fraction
1130 * and applying the offset
1131 */
1132 if (bt.frac >= (uint64_t)1<<63) /* skip to nearest second */
1133 bt.sec++;
1134 bt.frac = 0;
1135 bintime_add(&bt, &btd);
1136 } else {
1137 /*
1138 * create ref_ts from current time -
1139 * we are supposed to be called on
1140 * the second mark
1141 */
1142 bt_ref = bt;
1143 if (bt_ref.frac >= (uint64_t)1<<63) /* skip to nearest second */
1144 bt_ref.sec++;
1145 bt_ref.frac = 0;
1146 }
1147
1148 /* convert bintime to timestamp */
1149 bintime2timespec(&bt, &ts);
1150
1151 /* If the timecounter was wound up underneath us, bail out. */
1152 if (pps->capgen != pps->capth->th_generation)
1153 return;
1154
1155 /* store time stamp */
1156 *pcount = pps->capcount;
1157 (*pseq)++;
1158 *tsp = ts;
1159
1160 /* add offset correction */
1161 if (foff) {
1162 timespecadd(tsp, osp, tsp);
1163 if (tsp->tv_nsec < 0) {
1164 tsp->tv_nsec += 1000000000;
1165 tsp->tv_sec -= 1;
1166 }
1167 }
1168
1169 #ifdef PPS_DEBUG
1170 if (ppsdebug & 0x2) {
1171 struct timespec ts2;
1172 struct timespec ts3;
1173
1174 bintime2timespec(&bt_ref, &ts2);
1175
1176 bt.sec = 0;
1177 bt.frac = 0;
1178
1179 if (refmode & PPS_REFEVNT_CAPCUR) {
1180 bintime_addx(&bt, pps->capth->th_scale * dcount);
1181 }
1182 bintime2timespec(&bt, &ts3);
1183
1184 log(LOG_DEBUG, "ref_ts=%"PRIi64".%09"PRIi32
1185 ", ts=%"PRIi64".%09"PRIi32", read latency=%"PRIi64" ns\n",
1186 ts2.tv_sec, (int32_t)ts2.tv_nsec,
1187 tsp->tv_sec, (int32_t)tsp->tv_nsec,
1188 timespec2ns(&ts3));
1189 }
1190 #endif
1191
1192 #ifdef PPS_SYNC
1193 if (fhard) {
1194 uint64_t scale;
1195 uint64_t div;
1196
1197 /*
1198 * Feed the NTP PLL/FLL.
1199 * The FLL wants to know how many (hardware) nanoseconds
1200 * elapsed since the previous event (mod 1 second) thus
1201 * we are actually looking at the frequency difference scaled
1202 * in nsec.
1203 * As the counter time stamps are not truly at 1Hz
1204 * we need to scale the count by the elapsed
1205 * reference time.
1206 * valid sampling interval: [0.5..2[ sec
1207 */
1208
1209 /* calculate elapsed raw count */
1210 tcount = pps->capcount - pps->ppscount[2];
1211 pps->ppscount[2] = pps->capcount;
1212 tcount &= pps->capth->th_counter->tc_counter_mask;
1213
1214 /* calculate elapsed ref time */
1215 btd = bt_ref;
1216 bintime_sub(&btd, &pps->ref_time);
1217 pps->ref_time = bt_ref;
1218
1219 /* check that we stay below 2 sec */
1220 if (btd.sec < 0 || btd.sec > 1)
1221 return;
1222
1223 /* we want at least 0.5 sec between samples */
1224 if (btd.sec == 0 && btd.frac < (uint64_t)1<<63)
1225 return;
1226
1227 /*
1228 * calculate cycles per period by multiplying
1229 * the frequency with the elapsed period
1230 * we pick a fraction of 30 bits
1231 * ~1ns resolution for elapsed time
1232 */
1233 div = (uint64_t)btd.sec << 30;
1234 div |= (btd.frac >> 34) & (((uint64_t)1 << 30) - 1);
1235 div *= pps->capth->th_counter->tc_frequency;
1236 div >>= 30;
1237
1238 if (div == 0) /* safeguard */
1239 return;
1240
1241 scale = (uint64_t)1 << 63;
1242 scale /= div;
1243 scale *= 2;
1244
1245 bt.sec = 0;
1246 bt.frac = 0;
1247 bintime_addx(&bt, scale * tcount);
1248 bintime2timespec(&bt, &ts);
1249
1250 #ifdef PPS_DEBUG
1251 if (ppsdebug & 0x4) {
1252 struct timespec ts2;
1253 int64_t df;
1254
1255 bintime2timespec(&bt_ref, &ts2);
1256 df = timespec2ns(&ts);
1257 if (df > 500000000)
1258 df -= 1000000000;
1259 log(LOG_DEBUG, "hardpps: ref_ts=%"PRIi64
1260 ".%09"PRIi32", ts=%"PRIi64".%09"PRIi32
1261 ", freqdiff=%"PRIi64" ns/s\n",
1262 ts2.tv_sec, (int32_t)ts2.tv_nsec,
1263 tsp->tv_sec, (int32_t)tsp->tv_nsec,
1264 df);
1265 }
1266 #endif
1267
1268 hardpps(tsp, timespec2ns(&ts));
1269 }
1270 #endif
1271 }
1272
1273 /*
1274 * Timecounters need to be updated every so often to prevent the hardware
1275 * counter from overflowing. Updating also recalculates the cached values
1276 * used by the get*() family of functions, so their precision depends on
1277 * the update frequency.
1278 */
1279
1280 static int tc_tick;
1281
1282 void
tc_ticktock(void)1283 tc_ticktock(void)
1284 {
1285 static int count;
1286
1287 if (++count < tc_tick)
1288 return;
1289 count = 0;
1290 mutex_spin_enter(&timecounter_lock);
1291 if (timecounter_bad != 0) {
1292 /* An existing timecounter has gone bad, pick a new one. */
1293 (void)atomic_swap_uint(&timecounter_bad, 0);
1294 if (timecounter->tc_quality < 0) {
1295 tc_pick();
1296 }
1297 }
1298 tc_windup();
1299 mutex_spin_exit(&timecounter_lock);
1300 }
1301
1302 void
inittimecounter(void)1303 inittimecounter(void)
1304 {
1305 u_int p;
1306
1307 mutex_init(&timecounter_lock, MUTEX_DEFAULT, IPL_HIGH);
1308
1309 /*
1310 * Set the initial timeout to
1311 * max(1, <approx. number of hardclock ticks in a millisecond>).
1312 * People should probably not use the sysctl to set the timeout
1313 * to smaller than its inital value, since that value is the
1314 * smallest reasonable one. If they want better timestamps they
1315 * should use the non-"get"* functions.
1316 */
1317 if (hz > 1000)
1318 tc_tick = (hz + 500) / 1000;
1319 else
1320 tc_tick = 1;
1321 p = (tc_tick * 1000000) / hz;
1322 aprint_verbose("timecounter: Timecounters tick every %d.%03u msec\n",
1323 p / 1000, p % 1000);
1324
1325 /* warm up new timecounter (again) and get rolling. */
1326 (void)timecounter->tc_get_timecount(timecounter);
1327 (void)timecounter->tc_get_timecount(timecounter);
1328 }
1329