1155 Hilbert basis elements 20 lattice points in polytope (Hilbert basis elements of degree 1) 319 extreme rays 4134 support hyperplanes 5 6embedding dimension = 9 7rank = 9 (maximal) 8external index = 1 9internal index = 4 10original monoid is not integrally closed in chosen lattice 11 12size of triangulation = 281 13resulting sum of |det|s = 1700 14 15grading: 161 1 1 1 1 1 1 1 1 17 18degrees of extreme rays: 194:19 20 21multiplicity = 425/65536 22multiplicity (float) = 0.00648498535156 23 24Hilbert series: 251 -1 0 0 11 -11 6 -4 58 -34 33 -12 150 -30 60 14 117 2 29 16 16 0 3 1 26denominator with 9 factors: 271:1 4:8 28 29degree of Hilbert Series as rational function = -10 30 31Hilbert series with cyclotomic denominator: 32-1 1 0 0 -11 11 -6 4 -58 34 -33 12 -150 30 -60 -14 -117 -2 -29 -16 -16 0 -3 -1 33cyclotomic denominator: 341:9 2:8 4:8 35 36Hilbert quasi-polynomial of period 4: 37 0: 2642411520 2334916608 885112832 195743744 28698880 2949632 225568 13136 425 38 1: 47747385 -21245592 -21642612 -4398408 -543130 33432 41132 7368 425 39 2: -55883520 -47314944 397056 9730560 3110240 491904 69104 8160 425 40 3: -6462855 -15019176 -5887796 3363080 543270 -162904 -6804 5240 425 41with common denominator = 2642411520 42 43*********************************************************************** 44 450 lattice points in polytope (Hilbert basis elements of degree 1): 46 47155 further Hilbert basis elements of higher degree: 48 0 0 0 0 1 1 1 0 1 49 0 0 1 1 1 1 0 0 0 50 0 1 0 0 1 1 1 0 0 51 0 1 0 1 1 0 0 0 1 52 0 1 0 1 1 1 0 0 0 53 0 1 1 0 1 0 1 0 0 54 0 1 1 0 1 1 0 0 0 55 0 1 1 1 0 0 1 0 0 56 0 1 1 1 1 0 0 0 0 57 1 0 0 1 0 1 1 0 0 58 1 0 0 1 1 1 0 0 0 59 1 0 1 0 0 0 0 1 1 60 1 0 1 0 0 1 0 1 0 61 1 0 1 1 1 0 0 0 0 62 1 1 0 0 0 1 0 0 1 63 1 1 0 0 1 0 1 0 0 64 1 1 0 1 0 0 0 1 0 65 1 1 1 0 1 0 0 0 0 66 1 1 1 1 0 0 0 0 0 67 0 1 1 1 1 1 1 0 0 68 1 1 0 0 1 1 1 0 1 69 1 1 0 1 1 1 0 0 1 70 1 1 0 1 1 1 1 0 0 71 1 1 1 1 1 0 1 0 0 72 1 1 1 1 1 1 0 0 0 73 1 1 0 1 1 1 1 0 1 74 1 1 1 1 1 1 1 0 0 75 1 1 0 1 1 2 1 0 1 76 1 1 0 1 2 1 1 0 1 77 2 1 1 1 1 1 0 1 0 78 0 2 1 1 2 1 1 0 1 79 0 2 1 1 2 2 1 0 0 80 0 2 2 1 2 1 1 0 0 81 1 1 0 1 2 2 1 0 1 82 1 1 1 1 1 1 1 1 1 83 1 1 1 1 2 1 1 0 1 84 1 1 1 2 2 1 0 0 1 85 1 1 1 2 2 2 0 0 0 86 1 1 2 2 2 1 0 0 0 87 1 2 0 1 2 1 1 0 1 88 1 2 1 1 1 1 1 0 1 89 1 2 1 1 1 1 1 1 0 90 1 2 1 1 2 1 0 0 1 91 1 2 1 1 2 1 1 0 0 92 1 2 1 2 1 1 1 0 0 93 1 2 2 1 2 0 1 0 0 94 1 2 2 1 2 1 0 0 0 95 1 2 2 2 1 0 1 0 0 96 2 1 0 1 1 2 1 0 1 97 2 1 1 0 1 1 1 1 1 98 2 1 1 1 1 1 0 1 1 99 2 1 1 2 1 1 0 1 0 100 2 1 1 2 1 1 1 0 0 101 2 1 2 1 1 0 0 1 1 102 2 1 2 1 1 1 0 1 0 103 2 2 1 1 1 1 0 0 1 104 0 2 1 1 2 1 2 0 1 105 1 1 0 2 2 2 1 0 1 106 1 1 1 2 2 1 1 0 1 107 1 2 2 1 1 1 1 1 0 108 2 0 1 1 1 2 1 1 1 109 2 1 2 2 1 1 0 1 0 110 2 2 1 1 1 1 0 1 1 111 2 2 1 1 1 1 1 1 0 112 2 2 2 1 1 1 0 1 0 113 0 2 2 2 2 2 1 0 0 114 1 2 0 1 2 2 1 0 2 115 1 2 1 2 2 2 0 0 1 116 1 2 2 2 1 1 1 1 0 117 1 2 2 2 2 2 0 0 0 118 2 1 0 1 2 2 2 0 1 119 2 1 1 0 1 2 1 1 2 120 2 1 1 2 1 1 1 1 1 121 2 1 1 2 1 2 1 1 0 122 2 1 1 2 2 2 0 0 1 123 2 1 2 1 1 2 0 1 1 124 2 2 0 1 2 2 1 0 1 125 2 2 1 1 1 1 0 1 2 126 2 2 1 1 1 1 1 1 1 127 2 2 1 1 1 2 0 1 1 128 2 2 1 1 2 2 0 0 1 129 2 2 1 2 1 1 0 1 1 130 2 2 1 2 1 1 2 0 0 131 2 2 1 2 2 1 0 0 1 132 2 2 1 2 2 1 1 0 0 133 2 2 2 1 1 1 0 1 1 134 2 2 2 1 1 1 1 1 0 135 2 2 2 2 1 0 0 1 1 136 2 2 2 2 1 1 0 1 0 137 2 2 2 2 2 0 1 0 0 138 2 2 2 2 2 1 0 0 0 139 1 3 1 1 2 1 2 0 1 140 2 2 1 1 1 1 1 1 2 141 2 2 1 1 1 2 1 1 1 142 2 2 2 2 1 0 1 1 1 143 2 2 2 2 2 0 0 1 1 144 3 1 1 1 1 2 1 1 1 145 3 2 1 1 1 1 1 1 1 146 3 2 2 1 1 1 0 1 1 147 1 1 1 2 2 3 2 0 1 148 1 2 1 1 2 2 3 0 1 149 1 2 1 1 2 3 2 0 1 150 1 2 1 2 2 2 1 0 2 151 1 2 1 2 2 3 1 0 1 152 1 2 1 3 2 2 1 0 1 153 2 1 2 2 1 2 1 1 1 154 2 2 1 2 1 1 1 1 2 155 2 2 1 2 1 1 2 1 1 156 2 2 1 2 1 2 1 1 1 157 2 2 1 3 1 1 1 1 1 158 2 2 1 3 1 2 1 1 0 159 2 2 2 2 1 1 2 1 0 160 2 2 2 2 2 0 1 1 1 161 2 3 1 2 2 0 1 1 1 162 3 2 1 1 1 2 1 1 1 163 3 2 1 2 1 1 1 1 1 164 3 2 2 1 1 1 0 2 1 165 3 2 2 2 1 1 1 1 0 166 2 2 1 1 2 1 2 1 2 167 2 2 1 2 1 2 2 1 1 168 2 2 2 3 1 1 1 1 1 169 2 2 2 3 1 2 1 1 0 170 2 3 1 2 1 1 1 1 2 171 2 3 2 2 2 0 1 1 1 172 2 3 2 3 1 0 1 1 1 173 2 3 2 3 2 0 0 1 1 174 3 2 2 2 2 0 1 1 1 175 3 2 2 3 1 1 1 1 0 176 3 2 3 2 2 0 0 1 1 177 0 3 2 1 3 2 3 0 1 178 1 2 1 2 2 3 3 0 1 179 1 2 2 2 2 3 2 0 1 180 1 2 3 1 2 2 2 1 1 181 1 3 1 2 2 3 2 0 1 182 1 3 2 2 2 1 2 1 1 183 1 3 3 1 2 2 2 1 0 184 1 3 3 2 2 1 1 1 1 185 2 2 3 3 1 1 1 1 1 186 2 2 3 3 1 2 1 1 0 187 2 3 1 1 2 2 3 0 1 188 2 3 1 2 1 2 2 1 1 189 2 3 2 2 2 0 2 1 1 190 2 3 2 3 2 0 1 1 1 191 3 1 1 2 2 2 2 1 1 192 3 1 3 3 2 2 0 1 0 193 3 2 2 2 2 1 2 1 0 194 3 2 3 3 1 1 1 1 0 195 2 3 1 2 2 1 2 1 2 196 3 3 2 3 2 0 1 1 1 197 3 3 3 3 3 0 0 1 1 198 4 1 2 2 2 2 1 2 1 199 4 3 1 2 1 2 2 1 1 200 4 3 2 2 1 2 2 1 1 201 3 4 3 4 3 0 0 1 1 202 4 3 2 2 1 2 2 2 1 203 20419 extreme rays: 205 0 0 0 0 1 1 1 0 1 206 0 0 1 1 1 1 0 0 0 207 0 1 0 0 1 1 1 0 0 208 0 1 0 1 1 0 0 0 1 209 0 1 0 1 1 1 0 0 0 210 0 1 1 0 1 0 1 0 0 211 0 1 1 0 1 1 0 0 0 212 0 1 1 1 0 0 1 0 0 213 0 1 1 1 1 0 0 0 0 214 1 0 0 1 0 1 1 0 0 215 1 0 0 1 1 1 0 0 0 216 1 0 1 0 0 0 0 1 1 217 1 0 1 0 0 1 0 1 0 218 1 0 1 1 1 0 0 0 0 219 1 1 0 0 0 1 0 0 1 220 1 1 0 0 1 0 1 0 0 221 1 1 0 1 0 0 0 1 0 222 1 1 1 0 1 0 0 0 0 223 1 1 1 1 0 0 0 0 0 224 225134 support hyperplanes: 226 -11 5 9 -3 5 13 1 9 -7 227 -7 -3 1 9 17 5 -7 1 5 228 -7 1 5 1 1 9 5 5 -3 229 -7 1 9 -3 13 17 -7 9 -11 230 -5 3 5 -1 1 5 1 3 -3 231 -3 1 -3 5 5 1 -3 5 1 232 -3 1 1 1 1 1 1 1 1 233 -3 1 3 -1 1 3 1 3 -1 234 -3 1 3 1 -1 3 3 1 -1 235 -3 3 -1 1 3 5 -3 -1 5 236 -3 5 -3 5 1 -3 1 9 1 237 -3 5 -3 5 1 1 -3 5 1 238 -1 -5 -1 7 7 3 -1 -1 3 239 -1 -3 1 3 5 -1 -1 1 5 240 -1 -1 -1 3 3 -1 -1 3 3 241 -1 -1 1 1 1 -1 1 1 3 242 -1 -1 2 0 0 1 2 2 1 243 -1 -1 3 -1 -1 3 3 3 3 244 -1 -1 3 -1 1 1 1 3 1 245 -1 0 1 0 0 1 1 1 0 246 -1 1 -1 1 1 -1 1 3 1 247 -1 1 -1 1 1 1 -1 1 1 248 -1 1 -1 1 1 1 -1 3 -1 249 -1 1 -1 1 1 3 -1 -1 3 250 -1 1 -1 1 1 3 -1 5 -3 251 -1 1 -1 2 1 0 -1 2 0 252 -1 1 -1 3 1 -1 -1 3 1 253 -1 1 0 0 1 2 -1 3 -2 254 -1 1 0 1 0 0 0 1 0 255 -1 1 0 2 0 -1 0 2 1 256 -1 1 1 -1 1 1 1 1 -1 257 -1 1 1 -1 1 3 -1 1 -1 258 -1 1 1 0 0 1 0 1 -1 259 -1 1 1 1 -1 1 1 1 -1 260 -1 1 2 0 0 1 0 0 -1 261 -1 1 2 1 0 0 0 -1 0 262 -1 1 4 2 0 -1 0 -2 1 263 -1 3 -5 3 3 -1 -1 7 -1 264 -1 3 -1 -1 3 -1 3 3 -1 265 -1 3 -1 1 1 -1 1 3 -1 266 -1 3 -1 3 -1 -1 -1 3 3 267 -1 3 -1 3 -1 -1 3 3 -1 268 -1 3 3 -1 -1 3 -1 -1 -1 269 0 -2 3 -1 2 1 0 3 1 270 0 -1 0 1 1 0 0 0 1 271 0 -1 1 0 1 0 0 1 1 272 0 0 0 0 0 0 0 0 1 273 0 0 0 0 0 0 0 1 0 274 0 0 0 0 0 0 1 0 0 275 0 0 0 0 0 1 0 0 0 276 0 0 0 0 1 -1 1 1 1 277 0 0 0 1 0 0 0 0 0 278 0 0 0 1 1 0 -1 0 0 279 0 0 1 -1 0 1 0 1 1 280 0 0 1 0 0 0 0 0 0 281 0 0 1 0 1 1 -1 0 -1 282 0 0 1 1 -1 0 1 -1 0 283 0 0 1 1 1 0 -1 -1 0 284 0 1 0 -1 1 0 1 0 0 285 0 1 0 -1 1 0 1 1 -1 286 0 1 0 0 0 1 -1 -1 1 287 0 1 0 1 -1 0 2 1 -1 288 0 2 0 -1 1 0 1 2 -2 289 0 2 1 0 -1 1 -1 -2 1 290 1 -7 1 5 5 9 1 1 -3 291 1 -3 -1 3 3 1 1 -1 1 292 1 -3 1 1 1 1 1 1 1 293 1 -3 1 1 5 -3 1 1 5 294 1 -3 1 5 1 1 1 -3 1 295 1 -3 1 5 5 1 -3 -3 1 296 1 -3 5 -1 3 1 -1 3 1 297 1 -3 5 9 13 1 -11 -7 1 298 1 -1 -1 1 1 1 1 -1 1 299 1 -1 0 1 1 0 0 -1 0 300 1 -1 1 1 1 1 -1 -1 -1 301 1 -1 1 3 -1 1 1 -1 -1 302 1 -1 3 0 2 1 -2 0 -1 303 1 -1 3 3 5 1 -5 -3 -1 304 1 0 0 -1 2 -1 1 0 0 305 1 0 0 0 0 0 0 -1 0 306 1 0 0 0 1 -1 0 0 0 307 1 1 -3 1 1 1 1 1 1 308 1 1 -3 1 1 1 1 5 -3 309 1 1 -3 1 1 5 1 -3 5 310 1 1 -3 5 5 -3 -3 5 1 311 1 1 -1 -1 1 1 1 -1 1 312 1 1 -1 1 1 -1 -1 1 1 313 1 1 1 -3 1 1 1 1 1 314 1 1 1 -3 3 -1 3 1 -1 315 1 1 1 -3 5 -3 5 1 1 316 1 1 1 -1 -1 1 -1 -1 1 317 1 1 1 -1 1 -1 1 -1 -1 318 1 1 1 1 -3 1 1 -3 1 319 1 1 1 1 -1 -1 3 -1 -1 320 1 1 1 1 1 -3 1 1 1 321 1 1 1 1 1 1 -3 -3 1 322 1 1 5 1 1 -3 1 -3 1 323 1 2 0 -3 2 1 1 0 -1 324 1 2 1 -1 -1 3 -2 -2 0 325 1 3 -1 -3 3 1 1 -1 1 326 1 3 1 -5 5 -1 5 1 -3 327 1 3 1 -1 -1 1 -1 -3 1 328 1 3 1 -1 -1 3 -3 -3 1 329 1 5 -3 -3 5 1 1 9 -7 330 1 5 1 -7 5 1 5 1 -3 331 1 5 1 -7 9 -3 9 1 -3 332 1 5 3 -3 -1 7 -5 -3 -1 333 2 -1 0 1 1 0 0 -1 -1 334 2 1 0 -3 4 -1 2 0 -2 335 3 -5 -1 3 3 3 3 -1 -1 336 3 -5 3 7 -1 3 3 -5 -1 337 3 -1 -1 -1 3 -1 3 -1 -1 338 3 -1 -1 -1 7 -5 3 3 3 339 3 -1 -1 3 3 -1 -1 -1 -1 340 3 -1 3 -1 3 -1 -1 -1 -1 341 3 -1 3 3 7 -1 -5 -5 -1 342 3 1 1 -1 1 -1 -1 -3 1 343 3 3 -1 -5 3 3 3 -1 -1 344 3 3 -1 -1 -1 3 -1 -5 3 345 3 3 1 -1 -1 1 -3 -5 3 346 3 3 3 -1 -1 -1 -1 -5 3 347 3 7 3 -5 -1 3 -1 -5 -1 348 3 7 3 -1 -5 3 -5 -9 7 349 3 11 3 -1 -5 7 -9 -13 7 350 5 1 1 -7 9 -3 5 1 -3 351 5 1 1 -3 5 -3 1 -3 -3 352 5 5 1 -3 -3 5 -3 -7 1 353 5 9 1 -3 -3 5 -7 -11 5 354 7 -1 3 -1 7 -5 -1 -5 -1 355 7 3 -1 -9 15 -5 7 -1 -5 356 7 11 3 -9 -1 7 -5 -9 -1 357 9 -7 1 5 5 1 1 -7 -3 358 9 -3 1 1 5 -3 1 -7 -3 359 11 -1 -1 -1 7 -5 3 -5 -5 360 361