133 Hilbert basis elements
219 lattice points in polytope (Hilbert basis elements of degree 1)
319 extreme rays
4134 support hyperplanes
5
6embedding dimension = 9
7rank = 9 (maximal)
8external index = 4
9internal index = 1
10original monoid is not integrally closed in chosen lattice
11
12size of triangulation   = 281
13resulting sum of |det|s = 425
14
15grading:
161 1 1 1 1 1 1 1 1
17with denominator = 4
18
19degrees of extreme rays:
201:19
21
22Hilbert basis elements are not of degree 1
23
24multiplicity = 425
25
26Hilbert series:
271 10 49 137 161 63 4
28denominator with 9 factors:
291:9
30
31degree of Hilbert Series as rational function = -3
32
33Hilbert polynomial:
3440320 142512 216092 191156 112105 46088 14098 3284 425
35with common denominator = 40320
36
37***********************************************************************
38
3919 lattice points in polytope (Hilbert basis elements of degree 1):
40 0 0 0 0 1 1 1 0 1
41 0 0 1 1 1 1 0 0 0
42 0 1 0 0 1 1 1 0 0
43 0 1 0 1 1 0 0 0 1
44 0 1 0 1 1 1 0 0 0
45 0 1 1 0 1 0 1 0 0
46 0 1 1 0 1 1 0 0 0
47 0 1 1 1 0 0 1 0 0
48 0 1 1 1 1 0 0 0 0
49 1 0 0 1 0 1 1 0 0
50 1 0 0 1 1 1 0 0 0
51 1 0 1 0 0 0 0 1 1
52 1 0 1 0 0 1 0 1 0
53 1 0 1 1 1 0 0 0 0
54 1 1 0 0 0 1 0 0 1
55 1 1 0 0 1 0 1 0 0
56 1 1 0 1 0 0 0 1 0
57 1 1 1 0 1 0 0 0 0
58 1 1 1 1 0 0 0 0 0
59
6014 further Hilbert basis elements of higher degree:
61 1 1 0 1 1 2 1 0 1
62 1 1 0 1 2 1 1 0 1
63 2 1 1 1 1 1 0 1 0
64 1 3 1 1 2 1 2 0 1
65 2 2 0 2 2 2 1 0 1
66 2 2 1 1 1 1 1 1 2
67 2 2 1 1 1 2 1 1 1
68 2 2 2 2 1 0 1 1 1
69 2 2 2 2 2 0 0 1 1
70 3 1 1 1 1 2 1 1 1
71 3 2 1 1 1 1 1 1 1
72 3 2 2 1 1 1 0 1 1
73 2 3 1 2 2 1 2 1 2
74 3 3 2 3 2 0 1 1 1
75
7619 extreme rays:
77 0 0 0 0 1 1 1 0 1
78 0 0 1 1 1 1 0 0 0
79 0 1 0 0 1 1 1 0 0
80 0 1 0 1 1 0 0 0 1
81 0 1 0 1 1 1 0 0 0
82 0 1 1 0 1 0 1 0 0
83 0 1 1 0 1 1 0 0 0
84 0 1 1 1 0 0 1 0 0
85 0 1 1 1 1 0 0 0 0
86 1 0 0 1 0 1 1 0 0
87 1 0 0 1 1 1 0 0 0
88 1 0 1 0 0 0 0 1 1
89 1 0 1 0 0 1 0 1 0
90 1 0 1 1 1 0 0 0 0
91 1 1 0 0 0 1 0 0 1
92 1 1 0 0 1 0 1 0 0
93 1 1 0 1 0 0 0 1 0
94 1 1 1 0 1 0 0 0 0
95 1 1 1 1 0 0 0 0 0
96
97134 support hyperplanes:
98 -11  5  9 -3  5 13   1   9  -7
99  -7 -3  1  9 17  5  -7   1   5
100  -7  1  5  1  1  9   5   5  -3
101  -7  1  9 -3 13 17  -7   9 -11
102  -5  3  5 -1  1  5   1   3  -3
103  -3  1 -3  5  5  1  -3   5   1
104  -3  1  1  1  1  1   1   1   1
105  -3  1  3 -1  1  3   1   3  -1
106  -3  1  3  1 -1  3   3   1  -1
107  -3  3 -1  1  3  5  -3  -1   5
108  -3  5 -3  5  1 -3   1   9   1
109  -3  5 -3  5  1  1  -3   5   1
110  -1 -5 -1  7  7  3  -1  -1   3
111  -1 -3  1  3  5 -1  -1   1   5
112  -1 -1 -1  3  3 -1  -1   3   3
113  -1 -1  1  1  1 -1   1   1   3
114  -1 -1  2  0  0  1   2   2   1
115  -1 -1  3 -1 -1  3   3   3   3
116  -1 -1  3 -1  1  1   1   3   1
117  -1  0  1  0  0  1   1   1   0
118  -1  1 -1  1  1 -1   1   3   1
119  -1  1 -1  1  1  1  -1   1   1
120  -1  1 -1  1  1  1  -1   3  -1
121  -1  1 -1  1  1  3  -1  -1   3
122  -1  1 -1  1  1  3  -1   5  -3
123  -1  1 -1  2  1  0  -1   2   0
124  -1  1 -1  3  1 -1  -1   3   1
125  -1  1  0  0  1  2  -1   3  -2
126  -1  1  0  1  0  0   0   1   0
127  -1  1  0  2  0 -1   0   2   1
128  -1  1  1 -1  1  1   1   1  -1
129  -1  1  1 -1  1  3  -1   1  -1
130  -1  1  1  0  0  1   0   1  -1
131  -1  1  1  1 -1  1   1   1  -1
132  -1  1  2  0  0  1   0   0  -1
133  -1  1  2  1  0  0   0  -1   0
134  -1  1  4  2  0 -1   0  -2   1
135  -1  3 -5  3  3 -1  -1   7  -1
136  -1  3 -1 -1  3 -1   3   3  -1
137  -1  3 -1  1  1 -1   1   3  -1
138  -1  3 -1  3 -1 -1  -1   3   3
139  -1  3 -1  3 -1 -1   3   3  -1
140  -1  3  3 -1 -1  3  -1  -1  -1
141   0 -2  3 -1  2  1   0   3   1
142   0 -1  0  1  1  0   0   0   1
143   0 -1  1  0  1  0   0   1   1
144   0  0  0  0  0  0   0   0   1
145   0  0  0  0  0  0   0   1   0
146   0  0  0  0  0  0   1   0   0
147   0  0  0  0  0  1   0   0   0
148   0  0  0  0  1 -1   1   1   1
149   0  0  0  1  0  0   0   0   0
150   0  0  0  1  1  0  -1   0   0
151   0  0  1 -1  0  1   0   1   1
152   0  0  1  0  0  0   0   0   0
153   0  0  1  0  1  1  -1   0  -1
154   0  0  1  1 -1  0   1  -1   0
155   0  0  1  1  1  0  -1  -1   0
156   0  1  0 -1  1  0   1   0   0
157   0  1  0 -1  1  0   1   1  -1
158   0  1  0  0  0  1  -1  -1   1
159   0  1  0  1 -1  0   2   1  -1
160   0  2  0 -1  1  0   1   2  -2
161   0  2  1  0 -1  1  -1  -2   1
162   1 -7  1  5  5  9   1   1  -3
163   1 -3 -1  3  3  1   1  -1   1
164   1 -3  1  1  1  1   1   1   1
165   1 -3  1  1  5 -3   1   1   5
166   1 -3  1  5  1  1   1  -3   1
167   1 -3  1  5  5  1  -3  -3   1
168   1 -3  5 -1  3  1  -1   3   1
169   1 -3  5  9 13  1 -11  -7   1
170   1 -1 -1  1  1  1   1  -1   1
171   1 -1  0  1  1  0   0  -1   0
172   1 -1  1  1  1  1  -1  -1  -1
173   1 -1  1  3 -1  1   1  -1  -1
174   1 -1  3  0  2  1  -2   0  -1
175   1 -1  3  3  5  1  -5  -3  -1
176   1  0  0 -1  2 -1   1   0   0
177   1  0  0  0  0  0   0  -1   0
178   1  0  0  0  1 -1   0   0   0
179   1  1 -3  1  1  1   1   1   1
180   1  1 -3  1  1  1   1   5  -3
181   1  1 -3  1  1  5   1  -3   5
182   1  1 -3  5  5 -3  -3   5   1
183   1  1 -1 -1  1  1   1  -1   1
184   1  1 -1  1  1 -1  -1   1   1
185   1  1  1 -3  1  1   1   1   1
186   1  1  1 -3  3 -1   3   1  -1
187   1  1  1 -3  5 -3   5   1   1
188   1  1  1 -1 -1  1  -1  -1   1
189   1  1  1 -1  1 -1   1  -1  -1
190   1  1  1  1 -3  1   1  -3   1
191   1  1  1  1 -1 -1   3  -1  -1
192   1  1  1  1  1 -3   1   1   1
193   1  1  1  1  1  1  -3  -3   1
194   1  1  5  1  1 -3   1  -3   1
195   1  2  0 -3  2  1   1   0  -1
196   1  2  1 -1 -1  3  -2  -2   0
197   1  3 -1 -3  3  1   1  -1   1
198   1  3  1 -5  5 -1   5   1  -3
199   1  3  1 -1 -1  1  -1  -3   1
200   1  3  1 -1 -1  3  -3  -3   1
201   1  5 -3 -3  5  1   1   9  -7
202   1  5  1 -7  5  1   5   1  -3
203   1  5  1 -7  9 -3   9   1  -3
204   1  5  3 -3 -1  7  -5  -3  -1
205   2 -1  0  1  1  0   0  -1  -1
206   2  1  0 -3  4 -1   2   0  -2
207   3 -5 -1  3  3  3   3  -1  -1
208   3 -5  3  7 -1  3   3  -5  -1
209   3 -1 -1 -1  3 -1   3  -1  -1
210   3 -1 -1 -1  7 -5   3   3   3
211   3 -1 -1  3  3 -1  -1  -1  -1
212   3 -1  3 -1  3 -1  -1  -1  -1
213   3 -1  3  3  7 -1  -5  -5  -1
214   3  1  1 -1  1 -1  -1  -3   1
215   3  3 -1 -5  3  3   3  -1  -1
216   3  3 -1 -1 -1  3  -1  -5   3
217   3  3  1 -1 -1  1  -3  -5   3
218   3  3  3 -1 -1 -1  -1  -5   3
219   3  7  3 -5 -1  3  -1  -5  -1
220   3  7  3 -1 -5  3  -5  -9   7
221   3 11  3 -1 -5  7  -9 -13   7
222   5  1  1 -7  9 -3   5   1  -3
223   5  1  1 -3  5 -3   1  -3  -3
224   5  5  1 -3 -3  5  -3  -7   1
225   5  9  1 -3 -3  5  -7 -11   5
226   7 -1  3 -1  7 -5  -1  -5  -1
227   7  3 -1 -9 15 -5   7  -1  -5
228   7 11  3 -9 -1  7  -5  -9  -1
229   9 -7  1  5  5  1   1  -7  -3
230   9 -3  1  1  5 -3   1  -7  -3
231  11 -1 -1 -1  7 -5   3  -5  -5
232
2331 congruences:
234 1 1 1 1 1 1 1 1 1 4
235
2369 basis elements of generated  lattice:
237 1 0 0 0 0 0 0 0 -1
238 0 1 0 0 0 0 0 0 -1
239 0 0 1 0 0 0 0 0 -1
240 0 0 0 1 0 0 0 0 -1
241 0 0 0 0 1 0 0 0 -1
242 0 0 0 0 0 1 0 0 -1
243 0 0 0 0 0 0 1 0 -1
244 0 0 0 0 0 0 0 1 -1
245 0 0 0 0 0 0 0 0  4
246
247