xref: /openbsd/gnu/gcc/gcc/tree-ssa-threadedge.c (revision 404b540a)
1 /* SSA Jump Threading
2    Copyright (C) 2005, 2006, 2007 Free Software Foundation, Inc.
3    Contributed by Jeff Law  <law@redhat.com>
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11 
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 GNU General Public License for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING.  If not, write to
19 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA.  */
21 
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "flags.h"
28 #include "rtl.h"
29 #include "tm_p.h"
30 #include "ggc.h"
31 #include "basic-block.h"
32 #include "cfgloop.h"
33 #include "output.h"
34 #include "expr.h"
35 #include "function.h"
36 #include "diagnostic.h"
37 #include "timevar.h"
38 #include "tree-dump.h"
39 #include "tree-flow.h"
40 #include "domwalk.h"
41 #include "real.h"
42 #include "tree-pass.h"
43 #include "tree-ssa-propagate.h"
44 #include "langhooks.h"
45 #include "params.h"
46 
47 /* To avoid code explosion due to jump threading, we limit the
48    number of statements we are going to copy.  This variable
49    holds the number of statements currently seen that we'll have
50    to copy as part of the jump threading process.  */
51 static int stmt_count;
52 
53 /* Return TRUE if we may be able to thread an incoming edge into
54    BB to an outgoing edge from BB.  Return FALSE otherwise.  */
55 
56 bool
potentially_threadable_block(basic_block bb)57 potentially_threadable_block (basic_block bb)
58 {
59   block_stmt_iterator bsi;
60 
61   /* If BB has a single successor or a single predecessor, then
62      there is no threading opportunity.  */
63   if (single_succ_p (bb) || single_pred_p (bb))
64     return false;
65 
66   /* If BB does not end with a conditional, switch or computed goto,
67      then there is no threading opportunity.  */
68   bsi = bsi_last (bb);
69   if (bsi_end_p (bsi)
70       || ! bsi_stmt (bsi)
71       || (TREE_CODE (bsi_stmt (bsi)) != COND_EXPR
72 	  && TREE_CODE (bsi_stmt (bsi)) != GOTO_EXPR
73 	  && TREE_CODE (bsi_stmt (bsi)) != SWITCH_EXPR))
74     return false;
75 
76   return true;
77 }
78 
79 /* Return the LHS of any ASSERT_EXPR where OP appears as the first
80    argument to the ASSERT_EXPR and in which the ASSERT_EXPR dominates
81    BB.  If no such ASSERT_EXPR is found, return OP.  */
82 
83 static tree
lhs_of_dominating_assert(tree op,basic_block bb,tree stmt)84 lhs_of_dominating_assert (tree op, basic_block bb, tree stmt)
85 {
86   imm_use_iterator imm_iter;
87   tree use_stmt;
88   use_operand_p use_p;
89 
90   FOR_EACH_IMM_USE_FAST (use_p, imm_iter, op)
91     {
92       use_stmt = USE_STMT (use_p);
93       if (use_stmt != stmt
94           && TREE_CODE (use_stmt) == MODIFY_EXPR
95           && TREE_CODE (TREE_OPERAND (use_stmt, 1)) == ASSERT_EXPR
96           && TREE_OPERAND (TREE_OPERAND (use_stmt, 1), 0) == op
97 	  && dominated_by_p (CDI_DOMINATORS, bb, bb_for_stmt (use_stmt)))
98 	{
99 	  return TREE_OPERAND (use_stmt, 0);
100 	}
101     }
102   return op;
103 }
104 
105 
106 /* We record temporary equivalences created by PHI nodes or
107    statements within the target block.  Doing so allows us to
108    identify more jump threading opportunities, even in blocks
109    with side effects.
110 
111    We keep track of those temporary equivalences in a stack
112    structure so that we can unwind them when we're done processing
113    a particular edge.  This routine handles unwinding the data
114    structures.  */
115 
116 static void
remove_temporary_equivalences(VEC (tree,heap)** stack)117 remove_temporary_equivalences (VEC(tree, heap) **stack)
118 {
119   while (VEC_length (tree, *stack) > 0)
120     {
121       tree prev_value, dest;
122 
123       dest = VEC_pop (tree, *stack);
124 
125       /* A NULL value indicates we should stop unwinding, otherwise
126 	 pop off the next entry as they're recorded in pairs.  */
127       if (dest == NULL)
128 	break;
129 
130       prev_value = VEC_pop (tree, *stack);
131       SSA_NAME_VALUE (dest) = prev_value;
132     }
133 }
134 
135 /* Record a temporary equivalence, saving enough information so that
136    we can restore the state of recorded equivalences when we're
137    done processing the current edge.  */
138 
139 static void
record_temporary_equivalence(tree x,tree y,VEC (tree,heap)** stack)140 record_temporary_equivalence (tree x, tree y, VEC(tree, heap) **stack)
141 {
142   tree prev_x = SSA_NAME_VALUE (x);
143 
144   if (TREE_CODE (y) == SSA_NAME)
145     {
146       tree tmp = SSA_NAME_VALUE (y);
147       y = tmp ? tmp : y;
148     }
149 
150   SSA_NAME_VALUE (x) = y;
151   VEC_reserve (tree, heap, *stack, 2);
152   VEC_quick_push (tree, *stack, prev_x);
153   VEC_quick_push (tree, *stack, x);
154 }
155 
156 /* Record temporary equivalences created by PHIs at the target of the
157    edge E.  Record unwind information for the equivalences onto STACK.
158 
159    If a PHI which prevents threading is encountered, then return FALSE
160    indicating we should not thread this edge, else return TRUE.  */
161 
162 static bool
record_temporary_equivalences_from_phis(edge e,VEC (tree,heap)** stack)163 record_temporary_equivalences_from_phis (edge e, VEC(tree, heap) **stack)
164 {
165   tree phi;
166 
167   /* Each PHI creates a temporary equivalence, record them.
168      These are context sensitive equivalences and will be removed
169      later.  */
170   for (phi = phi_nodes (e->dest); phi; phi = PHI_CHAIN (phi))
171     {
172       tree src = PHI_ARG_DEF_FROM_EDGE (phi, e);
173       tree dst = PHI_RESULT (phi);
174 
175       /* If the desired argument is not the same as this PHI's result
176 	 and it is set by a PHI in E->dest, then we can not thread
177 	 through E->dest.  */
178       if (src != dst
179 	  && TREE_CODE (src) == SSA_NAME
180 	  && TREE_CODE (SSA_NAME_DEF_STMT (src)) == PHI_NODE
181 	  && bb_for_stmt (SSA_NAME_DEF_STMT (src)) == e->dest)
182 	return false;
183 
184       /* We consider any non-virtual PHI as a statement since it
185 	 count result in a constant assignment or copy operation.  */
186       if (is_gimple_reg (dst))
187 	stmt_count++;
188 
189       record_temporary_equivalence (dst, src, stack);
190     }
191   return true;
192 }
193 
194 /* Try to simplify each statement in E->dest, ultimately leading to
195    a simplification of the COND_EXPR at the end of E->dest.
196 
197    Record unwind information for temporary equivalences onto STACK.
198 
199    Use SIMPLIFY (a pointer to a callback function) to further simplify
200    statements using pass specific information.
201 
202    We might consider marking just those statements which ultimately
203    feed the COND_EXPR.  It's not clear if the overhead of bookkeeping
204    would be recovered by trying to simplify fewer statements.
205 
206    If we are able to simplify a statement into the form
207    SSA_NAME = (SSA_NAME | gimple invariant), then we can record
208    a context sensitive equivalency which may help us simplify
209    later statements in E->dest.  */
210 
211 static tree
record_temporary_equivalences_from_stmts_at_dest(edge e,VEC (tree,heap)** stack,tree (* simplify)(tree,tree))212 record_temporary_equivalences_from_stmts_at_dest (edge e,
213 						  VEC(tree, heap) **stack,
214 						  tree (*simplify) (tree,
215 								    tree))
216 {
217   block_stmt_iterator bsi;
218   tree stmt = NULL;
219   int max_stmt_count;
220 
221   max_stmt_count = PARAM_VALUE (PARAM_MAX_JUMP_THREAD_DUPLICATION_STMTS);
222 
223   /* Walk through each statement in the block recording equivalences
224      we discover.  Note any equivalences we discover are context
225      sensitive (ie, are dependent on traversing E) and must be unwound
226      when we're finished processing E.  */
227   for (bsi = bsi_start (e->dest); ! bsi_end_p (bsi); bsi_next (&bsi))
228     {
229       tree cached_lhs = NULL;
230 
231       stmt = bsi_stmt (bsi);
232 
233       /* Ignore empty statements and labels.  */
234       if (IS_EMPTY_STMT (stmt) || TREE_CODE (stmt) == LABEL_EXPR)
235 	continue;
236 
237       /* If the statement has volatile operands, then we assume we
238 	 can not thread through this block.  This is overly
239 	 conservative in some ways.  */
240       if (TREE_CODE (stmt) == ASM_EXPR && ASM_VOLATILE_P (stmt))
241 	return NULL;
242 
243       /* If duplicating this block is going to cause too much code
244 	 expansion, then do not thread through this block.  */
245       stmt_count++;
246       if (stmt_count > max_stmt_count)
247 	return NULL;
248 
249       /* If this is not a MODIFY_EXPR which sets an SSA_NAME to a new
250 	 value, then do not try to simplify this statement as it will
251 	 not simplify in any way that is helpful for jump threading.  */
252       if (TREE_CODE (stmt) != MODIFY_EXPR
253 	  || TREE_CODE (TREE_OPERAND (stmt, 0)) != SSA_NAME)
254 	continue;
255 
256       /* At this point we have a statement which assigns an RHS to an
257 	 SSA_VAR on the LHS.  We want to try and simplify this statement
258 	 to expose more context sensitive equivalences which in turn may
259 	 allow us to simplify the condition at the end of the loop.
260 
261 	 Handle simple copy operations as well as implied copies from
262 	 ASSERT_EXPRs.  */
263       if (TREE_CODE (TREE_OPERAND (stmt, 1)) == SSA_NAME)
264 	cached_lhs = TREE_OPERAND (stmt, 1);
265       else if (TREE_CODE (TREE_OPERAND (stmt, 1)) == ASSERT_EXPR)
266 	cached_lhs = TREE_OPERAND (TREE_OPERAND (stmt, 1), 0);
267       else
268 	{
269 	  /* A statement that is not a trivial copy or ASSERT_EXPR.
270 	     We're going to temporarily copy propagate the operands
271 	     and see if that allows us to simplify this statement.  */
272 	  tree *copy, pre_fold_expr;
273 	  ssa_op_iter iter;
274 	  use_operand_p use_p;
275 	  unsigned int num, i = 0;
276 
277 	  num = NUM_SSA_OPERANDS (stmt, (SSA_OP_USE | SSA_OP_VUSE));
278 	  copy = XCNEWVEC (tree, num);
279 
280 	  /* Make a copy of the uses & vuses into USES_COPY, then cprop into
281 	     the operands.  */
282 	  FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE | SSA_OP_VUSE)
283 	    {
284 	      tree tmp = NULL;
285 	      tree use = USE_FROM_PTR (use_p);
286 
287 	      copy[i++] = use;
288 	      if (TREE_CODE (use) == SSA_NAME)
289 		tmp = SSA_NAME_VALUE (use);
290 	      if (tmp && TREE_CODE (tmp) != VALUE_HANDLE)
291 		SET_USE (use_p, tmp);
292 	    }
293 
294 	  /* Try to fold/lookup the new expression.  Inserting the
295 	     expression into the hash table is unlikely to help
296 	     Sadly, we have to handle conditional assignments specially
297 	     here, because fold expects all the operands of an expression
298 	     to be folded before the expression itself is folded, but we
299 	     can't just substitute the folded condition here.  */
300 	  if (TREE_CODE (TREE_OPERAND (stmt, 1)) == COND_EXPR)
301 	    {
302 	      tree cond = COND_EXPR_COND (TREE_OPERAND (stmt, 1));
303 	      cond = fold (cond);
304 	      if (cond == boolean_true_node)
305 		pre_fold_expr = COND_EXPR_THEN (TREE_OPERAND (stmt, 1));
306 	      else if (cond == boolean_false_node)
307 		pre_fold_expr = COND_EXPR_ELSE (TREE_OPERAND (stmt, 1));
308 	      else
309 		pre_fold_expr = TREE_OPERAND (stmt, 1);
310 	    }
311 	  else
312 	    pre_fold_expr = TREE_OPERAND (stmt, 1);
313 
314 	  if (pre_fold_expr)
315 	    {
316 	      cached_lhs = fold (pre_fold_expr);
317 	      if (TREE_CODE (cached_lhs) != SSA_NAME
318 		  && !is_gimple_min_invariant (cached_lhs))
319 	        cached_lhs = (*simplify) (stmt, stmt);
320 	    }
321 
322 	  /* Restore the statement's original uses/defs.  */
323 	  i = 0;
324 	  FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE | SSA_OP_VUSE)
325 	    SET_USE (use_p, copy[i++]);
326 
327 	  free (copy);
328 	}
329 
330       /* Record the context sensitive equivalence if we were able
331 	 to simplify this statement.  */
332       if (cached_lhs
333 	  && (TREE_CODE (cached_lhs) == SSA_NAME
334 	      || is_gimple_min_invariant (cached_lhs)))
335 	record_temporary_equivalence (TREE_OPERAND (stmt, 0),
336 				      cached_lhs,
337 				      stack);
338     }
339   return stmt;
340 }
341 
342 /* Simplify the control statement at the end of the block E->dest.
343 
344    To avoid allocating memory unnecessarily, a scratch COND_EXPR
345    is available to use/clobber in DUMMY_COND.
346 
347    Use SIMPLIFY (a pointer to a callback function) to further simplify
348    a condition using pass specific information.
349 
350    Return the simplified condition or NULL if simplification could
351    not be performed.  */
352 
353 static tree
simplify_control_stmt_condition(edge e,tree stmt,tree dummy_cond,tree (* simplify)(tree,tree),bool handle_dominating_asserts)354 simplify_control_stmt_condition (edge e,
355 				 tree stmt,
356 				 tree dummy_cond,
357 				 tree (*simplify) (tree, tree),
358 				 bool handle_dominating_asserts)
359 {
360   tree cond, cached_lhs;
361 
362   if (TREE_CODE (stmt) == COND_EXPR)
363     cond = COND_EXPR_COND (stmt);
364   else if (TREE_CODE (stmt) == GOTO_EXPR)
365     cond = GOTO_DESTINATION (stmt);
366   else
367     cond = SWITCH_COND (stmt);
368 
369   /* For comparisons, we have to update both operands, then try
370      to simplify the comparison.  */
371   if (COMPARISON_CLASS_P (cond))
372     {
373       tree op0, op1;
374       enum tree_code cond_code;
375 
376       op0 = TREE_OPERAND (cond, 0);
377       op1 = TREE_OPERAND (cond, 1);
378       cond_code = TREE_CODE (cond);
379 
380       /* Get the current value of both operands.  */
381       if (TREE_CODE (op0) == SSA_NAME)
382 	{
383           tree tmp = SSA_NAME_VALUE (op0);
384 	  if (tmp && TREE_CODE (tmp) != VALUE_HANDLE)
385 	    op0 = tmp;
386 	}
387 
388       if (TREE_CODE (op1) == SSA_NAME)
389 	{
390 	  tree tmp = SSA_NAME_VALUE (op1);
391 	  if (tmp && TREE_CODE (tmp) != VALUE_HANDLE)
392 	    op1 = tmp;
393 	}
394 
395       if (handle_dominating_asserts)
396 	{
397 	  /* Now see if the operand was consumed by an ASSERT_EXPR
398 	     which dominates E->src.  If so, we want to replace the
399 	     operand with the LHS of the ASSERT_EXPR.  */
400 	  if (TREE_CODE (op0) == SSA_NAME)
401 	    op0 = lhs_of_dominating_assert (op0, e->src, stmt);
402 
403 	  if (TREE_CODE (op1) == SSA_NAME)
404 	    op1 = lhs_of_dominating_assert (op1, e->src, stmt);
405 	}
406 
407       /* We may need to canonicalize the comparison.  For
408 	 example, op0 might be a constant while op1 is an
409 	 SSA_NAME.  Failure to canonicalize will cause us to
410 	 miss threading opportunities.  */
411       if (cond_code != SSA_NAME
412 	  && tree_swap_operands_p (op0, op1, false))
413 	{
414 	  tree tmp;
415 	  cond_code = swap_tree_comparison (TREE_CODE (cond));
416 	  tmp = op0;
417 	  op0 = op1;
418 	  op1 = tmp;
419 	}
420 
421       /* Stuff the operator and operands into our dummy conditional
422 	 expression.  */
423       TREE_SET_CODE (COND_EXPR_COND (dummy_cond), cond_code);
424       TREE_OPERAND (COND_EXPR_COND (dummy_cond), 0) = op0;
425       TREE_OPERAND (COND_EXPR_COND (dummy_cond), 1) = op1;
426 
427       /* We absolutely do not care about any type conversions
428          we only care about a zero/nonzero value.  */
429       fold_defer_overflow_warnings ();
430 
431       cached_lhs = fold (COND_EXPR_COND (dummy_cond));
432       while (TREE_CODE (cached_lhs) == NOP_EXPR
433 	     || TREE_CODE (cached_lhs) == CONVERT_EXPR
434 	     || TREE_CODE (cached_lhs) == NON_LVALUE_EXPR)
435 	cached_lhs = TREE_OPERAND (cached_lhs, 0);
436 
437       fold_undefer_overflow_warnings (is_gimple_min_invariant (cached_lhs),
438 				      stmt, WARN_STRICT_OVERFLOW_CONDITIONAL);
439 
440       /* If we have not simplified the condition down to an invariant,
441 	 then use the pass specific callback to simplify the condition.  */
442       if (! is_gimple_min_invariant (cached_lhs))
443 	cached_lhs = (*simplify) (dummy_cond, stmt);
444     }
445 
446   /* We can have conditionals which just test the state of a variable
447      rather than use a relational operator.  These are simpler to handle.  */
448   else if (TREE_CODE (cond) == SSA_NAME)
449     {
450       cached_lhs = cond;
451 
452       /* Get the variable's current value from the equivalency chains.
453 
454 	 It is possible to get loops in the SSA_NAME_VALUE chains
455 	 (consider threading the backedge of a loop where we have
456 	 a loop invariant SSA_NAME used in the condition.  */
457       if (cached_lhs
458 	  && TREE_CODE (cached_lhs) == SSA_NAME
459 	  && SSA_NAME_VALUE (cached_lhs))
460 	cached_lhs = SSA_NAME_VALUE (cached_lhs);
461 
462       /* If we're dominated by a suitable ASSERT_EXPR, then
463 	 update CACHED_LHS appropriately.  */
464       if (handle_dominating_asserts && TREE_CODE (cached_lhs) == SSA_NAME)
465 	cached_lhs = lhs_of_dominating_assert (cached_lhs, e->src, stmt);
466 
467       /* If we haven't simplified to an invariant yet, then use the
468 	 pass specific callback to try and simplify it further.  */
469       if (cached_lhs && ! is_gimple_min_invariant (cached_lhs))
470         cached_lhs = (*simplify) (stmt, stmt);
471     }
472   else
473     cached_lhs = NULL;
474 
475   return cached_lhs;
476 }
477 
478 /* We are exiting E->src, see if E->dest ends with a conditional
479    jump which has a known value when reached via E.
480 
481    Special care is necessary if E is a back edge in the CFG as we
482    may have already recorded equivalences for E->dest into our
483    various tables, including the result of the conditional at
484    the end of E->dest.  Threading opportunities are severely
485    limited in that case to avoid short-circuiting the loop
486    incorrectly.
487 
488    Note it is quite common for the first block inside a loop to
489    end with a conditional which is either always true or always
490    false when reached via the loop backedge.  Thus we do not want
491    to blindly disable threading across a loop backedge.  */
492 
493 void
thread_across_edge(tree dummy_cond,edge e,bool handle_dominating_asserts,VEC (tree,heap)** stack,tree (* simplify)(tree,tree))494 thread_across_edge (tree dummy_cond,
495 		    edge e,
496 		    bool handle_dominating_asserts,
497 		    VEC(tree, heap) **stack,
498 		    tree (*simplify) (tree, tree))
499 {
500   tree stmt;
501 
502   /* If E is a backedge, then we want to verify that the COND_EXPR,
503      SWITCH_EXPR or GOTO_EXPR at the end of e->dest is not affected
504      by any statements in e->dest.  If it is affected, then it is not
505      safe to thread this edge.  */
506   if (e->flags & EDGE_DFS_BACK)
507     {
508       ssa_op_iter iter;
509       use_operand_p use_p;
510       tree last = bsi_stmt (bsi_last (e->dest));
511 
512       FOR_EACH_SSA_USE_OPERAND (use_p, last, iter, SSA_OP_USE | SSA_OP_VUSE)
513 	{
514 	  tree use = USE_FROM_PTR (use_p);
515 
516           if (TREE_CODE (use) == SSA_NAME
517 	      && TREE_CODE (SSA_NAME_DEF_STMT (use)) != PHI_NODE
518 	      && bb_for_stmt (SSA_NAME_DEF_STMT (use)) == e->dest)
519 	    goto fail;
520 	}
521     }
522 
523   stmt_count = 0;
524 
525   /* PHIs create temporary equivalences.  */
526   if (!record_temporary_equivalences_from_phis (e, stack))
527     goto fail;
528 
529   /* Now walk each statement recording any context sensitive
530      temporary equivalences we can detect.  */
531   stmt = record_temporary_equivalences_from_stmts_at_dest (e, stack, simplify);
532   if (!stmt)
533     goto fail;
534 
535   /* If we stopped at a COND_EXPR or SWITCH_EXPR, see if we know which arm
536      will be taken.  */
537   if (TREE_CODE (stmt) == COND_EXPR
538       || TREE_CODE (stmt) == GOTO_EXPR
539       || TREE_CODE (stmt) == SWITCH_EXPR)
540     {
541       tree cond;
542 
543       /* Extract and simplify the condition.  */
544       cond = simplify_control_stmt_condition (e, stmt, dummy_cond, simplify, handle_dominating_asserts);
545 
546       if (cond && is_gimple_min_invariant (cond))
547 	{
548 	  edge taken_edge = find_taken_edge (e->dest, cond);
549 	  basic_block dest = (taken_edge ? taken_edge->dest : NULL);
550 
551 	  if (dest == e->dest)
552 	    goto fail;
553 
554 	  remove_temporary_equivalences (stack);
555 	  register_jump_thread (e, taken_edge);
556 	}
557     }
558 
559  fail:
560   remove_temporary_equivalences (stack);
561 }
562