1 #define DTM_IDCODE                          0x01
2 /*
3 * Identifies the release version of this part.
4  */
5 #define DTM_IDCODE_VERSION_OFFSET           28
6 #define DTM_IDCODE_VERSION_LENGTH           4
7 #define DTM_IDCODE_VERSION                  (0xf << DTM_IDCODE_VERSION_OFFSET)
8 /*
9 * Identifies the designer's part number of this part.
10  */
11 #define DTM_IDCODE_PARTNUMBER_OFFSET        12
12 #define DTM_IDCODE_PARTNUMBER_LENGTH        16
13 #define DTM_IDCODE_PARTNUMBER               (0xffff << DTM_IDCODE_PARTNUMBER_OFFSET)
14 /*
15 * Identifies the designer/manufacturer of this part. Bits 6:0 must be
16 * bits 6:0 of the designer/manufacturer's Identification Code as
17 * assigned by JEDEC Standard JEP106. Bits 10:7 contain the modulo-16
18 * count of the number of continuation characters (0x7f) in that same
19 * Identification Code.
20  */
21 #define DTM_IDCODE_MANUFID_OFFSET           1
22 #define DTM_IDCODE_MANUFID_LENGTH           11
23 #define DTM_IDCODE_MANUFID                  (0x7ff << DTM_IDCODE_MANUFID_OFFSET)
24 #define DTM_IDCODE_1_OFFSET                 0
25 #define DTM_IDCODE_1_LENGTH                 1
26 #define DTM_IDCODE_1                        (0x1 << DTM_IDCODE_1_OFFSET)
27 #define DTM_DTMCS                           0x10
28 /*
29 * Writing 1 to this bit does a hard reset of the DTM,
30 * causing the DTM to forget about any outstanding DMI transactions.
31 * In general this should only be used when the Debugger has
32 * reason to expect that the outstanding DMI transaction will never
33 * complete (e.g. a reset condition caused an inflight DMI transaction to
34 * be cancelled).
35  */
36 #define DTM_DTMCS_DMIHARDRESET_OFFSET       17
37 #define DTM_DTMCS_DMIHARDRESET_LENGTH       1
38 #define DTM_DTMCS_DMIHARDRESET              (0x1 << DTM_DTMCS_DMIHARDRESET_OFFSET)
39 /*
40 * Writing 1 to this bit clears the sticky error state
41 * and allows the DTM to retry or complete the previous
42 * transaction.
43  */
44 #define DTM_DTMCS_DMIRESET_OFFSET           16
45 #define DTM_DTMCS_DMIRESET_LENGTH           1
46 #define DTM_DTMCS_DMIRESET                  (0x1 << DTM_DTMCS_DMIRESET_OFFSET)
47 /*
48 * This is a hint to the debugger of the minimum number of
49 * cycles a debugger should spend in
50 * Run-Test/Idle after every DMI scan to avoid a `busy'
51 * return code (\Fdmistat of 3). A debugger must still
52 * check \Fdmistat when necessary.
53 *
54 * 0: It is not necessary to enter Run-Test/Idle at all.
55 *
56 * 1: Enter Run-Test/Idle and leave it immediately.
57 *
58 * 2: Enter Run-Test/Idle and stay there for 1 cycle before leaving.
59 *
60 * And so on.
61  */
62 #define DTM_DTMCS_IDLE_OFFSET               12
63 #define DTM_DTMCS_IDLE_LENGTH               3
64 #define DTM_DTMCS_IDLE                      (0x7 << DTM_DTMCS_IDLE_OFFSET)
65 /*
66 * 0: No error.
67 *
68 * 1: Reserved. Interpret the same as 2.
69 *
70 * 2: An operation failed (resulted in \Fop of 2).
71 *
72 * 3: An operation was attempted while a DMI access was still in
73 * progress (resulted in \Fop of 3).
74  */
75 #define DTM_DTMCS_DMISTAT_OFFSET            10
76 #define DTM_DTMCS_DMISTAT_LENGTH            2
77 #define DTM_DTMCS_DMISTAT                   (0x3 << DTM_DTMCS_DMISTAT_OFFSET)
78 /*
79 * The size of \Faddress in \Rdmi.
80  */
81 #define DTM_DTMCS_ABITS_OFFSET              4
82 #define DTM_DTMCS_ABITS_LENGTH              6
83 #define DTM_DTMCS_ABITS                     (0x3f << DTM_DTMCS_ABITS_OFFSET)
84 /*
85 * 0: Version described in spec version 0.11.
86 *
87 * 1: Version described in spec version 0.13 (and later?), which
88 * reduces the DMI data width to 32 bits.
89 *
90 * Other values are reserved for future use.
91  */
92 #define DTM_DTMCS_VERSION_OFFSET            0
93 #define DTM_DTMCS_VERSION_LENGTH            4
94 #define DTM_DTMCS_VERSION                   (0xf << DTM_DTMCS_VERSION_OFFSET)
95 #define DTM_DMI                             0x11
96 /*
97 * Address used for DMI access. In Update-DR this value is used
98 * to access the DM over the DMI.
99  */
100 #define DTM_DMI_ADDRESS_OFFSET              34
101 #define DTM_DMI_ADDRESS_LENGTH              abits
102 #define DTM_DMI_ADDRESS                     (((1L<<abits)-1) << DTM_DMI_ADDRESS_OFFSET)
103 /*
104 * The data to send to the DM over the DMI during Update-DR, and
105 * the data returned from the DM as a result of the previous operation.
106  */
107 #define DTM_DMI_DATA_OFFSET                 2
108 #define DTM_DMI_DATA_LENGTH                 32
109 #define DTM_DMI_DATA                        (0xffffffffL << DTM_DMI_DATA_OFFSET)
110 /*
111 * When the debugger writes this field, it has the following meaning:
112 *
113 * 0: Ignore \Fdata and \Faddress. (nop)
114 *
115 * Don't send anything over the DMI during Update-DR.
116 * This operation should never result in a busy or error response.
117 * The address and data reported in the following Capture-DR
118 * are undefined.
119 *
120 * 1: Read from \Faddress. (read)
121 *
122 * 2: Write \Fdata to \Faddress. (write)
123 *
124 * 3: Reserved.
125 *
126 * When the debugger reads this field, it means the following:
127 *
128 * 0: The previous operation completed successfully.
129 *
130 * 1: Reserved.
131 *
132 * 2: A previous operation failed.  The data scanned into \Rdmi in
133 * this access will be ignored.  This status is sticky and can be
134 * cleared by writing \Fdmireset in \Rdtmcs.
135 *
136 * This indicates that the DM itself responded with an error, e.g.
137 * in the System Bus and Serial Port overflow/underflow cases.
138 *
139 * 3: An operation was attempted while a DMI request is still in
140 * progress. The data scanned into \Rdmi in this access will be
141 * ignored. This status is sticky and can be cleared by writing
142 * \Fdmireset in \Rdtmcs. If a debugger sees this status, it
143 * needs to give the target more TCK edges between Update-DR and
144 * Capture-DR. The simplest way to do that is to add extra transitions
145 * in Run-Test/Idle.
146 *
147 * (The DTM, DM, and/or component may be in different clock domains,
148 * so synchronization may be required. Some relatively fixed number of
149 * TCK ticks may be needed for the request to reach the DM, complete,
150 * and for the response to be synchronized back into the TCK domain.)
151  */
152 #define DTM_DMI_OP_OFFSET                   0
153 #define DTM_DMI_OP_LENGTH                   2
154 #define DTM_DMI_OP                          (0x3L << DTM_DMI_OP_OFFSET)
155 #define CSR_DCSR                            0x7b0
156 /*
157 * 0: There is no external debug support.
158 *
159 * 4: External debug support exists as it is described in this document.
160  */
161 #define CSR_DCSR_XDEBUGVER_OFFSET           28
162 #define CSR_DCSR_XDEBUGVER_LENGTH           4
163 #define CSR_DCSR_XDEBUGVER                  (0xf << CSR_DCSR_XDEBUGVER_OFFSET)
164 /*
165 * When 1, {\tt ebreak} instructions in Machine Mode enter Debug Mode.
166  */
167 #define CSR_DCSR_EBREAKM_OFFSET             15
168 #define CSR_DCSR_EBREAKM_LENGTH             1
169 #define CSR_DCSR_EBREAKM                    (0x1 << CSR_DCSR_EBREAKM_OFFSET)
170 /*
171 * When 1, {\tt ebreak} instructions in Hypervisor Mode enter Debug Mode.
172  */
173 #define CSR_DCSR_EBREAKH_OFFSET             14
174 #define CSR_DCSR_EBREAKH_LENGTH             1
175 #define CSR_DCSR_EBREAKH                    (0x1 << CSR_DCSR_EBREAKH_OFFSET)
176 /*
177 * When 1, {\tt ebreak} instructions in Supervisor Mode enter Debug Mode.
178  */
179 #define CSR_DCSR_EBREAKS_OFFSET             13
180 #define CSR_DCSR_EBREAKS_LENGTH             1
181 #define CSR_DCSR_EBREAKS                    (0x1 << CSR_DCSR_EBREAKS_OFFSET)
182 /*
183 * When 1, {\tt ebreak} instructions in User/Application Mode enter
184 * Debug Mode.
185  */
186 #define CSR_DCSR_EBREAKU_OFFSET             12
187 #define CSR_DCSR_EBREAKU_LENGTH             1
188 #define CSR_DCSR_EBREAKU                    (0x1 << CSR_DCSR_EBREAKU_OFFSET)
189 /*
190 * 0: Increment counters as usual.
191 *
192 * 1: Don't increment any counters while in Debug Mode.  This includes
193 * the {\tt cycle} and {\tt instret} CSRs. This is preferred for most
194 * debugging scenarios.
195 *
196 * An implementation may choose not to support writing to this bit.
197 * The debugger must read back the value it writes to check whether
198 * the feature is supported.
199  */
200 #define CSR_DCSR_STOPCOUNT_OFFSET           10
201 #define CSR_DCSR_STOPCOUNT_LENGTH           1
202 #define CSR_DCSR_STOPCOUNT                  (0x1 << CSR_DCSR_STOPCOUNT_OFFSET)
203 /*
204 * 0: Increment timers as usual.
205 *
206 * 1: Don't increment any hart-local timers while in Debug Mode.
207 *
208 * An implementation may choose not to support writing to this bit.
209 * The debugger must read back the value it writes to check whether
210 * the feature is supported.
211  */
212 #define CSR_DCSR_STOPTIME_OFFSET            9
213 #define CSR_DCSR_STOPTIME_LENGTH            1
214 #define CSR_DCSR_STOPTIME                   (0x1 << CSR_DCSR_STOPTIME_OFFSET)
215 /*
216 * Explains why Debug Mode was entered.
217 *
218 * When there are multiple reasons to enter Debug Mode in a single
219 * cycle, the cause with the highest priority is the one written.
220 *
221 * 1: An {\tt ebreak} instruction was executed. (priority 3)
222 *
223 * 2: The Trigger Module caused a halt. (priority 4)
224 *
225 * 3: \Fhaltreq was set. (priority 2)
226 *
227 * 4: The hart single stepped because \Fstep was set. (priority 1)
228 *
229 * Other values are reserved for future use.
230  */
231 #define CSR_DCSR_CAUSE_OFFSET               6
232 #define CSR_DCSR_CAUSE_LENGTH               3
233 #define CSR_DCSR_CAUSE                      (0x7 << CSR_DCSR_CAUSE_OFFSET)
234 /*
235 * When set and not in Debug Mode, the hart will only execute a single
236 * instruction and then enter Debug Mode.
237 * Interrupts are disabled when this bit is set.
238 * If the instruction does not complete due to an exception,
239 * the hart will immediately enter Debug Mode before executing
240 * the trap handler, with appropriate exception registers set.
241  */
242 #define CSR_DCSR_STEP_OFFSET                2
243 #define CSR_DCSR_STEP_LENGTH                1
244 #define CSR_DCSR_STEP                       (0x1 << CSR_DCSR_STEP_OFFSET)
245 /*
246 * Contains the privilege level the hart was operating in when Debug
247 * Mode was entered. The encoding is described in Table
248 * \ref{tab:privlevel}.  A debugger can change this value to change
249 * the hart's privilege level when exiting Debug Mode.
250 *
251 * Not all privilege levels are supported on all harts. If the
252 * encoding written is not supported or the debugger is not allowed to
253 * change to it, the hart may change to any supported privilege level.
254  */
255 #define CSR_DCSR_PRV_OFFSET                 0
256 #define CSR_DCSR_PRV_LENGTH                 2
257 #define CSR_DCSR_PRV                        (0x3 << CSR_DCSR_PRV_OFFSET)
258 #define CSR_DPC                             0x7b1
259 #define CSR_DPC_DPC_OFFSET                  0
260 #define CSR_DPC_DPC_LENGTH                  XLEN
261 #define CSR_DPC_DPC                         (((1L<<XLEN)-1) << CSR_DPC_DPC_OFFSET)
262 #define CSR_DSCRATCH0                       0x7b2
263 #define CSR_DSCRATCH1                       0x7b3
264 #define CSR_TSELECT                         0x7a0
265 #define CSR_TSELECT_INDEX_OFFSET            0
266 #define CSR_TSELECT_INDEX_LENGTH            XLEN
267 #define CSR_TSELECT_INDEX                   (((1L<<XLEN)-1) << CSR_TSELECT_INDEX_OFFSET)
268 #define CSR_TDATA1                          0x7a1
269 /*
270 * 0: There is no trigger at this \Rtselect.
271 *
272 * 1: The trigger is a legacy SiFive address match trigger. These
273 * should not be implemented and aren't further documented here.
274 *
275 * 2: The trigger is an address/data match trigger. The remaining bits
276 * in this register act as described in \Rmcontrol.
277 *
278 * 3: The trigger is an instruction count trigger. The remaining bits
279 * in this register act as described in \Ricount.
280 *
281 * 15: This trigger exists (so enumeration shouldn't terminate), but
282 * is not currently available.
283 *
284 * Other values are reserved for future use.
285  */
286 #define CSR_TDATA1_TYPE_OFFSET              XLEN-4
287 #define CSR_TDATA1_TYPE_LENGTH              4
288 #define CSR_TDATA1_TYPE                     (0xfL << CSR_TDATA1_TYPE_OFFSET)
289 /*
290 * 0: Both Debug and M Mode can write the {\tt tdata} registers at the
291 * selected \Rtselect.
292 *
293 * 1: Only Debug Mode can write the {\tt tdata} registers at the
294 * selected \Rtselect.  Writes from other modes are ignored.
295 *
296 * This bit is only writable from Debug Mode.
297  */
298 #define CSR_TDATA1_HMODE_OFFSET             XLEN-5
299 #define CSR_TDATA1_HMODE_LENGTH             1
300 #define CSR_TDATA1_HMODE                    (0x1L << CSR_TDATA1_HMODE_OFFSET)
301 /*
302 * Trigger-specific data.
303  */
304 #define CSR_TDATA1_DATA_OFFSET              0
305 #define CSR_TDATA1_DATA_LENGTH              XLEN - 5
306 #define CSR_TDATA1_DATA                     (((1L<<XLEN - 5)-1) << CSR_TDATA1_DATA_OFFSET)
307 #define CSR_TDATA2                          0x7a2
308 #define CSR_TDATA2_DATA_OFFSET              0
309 #define CSR_TDATA2_DATA_LENGTH              XLEN
310 #define CSR_TDATA2_DATA                     (((1L<<XLEN)-1) << CSR_TDATA2_DATA_OFFSET)
311 #define CSR_TDATA3                          0x7a3
312 #define CSR_TDATA3_DATA_OFFSET              0
313 #define CSR_TDATA3_DATA_LENGTH              XLEN
314 #define CSR_TDATA3_DATA                     (((1L<<XLEN)-1) << CSR_TDATA3_DATA_OFFSET)
315 #define CSR_MCONTROL                        0x7a1
316 #define CSR_MCONTROL_TYPE_OFFSET            XLEN-4
317 #define CSR_MCONTROL_TYPE_LENGTH            4
318 #define CSR_MCONTROL_TYPE                   (0xfL << CSR_MCONTROL_TYPE_OFFSET)
319 #define CSR_MCONTROL_DMODE_OFFSET           XLEN-5
320 #define CSR_MCONTROL_DMODE_LENGTH           1
321 #define CSR_MCONTROL_DMODE                  (0x1L << CSR_MCONTROL_DMODE_OFFSET)
322 /*
323 * Specifies the largest naturally aligned powers-of-two (NAPOT) range
324 * supported by the hardware. The value is the logarithm base 2 of the
325 * number of bytes in that range.  A value of 0 indicates that only
326 * exact value matches are supported (one byte range). A value of 63
327 * corresponds to the maximum NAPOT range, which is $2^{63}$ bytes in
328 * size.
329  */
330 #define CSR_MCONTROL_MASKMAX_OFFSET         XLEN-11
331 #define CSR_MCONTROL_MASKMAX_LENGTH         6
332 #define CSR_MCONTROL_MASKMAX                (0x3fL << CSR_MCONTROL_MASKMAX_OFFSET)
333 /*
334 * 0: Perform a match on the virtual address.
335 *
336 * 1: Perform a match on the data value loaded/stored, or the
337 * instruction executed.
338  */
339 #define CSR_MCONTROL_SELECT_OFFSET          19
340 #define CSR_MCONTROL_SELECT_LENGTH          1
341 #define CSR_MCONTROL_SELECT                 (0x1L << CSR_MCONTROL_SELECT_OFFSET)
342 /*
343 * 0: The action for this trigger will be taken just before the
344 * instruction that triggered it is executed, but after all preceding
345 * instructions are are committed.
346 *
347 * 1: The action for this trigger will be taken after the instruction
348 * that triggered it is executed. It should be taken before the next
349 * instruction is executed, but it is better to implement triggers and
350 * not implement that suggestion than to not implement them at all.
351 *
352 * Most hardware will only implement one timing or the other, possibly
353 * dependent on \Fselect, \Fexecute, \Fload, and \Fstore. This bit
354 * primarily exists for the hardware to communicate to the debugger
355 * what will happen. Hardware may implement the bit fully writable, in
356 * which case the debugger has a little more control.
357 *
358 * Data load triggers with \Ftiming of 0 will result in the same load
359 * happening again when the debugger lets the core run. For data load
360 * triggers, debuggers must first attempt to set the breakpoint with
361 * \Ftiming of 1.
362 *
363 * A chain of triggers that don't all have the same \Ftiming value
364 * will never fire (unless consecutive instructions match the
365 * appropriate triggers).
366  */
367 #define CSR_MCONTROL_TIMING_OFFSET          18
368 #define CSR_MCONTROL_TIMING_LENGTH          1
369 #define CSR_MCONTROL_TIMING                 (0x1L << CSR_MCONTROL_TIMING_OFFSET)
370 /*
371 * Determines what happens when this trigger matches.
372 *
373 * 0: Raise a breakpoint exception. (Used when software wants to use
374 * the trigger module without an external debugger attached.)
375 *
376 * 1: Enter Debug Mode. (Only supported when \Fhmode is 1.)
377 *
378 * 2: Start tracing.
379 *
380 * 3: Stop tracing.
381 *
382 * 4: Emit trace data for this match. If it is a data access match,
383 * emit appropriate Load/Store Address/Data. If it is an instruction
384 * execution, emit its PC.
385 *
386 * Other values are reserved for future use.
387  */
388 #define CSR_MCONTROL_ACTION_OFFSET          12
389 #define CSR_MCONTROL_ACTION_LENGTH          6
390 #define CSR_MCONTROL_ACTION                 (0x3fL << CSR_MCONTROL_ACTION_OFFSET)
391 /*
392 * 0: When this trigger matches, the configured action is taken.
393 *
394 * 1: While this trigger does not match, it prevents the trigger with
395 * the next index from matching.
396  */
397 #define CSR_MCONTROL_CHAIN_OFFSET           11
398 #define CSR_MCONTROL_CHAIN_LENGTH           1
399 #define CSR_MCONTROL_CHAIN                  (0x1L << CSR_MCONTROL_CHAIN_OFFSET)
400 /*
401 * 0: Matches when the value equals \Rtdatatwo.
402 *
403 * 1: Matches when the top M bits of the value match the top M bits of
404 * \Rtdatatwo. M is XLEN-1 minus the index of the least-significant
405 * bit containing 0 in \Rtdatatwo.
406 *
407 * 2: Matches when the value is greater than or equal to \Rtdatatwo.
408 *
409 * 3: Matches when the value is less than \Rtdatatwo.
410 *
411 * 4: Matches when the lower half of the value equals the lower half
412 * of \Rtdatatwo after the lower half of the value is ANDed with the
413 * upper half of \Rtdatatwo.
414 *
415 * 5: Matches when the upper half of the value equals the lower half
416 * of \Rtdatatwo after the upper half of the value is ANDed with the
417 * upper half of \Rtdatatwo.
418 *
419 * Other values are reserved for future use.
420  */
421 #define CSR_MCONTROL_MATCH_OFFSET           7
422 #define CSR_MCONTROL_MATCH_LENGTH           4
423 #define CSR_MCONTROL_MATCH                  (0xfL << CSR_MCONTROL_MATCH_OFFSET)
424 /*
425 * When set, enable this trigger in M mode.
426  */
427 #define CSR_MCONTROL_M_OFFSET               6
428 #define CSR_MCONTROL_M_LENGTH               1
429 #define CSR_MCONTROL_M                      (0x1L << CSR_MCONTROL_M_OFFSET)
430 /*
431 * When set, enable this trigger in H mode.
432  */
433 #define CSR_MCONTROL_H_OFFSET               5
434 #define CSR_MCONTROL_H_LENGTH               1
435 #define CSR_MCONTROL_H                      (0x1L << CSR_MCONTROL_H_OFFSET)
436 /*
437 * When set, enable this trigger in S mode.
438  */
439 #define CSR_MCONTROL_S_OFFSET               4
440 #define CSR_MCONTROL_S_LENGTH               1
441 #define CSR_MCONTROL_S                      (0x1L << CSR_MCONTROL_S_OFFSET)
442 /*
443 * When set, enable this trigger in U mode.
444  */
445 #define CSR_MCONTROL_U_OFFSET               3
446 #define CSR_MCONTROL_U_LENGTH               1
447 #define CSR_MCONTROL_U                      (0x1L << CSR_MCONTROL_U_OFFSET)
448 /*
449 * When set, the trigger fires on the virtual address or opcode of an
450 * instruction that is executed.
451  */
452 #define CSR_MCONTROL_EXECUTE_OFFSET         2
453 #define CSR_MCONTROL_EXECUTE_LENGTH         1
454 #define CSR_MCONTROL_EXECUTE                (0x1L << CSR_MCONTROL_EXECUTE_OFFSET)
455 /*
456 * When set, the trigger fires on the virtual address or data of a store.
457  */
458 #define CSR_MCONTROL_STORE_OFFSET           1
459 #define CSR_MCONTROL_STORE_LENGTH           1
460 #define CSR_MCONTROL_STORE                  (0x1L << CSR_MCONTROL_STORE_OFFSET)
461 /*
462 * When set, the trigger fires on the virtual address or data of a load.
463  */
464 #define CSR_MCONTROL_LOAD_OFFSET            0
465 #define CSR_MCONTROL_LOAD_LENGTH            1
466 #define CSR_MCONTROL_LOAD                   (0x1L << CSR_MCONTROL_LOAD_OFFSET)
467 #define CSR_ICOUNT                          0x7a1
468 #define CSR_ICOUNT_TYPE_OFFSET              XLEN-4
469 #define CSR_ICOUNT_TYPE_LENGTH              4
470 #define CSR_ICOUNT_TYPE                     (0xfL << CSR_ICOUNT_TYPE_OFFSET)
471 #define CSR_ICOUNT_DMODE_OFFSET             XLEN-5
472 #define CSR_ICOUNT_DMODE_LENGTH             1
473 #define CSR_ICOUNT_DMODE                    (0x1L << CSR_ICOUNT_DMODE_OFFSET)
474 /*
475 * When count is decremented to 0, the trigger fires. Instead of
476 * changing \Fcount from 1 to 0, it is also acceptable for hardware to
477 * clear \Fm, \Fh, \Fs, and \Fu. This allows \Fcount to be hard-wired
478 * to 1 if this register just exists for single step.
479  */
480 #define CSR_ICOUNT_COUNT_OFFSET             10
481 #define CSR_ICOUNT_COUNT_LENGTH             14
482 #define CSR_ICOUNT_COUNT                    (0x3fffL << CSR_ICOUNT_COUNT_OFFSET)
483 /*
484 * When set, every instruction completed or exception taken in M mode decrements \Fcount
485 * by 1.
486  */
487 #define CSR_ICOUNT_M_OFFSET                 9
488 #define CSR_ICOUNT_M_LENGTH                 1
489 #define CSR_ICOUNT_M                        (0x1L << CSR_ICOUNT_M_OFFSET)
490 /*
491 * When set, every instruction completed or exception taken in in H mode decrements \Fcount
492 * by 1.
493  */
494 #define CSR_ICOUNT_H_OFFSET                 8
495 #define CSR_ICOUNT_H_LENGTH                 1
496 #define CSR_ICOUNT_H                        (0x1L << CSR_ICOUNT_H_OFFSET)
497 /*
498 * When set, every instruction completed or exception taken in S mode decrements \Fcount
499 * by 1.
500  */
501 #define CSR_ICOUNT_S_OFFSET                 7
502 #define CSR_ICOUNT_S_LENGTH                 1
503 #define CSR_ICOUNT_S                        (0x1L << CSR_ICOUNT_S_OFFSET)
504 /*
505 * When set, every instruction completed or exception taken in U mode decrements \Fcount
506 * by 1.
507  */
508 #define CSR_ICOUNT_U_OFFSET                 6
509 #define CSR_ICOUNT_U_LENGTH                 1
510 #define CSR_ICOUNT_U                        (0x1L << CSR_ICOUNT_U_OFFSET)
511 /*
512 * Determines what happens when this trigger matches.
513 *
514 * 0: Raise a breakpoint exception. (Used when software wants to use the
515 * trigger module without an external debugger attached.)
516 *
517 * 1: Enter Debug Mode. (Only supported when \Fhmode is 1.)
518 *
519 * 2: Start tracing.
520 *
521 * 3: Stop tracing.
522 *
523 * 4: Emit trace data for this match. If it is a data access match,
524 * emit appropriate Load/Store Address/Data. If it is an instruction
525 * execution, emit its PC.
526 *
527 * Other values are reserved for future use.
528  */
529 #define CSR_ICOUNT_ACTION_OFFSET            0
530 #define CSR_ICOUNT_ACTION_LENGTH            6
531 #define CSR_ICOUNT_ACTION                   (0x3fL << CSR_ICOUNT_ACTION_OFFSET)
532 #define DMI_DMSTATUS                        0x11
533 /*
534 * This field is 1 when all currently selected harts have acknowledged the previous \Fresumereq.
535  */
536 #define DMI_DMSTATUS_ALLRESUMEACK_OFFSET    17
537 #define DMI_DMSTATUS_ALLRESUMEACK_LENGTH    1
538 #define DMI_DMSTATUS_ALLRESUMEACK           (0x1 << DMI_DMSTATUS_ALLRESUMEACK_OFFSET)
539 /*
540 * This field is 1 when any currently selected hart has acknowledged the previous \Fresumereq.
541  */
542 #define DMI_DMSTATUS_ANYRESUMEACK_OFFSET    16
543 #define DMI_DMSTATUS_ANYRESUMEACK_LENGTH    1
544 #define DMI_DMSTATUS_ANYRESUMEACK           (0x1 << DMI_DMSTATUS_ANYRESUMEACK_OFFSET)
545 /*
546 * This field is 1 when all currently selected harts do not exist in this system.
547  */
548 #define DMI_DMSTATUS_ALLNONEXISTENT_OFFSET  15
549 #define DMI_DMSTATUS_ALLNONEXISTENT_LENGTH  1
550 #define DMI_DMSTATUS_ALLNONEXISTENT         (0x1 << DMI_DMSTATUS_ALLNONEXISTENT_OFFSET)
551 /*
552 * This field is 1 when any currently selected hart does not exist in this system.
553  */
554 #define DMI_DMSTATUS_ANYNONEXISTENT_OFFSET  14
555 #define DMI_DMSTATUS_ANYNONEXISTENT_LENGTH  1
556 #define DMI_DMSTATUS_ANYNONEXISTENT         (0x1 << DMI_DMSTATUS_ANYNONEXISTENT_OFFSET)
557 /*
558 * This field is 1 when all currently selected harts are unavailable.
559  */
560 #define DMI_DMSTATUS_ALLUNAVAIL_OFFSET      13
561 #define DMI_DMSTATUS_ALLUNAVAIL_LENGTH      1
562 #define DMI_DMSTATUS_ALLUNAVAIL             (0x1 << DMI_DMSTATUS_ALLUNAVAIL_OFFSET)
563 /*
564 * This field is 1 when any currently selected hart is unavailable.
565  */
566 #define DMI_DMSTATUS_ANYUNAVAIL_OFFSET      12
567 #define DMI_DMSTATUS_ANYUNAVAIL_LENGTH      1
568 #define DMI_DMSTATUS_ANYUNAVAIL             (0x1 << DMI_DMSTATUS_ANYUNAVAIL_OFFSET)
569 /*
570 * This field is 1 when all currently selected harts are running.
571  */
572 #define DMI_DMSTATUS_ALLRUNNING_OFFSET      11
573 #define DMI_DMSTATUS_ALLRUNNING_LENGTH      1
574 #define DMI_DMSTATUS_ALLRUNNING             (0x1 << DMI_DMSTATUS_ALLRUNNING_OFFSET)
575 /*
576 * This field is 1 when any currently selected hart is running.
577  */
578 #define DMI_DMSTATUS_ANYRUNNING_OFFSET      10
579 #define DMI_DMSTATUS_ANYRUNNING_LENGTH      1
580 #define DMI_DMSTATUS_ANYRUNNING             (0x1 << DMI_DMSTATUS_ANYRUNNING_OFFSET)
581 /*
582 * This field is 1 when all currently selected harts are halted.
583  */
584 #define DMI_DMSTATUS_ALLHALTED_OFFSET       9
585 #define DMI_DMSTATUS_ALLHALTED_LENGTH       1
586 #define DMI_DMSTATUS_ALLHALTED              (0x1 << DMI_DMSTATUS_ALLHALTED_OFFSET)
587 /*
588 * This field is 1 when any currently selected hart is halted.
589  */
590 #define DMI_DMSTATUS_ANYHALTED_OFFSET       8
591 #define DMI_DMSTATUS_ANYHALTED_LENGTH       1
592 #define DMI_DMSTATUS_ANYHALTED              (0x1 << DMI_DMSTATUS_ANYHALTED_OFFSET)
593 /*
594 * 0 when authentication is required before using the DM.  1 when the
595 * authentication check has passed. On components that don't implement
596 * authentication, this bit must be preset as 1.
597  */
598 #define DMI_DMSTATUS_AUTHENTICATED_OFFSET   7
599 #define DMI_DMSTATUS_AUTHENTICATED_LENGTH   1
600 #define DMI_DMSTATUS_AUTHENTICATED          (0x1 << DMI_DMSTATUS_AUTHENTICATED_OFFSET)
601 /*
602 * 0: The authentication module is ready to process the next
603 * read/write to \Rauthdata.
604 *
605 * 1: The authentication module is busy. Accessing \Rauthdata results
606 * in unspecified behavior.
607 *
608 * \Fauthbusy only becomes set in immediate response to an access to
609 * \Rauthdata.
610  */
611 #define DMI_DMSTATUS_AUTHBUSY_OFFSET        6
612 #define DMI_DMSTATUS_AUTHBUSY_LENGTH        1
613 #define DMI_DMSTATUS_AUTHBUSY               (0x1 << DMI_DMSTATUS_AUTHBUSY_OFFSET)
614 #define DMI_DMSTATUS_CFGSTRVALID_OFFSET     4
615 #define DMI_DMSTATUS_CFGSTRVALID_LENGTH     1
616 #define DMI_DMSTATUS_CFGSTRVALID            (0x1 << DMI_DMSTATUS_CFGSTRVALID_OFFSET)
617 /*
618 * 0: There is no Debug Module present.
619 *
620 * 1: There is a Debug Module and it conforms to version 0.11 of this
621 * specification.
622 *
623 * 2: There is a Debug Module and it conforms to version 0.13 of this
624 * specification.
625  */
626 #define DMI_DMSTATUS_VERSION_OFFSET         0
627 #define DMI_DMSTATUS_VERSION_LENGTH         4
628 #define DMI_DMSTATUS_VERSION                (0xf << DMI_DMSTATUS_VERSION_OFFSET)
629 #define DMI_DMCONTROL                       0x10
630 /*
631 * Halt request signal for all currently selected harts. When set to
632 * 1, each selected hart will halt if it is not currently halted.
633 *
634 * Writing 1 or 0 has no effect on a hart which is already halted, but
635 * the bit should be cleared to 0 before the hart is resumed.
636 * Setting both \Fhaltreq and \Fresumereq leads to undefined behavior.
637 *
638 * Writes apply to the new value of \Fhartsel and \Fhasel.
639  */
640 #define DMI_DMCONTROL_HALTREQ_OFFSET        31
641 #define DMI_DMCONTROL_HALTREQ_LENGTH        1
642 #define DMI_DMCONTROL_HALTREQ               (0x1 << DMI_DMCONTROL_HALTREQ_OFFSET)
643 /*
644 * Resume request signal for all currently selected harts. When set to 1,
645 * each selected hart will resume if it is currently halted.
646 * Setting both \Fhaltreq and \Fresumereq leads to undefined behavior.
647 *
648 * Writes apply to the new value of \Fhartsel and \Fhasel.
649  */
650 #define DMI_DMCONTROL_RESUMEREQ_OFFSET      30
651 #define DMI_DMCONTROL_RESUMEREQ_LENGTH      1
652 #define DMI_DMCONTROL_RESUMEREQ             (0x1 << DMI_DMCONTROL_RESUMEREQ_OFFSET)
653 /*
654 * This optional bit controls reset to all the currently selected harts.
655 * To perform a reset the debugger writes 1, and then writes 0 to
656 * deassert the reset signal.
657 *
658 * If this feature is not implemented, the bit always stays 0, so
659 * after writing 1 the debugger can read the register back to see if
660 * the feature is supported.
661 *
662 * Writes apply to the new value of \Fhartsel and \Fhasel.
663  */
664 #define DMI_DMCONTROL_HARTRESET_OFFSET      29
665 #define DMI_DMCONTROL_HARTRESET_LENGTH      1
666 #define DMI_DMCONTROL_HARTRESET             (0x1 << DMI_DMCONTROL_HARTRESET_OFFSET)
667 /*
668 * Selects the  definition of currently selected harts.
669 *
670 * 0: There is a single currently selected hart, that selected by \Fhartsel.
671 *
672 * 1: There may be multiple currently selected harts -- that selected by \Fhartsel,
673 * plus those selected by the hart array mask register.
674 *
675 * An implementation which does not implement the hart array mask register
676 * should tie this field to 0. A debugger which wishes to use the hart array
677 * mask register feature should set this bit and read back to see if the functionality
678 * is supported.
679  */
680 #define DMI_DMCONTROL_HASEL_OFFSET          26
681 #define DMI_DMCONTROL_HASEL_LENGTH          1
682 #define DMI_DMCONTROL_HASEL                 (0x1 << DMI_DMCONTROL_HASEL_OFFSET)
683 /*
684 * The DM-specific index of the hart to select. This hart is always part of the
685 * currently selected harts.
686  */
687 #define DMI_DMCONTROL_HARTSEL_OFFSET        16
688 #define DMI_DMCONTROL_HARTSEL_LENGTH        10
689 #define DMI_DMCONTROL_HARTSEL               (0x3ff << DMI_DMCONTROL_HARTSEL_OFFSET)
690 /*
691 * This bit controls the reset signal from the DM to the rest of the
692 * system. To perform a system reset the debugger writes 1,
693 * and then writes 0
694 * to deassert the reset. This bit must not reset the Debug Module
695 * registers. What it does reset is platform-specific (it may
696 * reset nothing).
697  */
698 #define DMI_DMCONTROL_NDMRESET_OFFSET       1
699 #define DMI_DMCONTROL_NDMRESET_LENGTH       1
700 #define DMI_DMCONTROL_NDMRESET              (0x1 << DMI_DMCONTROL_NDMRESET_OFFSET)
701 /*
702 * This bit serves as a reset signal for the Debug Module itself.
703 *
704 * 0: The module's state, including authentication mechanism,
705 * takes its reset values (the \Fdmactive bit is the only bit which can
706 * be written to something other than its reset value).
707 *
708 * 1: The module functions normally.
709 *
710 * No other mechanism should exist that may result in resetting the
711 * Debug Module after power up, including the platform's system reset
712 * or Debug Transport reset signals.
713 *
714 * A debugger may pulse this bit low to get the debug module into a
715 * known state.
716 *
717 * Implementations may use this bit to aid debugging, for example by
718 * preventing the Debug Module from being power gated while debugging
719 * is active.
720  */
721 #define DMI_DMCONTROL_DMACTIVE_OFFSET       0
722 #define DMI_DMCONTROL_DMACTIVE_LENGTH       1
723 #define DMI_DMCONTROL_DMACTIVE              (0x1 << DMI_DMCONTROL_DMACTIVE_OFFSET)
724 #define DMI_HARTINFO                        0x12
725 /*
726 * Number of {\tt dscratch} registers available for the debugger
727 * to use during program buffer execution, starting from \Rdscratchzero.
728 * The debugger can make no assumptions about the contents of these
729 * registers between commands.
730  */
731 #define DMI_HARTINFO_NSCRATCH_OFFSET        20
732 #define DMI_HARTINFO_NSCRATCH_LENGTH        4
733 #define DMI_HARTINFO_NSCRATCH               (0xf << DMI_HARTINFO_NSCRATCH_OFFSET)
734 /*
735 * 0: The {\tt data} registers are shadowed in the hart by CSR
736 * registers. Each CSR register is XLEN bits in size, and corresponds
737 * to a single argument, per Table~\ref{tab:datareg}.
738 *
739 * 1: The {\tt data} registers are shadowed in the hart's memory map.
740 * Each register takes up 4 bytes in the memory map.
741  */
742 #define DMI_HARTINFO_DATAACCESS_OFFSET      16
743 #define DMI_HARTINFO_DATAACCESS_LENGTH      1
744 #define DMI_HARTINFO_DATAACCESS             (0x1 << DMI_HARTINFO_DATAACCESS_OFFSET)
745 /*
746 * If \Fdataaccess is 0: Number of CSR registers dedicated to
747 * shadowing the {\tt data} registers.
748 *
749 * If \Fdataaccess is 1: Number of 32-bit words in the memory map
750 * dedicated to shadowing the {\tt data} registers.
751  */
752 #define DMI_HARTINFO_DATASIZE_OFFSET        12
753 #define DMI_HARTINFO_DATASIZE_LENGTH        4
754 #define DMI_HARTINFO_DATASIZE               (0xf << DMI_HARTINFO_DATASIZE_OFFSET)
755 /*
756 * If \Fdataaccess is 0: The number of the first CSR dedicated to
757 * shadowing the {\tt data} registers.
758 *
759 * If \Fdataaccess is 1: Signed address of RAM where the {\tt data}
760 * registers are shadowed.
761  */
762 #define DMI_HARTINFO_DATAADDR_OFFSET        0
763 #define DMI_HARTINFO_DATAADDR_LENGTH        12
764 #define DMI_HARTINFO_DATAADDR               (0xfff << DMI_HARTINFO_DATAADDR_OFFSET)
765 #define DMI_HALTSUM                         0x13
766 #define DMI_HALTSUM_HALT1023_992_OFFSET     31
767 #define DMI_HALTSUM_HALT1023_992_LENGTH     1
768 #define DMI_HALTSUM_HALT1023_992            (0x1 << DMI_HALTSUM_HALT1023_992_OFFSET)
769 #define DMI_HALTSUM_HALT991_960_OFFSET      30
770 #define DMI_HALTSUM_HALT991_960_LENGTH      1
771 #define DMI_HALTSUM_HALT991_960             (0x1 << DMI_HALTSUM_HALT991_960_OFFSET)
772 #define DMI_HALTSUM_HALT959_928_OFFSET      29
773 #define DMI_HALTSUM_HALT959_928_LENGTH      1
774 #define DMI_HALTSUM_HALT959_928             (0x1 << DMI_HALTSUM_HALT959_928_OFFSET)
775 #define DMI_HALTSUM_HALT927_896_OFFSET      28
776 #define DMI_HALTSUM_HALT927_896_LENGTH      1
777 #define DMI_HALTSUM_HALT927_896             (0x1 << DMI_HALTSUM_HALT927_896_OFFSET)
778 #define DMI_HALTSUM_HALT895_864_OFFSET      27
779 #define DMI_HALTSUM_HALT895_864_LENGTH      1
780 #define DMI_HALTSUM_HALT895_864             (0x1 << DMI_HALTSUM_HALT895_864_OFFSET)
781 #define DMI_HALTSUM_HALT863_832_OFFSET      26
782 #define DMI_HALTSUM_HALT863_832_LENGTH      1
783 #define DMI_HALTSUM_HALT863_832             (0x1 << DMI_HALTSUM_HALT863_832_OFFSET)
784 #define DMI_HALTSUM_HALT831_800_OFFSET      25
785 #define DMI_HALTSUM_HALT831_800_LENGTH      1
786 #define DMI_HALTSUM_HALT831_800             (0x1 << DMI_HALTSUM_HALT831_800_OFFSET)
787 #define DMI_HALTSUM_HALT799_768_OFFSET      24
788 #define DMI_HALTSUM_HALT799_768_LENGTH      1
789 #define DMI_HALTSUM_HALT799_768             (0x1 << DMI_HALTSUM_HALT799_768_OFFSET)
790 #define DMI_HALTSUM_HALT767_736_OFFSET      23
791 #define DMI_HALTSUM_HALT767_736_LENGTH      1
792 #define DMI_HALTSUM_HALT767_736             (0x1 << DMI_HALTSUM_HALT767_736_OFFSET)
793 #define DMI_HALTSUM_HALT735_704_OFFSET      22
794 #define DMI_HALTSUM_HALT735_704_LENGTH      1
795 #define DMI_HALTSUM_HALT735_704             (0x1 << DMI_HALTSUM_HALT735_704_OFFSET)
796 #define DMI_HALTSUM_HALT703_672_OFFSET      21
797 #define DMI_HALTSUM_HALT703_672_LENGTH      1
798 #define DMI_HALTSUM_HALT703_672             (0x1 << DMI_HALTSUM_HALT703_672_OFFSET)
799 #define DMI_HALTSUM_HALT671_640_OFFSET      20
800 #define DMI_HALTSUM_HALT671_640_LENGTH      1
801 #define DMI_HALTSUM_HALT671_640             (0x1 << DMI_HALTSUM_HALT671_640_OFFSET)
802 #define DMI_HALTSUM_HALT639_608_OFFSET      19
803 #define DMI_HALTSUM_HALT639_608_LENGTH      1
804 #define DMI_HALTSUM_HALT639_608             (0x1 << DMI_HALTSUM_HALT639_608_OFFSET)
805 #define DMI_HALTSUM_HALT607_576_OFFSET      18
806 #define DMI_HALTSUM_HALT607_576_LENGTH      1
807 #define DMI_HALTSUM_HALT607_576             (0x1 << DMI_HALTSUM_HALT607_576_OFFSET)
808 #define DMI_HALTSUM_HALT575_544_OFFSET      17
809 #define DMI_HALTSUM_HALT575_544_LENGTH      1
810 #define DMI_HALTSUM_HALT575_544             (0x1 << DMI_HALTSUM_HALT575_544_OFFSET)
811 #define DMI_HALTSUM_HALT543_512_OFFSET      16
812 #define DMI_HALTSUM_HALT543_512_LENGTH      1
813 #define DMI_HALTSUM_HALT543_512             (0x1 << DMI_HALTSUM_HALT543_512_OFFSET)
814 #define DMI_HALTSUM_HALT511_480_OFFSET      15
815 #define DMI_HALTSUM_HALT511_480_LENGTH      1
816 #define DMI_HALTSUM_HALT511_480             (0x1 << DMI_HALTSUM_HALT511_480_OFFSET)
817 #define DMI_HALTSUM_HALT479_448_OFFSET      14
818 #define DMI_HALTSUM_HALT479_448_LENGTH      1
819 #define DMI_HALTSUM_HALT479_448             (0x1 << DMI_HALTSUM_HALT479_448_OFFSET)
820 #define DMI_HALTSUM_HALT447_416_OFFSET      13
821 #define DMI_HALTSUM_HALT447_416_LENGTH      1
822 #define DMI_HALTSUM_HALT447_416             (0x1 << DMI_HALTSUM_HALT447_416_OFFSET)
823 #define DMI_HALTSUM_HALT415_384_OFFSET      12
824 #define DMI_HALTSUM_HALT415_384_LENGTH      1
825 #define DMI_HALTSUM_HALT415_384             (0x1 << DMI_HALTSUM_HALT415_384_OFFSET)
826 #define DMI_HALTSUM_HALT383_352_OFFSET      11
827 #define DMI_HALTSUM_HALT383_352_LENGTH      1
828 #define DMI_HALTSUM_HALT383_352             (0x1 << DMI_HALTSUM_HALT383_352_OFFSET)
829 #define DMI_HALTSUM_HALT351_320_OFFSET      10
830 #define DMI_HALTSUM_HALT351_320_LENGTH      1
831 #define DMI_HALTSUM_HALT351_320             (0x1 << DMI_HALTSUM_HALT351_320_OFFSET)
832 #define DMI_HALTSUM_HALT319_288_OFFSET      9
833 #define DMI_HALTSUM_HALT319_288_LENGTH      1
834 #define DMI_HALTSUM_HALT319_288             (0x1 << DMI_HALTSUM_HALT319_288_OFFSET)
835 #define DMI_HALTSUM_HALT287_256_OFFSET      8
836 #define DMI_HALTSUM_HALT287_256_LENGTH      1
837 #define DMI_HALTSUM_HALT287_256             (0x1 << DMI_HALTSUM_HALT287_256_OFFSET)
838 #define DMI_HALTSUM_HALT255_224_OFFSET      7
839 #define DMI_HALTSUM_HALT255_224_LENGTH      1
840 #define DMI_HALTSUM_HALT255_224             (0x1 << DMI_HALTSUM_HALT255_224_OFFSET)
841 #define DMI_HALTSUM_HALT223_192_OFFSET      6
842 #define DMI_HALTSUM_HALT223_192_LENGTH      1
843 #define DMI_HALTSUM_HALT223_192             (0x1 << DMI_HALTSUM_HALT223_192_OFFSET)
844 #define DMI_HALTSUM_HALT191_160_OFFSET      5
845 #define DMI_HALTSUM_HALT191_160_LENGTH      1
846 #define DMI_HALTSUM_HALT191_160             (0x1 << DMI_HALTSUM_HALT191_160_OFFSET)
847 #define DMI_HALTSUM_HALT159_128_OFFSET      4
848 #define DMI_HALTSUM_HALT159_128_LENGTH      1
849 #define DMI_HALTSUM_HALT159_128             (0x1 << DMI_HALTSUM_HALT159_128_OFFSET)
850 #define DMI_HALTSUM_HALT127_96_OFFSET       3
851 #define DMI_HALTSUM_HALT127_96_LENGTH       1
852 #define DMI_HALTSUM_HALT127_96              (0x1 << DMI_HALTSUM_HALT127_96_OFFSET)
853 #define DMI_HALTSUM_HALT95_64_OFFSET        2
854 #define DMI_HALTSUM_HALT95_64_LENGTH        1
855 #define DMI_HALTSUM_HALT95_64               (0x1 << DMI_HALTSUM_HALT95_64_OFFSET)
856 #define DMI_HALTSUM_HALT63_32_OFFSET        1
857 #define DMI_HALTSUM_HALT63_32_LENGTH        1
858 #define DMI_HALTSUM_HALT63_32               (0x1 << DMI_HALTSUM_HALT63_32_OFFSET)
859 #define DMI_HALTSUM_HALT31_0_OFFSET         0
860 #define DMI_HALTSUM_HALT31_0_LENGTH         1
861 #define DMI_HALTSUM_HALT31_0                (0x1 << DMI_HALTSUM_HALT31_0_OFFSET)
862 #define DMI_HAWINDOWSEL                     0x14
863 #define DMI_HAWINDOWSEL_HAWINDOWSEL_OFFSET  0
864 #define DMI_HAWINDOWSEL_HAWINDOWSEL_LENGTH  5
865 #define DMI_HAWINDOWSEL_HAWINDOWSEL         (0x1f << DMI_HAWINDOWSEL_HAWINDOWSEL_OFFSET)
866 #define DMI_HAWINDOW                        0x15
867 #define DMI_HAWINDOW_MASKDATA_OFFSET        0
868 #define DMI_HAWINDOW_MASKDATA_LENGTH        32
869 #define DMI_HAWINDOW_MASKDATA               (0xffffffff << DMI_HAWINDOW_MASKDATA_OFFSET)
870 #define DMI_ABSTRACTCS                      0x16
871 /*
872 * Size of the Program Buffer, in 32-bit words. Valid sizes are 0 - 16.
873 *
874 * TODO: Explain what can be done with each size of the buffer, to suggest
875 * why you would want more or less words.
876  */
877 #define DMI_ABSTRACTCS_PROGSIZE_OFFSET      24
878 #define DMI_ABSTRACTCS_PROGSIZE_LENGTH      5
879 #define DMI_ABSTRACTCS_PROGSIZE             (0x1f << DMI_ABSTRACTCS_PROGSIZE_OFFSET)
880 /*
881 * 1: An abstract command is currently being executed.
882 *
883 * This bit is set as soon as \Rcommand is written, and is
884 * not cleared until that command has completed.
885  */
886 #define DMI_ABSTRACTCS_BUSY_OFFSET          12
887 #define DMI_ABSTRACTCS_BUSY_LENGTH          1
888 #define DMI_ABSTRACTCS_BUSY                 (0x1 << DMI_ABSTRACTCS_BUSY_OFFSET)
889 /*
890 * Gets set if an abstract command fails. The bits in this field remain set until
891 * they are cleared by writing 1 to them. No abstract command is
892 * started until the value is reset to 0.
893 *
894 * 0 (none): No error.
895 *
896 * 1 (busy): An abstract command was executing while \Rcommand,
897 * \Rabstractcs, \Rabstractauto was written, or when one
898 * of the {\tt data} or {\tt progbuf} registers was read or written.
899 *
900 * 2 (not supported): The requested command is not supported. A
901 * command that is not supported while the hart is running may be
902 * supported when it is halted.
903 *
904 * 3 (exception): An exception occurred while executing the command
905 * (eg. while executing the Program Buffer).
906 *
907 * 4 (halt/resume): An abstract command couldn't execute because the
908 * hart wasn't in the expected state (running/halted).
909 *
910 * 7 (other): The command failed for another reason.
911  */
912 #define DMI_ABSTRACTCS_CMDERR_OFFSET        8
913 #define DMI_ABSTRACTCS_CMDERR_LENGTH        3
914 #define DMI_ABSTRACTCS_CMDERR               (0x7 << DMI_ABSTRACTCS_CMDERR_OFFSET)
915 /*
916 * Number of {\tt data} registers that are implemented as part of the
917 * abstract command interface. Valid sizes are 0 - 12.
918  */
919 #define DMI_ABSTRACTCS_DATACOUNT_OFFSET     0
920 #define DMI_ABSTRACTCS_DATACOUNT_LENGTH     5
921 #define DMI_ABSTRACTCS_DATACOUNT            (0x1f << DMI_ABSTRACTCS_DATACOUNT_OFFSET)
922 #define DMI_COMMAND                         0x17
923 /*
924 * The type determines the overall functionality of this
925 * abstract command.
926  */
927 #define DMI_COMMAND_CMDTYPE_OFFSET          24
928 #define DMI_COMMAND_CMDTYPE_LENGTH          8
929 #define DMI_COMMAND_CMDTYPE                 (0xff << DMI_COMMAND_CMDTYPE_OFFSET)
930 /*
931 * This field is interpreted in a command-specific manner,
932 * described for each abstract command.
933  */
934 #define DMI_COMMAND_CONTROL_OFFSET          0
935 #define DMI_COMMAND_CONTROL_LENGTH          24
936 #define DMI_COMMAND_CONTROL                 (0xffffff << DMI_COMMAND_CONTROL_OFFSET)
937 #define DMI_ABSTRACTAUTO                    0x18
938 /*
939 * When a bit in this field is 1, read or write accesses the corresponding {\tt progbuf} word
940 * cause the command in \Rcommand to be executed again.
941  */
942 #define DMI_ABSTRACTAUTO_AUTOEXECPROGBUF_OFFSET 16
943 #define DMI_ABSTRACTAUTO_AUTOEXECPROGBUF_LENGTH 16
944 #define DMI_ABSTRACTAUTO_AUTOEXECPROGBUF    (0xffff << DMI_ABSTRACTAUTO_AUTOEXECPROGBUF_OFFSET)
945 /*
946 * When a bit in this field is 1, read or write accesses the corresponding {\tt data} word
947 * cause the command in \Rcommand to be executed again.
948  */
949 #define DMI_ABSTRACTAUTO_AUTOEXECDATA_OFFSET 0
950 #define DMI_ABSTRACTAUTO_AUTOEXECDATA_LENGTH 12
951 #define DMI_ABSTRACTAUTO_AUTOEXECDATA       (0xfff << DMI_ABSTRACTAUTO_AUTOEXECDATA_OFFSET)
952 #define DMI_CFGSTRADDR0                     0x19
953 #define DMI_CFGSTRADDR0_ADDR_OFFSET         0
954 #define DMI_CFGSTRADDR0_ADDR_LENGTH         32
955 #define DMI_CFGSTRADDR0_ADDR                (0xffffffff << DMI_CFGSTRADDR0_ADDR_OFFSET)
956 #define DMI_CFGSTRADDR1                     0x1a
957 #define DMI_CFGSTRADDR2                     0x1b
958 #define DMI_CFGSTRADDR3                     0x1c
959 #define DMI_DATA0                           0x04
960 #define DMI_DATA0_DATA_OFFSET               0
961 #define DMI_DATA0_DATA_LENGTH               32
962 #define DMI_DATA0_DATA                      (0xffffffff << DMI_DATA0_DATA_OFFSET)
963 #define DMI_DATA11                          0x0f
964 #define DMI_PROGBUF0                        0x20
965 #define DMI_PROGBUF0_DATA_OFFSET            0
966 #define DMI_PROGBUF0_DATA_LENGTH            32
967 #define DMI_PROGBUF0_DATA                   (0xffffffff << DMI_PROGBUF0_DATA_OFFSET)
968 #define DMI_PROGBUF15                       0x2f
969 #define DMI_AUTHDATA                        0x30
970 #define DMI_AUTHDATA_DATA_OFFSET            0
971 #define DMI_AUTHDATA_DATA_LENGTH            32
972 #define DMI_AUTHDATA_DATA                   (0xffffffff << DMI_AUTHDATA_DATA_OFFSET)
973 #define DMI_SERCS                           0x34
974 /*
975 * Number of supported serial ports.
976  */
977 #define DMI_SERCS_SERIALCOUNT_OFFSET        28
978 #define DMI_SERCS_SERIALCOUNT_LENGTH        4
979 #define DMI_SERCS_SERIALCOUNT               (0xf << DMI_SERCS_SERIALCOUNT_OFFSET)
980 /*
981 * Select which serial port is accessed by \Rserrx and \Rsertx.
982  */
983 #define DMI_SERCS_SERIAL_OFFSET             24
984 #define DMI_SERCS_SERIAL_LENGTH             3
985 #define DMI_SERCS_SERIAL                    (0x7 << DMI_SERCS_SERIAL_OFFSET)
986 #define DMI_SERCS_ERROR7_OFFSET             23
987 #define DMI_SERCS_ERROR7_LENGTH             1
988 #define DMI_SERCS_ERROR7                    (0x1 << DMI_SERCS_ERROR7_OFFSET)
989 #define DMI_SERCS_VALID7_OFFSET             22
990 #define DMI_SERCS_VALID7_LENGTH             1
991 #define DMI_SERCS_VALID7                    (0x1 << DMI_SERCS_VALID7_OFFSET)
992 #define DMI_SERCS_FULL7_OFFSET              21
993 #define DMI_SERCS_FULL7_LENGTH              1
994 #define DMI_SERCS_FULL7                     (0x1 << DMI_SERCS_FULL7_OFFSET)
995 #define DMI_SERCS_ERROR6_OFFSET             20
996 #define DMI_SERCS_ERROR6_LENGTH             1
997 #define DMI_SERCS_ERROR6                    (0x1 << DMI_SERCS_ERROR6_OFFSET)
998 #define DMI_SERCS_VALID6_OFFSET             19
999 #define DMI_SERCS_VALID6_LENGTH             1
1000 #define DMI_SERCS_VALID6                    (0x1 << DMI_SERCS_VALID6_OFFSET)
1001 #define DMI_SERCS_FULL6_OFFSET              18
1002 #define DMI_SERCS_FULL6_LENGTH              1
1003 #define DMI_SERCS_FULL6                     (0x1 << DMI_SERCS_FULL6_OFFSET)
1004 #define DMI_SERCS_ERROR5_OFFSET             17
1005 #define DMI_SERCS_ERROR5_LENGTH             1
1006 #define DMI_SERCS_ERROR5                    (0x1 << DMI_SERCS_ERROR5_OFFSET)
1007 #define DMI_SERCS_VALID5_OFFSET             16
1008 #define DMI_SERCS_VALID5_LENGTH             1
1009 #define DMI_SERCS_VALID5                    (0x1 << DMI_SERCS_VALID5_OFFSET)
1010 #define DMI_SERCS_FULL5_OFFSET              15
1011 #define DMI_SERCS_FULL5_LENGTH              1
1012 #define DMI_SERCS_FULL5                     (0x1 << DMI_SERCS_FULL5_OFFSET)
1013 #define DMI_SERCS_ERROR4_OFFSET             14
1014 #define DMI_SERCS_ERROR4_LENGTH             1
1015 #define DMI_SERCS_ERROR4                    (0x1 << DMI_SERCS_ERROR4_OFFSET)
1016 #define DMI_SERCS_VALID4_OFFSET             13
1017 #define DMI_SERCS_VALID4_LENGTH             1
1018 #define DMI_SERCS_VALID4                    (0x1 << DMI_SERCS_VALID4_OFFSET)
1019 #define DMI_SERCS_FULL4_OFFSET              12
1020 #define DMI_SERCS_FULL4_LENGTH              1
1021 #define DMI_SERCS_FULL4                     (0x1 << DMI_SERCS_FULL4_OFFSET)
1022 #define DMI_SERCS_ERROR3_OFFSET             11
1023 #define DMI_SERCS_ERROR3_LENGTH             1
1024 #define DMI_SERCS_ERROR3                    (0x1 << DMI_SERCS_ERROR3_OFFSET)
1025 #define DMI_SERCS_VALID3_OFFSET             10
1026 #define DMI_SERCS_VALID3_LENGTH             1
1027 #define DMI_SERCS_VALID3                    (0x1 << DMI_SERCS_VALID3_OFFSET)
1028 #define DMI_SERCS_FULL3_OFFSET              9
1029 #define DMI_SERCS_FULL3_LENGTH              1
1030 #define DMI_SERCS_FULL3                     (0x1 << DMI_SERCS_FULL3_OFFSET)
1031 #define DMI_SERCS_ERROR2_OFFSET             8
1032 #define DMI_SERCS_ERROR2_LENGTH             1
1033 #define DMI_SERCS_ERROR2                    (0x1 << DMI_SERCS_ERROR2_OFFSET)
1034 #define DMI_SERCS_VALID2_OFFSET             7
1035 #define DMI_SERCS_VALID2_LENGTH             1
1036 #define DMI_SERCS_VALID2                    (0x1 << DMI_SERCS_VALID2_OFFSET)
1037 #define DMI_SERCS_FULL2_OFFSET              6
1038 #define DMI_SERCS_FULL2_LENGTH              1
1039 #define DMI_SERCS_FULL2                     (0x1 << DMI_SERCS_FULL2_OFFSET)
1040 #define DMI_SERCS_ERROR1_OFFSET             5
1041 #define DMI_SERCS_ERROR1_LENGTH             1
1042 #define DMI_SERCS_ERROR1                    (0x1 << DMI_SERCS_ERROR1_OFFSET)
1043 #define DMI_SERCS_VALID1_OFFSET             4
1044 #define DMI_SERCS_VALID1_LENGTH             1
1045 #define DMI_SERCS_VALID1                    (0x1 << DMI_SERCS_VALID1_OFFSET)
1046 #define DMI_SERCS_FULL1_OFFSET              3
1047 #define DMI_SERCS_FULL1_LENGTH              1
1048 #define DMI_SERCS_FULL1                     (0x1 << DMI_SERCS_FULL1_OFFSET)
1049 /*
1050 * 1 when the debugger-to-core queue for serial port 0 has
1051 * over or underflowed. This bit will remain set until it is reset by
1052 * writing 1 to this bit.
1053  */
1054 #define DMI_SERCS_ERROR0_OFFSET             2
1055 #define DMI_SERCS_ERROR0_LENGTH             1
1056 #define DMI_SERCS_ERROR0                    (0x1 << DMI_SERCS_ERROR0_OFFSET)
1057 /*
1058 * 1 when the core-to-debugger queue for serial port 0 is not empty.
1059  */
1060 #define DMI_SERCS_VALID0_OFFSET             1
1061 #define DMI_SERCS_VALID0_LENGTH             1
1062 #define DMI_SERCS_VALID0                    (0x1 << DMI_SERCS_VALID0_OFFSET)
1063 /*
1064 * 1 when the debugger-to-core queue for serial port 0 is full.
1065  */
1066 #define DMI_SERCS_FULL0_OFFSET              0
1067 #define DMI_SERCS_FULL0_LENGTH              1
1068 #define DMI_SERCS_FULL0                     (0x1 << DMI_SERCS_FULL0_OFFSET)
1069 #define DMI_SERTX                           0x35
1070 #define DMI_SERTX_DATA_OFFSET               0
1071 #define DMI_SERTX_DATA_LENGTH               32
1072 #define DMI_SERTX_DATA                      (0xffffffff << DMI_SERTX_DATA_OFFSET)
1073 #define DMI_SERRX                           0x36
1074 #define DMI_SERRX_DATA_OFFSET               0
1075 #define DMI_SERRX_DATA_LENGTH               32
1076 #define DMI_SERRX_DATA                      (0xffffffff << DMI_SERRX_DATA_OFFSET)
1077 #define DMI_SBCS                            0x38
1078 /*
1079 * When a 1 is written here, triggers a read at the address in {\tt
1080 * sbaddress} using the access size set by \Fsbaccess.
1081  */
1082 #define DMI_SBCS_SBSINGLEREAD_OFFSET        20
1083 #define DMI_SBCS_SBSINGLEREAD_LENGTH        1
1084 #define DMI_SBCS_SBSINGLEREAD               (0x1 << DMI_SBCS_SBSINGLEREAD_OFFSET)
1085 /*
1086 * Select the access size to use for system bus accesses triggered by
1087 * writes to the {\tt sbaddress} registers or \Rsbdatazero.
1088 *
1089 * 0: 8-bit
1090 *
1091 * 1: 16-bit
1092 *
1093 * 2: 32-bit
1094 *
1095 * 3: 64-bit
1096 *
1097 * 4: 128-bit
1098 *
1099 * If an unsupported system bus access size is written here,
1100 * the DM may not perform the access, or may perform the access
1101 * with any access size.
1102  */
1103 #define DMI_SBCS_SBACCESS_OFFSET            17
1104 #define DMI_SBCS_SBACCESS_LENGTH            3
1105 #define DMI_SBCS_SBACCESS                   (0x7 << DMI_SBCS_SBACCESS_OFFSET)
1106 /*
1107 * When 1, the internal address value (used by the system bus master)
1108 * is incremented by the access size (in bytes) selected in \Fsbaccess
1109 * after every system bus access.
1110  */
1111 #define DMI_SBCS_SBAUTOINCREMENT_OFFSET     16
1112 #define DMI_SBCS_SBAUTOINCREMENT_LENGTH     1
1113 #define DMI_SBCS_SBAUTOINCREMENT            (0x1 << DMI_SBCS_SBAUTOINCREMENT_OFFSET)
1114 /*
1115 * When 1, every read from \Rsbdatazero automatically triggers a system
1116 * bus read at the new address.
1117  */
1118 #define DMI_SBCS_SBAUTOREAD_OFFSET          15
1119 #define DMI_SBCS_SBAUTOREAD_LENGTH          1
1120 #define DMI_SBCS_SBAUTOREAD                 (0x1 << DMI_SBCS_SBAUTOREAD_OFFSET)
1121 /*
1122 * When the debug module's system bus
1123 * master causes a bus error, this field gets set. The bits in this
1124 * field remain set until they are cleared by writing 1 to them.
1125 * While this field is non-zero, no more system bus accesses can be
1126 * initiated by the debug module.
1127 *
1128 * 0: There was no bus error.
1129 *
1130 * 1: There was a timeout.
1131 *
1132 * 2: A bad address was accessed.
1133 *
1134 * 3: There was some other error (eg. alignment).
1135 *
1136 * 4: The system bus master was busy when one of the
1137 * {\tt sbaddress} or {\tt sbdata} registers was written,
1138 * or the {\tt sbdata} register was read when it had
1139 * stale data.
1140  */
1141 #define DMI_SBCS_SBERROR_OFFSET             12
1142 #define DMI_SBCS_SBERROR_LENGTH             3
1143 #define DMI_SBCS_SBERROR                    (0x7 << DMI_SBCS_SBERROR_OFFSET)
1144 /*
1145 * Width of system bus addresses in bits. (0 indicates there is no bus
1146 * access support.)
1147  */
1148 #define DMI_SBCS_SBASIZE_OFFSET             5
1149 #define DMI_SBCS_SBASIZE_LENGTH             7
1150 #define DMI_SBCS_SBASIZE                    (0x7f << DMI_SBCS_SBASIZE_OFFSET)
1151 /*
1152 * 1 when 128-bit system bus accesses are supported.
1153  */
1154 #define DMI_SBCS_SBACCESS128_OFFSET         4
1155 #define DMI_SBCS_SBACCESS128_LENGTH         1
1156 #define DMI_SBCS_SBACCESS128                (0x1 << DMI_SBCS_SBACCESS128_OFFSET)
1157 /*
1158 * 1 when 64-bit system bus accesses are supported.
1159  */
1160 #define DMI_SBCS_SBACCESS64_OFFSET          3
1161 #define DMI_SBCS_SBACCESS64_LENGTH          1
1162 #define DMI_SBCS_SBACCESS64                 (0x1 << DMI_SBCS_SBACCESS64_OFFSET)
1163 /*
1164 * 1 when 32-bit system bus accesses are supported.
1165  */
1166 #define DMI_SBCS_SBACCESS32_OFFSET          2
1167 #define DMI_SBCS_SBACCESS32_LENGTH          1
1168 #define DMI_SBCS_SBACCESS32                 (0x1 << DMI_SBCS_SBACCESS32_OFFSET)
1169 /*
1170 * 1 when 16-bit system bus accesses are supported.
1171  */
1172 #define DMI_SBCS_SBACCESS16_OFFSET          1
1173 #define DMI_SBCS_SBACCESS16_LENGTH          1
1174 #define DMI_SBCS_SBACCESS16                 (0x1 << DMI_SBCS_SBACCESS16_OFFSET)
1175 /*
1176 * 1 when 8-bit system bus accesses are supported.
1177  */
1178 #define DMI_SBCS_SBACCESS8_OFFSET           0
1179 #define DMI_SBCS_SBACCESS8_LENGTH           1
1180 #define DMI_SBCS_SBACCESS8                  (0x1 << DMI_SBCS_SBACCESS8_OFFSET)
1181 #define DMI_SBADDRESS0                      0x39
1182 /*
1183 * Accesses bits 31:0 of the internal address.
1184  */
1185 #define DMI_SBADDRESS0_ADDRESS_OFFSET       0
1186 #define DMI_SBADDRESS0_ADDRESS_LENGTH       32
1187 #define DMI_SBADDRESS0_ADDRESS              (0xffffffff << DMI_SBADDRESS0_ADDRESS_OFFSET)
1188 #define DMI_SBADDRESS1                      0x3a
1189 /*
1190 * Accesses bits 63:32 of the internal address (if the system address
1191 * bus is that wide).
1192  */
1193 #define DMI_SBADDRESS1_ADDRESS_OFFSET       0
1194 #define DMI_SBADDRESS1_ADDRESS_LENGTH       32
1195 #define DMI_SBADDRESS1_ADDRESS              (0xffffffff << DMI_SBADDRESS1_ADDRESS_OFFSET)
1196 #define DMI_SBADDRESS2                      0x3b
1197 /*
1198 * Accesses bits 95:64 of the internal address (if the system address
1199 * bus is that wide).
1200  */
1201 #define DMI_SBADDRESS2_ADDRESS_OFFSET       0
1202 #define DMI_SBADDRESS2_ADDRESS_LENGTH       32
1203 #define DMI_SBADDRESS2_ADDRESS              (0xffffffff << DMI_SBADDRESS2_ADDRESS_OFFSET)
1204 #define DMI_SBDATA0                         0x3c
1205 /*
1206 * Accesses bits 31:0 of the internal data.
1207  */
1208 #define DMI_SBDATA0_DATA_OFFSET             0
1209 #define DMI_SBDATA0_DATA_LENGTH             32
1210 #define DMI_SBDATA0_DATA                    (0xffffffff << DMI_SBDATA0_DATA_OFFSET)
1211 #define DMI_SBDATA1                         0x3d
1212 /*
1213 * Accesses bits 63:32 of the internal data (if the system bus is
1214 * that wide).
1215  */
1216 #define DMI_SBDATA1_DATA_OFFSET             0
1217 #define DMI_SBDATA1_DATA_LENGTH             32
1218 #define DMI_SBDATA1_DATA                    (0xffffffff << DMI_SBDATA1_DATA_OFFSET)
1219 #define DMI_SBDATA2                         0x3e
1220 /*
1221 * Accesses bits 95:64 of the internal data (if the system bus is
1222 * that wide).
1223  */
1224 #define DMI_SBDATA2_DATA_OFFSET             0
1225 #define DMI_SBDATA2_DATA_LENGTH             32
1226 #define DMI_SBDATA2_DATA                    (0xffffffff << DMI_SBDATA2_DATA_OFFSET)
1227 #define DMI_SBDATA3                         0x3f
1228 /*
1229 * Accesses bits 127:96 of the internal data (if the system bus is
1230 * that wide).
1231  */
1232 #define DMI_SBDATA3_DATA_OFFSET             0
1233 #define DMI_SBDATA3_DATA_LENGTH             32
1234 #define DMI_SBDATA3_DATA                    (0xffffffff << DMI_SBDATA3_DATA_OFFSET)
1235 #define TRACE                               0x728
1236 /*
1237 * 1 if the trace buffer has wrapped since the last time \Fdiscard was
1238 * written. 0 otherwise.
1239  */
1240 #define TRACE_WRAPPED_OFFSET                24
1241 #define TRACE_WRAPPED_LENGTH                1
1242 #define TRACE_WRAPPED                       (0x1 << TRACE_WRAPPED_OFFSET)
1243 /*
1244 * Emit Timestamp trace sequences.
1245  */
1246 #define TRACE_EMITTIMESTAMP_OFFSET          23
1247 #define TRACE_EMITTIMESTAMP_LENGTH          1
1248 #define TRACE_EMITTIMESTAMP                 (0x1 << TRACE_EMITTIMESTAMP_OFFSET)
1249 /*
1250 * Emit Store Data trace sequences.
1251  */
1252 #define TRACE_EMITSTOREDATA_OFFSET          22
1253 #define TRACE_EMITSTOREDATA_LENGTH          1
1254 #define TRACE_EMITSTOREDATA                 (0x1 << TRACE_EMITSTOREDATA_OFFSET)
1255 /*
1256 * Emit Load Data trace sequences.
1257  */
1258 #define TRACE_EMITLOADDATA_OFFSET           21
1259 #define TRACE_EMITLOADDATA_LENGTH           1
1260 #define TRACE_EMITLOADDATA                  (0x1 << TRACE_EMITLOADDATA_OFFSET)
1261 /*
1262 * Emit Store Address trace sequences.
1263  */
1264 #define TRACE_EMITSTOREADDR_OFFSET          20
1265 #define TRACE_EMITSTOREADDR_LENGTH          1
1266 #define TRACE_EMITSTOREADDR                 (0x1 << TRACE_EMITSTOREADDR_OFFSET)
1267 /*
1268 * Emit Load Address trace sequences.
1269  */
1270 #define TRACE_EMITLOADADDR_OFFSET           19
1271 #define TRACE_EMITLOADADDR_LENGTH           1
1272 #define TRACE_EMITLOADADDR                  (0x1 << TRACE_EMITLOADADDR_OFFSET)
1273 /*
1274 * Emit Privilege Level trace sequences.
1275  */
1276 #define TRACE_EMITPRIV_OFFSET               18
1277 #define TRACE_EMITPRIV_LENGTH               1
1278 #define TRACE_EMITPRIV                      (0x1 << TRACE_EMITPRIV_OFFSET)
1279 /*
1280 * Emit Branch Taken and Branch Not Taken trace sequences.
1281  */
1282 #define TRACE_EMITBRANCH_OFFSET             17
1283 #define TRACE_EMITBRANCH_LENGTH             1
1284 #define TRACE_EMITBRANCH                    (0x1 << TRACE_EMITBRANCH_OFFSET)
1285 /*
1286 * Emit PC trace sequences.
1287  */
1288 #define TRACE_EMITPC_OFFSET                 16
1289 #define TRACE_EMITPC_LENGTH                 1
1290 #define TRACE_EMITPC                        (0x1 << TRACE_EMITPC_OFFSET)
1291 /*
1292 * Determine what happens when the trace buffer is full.  0 means wrap
1293 * and overwrite. 1 means turn off trace until \Fdiscard is written as 1.
1294 * 2 means cause a trace full exception. 3 is reserved for future use.
1295  */
1296 #define TRACE_FULLACTION_OFFSET             8
1297 #define TRACE_FULLACTION_LENGTH             2
1298 #define TRACE_FULLACTION                    (0x3 << TRACE_FULLACTION_OFFSET)
1299 /*
1300 * 0: Trace to a dedicated on-core RAM (which is not further defined in
1301 * this spec).
1302 *
1303 * 1: Trace to RAM on the system bus.
1304 *
1305 * 2: Send trace data to a dedicated off-chip interface (which is not
1306 * defined in this spec). This does not affect execution speed.
1307 *
1308 * 3: Reserved for future use.
1309 *
1310 * Options 0 and 1 slow down execution (eg. because of system bus
1311 * contention).
1312  */
1313 #define TRACE_DESTINATION_OFFSET            4
1314 #define TRACE_DESTINATION_LENGTH            2
1315 #define TRACE_DESTINATION                   (0x3 << TRACE_DESTINATION_OFFSET)
1316 /*
1317 * When 1, the trace logic may stall processor execution to ensure it
1318 * can emit all the trace sequences required. When 0 individual trace
1319 * sequences may be dropped.
1320  */
1321 #define TRACE_STALL_OFFSET                  2
1322 #define TRACE_STALL_LENGTH                  1
1323 #define TRACE_STALL                         (0x1 << TRACE_STALL_OFFSET)
1324 /*
1325 * Writing 1 to this bit tells the trace logic that any trace
1326 * collected is no longer required. When tracing to RAM, it resets the
1327 * trace write pointer to the start of the memory, as well as
1328 * \Fwrapped.
1329  */
1330 #define TRACE_DISCARD_OFFSET                1
1331 #define TRACE_DISCARD_LENGTH                1
1332 #define TRACE_DISCARD                       (0x1 << TRACE_DISCARD_OFFSET)
1333 #define TRACE_SUPPORTED_OFFSET              0
1334 #define TRACE_SUPPORTED_LENGTH              1
1335 #define TRACE_SUPPORTED                     (0x1 << TRACE_SUPPORTED_OFFSET)
1336 #define TBUFSTART                           0x729
1337 #define TBUFEND                             0x72a
1338 #define TBUFWRITE                           0x72b
1339 #define SHORTNAME                           0x123
1340 /*
1341 * Description of what this field is used for.
1342  */
1343 #define SHORTNAME_FIELD_OFFSET              0
1344 #define SHORTNAME_FIELD_LENGTH              8
1345 #define SHORTNAME_FIELD                     (0xff << SHORTNAME_FIELD_OFFSET)
1346 #define AC_ACCESS_REGISTER                  None
1347 /*
1348 * This is 0 to indicate Access Register Command.
1349  */
1350 #define AC_ACCESS_REGISTER_CMDTYPE_OFFSET   24
1351 #define AC_ACCESS_REGISTER_CMDTYPE_LENGTH   8
1352 #define AC_ACCESS_REGISTER_CMDTYPE          (0xff << AC_ACCESS_REGISTER_CMDTYPE_OFFSET)
1353 /*
1354 * 2: Access the lowest 32 bits of the register.
1355 *
1356 * 3: Access the lowest 64 bits of the register.
1357 *
1358 * 4: Access the lowest 128 bits of the register.
1359 *
1360 * If \Fsize specifies a size larger than the register's actual size,
1361 * then the access must fail. If a register is accessible, then reads of \Fsize
1362 * less than or equal to the register's actual size must be supported.
1363  */
1364 #define AC_ACCESS_REGISTER_SIZE_OFFSET      20
1365 #define AC_ACCESS_REGISTER_SIZE_LENGTH      3
1366 #define AC_ACCESS_REGISTER_SIZE             (0x7 << AC_ACCESS_REGISTER_SIZE_OFFSET)
1367 /*
1368 * When 1, execute the program in the Program Buffer exactly once
1369 * after performing the transfer, if any.
1370  */
1371 #define AC_ACCESS_REGISTER_POSTEXEC_OFFSET  18
1372 #define AC_ACCESS_REGISTER_POSTEXEC_LENGTH  1
1373 #define AC_ACCESS_REGISTER_POSTEXEC         (0x1 << AC_ACCESS_REGISTER_POSTEXEC_OFFSET)
1374 /*
1375 * 0: Don't do the operation specified by \Fwrite.
1376 *
1377 * 1: Do the operation specified by \Fwrite.
1378  */
1379 #define AC_ACCESS_REGISTER_TRANSFER_OFFSET  17
1380 #define AC_ACCESS_REGISTER_TRANSFER_LENGTH  1
1381 #define AC_ACCESS_REGISTER_TRANSFER         (0x1 << AC_ACCESS_REGISTER_TRANSFER_OFFSET)
1382 /*
1383 * When \Ftransfer is set:
1384 * 0: Copy data from the specified register into {\tt arg0} portion
1385 * of {\tt data}.
1386 *
1387 * 1: Copy data from {\tt arg0} portion of {\tt data} into the
1388 * specified register.
1389  */
1390 #define AC_ACCESS_REGISTER_WRITE_OFFSET     16
1391 #define AC_ACCESS_REGISTER_WRITE_LENGTH     1
1392 #define AC_ACCESS_REGISTER_WRITE            (0x1 << AC_ACCESS_REGISTER_WRITE_OFFSET)
1393 /*
1394 * Number of the register to access, as described in
1395 * Table~\ref{tab:regno}.
1396 * \Rdpc may be used as an alias for PC if this command is
1397 * supported on a non-halted hart.
1398  */
1399 #define AC_ACCESS_REGISTER_REGNO_OFFSET     0
1400 #define AC_ACCESS_REGISTER_REGNO_LENGTH     16
1401 #define AC_ACCESS_REGISTER_REGNO            (0xffff << AC_ACCESS_REGISTER_REGNO_OFFSET)
1402 #define AC_QUICK_ACCESS                     None
1403 /*
1404 * This is 1 to indicate Quick Access command.
1405  */
1406 #define AC_QUICK_ACCESS_CMDTYPE_OFFSET      24
1407 #define AC_QUICK_ACCESS_CMDTYPE_LENGTH      8
1408 #define AC_QUICK_ACCESS_CMDTYPE             (0xff << AC_QUICK_ACCESS_CMDTYPE_OFFSET)
1409 #define VIRT_PRIV                           virtual
1410 /*
1411 * Contains the privilege level the hart was operating in when Debug
1412 * Mode was entered. The encoding is described in Table
1413 * \ref{tab:privlevel}. A user can write this value to change the
1414 * hart's privilege level when exiting Debug Mode.
1415  */
1416 #define VIRT_PRIV_PRV_OFFSET                0
1417 #define VIRT_PRIV_PRV_LENGTH                2
1418 #define VIRT_PRIV_PRV                       (0x3 << VIRT_PRIV_PRV_OFFSET)
1419