1 /*	$NetBSD: pte.h,v 1.19 2014/10/29 10:59:48 skrll Exp $	*/
2 
3 /*
4  * Copyright (c) 2001, 2002 Wasabi Systems, Inc.
5  * All rights reserved.
6  *
7  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *	This product includes software developed for the NetBSD Project by
20  *	Wasabi Systems, Inc.
21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22  *    or promote products derived from this software without specific prior
23  *    written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35  * POSSIBILITY OF SUCH DAMAGE.
36  */
37 
38 #ifndef _ARM_PTE_H_
39 #define	_ARM_PTE_H_
40 
41 /*
42  * The ARM MMU architecture was introduced with ARM v3 (previous ARM
43  * architecture versions used an optional off-CPU memory controller
44  * to perform address translation).
45  *
46  * The ARM MMU consists of a TLB and translation table walking logic.
47  * There is typically one TLB per memory interface (or, put another
48  * way, one TLB per software-visible cache).
49  *
50  * The ARM MMU is capable of mapping memory in the following chunks:
51  *
52  *	16M	SuperSections (L1 table, ARMv6+)
53  *
54  *	1M	Sections (L1 table)
55  *
56  *	64K	Large Pages (L2 table)
57  *
58  *	4K	Small Pages (L2 table)
59  *
60  *	1K	Tiny Pages (L2 table)
61  *
62  * There are two types of L2 tables: Coarse Tables and Fine Tables (not
63  * available on ARMv6+).  Coarse Tables can map Large and Small Pages.
64  * Fine Tables can map Tiny Pages.
65  *
66  * Coarse Tables can define 4 Subpages within Large and Small pages.
67  * Subpages define different permissions for each Subpage within
68  * a Page.  ARMv6 format Coarse Tables have no subpages.
69  *
70  * Coarse Tables are 1K in length.  Fine tables are 4K in length.
71  *
72  * The Translation Table Base register holds the pointer to the
73  * L1 Table.  The L1 Table is a 16K contiguous chunk of memory
74  * aligned to a 16K boundary.  Each entry in the L1 Table maps
75  * 1M of virtual address space, either via a Section mapping or
76  * via an L2 Table.
77  *
78  * ARMv6+ has a second TTBR register which can be used if any of the
79  * upper address bits are non-zero (think kernel).  For NetBSD, this
80  * would be 1 upper bit splitting user/kernel in a 2GB/2GB split.
81  * This would also reduce the size of the L1 Table to 8K.
82  *
83  * In addition, the Fast Context Switching Extension (FCSE) is available
84  * on some ARM v4 and ARM v5 processors.  FCSE is a way of eliminating
85  * TLB/cache flushes on context switch by use of a smaller address space
86  * and a "process ID" that modifies the virtual address before being
87  * presented to the translation logic.
88  */
89 
90 #ifndef _LOCORE
91 typedef uint32_t	pd_entry_t;	/* L1 table entry */
92 typedef uint32_t	pt_entry_t;	/* L2 table entry */
93 #endif /* _LOCORE */
94 
95 #define	L1_SS_SIZE	0x01000000	/* 16M */
96 #define	L1_SS_OFFSET	(L1_SS_SIZE - 1)
97 #define	L1_SS_FRAME	(~L1_SS_OFFSET)
98 #define	L1_SS_SHIFT	24
99 
100 #define	L1_S_SIZE	0x00100000	/* 1M */
101 #define	L1_S_OFFSET	(L1_S_SIZE - 1)
102 #define	L1_S_FRAME	(~L1_S_OFFSET)
103 #define	L1_S_SHIFT	20
104 
105 #define	L2_L_SIZE	0x00010000	/* 64K */
106 #define	L2_L_OFFSET	(L2_L_SIZE - 1)
107 #define	L2_L_FRAME	(~L2_L_OFFSET)
108 #define	L2_L_SHIFT	16
109 
110 #define	L2_S_SEGSIZE	(PAGE_SIZE * L2_S_SIZE / 4)
111 #define	L2_S_SIZE	0x00001000	/* 4K */
112 #define	L2_S_OFFSET	(L2_S_SIZE - 1)
113 #define	L2_S_FRAME	(~L2_S_OFFSET)
114 #define	L2_S_SHIFT	12
115 
116 #define	L2_T_SIZE	0x00000400	/* 1K */
117 #define	L2_T_OFFSET	(L2_T_SIZE - 1)
118 #define	L2_T_FRAME	(~L2_T_OFFSET)
119 #define	L2_T_SHIFT	10
120 
121 /*
122  * The NetBSD VM implementation only works on whole pages (4K),
123  * whereas the ARM MMU's Coarse tables are sized in terms of 1K
124  * (16K L1 table, 1K L2 table).
125  *
126  * So, we allocate L2 tables 4 at a time, thus yielding a 4K L2
127  * table.
128  */
129 #define	L1_ADDR_BITS	0xfff00000	/* L1 PTE address bits */
130 #define	L2_ADDR_BITS	0x000ff000	/* L2 PTE address bits */
131 
132 #define	L1_TABLE_SIZE	0x4000		/* 16K */
133 #define	L2_TABLE_SIZE	0x1000		/* 4K */
134 /*
135  * The new pmap deals with the 1KB coarse L2 tables by
136  * allocating them from a pool. Until every port has been converted,
137  * keep the old L2_TABLE_SIZE define lying around. Converted ports
138  * should use L2_TABLE_SIZE_REAL until then.
139  */
140 #define	L1_TABLE_SIZE_REAL	0x4000	/* 16K */
141 #define	L2_TABLE_SIZE_REAL	0x400	/* 1K */
142 
143 /*
144  * ARM L1 Descriptors
145  */
146 
147 #define	L1_TYPE_INV	0x00		/* Invalid (fault) */
148 #define	L1_TYPE_C	0x01		/* Coarse L2 */
149 #define	L1_TYPE_S	0x02		/* Section */
150 #define	L1_TYPE_F	0x03		/* Fine L2 */
151 #define	L1_TYPE_MASK	0x03		/* mask of type bits */
152 
153 /* L1 Section Descriptor */
154 #define	L1_S_B		0x00000004	/* bufferable Section */
155 #define	L1_S_C		0x00000008	/* cacheable Section */
156 #define	L1_S_IMP	0x00000010	/* implementation defined */
157 #define	L1_S_DOM(x)	((x) << 5)	/* domain */
158 #define	L1_S_DOM_MASK	L1_S_DOM(0xf)
159 #define	L1_S_AP(x)	((x) << 10)	/* access permissions */
160 #define	L1_S_ADDR_MASK	0xfff00000	/* phys address of section */
161 
162 #define	L1_S_XSCALE_P	0x00000200	/* ECC enable for this section */
163 #define	L1_S_XS_TEX(x) ((x) << 12)	/* Type Extension */
164 #define	L1_S_V6_TEX(x)	L1_S_XS_TEX(x)
165 #define	L1_S_V6_P	0x00000200	/* ECC enable for this section */
166 #define	L1_S_V6_SUPER	0x00040000	/* ARMv6 SuperSection (16MB) bit */
167 #define	L1_S_V6_XN	L1_S_IMP	/* ARMv6 eXecute Never */
168 #define	L1_S_V6_APX	0x00008000	/* ARMv6 AP eXtension */
169 #define	L1_S_V6_S	0x00010000	/* ARMv6 Shared */
170 #define	L1_S_V6_nG	0x00020000	/* ARMv6 not-Global */
171 #define	L1_S_V6_SS	0x00040000	/* ARMv6 SuperSection */
172 #define	L1_S_V6_NS	0x00080000	/* ARMv6 Not Secure */
173 
174 /* L1 Coarse Descriptor */
175 #define	L1_C_IMP0	0x00000004	/* implementation defined */
176 #define	L1_C_IMP1	0x00000008	/* implementation defined */
177 #define	L1_C_IMP2	0x00000010	/* implementation defined */
178 #define	L1_C_DOM(x)	((x) << 5)	/* domain */
179 #define	L1_C_DOM_MASK	L1_C_DOM(0xf)
180 #define	L1_C_ADDR_MASK	0xfffffc00	/* phys address of L2 Table */
181 
182 #define	L1_C_XSCALE_P	0x00000200	/* ECC enable for this section */
183 #define	L1_C_V6_P	0x00000200	/* ECC enable for this section */
184 
185 /* L1 Fine Descriptor */
186 #define	L1_F_IMP0	0x00000004	/* implementation defined */
187 #define	L1_F_IMP1	0x00000008	/* implementation defined */
188 #define	L1_F_IMP2	0x00000010	/* implementation defined */
189 #define	L1_F_DOM(x)	((x) << 5)	/* domain */
190 #define	L1_F_DOM_MASK	L1_F_DOM(0xf)
191 #define	L1_F_ADDR_MASK	0xfffff000	/* phys address of L2 Table */
192 
193 #define	L1_F_XSCALE_P	0x00000200	/* ECC enable for this section */
194 
195 /*
196  * ARM L2 Descriptors
197  */
198 
199 #define	L2_TYPE_INV	0x00		/* Invalid (fault) */
200 #define	L2_TYPE_L	0x01		/* Large Page */
201 #define	L2_TYPE_S	0x02		/* Small Page */
202 #define	L2_TYPE_T	0x03		/* Tiny Page (not armv7) */
203 #define	L2_TYPE_MASK	0x03		/* mask of type bits */
204 
205 /*
206  * This L2 Descriptor type is available on XScale processors
207  * when using a Coarse L1 Descriptor.  The Extended Small
208  * Descriptor has the same format as the XScale Tiny Descriptor,
209  * but describes a 4K page, rather than a 1K page.
210  * For V6 MMU, this is used when XP bit is cleared.
211  */
212 #define	L2_TYPE_XS	0x03		/* XScale/ARMv6 Extended Small Page */
213 
214 #define	L2_B		0x00000004	/* Bufferable page */
215 #define	L2_C		0x00000008	/* Cacheable page */
216 #define	L2_AP0(x)	((x) << 4)	/* access permissions (sp 0) */
217 #define	L2_AP1(x)	((x) << 6)	/* access permissions (sp 1) */
218 #define	L2_AP2(x)	((x) << 8)	/* access permissions (sp 2) */
219 #define	L2_AP3(x)	((x) << 10)	/* access permissions (sp 3) */
220 #define	L2_AP(x)	(L2_AP0(x) | L2_AP1(x) | L2_AP2(x) | L2_AP3(x))
221 
222 #define	L2_XS_L_TEX(x)	((x) << 12)	/* Type Extension */
223 #define	L2_XS_T_TEX(x)	((x) << 6)	/* Type Extension */
224 #define	L2_XS_XN	0x00000001	/* ARMv6 eXecute Never (when XP=1) */
225 #define	L2_XS_APX	0x00000200	/* ARMv6 AP eXtension */
226 #define	L2_XS_S		0x00000400	/* ARMv6 Shared */
227 #define	L2_XS_nG	0x00000800	/* ARMv6 Not-Global */
228 #define	L2_V6_L_TEX	L2_XS_L_TEX
229 #define	L2_V6_XS_TEX	L2_XS_T_TEX
230 #define	L2_XS_L_XN	0x00008000	/* ARMv6 eXecute Never */
231 
232 
233 /*
234  * Access Permissions for L1 and L2 Descriptors.
235  */
236 #define	AP_W		0x01		/* writable */
237 #define	AP_U		0x02		/* user */
238 
239 /*
240  * Access Permissions for L1 and L2 of ARMv6 with XP=1 and ARMv7
241  */
242 #define	AP_R		0x01		/* readable */
243 #define	AP_RO		0x20		/* read-only (L2_XS_APX >> 4) */
244 
245 /*
246  * Short-hand for common AP_* constants.
247  *
248  * Note: These values assume the S (System) bit is set and
249  * the R (ROM) bit is clear in CP15 register 1.
250  */
251 #define	AP_KR		0x00		/* kernel read */
252 #define	AP_KRW		0x01		/* kernel read/write */
253 #define	AP_KRWUR	0x02		/* kernel read/write user read */
254 #define	AP_KRWURW	0x03		/* kernel read/write user read/write */
255 
256 /*
257  * Note: These values assume the S (System) and the R (ROM) bits are clear and
258  * the XP (eXtended page table) bit is set in CP15 register 1.  ARMv6 only.
259  */
260 #define	APX_KR(APX)	(APX|0x01)	/* kernel read */
261 #define	APX_KRUR(APX)	(APX|0x02)	/* kernel read user read */
262 #define	APX_KRW(APX)	(    0x01)	/* kernel read/write */
263 #define	APX_KRWUR(APX)	(    0x02)	/* kernel read/write user read */
264 #define	APX_KRWURW(APX)	(    0x03)	/* kernel read/write user read/write */
265 
266 /*
267  * Note: These values are for the simplified access permissions model
268  * of ARMv7. Assumes that AFE is clear in CP15 register 1.
269  * Also used for ARMv6 with XP bit set.
270  */
271 #define	AP7_KR		0x21		/* kernel read */
272 #define	AP7_KRUR	0x23		/* kernel read user read */
273 #define	AP7_KRW		0x01		/* kernel read/write */
274 #define	AP7_KRWURW	0x03		/* kernel read/write user read/write */
275 
276 /*
277  * Domain Types for the Domain Access Control Register.
278  */
279 #define	DOMAIN_FAULT	0x00		/* no access */
280 #define	DOMAIN_CLIENT	0x01		/* client */
281 #define	DOMAIN_RESERVED	0x02		/* reserved */
282 #define	DOMAIN_MANAGER	0x03		/* manager */
283 
284 /*
285  * Type Extension bits for XScale processors.
286  *
287  * Behavior of C and B when X == 0:
288  *
289  * C B  Cacheable  Bufferable  Write Policy  Line Allocate Policy
290  * 0 0      N          N            -                 -
291  * 0 1      N          Y            -                 -
292  * 1 0      Y          Y       Write-through    Read Allocate
293  * 1 1      Y          Y        Write-back      Read Allocate
294  *
295  * Behavior of C and B when X == 1:
296  * C B  Cacheable  Bufferable  Write Policy  Line Allocate Policy
297  * 0 0      -          -            -                 -           DO NOT USE
298  * 0 1      N          Y            -                 -
299  * 1 0  Mini-Data      -            -                 -
300  * 1 1      Y          Y        Write-back       R/W Allocate
301  */
302 #define	TEX_XSCALE_X	0x01		/* X modifies C and B */
303 
304 /*
305  * Type Extension bits for ARM V6 and V7 MMU
306  *
307  * TEX C B                                                    Shared
308  * 000 0 0  Strong order                                      yes
309  * 000 0 1  Shared device                                     yes
310  * 000 1 0  Outer and Inner write through, no write alloc     S-bit
311  * 000 1 1  Outer and Inner write back, no write alloc        S-bit
312  * 001 0 0  Outer and Inner non-cacheable                     S-bit
313  * 001 0 1  reserved
314  * 001 1 0  reserved
315  * 001 1 1  Outer and Inner write back, write alloc           S-bit
316  * 010 0 0  Non-shared device                                 no
317  * 010 0 1  reserved
318  * 010 1 X  reserved
319  * 011 X X  reserved
320  * 1BB A A  BB for inner, AA for outer                        S-bit
321  *
322  *    BB    inner cache
323  *    0 0   Non-cacheable
324  *    0 1   Write back, write alloc
325  *    1 0   Write through, no write alloc
326  *    1 1   Write back, no write alloc
327  *
328  *    AA    outer cache
329  *    0 0   Non-cacheable
330  *    0 1   Write back, write alloc
331  *    1 0   Write through, no write alloc
332  *    1 1   Write back, no write alloc
333  */
334 
335 #define	TEX_ARMV6_TEX	0x07		/* 3 bits in TEX */
336 
337 #endif /* _ARM_PTE_H_ */
338