/dports/math/freefem++/FreeFem-sources-4.6/examples/hpddm/ |
H A D | heat-2d-PETSc.edp | 20 fespace Wh(Th, Pk); // local finite element space 21 real[int] rhs(Wh.ndof); // local right-hand side 27 A = vPb(Wh, Wh, tgv = -1); 28 rhs = vPb(0, Wh, tgv = -1); 30 M = vPbM(Wh, Wh); 34 Wh<real> u = 0.0; // local solution
|
H A D | diffusion-mg-3d-PETSc.edp | 20 fespace Wh(ThTab[i], Pk); 21 MG[i] = vPb(Wh, Wh, tgv = -2); 23 rhs.resize(Wh.ndof); 24 rhs = vPb(0, Wh); 28 fespace Wh(ThTab[0], Pk); 29 Wh u; 33 real[int] tmp(Wh.ndof);
|
H A D | maxwell-2d-PETSc.edp | 19 fespace Wh(Th, Pk); 25 Wh def(u); 27 u[] = onG(0, Wh); 33 real[int] rhs(Wh.ndof); 39 Loc = vPb(Wh, Wh, tgv = -1); 44 rhs = vPbRhs(0, Wh, tgv = -1); 50 Wh def(sol);
|
H A D | heat-torus-3d-surf.edp | 24 fespace Wh(Th, Pk); // local finite element space 29 real[int] rhs(Wh.ndof); // local right-hand side 32 Wh<real> u = 0; 33 Wh<real> w = 0; 36 mat = vPb(Wh, Wh); 44 rhs = vPb(0, Wh); 49 mat = vPb(Wh, Wh);
|
H A D | transpose-solve-PETSc.edp | 18 fespace Wh(Th, Pk); // local finite element space 28 matrix<real> Loc = vPb(Wh, Wh); 29 matrix<real> LocT = vPbT(Wh, Wh); 30 real[int] rhs = vPb(0, Wh); 34 Wh<real> def(u); // local solution 35 Wh<real> def(v); // local solution
|
H A D | diffusion-substructuring-2d.edp | 27 fespace Wh(Th, Pk); // local finite element space 39 matrix<real> Mat = vPb(Wh, Wh, sym = 1); // local operator 40 real[int] rhs = vPb(0, Wh); // local right-hand side 53 Wh[int] def(Rb)(0); 54 real[int] float(Wh.ndof); 56 float = floatingPb(0, Wh); 64 Wh def(mu) = 1.0; 71 Wh<real> def(u) = 0.0; // local solution
|
H A D | diffusion-2d.edp | 28 fespace Wh(Th, Pk); // local finite element space 39 Mat = vPb(Wh, Wh, tgv = -1); 40 real[int] rhs = vPb(0, Wh, tgv = -1); 54 Opt = vOptimized(Wh, Wh, tgv = -1); 61 matrix<real> noPen = vPbNoPen(Wh, Wh, sym = 1); 66 matrix<real> massMatrix = vMass(Wh, Wh, sym = 1); 75 Wh<real> def(u); // local solution
|
H A D | diffusion-mg-2d.edp | 21 fespace Wh(Th, Pk); // local finite element space 39 matrix<real> Mat = vPb(Wh, Wh, sym = 1); 45 MatCoarse = vPb(Wh, Wh, sym = 1); 49 matrix R = interpolate(Wh, WhCoarse); 50 real[int] rhs = vPb(0, Wh); 67 Wh<real> def(u); // local solution 77 MatCoarse = vPb(Wh, Wh, sym = 1); 81 R = interpolate(Wh, WhCoarse); 90 Wh outW;
|
H A D | helmholtz-mg-2d.edp | 34 fespace Wh(Th, Pk); 56 matrix<complex> Mat = vPb(Wh, Wh, sym = 1); 63 MatCoarse = vPb(Wh, Wh, sym = 1); 70 matrix R = interpolate(Wh, WhCoarse); 71 complex[int] rhs = vPb(0, Wh); 76 Wh<complex> u; 104 MatCoarse = vPb(Wh, Wh, sym = 1); 108 R = interpolate(Wh, WhCoarse); 116 Wh outW;
|
H A D | diffusion-substructuring-withPartitioning-2d.edp | 28 fespace Wh(Th, Pk); // local finite element space 43 matrix<real> Mat = vPb(Wh, Wh, sym = 1); // local operator 44 real[int] rhs = vPb(0, Wh); // local right-hand side 57 Wh[int] def(Rb)(0); 58 real[int] float(Wh.ndof); 60 float = floatingPb(0, Wh); 68 Wh def(mu) = 1.0; 75 Wh<real> def(u) = 0.0; // local solution
|
H A D | laplace-lagrange-PETSc.edp | 15 fespace Wh(Th, Pk); // local finite element space 20 real[int] F = vL(0, Wh); 21 real[int] B = vb(0, Wh); 23 A = vPb(Wh, Wh); 40 Wh sol; 53 Wh sol; 68 Wh sol; 89 Wh sol;
|
H A D | diffusion-simple-3d.edp | 17 fespace Wh(Th, Pk); // local finite element space 26 matrix<real> Mat = vPb(Wh, Wh, tgv = -1); 27 real[int] rhs = vPb(0, Wh, tgv = -1); 34 matrix<real> noPen = vPb(Wh, Wh, sym = 1); 38 Wh<real> def(u); // local solution
|
H A D | diffusion-2d-PETSc.edp | 15 fespace Wh(Th, Pk); // local finite element space 17 real[int] rhs = vPb(0, Wh); 20 Wh<real> u; // local solution 22 A = vPb(Wh, Wh); 35 Wh<real> Rb[1];
|
H A D | laplace-RT-2d-PETSc.edp | 22 fespace Wh(Th, Pk); // local finite element space 27 Wh def(u); 30 u[] = onG(0, Wh); 40 real[int] rhs = vMixedLaplace(0, Wh, tgv = -1); 41 Mat A(Wh.ndof, intersection, D); 42 A = vMixedLaplace(Wh, Wh, tgv = -1); 44 Wh def(u);
|
H A D | helmholtz-mg-2d-PETSc-complex.edp | 43 fespace Wh(ThTab[i], Pk); 44 matrix<complex> Loc = vPb(Wh, Wh, tgv = -2, sym = 1); 48 rhs.resize(Wh.ndof); 49 rhs = vPb(0, Wh); 55 fespace Wh(ThTab[0], Pk); 56 Wh<complex> u;
|
H A D | elasticity-2d.edp | 31 fespace Wh(Th, Pk); // local finite element space 50 Mat = vPb(Wh, Wh, sym = 1); 51 real[int] rhs = vPb(0, Wh); 64 Opt = vOptimized(Wh, Wh, tgv = -1); 71 matrix<real> noPen = vPbNoPen(Wh, Wh, sym = 1); 76 matrix<real> massMatrix = vMass(Wh, Wh, sym = 1); 85 Wh<real> def(u); // local solution
|
H A D | diffusion-3d-PETSc.edp | 16 fespace Wh(Th, Pk); // local finite element space 18 real[int] rhs = vPb(0, Wh); 21 Wh<real> u; // local solution 23 A = vPb(Wh, Wh); 36 Wh<real> Rb[1];
|
H A D | elasticity-substructuring-2d.edp | 29 fespace Wh(Th, Pk); // local finite element space 46 matrix<real> Mat = vPb(Wh, Wh, sym = 1); // local operator 47 real[int] rhs = vPb(0, Wh); // local right-hand side 60 Wh[int] def(Rb)(0); 61 real[int] float(Wh.ndof); 63 float = floatingPb(0, Wh); 79 Wh def(muFunc) = mu; 86 Wh<real> def(u); // local solution
|
/dports/graphics/opencv/opencv-4.5.3/modules/dnn/src/layers/ |
H A D | recurrent_layers.cpp | 112 const Mat& Wh = blobs[0]; in LSTMLayerImpl() local 115 CV_CheckEQ(Wh.dims, 2, ""); in LSTMLayerImpl() 118 CV_CheckEQ(Wh.rows, (1 + static_cast<int>(bidirectional))*4*Wh.cols, ""); in LSTMLayerImpl() 126 const int N = Wh.cols; in LSTMLayerImpl() 168 CV_Assert(Wh.rows == Wx.rows); in setWeights() 169 CV_Assert(Wh.rows == 4*Wh.cols); in setWeights() 174 blobs[0] = Mat(Wh.clone()); in setWeights() 189 int _numOut = Wh.size[1]; in getMemoryShapes() 235 Mat &Wh = blobs[0], &Wx = blobs[1]; in finalize() local 236 int numOut = Wh.size[1]; in finalize() [all …]
|
/dports/math/freefem++/FreeFem-sources-4.6/examples/tutorial/ |
H A D | FE.edp | 10 fespace Wh(Th,P2); 11 cout << " nb of degre of freedom : " << Wh.ndof << endl; 12 cout << " nb of degre of freedom / ELEMENT : " << Wh.ndofK << endl; 16 int kdf= Wh.ndofK ; 19 cout << Wh(k,i) << " "; 23 //cout << "Wh(IK) = " << Wh(IK) << endl; 38 Wh w=x*x*y,dxw=2*x*y;
|
/dports/lang/yap/yap-6.2.2/library/r_session/ |
H A D | r_demo.pl | 38 member(Wh, Rdemos ), 39 write( doing-Wh ), nl, 42 findall( Wh-Body, (clause(Wh,Body), 43 portray_clause((Wh:-Body)), nl), _ ) 47 ( call(Wh) ->
|
/dports/math/freefem++/FreeFem-sources-4.6/examples/plugin/ |
H A D | NS_P2BR_P0.edp | 26 fespace Wh(Th, [P2BR, P0]); 27 Wh [u1, u2, p], [v1, v2, q], [up1, up2, pp]; 61 matrix A = NS(Wh, Wh, solver="SPARSESOLVER"); 62 real[int] b = NS(0, Wh); 75 A = NS(Wh, Wh, solver="SPARSESOLVER"); 81 real[int] b = NS(0, Wh);
|
H A D | NSP2BRP0.edp | 8 fespace Wh(Th,[P2BR,P0]); 11 Wh [u1,u2,p],[v1,v2,q],[up1,up2,pp]; 33 matrix A= NS(Wh,Wh,solver="SPARSESOLVER"); 34 real[int] b= NS(0,Wh); 61 A= NS(Wh,Wh,solver="SPARSESOLVER"); 65 real[int] b= NS(0,Wh);
|
/dports/math/freefem++/FreeFem-sources-4.6/idp/ |
H A D | ExtractDofsonBorder.idp | 9 - Wh the fespace (in) 13 macro ExtractDofsonBorder(labs,Wh,doflabs,orient) 15 mesh Th=Wh.Th; 27 real[int] absc=vlabsneg(0,Wh); 28 doflabs.resize(Wh.ndof); 29 doflabs=0:Wh.ndof-1;
|
/dports/math/freefem++/FreeFem-sources-4.6/examples/mpi/ |
H A D | NSCaraCyl.edp | 120 Wh [u1,u2,p]; 121 Wh [up1,up2,pp]; 122 Wh [upp1,upp2,ppp]; 124 Wh [vx1,vx2,vxp]; 125 Wh [vy1,vy2,vyp]; 128 vx1[]= von3x(0,Wh,tgv=1); 226 real[int] bcl=VBC(0,Wh); 227 real[int] bl(Wh.ndof),b(Wh.ndof),bcv(Wh.ndof); 230 A=GStokesl(Wh,Wh,solver=GMRES); //sparsesolver,master=-1); 232 A0=GStokesl0(Wh,Wh,solver=GMRES); [all …]
|