/dports/math/py-statsmodels/statsmodels-0.13.1/statsmodels/base/ |
H A D | covtype.py | 234 res.cov_kwds['adjust_df'] = adjust_df 253 res.cov_kwds['maxlags'] = maxlags 255 res.cov_kwds['weights_func'] = weights_func 257 res.cov_kwds['use_correction'] = use_correction 273 res.cov_kwds['groups'] = groups 275 res.cov_kwds['use_correction'] = use_correction 313 res.cov_kwds['use_correction'] = use_correction 315 res.cov_kwds['weights_func'] = weights_func 337 res.cov_kwds['time'] = time = kwds['time'] 346 res.cov_kwds['weights_func'] = weights_func [all …]
|
H A D | model.py | 551 cov_kwds = kwargs.get('cov_kwds', {}) 553 if cov_kwds: 729 res._results.cov_kwds = res_constr.cov_kwds 1353 cov_kwds = kwargs.get('cov_kwds', {}) 1362 if cov_kwds is None: 1363 cov_kwds = {} 1367 use_t=use_t, **cov_kwds) 1374 use_t=None, **cov_kwds): argument 1379 if cov_kwds is None: 1380 cov_kwds = {} [all …]
|
/dports/math/py-statsmodels/statsmodels-0.13.1/statsmodels/stats/ |
H A D | oaxaca.py | 127 cov_kwds=None, argument 136 self.cov_kwds = cov_kwds 178 cov_type=cov_type, cov_kwds=cov_kwds 181 cov_type=cov_type, cov_kwds=cov_kwds 234 cov_type=self.cov_type, cov_kwds=self.cov_kwds 237 cov_type=self.cov_type, cov_kwds=self.cov_kwds 273 cov_type=self.cov_type, cov_kwds=self.cov_kwds 279 cov_type=self.cov_type, cov_kwds=self.cov_kwds 440 cov_type=self.cov_type, cov_kwds=self.cov_kwds 446 cov_type=self.cov_type, cov_kwds=self.cov_kwds
|
H A D | _diagnostic_other.py | 748 cov_type='HC1', cov_kwds=None, use_t=False): argument 791 res_ols = OLS(endog_v, ex).fit(cov_type=cov_type, cov_kwds=cov_kwds, 814 cov_type='OPG', cov_kwds=None): argument 907 cov_type='OPG', cov_kwds=None): argument 937 res = OLS(endog, ex).fit(cov_type=cov_type, cov_kwds=cov_kwds)
|
/dports/math/py-spglm/spglm-1.0.8/spglm/ |
H A D | base.py | 200 cov_kwds = kwargs.get('cov_kwds', {}) 204 self.cov_kwds = {'description': 'Standard Errors assume that the ' + 209 if cov_kwds is None: 210 cov_kwds = {} 214 use_t=use_t, **cov_kwds) 220 use_t=None, **cov_kwds): argument 222 if cov_kwds is None: 223 cov_kwds = {} 227 self.cov_kwds = {'description': 'Standard Errors assume that the ' + 233 use_t=use_t, **cov_kwds)
|
/dports/math/py-statsmodels/statsmodels-0.13.1/statsmodels/discrete/tests/ |
H A D | test_sandwich_cov.py | 183 cov_kwds=dict(groups=group, 324 cov_kwds=dict(groups=group, 413 cov_kwds=dict(groups=group, 545 cls.res1 = mod1.fit(cov_type='HAC', cov_kwds=kwds) 548 cls.res2 = mod2.fit(cov_type='HAC', cov_kwds=kwds) 561 cls.res1 = mod1.fit(cov_type='HAC', cov_kwds=kwds) 565 cls.res2 = mod2.fit(cov_type='HAC', cov_kwds=kwds2) 577 cls.res1 = mod1.fit(cov_type='HAC', cov_kwds=kwds) 580 cls.res2 = mod2.fit(cov_type='HAC', cov_kwds=kwds) 621 cls.res1 = mod1.fit(cov_type='HAC', cov_kwds=kwds) [all …]
|
H A D | test_constrained.py | 522 cov_kwds = {'scaling_factor': 32/31} 526 cov_kwds=cov_kwds, atol=1e-10) 531 'cov_kwds': cov_kwds})
|
/dports/math/py-statsmodels/statsmodels-0.13.1/statsmodels/regression/ |
H A D | linear_model.py | 348 cov_type=cov_type, cov_kwds=cov_kwds, use_t=use_t) 353 cov_type=cov_type, cov_kwds=cov_kwds, use_t=use_t, 1593 self.cov_kwds = { 1601 if cov_kwds is None: 1602 cov_kwds = {} 1603 if 'use_t' in cov_kwds: 2171 maxlags = self.cov_kwds['maxlags'] 2175 groups = self.cov_kwds['groups'] 2502 res.cov_kwds['adjust_df'] = adjust_df 2522 res.cov_kwds['maxlags'] = maxlags [all …]
|
H A D | recursive_ls.py | 169 cov_kwds = { 178 cov_kwds=cov_kwds) 192 cov_kwds = { 201 cov_kwds=cov_kwds)
|
/dports/math/py-statsmodels/statsmodels-0.13.1/statsmodels/tsa/regime_switching/ |
H A D | markov_switching.py | 863 if cov_kwds is not None: 864 result_kwargs['cov_kwds'] = cov_kwds 1136 cov_type=cov_type, cov_kwds=cov_kwds) 1218 cov_type=cov_type, cov_kwds=cov_kwds) 1699 self.cov_kwds = {} 1706 if cov_kwds is None: 1707 cov_kwds = {} 1709 cov_kwds.pop('approx_complex_step', True)) 1714 **cov_kwds) 1719 self.cov_kwds['cov_type'] = ( [all …]
|
/dports/math/py-statsmodels/statsmodels-0.13.1/statsmodels/examples/ |
H A D | ex_ols_robustcov.py | 48 cov_kwds=dict(maxlags=4, use_correction=True)) 55 res_hc1c = mod_olsg.fit(cov_type='HC1', cov_kwds={'use_t':True}) 61 cov_kwds={'groups':decade, 'use_t':True})
|
/dports/math/py-statsmodels/statsmodels-0.13.1/statsmodels/gam/ |
H A D | generalized_additive_model.py | 606 scale=None, cov_type='nonrobust', cov_kwds=None, use_t=None, argument 635 cov_type=cov_type, cov_kwds=cov_kwds, 642 cov_type=cov_type, cov_kwds=cov_kwds, 649 cov_type=cov_type, cov_kwds=cov_kwds, 658 scale=None, cov_type='nonrobust', cov_kwds=None, use_t=None, argument 746 cov_type=cov_type, cov_kwds=cov_kwds,
|
/dports/math/py-statsmodels/statsmodels-0.13.1/statsmodels/genmod/ |
H A D | generalized_linear_model.py | 1077 cov_kwds=cov_kwds, use_t=use_t, **kwargs) 1089 cov_kwds=cov_kwds, use_t=use_t, 1099 cov_kwds=None, use_t=None, max_start_irls=3, argument 1114 cov_kwds=None, use_t=None, 1151 cov_type=cov_type, cov_kwds=cov_kwds, 1166 scale=None, cov_type='nonrobust', cov_kwds=None, argument 1239 cov_type=cov_type, cov_kwds=cov_kwds, 1487 cov_type='nonrobust', cov_kwds=None, use_t=None): argument 1546 if cov_kwds is None: 1547 cov_kwds = {} [all …]
|
/dports/math/py-statsmodels/statsmodels-0.13.1/statsmodels/tsa/arima/ |
H A D | model.py | 224 cov_type=None, cov_kwds=None, return_params=False, argument 392 cov_type=cov_type, cov_kwds=cov_kwds, **method_kwargs) 481 cov_type=cov_type, cov_kwds=cov_kwds)
|
/dports/math/py-statsmodels/statsmodels-0.13.1/statsmodels/tsa/statespace/ |
H A D | _quarterly_ar1.py | 74 cov_kwds=None, maxiter=500, tolerance=1e-6, argument 123 cov_type=cov_type, cov_kwds=cov_kwds)
|
H A D | mlemodel.py | 729 cov_type=cov_type, cov_kwds=cov_kwds) 780 if cov_kwds is not None: 781 result_kwargs['cov_kwds'] = cov_kwds 2310 self.cov_kwds = {} 2319 if cov_kwds is None: 2320 cov_kwds = {} 2322 cov_kwds.pop('approx_complex_step', True)) 2327 **cov_kwds) 2332 self.cov_kwds['cov_type'] = ( 2518 res.cov_kwds = {} [all …]
|
H A D | exponential_smoothing.py | 571 def filter(self, params, cov_type=None, cov_kwds=None, argument 579 params, cov_type=cov_type, cov_kwds=cov_kwds, 588 def smooth(self, params, cov_type=None, cov_kwds=None, argument 596 params, cov_type=cov_type, cov_kwds=cov_kwds,
|
H A D | dynamic_factor_mq.py | 2265 cov_type='none', cov_kwds=None, method='em', maxiter=500, argument 2407 cov_type=cov_type, cov_kwds=cov_kwds, maxiter=maxiter, 2417 cov_kwds=cov_kwds, method=method, maxiter=maxiter, 2426 cov_kwds=None, maxiter=500, tolerance=1e-6, disp=False, argument 2626 cov_type=cov_type, cov_kwds=cov_kwds, 2716 cov_type=cov_type, cov_kwds=cov_kwds) 3023 complex_step=False, cov_type='none', cov_kwds=None, argument 3051 complex_step=complex_step, cov_type=cov_type, cov_kwds=cov_kwds, 3056 complex_step=False, cov_type='none', cov_kwds=None, argument 3089 complex_step=complex_step, cov_type=cov_type, cov_kwds=cov_kwds,
|
/dports/math/py-statsmodels/statsmodels-0.13.1/examples/python/ |
H A D | ordinal_regression.py | 314 cov_kwds={"maxlags": 2}) 318 cov_kwds={"maxlags": 2})
|
/dports/math/py-statsmodels/statsmodels-0.13.1/statsmodels/base/tests/ |
H A D | test_penalized.py | 237 cov_kwds = {'description': 'Standard Errors are heteroscedasticity ' 240 assert_equal(self.res1.cov_kwds, cov_kwds) 385 cov_kwds = {'description': 'Standard Errors are heteroscedasticity ' 388 assert_equal(self.res1.cov_kwds, cov_kwds) 389 assert_equal(self.res1.cov_kwds, self.res1.results_constrained.cov_kwds)
|
/dports/math/py-statsmodels/statsmodels-0.13.1/statsmodels/tsa/exponential_smoothing/ |
H A D | base.py | 229 cov_kwds=None, argument 238 if cov_kwds is not None: 239 result_kwargs["cov_kwds"] = cov_kwds 965 if hasattr(self, "cov_type") and "description" in self.cov_kwds: 966 etext.append(self.cov_kwds["description"])
|
/dports/math/py-statsmodels/statsmodels-0.13.1/statsmodels/genmod/tests/ |
H A D | test_glm_weights.py | 274 cov_kwds = {'groups': gid, 'use_correction':False} 279 cls.res1 = mod.fit(cov_type='cluster', cov_kwds=cov_kwds) 777 cov_kwds = {'groups': gid, 'use_correction': False} 782 ).fit(cov_type='cluster', cov_kwds=cov_kwds) 788 ).fit(cov_type='cluster', cov_kwds=cov_kwds)
|
/dports/math/py-statsmodels/statsmodels-0.13.1/statsmodels/tsa/ardl/ |
H A D | model.py | 450 cov_kwds: Dict[str, Any] = None, 457 cov_type=cov_type, cov_kwds=cov_kwds, use_t=use_t 473 cov_kwds: Dict[str, Any] = None, 533 cov_type=cov_type, cov_kwds=cov_kwds, use_t=use_t 1917 cov_kwds: Dict[str, Any] = None, 1921 cov_type=cov_type, cov_kwds=cov_kwds, use_t=use_t 2258 cov_kwds: Dict[str, Any] = None, 2381 res = uecm.fit(cov_type=cov_type, cov_kwds=cov_kwds, use_t=use_t)
|
/dports/math/py-statsmodels/statsmodels-0.13.1/statsmodels/discrete/ |
H A D | discrete_model.py | 1553 if cov_kwds is None: 1554 cov_kwds = {} 2916 cov_type='nonrobust', cov_kwds=None, use_t=None, argument 2975 if cov_kwds is None: 2976 cov_kwds = {} #TODO: make this unnecessary ? 3293 cov_type='nonrobust', cov_kwds=None, use_t=None, argument 3344 if cov_kwds is None: 3345 cov_kwds = {} 3489 if cov_kwds is None: 3490 cov_kwds = {} [all …]
|
/dports/math/py-statsmodels/statsmodels-0.13.1/statsmodels/tsa/statespace/tests/ |
H A D | test_mlemodel.py | 396 res.cov_kwds['description'], 402 res.cov_kwds['description'], 409 res.cov_kwds['description'], 416 res.cov_kwds['description'], 423 res.cov_kwds['description'], 431 res.cov_kwds['description'], 439 res.cov_kwds['description'],
|