1 /*
2 * This file is part of the MicroPython project, http://micropython.org/
3 *
4 * The MIT License (MIT)
5 *
6 * Copyright (c) 2019 Damien P. George
7 * Copyright (c) 2020 Jim Mussared
8 *
9 * Permission is hereby granted, free of charge, to any person obtaining a copy
10 * of this software and associated documentation files (the "Software"), to deal
11 * in the Software without restriction, including without limitation the rights
12 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
13 * copies of the Software, and to permit persons to whom the Software is
14 * furnished to do so, subject to the following conditions:
15 *
16 * The above copyright notice and this permission notice shall be included in
17 * all copies or substantial portions of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
22 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
24 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25 * THE SOFTWARE.
26 */
27
28 #include <stdio.h>
29 #include <string.h>
30
31 #include "py/mperrno.h"
32 #include "py/mphal.h"
33 #include "py/runtime.h"
34 #include "extmod/modbluetooth.h"
35 #include "mpbthciport.h"
36 #include "rtc.h"
37 #include "rfcore.h"
38
39 #if defined(STM32WB)
40
41 #include "stm32wbxx_ll_ipcc.h"
42
43 #if MICROPY_PY_BLUETOOTH
44
45 #if MICROPY_BLUETOOTH_NIMBLE
46 // For mp_bluetooth_nimble_hci_uart_wfi
47 #include "nimble/nimble_npl.h"
48 #else
49 #error "STM32WB must use NimBLE."
50 #endif
51
52 #if !MICROPY_PY_BLUETOOTH_USE_SYNC_EVENTS
53 #error "STM32WB must use synchronous BLE events."
54 #endif
55
56 #endif
57
58 #define DEBUG_printf(...) // printf("rfcore: " __VA_ARGS__)
59
60 // Define to 1 to print traces of HCI packets
61 #define HCI_TRACE (0)
62
63 #define IPCC_CH_BLE (LL_IPCC_CHANNEL_1) // BLE HCI command and response
64 #define IPCC_CH_SYS (LL_IPCC_CHANNEL_2) // system HCI command and response
65 #define IPCC_CH_MM (LL_IPCC_CHANNEL_4) // release buffer
66 #define IPCC_CH_HCI_ACL (LL_IPCC_CHANNEL_6) // HCI ACL outgoing data
67
68 #define OGF_CTLR_BASEBAND (0x03)
69 #define OCF_CB_RESET (0x03)
70 #define OCF_CB_SET_EVENT_MASK2 (0x63)
71
72 #define OGF_VENDOR (0x3f)
73 #define OCF_WRITE_CONFIG (0x0c)
74 #define OCF_SET_TX_POWER (0x0f)
75 #define OCF_BLE_INIT (0x66)
76 #define OCF_C2_FLASH_ERASE_ACTIVITY (0x69)
77 #define OCF_C2_SET_FLASH_ACTIVITY_CONTROL (0x73)
78
79 #define HCI_OPCODE(ogf, ocf) ((ogf) << 10 | (ocf))
80
81 #define HCI_KIND_BT_CMD (0x01) // <kind=1>...?
82 #define HCI_KIND_BT_ACL (0x02) // <kind=2><?><?><len LSB><len MSB>
83 #define HCI_KIND_BT_EVENT (0x04) // <kind=4><op><len><data...>
84 #define HCI_KIND_VENDOR_RESPONSE (0x11)
85 #define HCI_KIND_VENDOR_EVENT (0x12)
86
87 #define HCI_EVENT_COMMAND_COMPLETE (0x0E) // <num packets><opcode 16><status><data...>
88 #define HCI_EVENT_COMMAND_STATUS (0x0F) // <status><num_packets><opcode 16>
89 #define HCI_EVENT_NUMBER_OF_COMPLETED_PACKETS (0x13) // <num>(<handle 16><completed 16>)*
90
91 #define SYS_ACK_TIMEOUT_MS (250)
92 #define BLE_ACK_TIMEOUT_MS (250)
93
94 // AN5185
95 #define MAGIC_FUS_ACTIVE 0xA94656B9
96 // AN5289
97 #define MAGIC_IPCC_MEM_INCORRECT 0x3DE96F61
98
99 volatile bool hci_acl_cmd_pending = false;
100
101 typedef struct _tl_list_node_t {
102 volatile struct _tl_list_node_t *next;
103 volatile struct _tl_list_node_t *prev;
104 uint8_t body[0];
105 } tl_list_node_t;
106
107 typedef struct _parse_hci_info_t {
108 int (*cb_fun)(void *, const uint8_t *, size_t);
109 void *cb_env;
110 bool was_hci_reset_evt;
111 } parse_hci_info_t;
112
113 // Version
114 // [0:3] = Build - 0: Untracked - 15:Released - x: Tracked version
115 // [4:7] = branch - 0: Mass Market - x: ...
116 // [8:15] = Subversion
117 // [16:23] = Version minor
118 // [24:31] = Version major
119
120 // Memory Size
121 // [0:7] = Flash (Number of 4k sectors)
122 // [8:15] = Reserved (Shall be set to 0 - may be used as flash extension)
123 // [16:23] = SRAM2b (Number of 1k sectors)
124 // [24:31] = SRAM2a (Number of 1k sectors)
125
126 typedef union __attribute__((packed)) _ipcc_device_info_table_t {
127 struct {
128 uint32_t table_state;
129 uint8_t reserved0;
130 uint8_t last_fus_state;
131 uint8_t last_ws_state;
132 uint8_t ws_type;
133 uint32_t safeboot_version;
134 uint32_t fus_version;
135 uint32_t fus_memorysize;
136 uint32_t ws_version;
137 uint32_t ws_memorysize;
138 uint32_t ws_ble_info;
139 uint32_t ws_thread_info;
140 uint32_t reserved1;
141 uint64_t uid64;
142 uint16_t device_id;
143 uint16_t pad;
144 } fus;
145 struct {
146 uint32_t safeboot_version;
147 uint32_t fus_version;
148 uint32_t fus_memorysize;
149 uint32_t fus_info;
150 uint32_t fw_version;
151 uint32_t fw_memorysize;
152 uint32_t fw_infostack;
153 uint32_t fw_reserved;
154 } ws;
155 } ipcc_device_info_table_t;
156
157 typedef struct __attribute__((packed)) _ipcc_ble_table_t {
158 uint8_t *pcmd_buffer;
159 uint8_t *pcs_buffer;
160 tl_list_node_t *pevt_queue;
161 uint8_t *phci_acl_data_buffer;
162 } ipcc_ble_table_t;
163
164 // msg
165 // [0:7] = cmd/evt
166 // [8:31] = Reserved
167 typedef struct __attribute__((packed)) _ipcc_sys_table_t {
168 uint8_t *pcmd_buffer;
169 tl_list_node_t *sys_queue;
170 } ipcc_sys_table_t;
171
172 typedef struct __attribute__((packed)) _ipcc_mem_manager_table_t {
173 uint8_t *spare_ble_buffer;
174 uint8_t *spare_sys_buffer;
175 uint8_t *blepool;
176 uint32_t blepoolsize;
177 tl_list_node_t *pevt_free_buffer_queue;
178 uint8_t *traces_evt_pool;
179 uint32_t tracespoolsize;
180 } ipcc_mem_manager_table_t;
181
182 typedef struct __attribute__((packed)) _ipcc_ref_table_t {
183 ipcc_device_info_table_t *p_device_info_table;
184 ipcc_ble_table_t *p_ble_table;
185 void *p_thread_table;
186 ipcc_sys_table_t *p_sys_table;
187 ipcc_mem_manager_table_t *p_mem_manager_table;
188 void *p_traces_table;
189 void *p_mac_802_15_4_table;
190 void *p_zigbee_table;
191 void *p_lld_tests_table;
192 void *p_lld_ble_table;
193 } ipcc_ref_table_t;
194
195 // The stm32wb55xg.ld script puts .bss.ipcc_mem_* into SRAM2A and .bss_ipcc_membuf_* into SRAM2B.
196 // It also leaves 64 bytes at the start of SRAM2A for the ref table.
197
198 STATIC ipcc_device_info_table_t ipcc_mem_dev_info_tab; // mem1
199 STATIC ipcc_ble_table_t ipcc_mem_ble_tab; // mem1
200 STATIC ipcc_sys_table_t ipcc_mem_sys_tab; // mem1
201 STATIC ipcc_mem_manager_table_t ipcc_mem_memmgr_tab; // mem1
202
203 STATIC uint8_t ipcc_membuf_sys_cmd_buf[272]; // mem2
204 STATIC tl_list_node_t ipcc_mem_sys_queue; // mem1
205
206 STATIC tl_list_node_t ipcc_mem_memmgr_free_buf_queue; // mem1
207 STATIC uint8_t ipcc_membuf_memmgr_ble_spare_evt_buf[272]; // mem2
208 STATIC uint8_t ipcc_membuf_memmgr_sys_spare_evt_buf[272]; // mem2
209 STATIC uint8_t ipcc_membuf_memmgr_evt_pool[6 * 272]; // mem2
210
211 STATIC uint8_t ipcc_membuf_ble_cmd_buf[272]; // mem2
212 STATIC uint8_t ipcc_membuf_ble_cs_buf[272]; // mem2
213 STATIC tl_list_node_t ipcc_mem_ble_evt_queue; // mem1
214 STATIC uint8_t ipcc_membuf_ble_hci_acl_data_buf[272]; // mem2
215
216 /******************************************************************************/
217 // Transport layer linked list
218
tl_list_init(volatile tl_list_node_t * n)219 STATIC void tl_list_init(volatile tl_list_node_t *n) {
220 n->next = n;
221 n->prev = n;
222 }
223
tl_list_unlink(volatile tl_list_node_t * n)224 STATIC volatile tl_list_node_t *tl_list_unlink(volatile tl_list_node_t *n) {
225 volatile tl_list_node_t *next = n->next;
226 volatile tl_list_node_t *prev = n->prev;
227 prev->next = next;
228 next->prev = prev;
229 return next;
230 }
231
tl_list_append(volatile tl_list_node_t * head,volatile tl_list_node_t * n)232 STATIC void tl_list_append(volatile tl_list_node_t *head, volatile tl_list_node_t *n) {
233 n->next = head;
234 n->prev = head->prev;
235 head->prev->next = n;
236 head->prev = n;
237 }
238
239 /******************************************************************************/
240 // IPCC interface
241
get_buffer_table(void)242 STATIC volatile ipcc_ref_table_t *get_buffer_table(void) {
243 // The IPCCDBA option bytes must not be changed without
244 // making a corresponding change to the linker script.
245 return (volatile ipcc_ref_table_t *)(SRAM2A_BASE + LL_FLASH_GetIPCCBufferAddr() * 4);
246 }
247
ipcc_init(uint32_t irq_pri)248 void ipcc_init(uint32_t irq_pri) {
249 DEBUG_printf("ipcc_init\n");
250
251 // Setup buffer table pointers
252 volatile ipcc_ref_table_t *tab = get_buffer_table();
253 tab->p_device_info_table = &ipcc_mem_dev_info_tab;
254 tab->p_ble_table = &ipcc_mem_ble_tab;
255 tab->p_sys_table = &ipcc_mem_sys_tab;
256 tab->p_mem_manager_table = &ipcc_mem_memmgr_tab;
257
258 // Start IPCC peripheral
259 __HAL_RCC_IPCC_CLK_ENABLE();
260
261 // Enable receive IRQ on the BLE channel.
262 LL_C1_IPCC_EnableIT_RXO(IPCC);
263 LL_C1_IPCC_DisableReceiveChannel(IPCC, LL_IPCC_CHANNEL_1 | LL_IPCC_CHANNEL_2 | LL_IPCC_CHANNEL_3 | LL_IPCC_CHANNEL_4 | LL_IPCC_CHANNEL_5 | LL_IPCC_CHANNEL_6);
264 LL_C1_IPCC_EnableReceiveChannel(IPCC, IPCC_CH_BLE);
265 NVIC_SetPriority(IPCC_C1_RX_IRQn, irq_pri);
266 HAL_NVIC_EnableIRQ(IPCC_C1_RX_IRQn);
267
268 // Device info table will be populated by FUS/WS on CPU2 boot.
269
270 // Populate system table
271 tl_list_init(&ipcc_mem_sys_queue);
272 ipcc_mem_sys_tab.pcmd_buffer = ipcc_membuf_sys_cmd_buf;
273 ipcc_mem_sys_tab.sys_queue = &ipcc_mem_sys_queue;
274
275 // Populate memory manager table
276 tl_list_init(&ipcc_mem_memmgr_free_buf_queue);
277 ipcc_mem_memmgr_tab.spare_ble_buffer = ipcc_membuf_memmgr_ble_spare_evt_buf;
278 ipcc_mem_memmgr_tab.spare_sys_buffer = ipcc_membuf_memmgr_sys_spare_evt_buf;
279 ipcc_mem_memmgr_tab.blepool = ipcc_membuf_memmgr_evt_pool;
280 ipcc_mem_memmgr_tab.blepoolsize = sizeof(ipcc_membuf_memmgr_evt_pool);
281 ipcc_mem_memmgr_tab.pevt_free_buffer_queue = &ipcc_mem_memmgr_free_buf_queue;
282 ipcc_mem_memmgr_tab.traces_evt_pool = NULL;
283 ipcc_mem_memmgr_tab.tracespoolsize = 0;
284
285 // Populate BLE table
286 tl_list_init(&ipcc_mem_ble_evt_queue);
287 ipcc_mem_ble_tab.pcmd_buffer = ipcc_membuf_ble_cmd_buf;
288 ipcc_mem_ble_tab.pcs_buffer = ipcc_membuf_ble_cs_buf;
289 ipcc_mem_ble_tab.pevt_queue = &ipcc_mem_ble_evt_queue;
290 ipcc_mem_ble_tab.phci_acl_data_buffer = ipcc_membuf_ble_hci_acl_data_buf;
291 }
292
293 /******************************************************************************/
294 // Transport layer HCI interface
295
296 // The WS firmware doesn't support OCF_CB_SET_EVENT_MASK2, and fails with:
297 // v1.8.0.0.4 (and below): HCI_EVENT_COMMAND_COMPLETE with a non-zero status
298 // v1.9.0.0.4 (and above): HCI_EVENT_COMMAND_STATUS with a non-zero status
299 // In either case we detect the failure response and inject this response
300 // instead (which is HCI_EVENT_COMMAND_COMPLETE for OCF_CB_SET_EVENT_MASK2
301 // with status=0).
302 STATIC const uint8_t set_event_event_mask2_fix_payload[] = { 0x04, 0x0e, 0x04, 0x01, 0x63, 0x0c, 0x00 };
303
tl_parse_hci_msg(const uint8_t * buf,parse_hci_info_t * parse)304 STATIC size_t tl_parse_hci_msg(const uint8_t *buf, parse_hci_info_t *parse) {
305 const char *info;
306 #if HCI_TRACE
307 int applied_set_event_event_mask2_fix = 0;
308 #endif
309 size_t len;
310 switch (buf[0]) {
311 case HCI_KIND_BT_ACL: {
312 info = "HCI_ACL";
313
314 len = 5 + buf[3] + (buf[4] << 8);
315 if (parse != NULL) {
316 parse->cb_fun(parse->cb_env, buf, len);
317 }
318 break;
319 }
320 case HCI_KIND_BT_EVENT: {
321 info = "HCI_EVT";
322
323 // Acknowledgment of a pending ACL request, allow another one to be sent.
324 if (buf[1] == HCI_EVENT_NUMBER_OF_COMPLETED_PACKETS) {
325 hci_acl_cmd_pending = false;
326 }
327
328 len = 3 + buf[2];
329 if (parse != NULL) {
330
331 if (buf[1] == HCI_EVENT_COMMAND_COMPLETE && len == 7) {
332 uint16_t opcode = (buf[5] << 8) | buf[4];
333 uint8_t status = buf[6];
334
335 if (opcode == HCI_OPCODE(OGF_CTLR_BASEBAND, OCF_CB_SET_EVENT_MASK2) && status != 0) {
336 // For WS firmware v1.8.0.0.4 and below. Reply with the "everything OK" payload.
337 parse->cb_fun(parse->cb_env, set_event_event_mask2_fix_payload, sizeof(set_event_event_mask2_fix_payload));
338 #if HCI_TRACE
339 applied_set_event_event_mask2_fix = 18;
340 #endif
341 break; // Don't send the original payload.
342 }
343
344 if (opcode == HCI_OPCODE(OGF_CTLR_BASEBAND, OCF_CB_RESET) && status == 0) {
345 // Controller acknowledged reset command.
346 // This will trigger setting the MAC address.
347 parse->was_hci_reset_evt = true;
348 }
349 }
350
351 if (buf[1] == HCI_EVENT_COMMAND_STATUS && len == 7) {
352 uint16_t opcode = (buf[6] << 8) | buf[5];
353 uint8_t status = buf[3];
354
355 if (opcode == HCI_OPCODE(OGF_CTLR_BASEBAND, OCF_CB_SET_EVENT_MASK2) && status != 0) {
356 // For WS firmware v1.9.0.0.4 and higher. Reply with the "everything OK" payload.
357 parse->cb_fun(parse->cb_env, set_event_event_mask2_fix_payload, sizeof(set_event_event_mask2_fix_payload));
358 #if HCI_TRACE
359 applied_set_event_event_mask2_fix = 19;
360 #endif
361 break; // Don't send the original payload.
362 }
363 }
364
365 parse->cb_fun(parse->cb_env, buf, len);
366 }
367 break;
368 }
369 case HCI_KIND_VENDOR_RESPONSE: {
370 // assert(buf[1] == 0x0e);
371 info = "VEND_RESP";
372 len = 3 + buf[2]; // ???
373 // uint16_t cmd = buf[4] | buf[5] << 8;
374 // uint8_t status = buf[6];
375 break;
376 }
377 case HCI_KIND_VENDOR_EVENT: {
378 // assert(buf[1] == 0xff);
379 info = "VEND_EVT";
380 len = 3 + buf[2]; // ???
381 // uint16_t evt = buf[3] | buf[4] << 8;
382 break;
383 }
384 default:
385 info = "HCI_UNKNOWN";
386 len = 0;
387 break;
388 }
389
390 #if HCI_TRACE
391 printf("[% 8d] <%s(%02x", mp_hal_ticks_ms(), info, buf[0]);
392 for (int i = 1; i < len; ++i) {
393 printf(":%02x", buf[i]);
394 }
395 printf(")");
396 if (parse && parse->was_hci_reset_evt) {
397 printf(" (reset)");
398 }
399 if (applied_set_event_event_mask2_fix) {
400 printf(" (mask2 fix %d)", applied_set_event_event_mask2_fix);
401 }
402 printf("\n");
403
404 #else
405 (void)info;
406 #endif
407
408 return len;
409 }
410
tl_process_msg(volatile tl_list_node_t * head,unsigned int ch,parse_hci_info_t * parse)411 STATIC void tl_process_msg(volatile tl_list_node_t *head, unsigned int ch, parse_hci_info_t *parse) {
412 volatile tl_list_node_t *cur = head->next;
413 bool added_to_free_queue = false;
414 while (cur != head) {
415 tl_parse_hci_msg((uint8_t *)cur->body, parse);
416
417 volatile tl_list_node_t *next = tl_list_unlink(cur);
418
419 // If this node is allocated from the memmgr event pool, then place it into the free buffer.
420 if ((uint8_t *)cur >= ipcc_membuf_memmgr_evt_pool && (uint8_t *)cur < ipcc_membuf_memmgr_evt_pool + sizeof(ipcc_membuf_memmgr_evt_pool)) {
421 // Wait for C2 to indicate that it has finished using the free buffer,
422 // so that we can link the newly-freed memory in to this buffer.
423 // If waiting is needed then it is typically between 5 and 20 microseconds.
424 while (LL_C1_IPCC_IsActiveFlag_CHx(IPCC, IPCC_CH_MM)) {
425 }
426
427 // Place memory back in free pool.
428 tl_list_append(&ipcc_mem_memmgr_free_buf_queue, cur);
429 added_to_free_queue = true;
430 }
431
432 cur = next;
433 }
434
435 if (added_to_free_queue) {
436 // Notify change in free pool.
437 LL_C1_IPCC_SetFlag_CHx(IPCC, IPCC_CH_MM);
438 }
439 }
440
441 // Only call this when IRQs are disabled on this channel.
tl_check_msg(volatile tl_list_node_t * head,unsigned int ch,parse_hci_info_t * parse)442 STATIC void tl_check_msg(volatile tl_list_node_t *head, unsigned int ch, parse_hci_info_t *parse) {
443 if (LL_C2_IPCC_IsActiveFlag_CHx(IPCC, ch)) {
444 // Process new data.
445 tl_process_msg(head, ch, parse);
446
447 // Clear receive channel (allows RF core to send more data to us).
448 LL_C1_IPCC_ClearFlag_CHx(IPCC, ch);
449
450 if (ch == IPCC_CH_BLE) {
451 // Renable IRQs for BLE now that we've cleared the flag.
452 LL_C1_IPCC_EnableReceiveChannel(IPCC, IPCC_CH_BLE);
453 }
454 }
455 }
456
tl_hci_cmd(uint8_t * cmd,unsigned int ch,uint8_t hdr,uint16_t opcode,const uint8_t * buf,size_t len)457 STATIC void tl_hci_cmd(uint8_t *cmd, unsigned int ch, uint8_t hdr, uint16_t opcode, const uint8_t *buf, size_t len) {
458 tl_list_node_t *n = (tl_list_node_t *)cmd;
459 n->next = NULL;
460 n->prev = NULL;
461 cmd[8] = hdr;
462 cmd[9] = opcode;
463 cmd[10] = opcode >> 8;
464 cmd[11] = len;
465 memcpy(&cmd[12], buf, len);
466
467 #if HCI_TRACE
468 printf("[% 8d] >HCI(", mp_hal_ticks_ms());
469 for (int i = 0; i < len + 4; ++i) {
470 printf(":%02x", cmd[i + 8]);
471 }
472 printf(")\n");
473 #endif
474
475 // Indicate that this channel is ready.
476 LL_C1_IPCC_SetFlag_CHx(IPCC, ch);
477 }
478
tl_sys_wait_ack(const uint8_t * buf,mp_int_t timeout_ms)479 STATIC ssize_t tl_sys_wait_ack(const uint8_t *buf, mp_int_t timeout_ms) {
480 uint32_t t0 = mp_hal_ticks_ms();
481
482 timeout_ms = MAX(SYS_ACK_TIMEOUT_MS, timeout_ms);
483
484 // C2 will clear this bit to acknowledge the request.
485 while (LL_C1_IPCC_IsActiveFlag_CHx(IPCC, IPCC_CH_SYS)) {
486 if (mp_hal_ticks_ms() - t0 > timeout_ms) {
487 printf("tl_sys_wait_ack: timeout\n");
488 return -MP_ETIMEDOUT;
489 }
490 }
491
492 // C1-to-C2 bit cleared, so process the response (just get the length, do
493 // not parse any further).
494 return (ssize_t)tl_parse_hci_msg(buf, NULL);
495 }
496
tl_sys_hci_cmd_resp(uint16_t opcode,const uint8_t * buf,size_t len,mp_int_t timeout_ms)497 STATIC ssize_t tl_sys_hci_cmd_resp(uint16_t opcode, const uint8_t *buf, size_t len, mp_int_t timeout_ms) {
498 tl_hci_cmd(ipcc_membuf_sys_cmd_buf, IPCC_CH_SYS, 0x10, opcode, buf, len);
499 return tl_sys_wait_ack(ipcc_membuf_sys_cmd_buf, timeout_ms);
500 }
501
tl_ble_wait_resp(void)502 STATIC int tl_ble_wait_resp(void) {
503 uint32_t t0 = mp_hal_ticks_ms();
504 while (!LL_C2_IPCC_IsActiveFlag_CHx(IPCC, IPCC_CH_BLE)) {
505 if (mp_hal_ticks_ms() - t0 > BLE_ACK_TIMEOUT_MS) {
506 printf("tl_ble_wait_resp: timeout\n");
507 return -MP_ETIMEDOUT;
508 }
509 }
510
511 // C2 set IPCC flag -- process the data, clear the flag, and re-enable IRQs.
512 tl_check_msg(&ipcc_mem_ble_evt_queue, IPCC_CH_BLE, NULL);
513 return 0;
514 }
515
516 // Synchronously send a BLE command.
tl_ble_hci_cmd_resp(uint16_t opcode,const uint8_t * buf,size_t len)517 STATIC void tl_ble_hci_cmd_resp(uint16_t opcode, const uint8_t *buf, size_t len) {
518 // Poll for completion rather than wait for IRQ->scheduler.
519 LL_C1_IPCC_DisableReceiveChannel(IPCC, IPCC_CH_BLE);
520 tl_hci_cmd(ipcc_membuf_ble_cmd_buf, IPCC_CH_BLE, HCI_KIND_BT_CMD, opcode, buf, len);
521 tl_ble_wait_resp();
522 }
523
524 /******************************************************************************/
525 // RF core interface
526
rfcore_init(void)527 void rfcore_init(void) {
528 DEBUG_printf("rfcore_init\n");
529
530 // Ensure LSE is running
531 rtc_init_finalise();
532
533 // Select LSE as RF wakeup source
534 RCC->CSR = (RCC->CSR & ~RCC_CSR_RFWKPSEL) | 1 << RCC_CSR_RFWKPSEL_Pos;
535
536 // Initialise IPCC and shared memory structures
537 ipcc_init(IRQ_PRI_SDIO);
538
539 // Boot the second core
540 __SEV();
541 __WFE();
542 PWR->CR4 |= PWR_CR4_C2BOOT;
543 }
544
545 static const struct {
546 uint8_t *pBleBufferAddress; // unused
547 uint32_t BleBufferSize; // unused
548 uint16_t NumAttrRecord;
549 uint16_t NumAttrServ;
550 uint16_t AttrValueArrSize;
551 uint8_t NumOfLinks;
552 uint8_t ExtendedPacketLengthEnable;
553 uint8_t PrWriteListSize;
554 uint8_t MblockCount;
555 uint16_t AttMtu;
556 uint16_t SlaveSca;
557 uint8_t MasterSca;
558 uint8_t LsSource;
559 uint32_t MaxConnEventLength;
560 uint16_t HsStartupTime;
561 uint8_t ViterbiEnable;
562 uint8_t LlOnly;
563 uint8_t HwVersion;
564 } ble_init_params = {
565 0, // pBleBufferAddress
566 0, // BleBufferSize
567 MICROPY_HW_RFCORE_BLE_NUM_GATT_ATTRIBUTES,
568 MICROPY_HW_RFCORE_BLE_NUM_GATT_SERVICES,
569 MICROPY_HW_RFCORE_BLE_ATT_VALUE_ARRAY_SIZE,
570 MICROPY_HW_RFCORE_BLE_NUM_LINK,
571 MICROPY_HW_RFCORE_BLE_DATA_LENGTH_EXTENSION,
572 MICROPY_HW_RFCORE_BLE_PREPARE_WRITE_LIST_SIZE,
573 MICROPY_HW_RFCORE_BLE_MBLOCK_COUNT,
574 MICROPY_HW_RFCORE_BLE_MAX_ATT_MTU,
575 MICROPY_HW_RFCORE_BLE_SLAVE_SCA,
576 MICROPY_HW_RFCORE_BLE_MASTER_SCA,
577 MICROPY_HW_RFCORE_BLE_LSE_SOURCE,
578 MICROPY_HW_RFCORE_BLE_MAX_CONN_EVENT_LENGTH,
579 MICROPY_HW_RFCORE_BLE_HSE_STARTUP_TIME,
580 MICROPY_HW_RFCORE_BLE_VITERBI_MODE,
581 MICROPY_HW_RFCORE_BLE_LL_ONLY,
582 0, // HwVersion
583 };
584
rfcore_ble_init(void)585 void rfcore_ble_init(void) {
586 DEBUG_printf("rfcore_ble_init\n");
587
588 // Clear any outstanding messages from ipcc_init.
589 tl_check_msg(&ipcc_mem_sys_queue, IPCC_CH_SYS, NULL);
590
591 // Configure and reset the BLE controller.
592 tl_sys_hci_cmd_resp(HCI_OPCODE(OGF_VENDOR, OCF_BLE_INIT), (const uint8_t *)&ble_init_params, sizeof(ble_init_params), 0);
593 tl_ble_hci_cmd_resp(HCI_OPCODE(0x03, 0x0003), NULL, 0);
594
595 // Enable PES rather than SEM7 to moderate flash access between the cores.
596 uint8_t buf = 0; // FLASH_ACTIVITY_CONTROL_PES
597 tl_sys_hci_cmd_resp(HCI_OPCODE(OGF_VENDOR, OCF_C2_SET_FLASH_ACTIVITY_CONTROL), &buf, 1, 0);
598 }
599
rfcore_ble_hci_cmd(size_t len,const uint8_t * src)600 void rfcore_ble_hci_cmd(size_t len, const uint8_t *src) {
601 DEBUG_printf("rfcore_ble_hci_cmd\n");
602
603 #if HCI_TRACE
604 printf("[% 8d] >HCI_CMD(%02x", mp_hal_ticks_ms(), src[0]);
605 for (int i = 1; i < len; ++i) {
606 printf(":%02x", src[i]);
607 }
608 printf(")\n");
609 #endif
610
611 tl_list_node_t *n;
612 uint32_t ch;
613 if (src[0] == HCI_KIND_BT_CMD) {
614 // The STM32WB has a problem when address resolution is enabled: under certain
615 // conditions the MCU can get into a state where it draws an additional 10mA
616 // or so and eventually ends up with a broken BLE RX path in the silicon. A
617 // simple way to reproduce this is to enable address resolution (which is the
618 // default for NimBLE) and start the device advertising. If there is enough
619 // BLE activity in the vicinity then the device will at some point enter the
620 // bad state and, if left long enough, will have permanent BLE RX damage.
621 //
622 // STMicroelectronics are aware of this issue. The only known workaround at
623 // this stage is to not enable address resolution. We do that here by
624 // intercepting any command that enables address resolution and convert it
625 // into a command that disables address resolution.
626 //
627 // OGF=0x08 OCF=0x002d HCI_LE_Set_Address_Resolution_Enable
628 if (len == 5 && memcmp(src + 1, "\x2d\x20\x01\x01", 4) == 0) {
629 src = (const uint8_t *)"\x01\x2d\x20\x01\x00";
630 }
631
632 n = (tl_list_node_t *)&ipcc_membuf_ble_cmd_buf[0];
633 ch = IPCC_CH_BLE;
634 } else if (src[0] == HCI_KIND_BT_ACL) {
635 n = (tl_list_node_t *)&ipcc_membuf_ble_hci_acl_data_buf[0];
636 ch = IPCC_CH_HCI_ACL;
637
638 // Give the previous ACL command up to 100ms to complete.
639 mp_uint_t timeout_start_ticks_ms = mp_hal_ticks_ms();
640 while (hci_acl_cmd_pending) {
641 if (mp_hal_ticks_ms() - timeout_start_ticks_ms > 100) {
642 break;
643 }
644 #if MICROPY_PY_BLUETOOTH && MICROPY_BLUETOOTH_NIMBLE
645 mp_bluetooth_nimble_hci_uart_wfi();
646 #endif
647 }
648
649 // Prevent sending another command until this one returns with HCI_EVENT_COMMAND_{COMPLETE,STATUS}.
650 hci_acl_cmd_pending = true;
651 } else {
652 printf("** UNEXPECTED HCI HDR: 0x%02x **\n", src[0]);
653 return;
654 }
655
656 n->next = NULL;
657 n->prev = NULL;
658 memcpy(n->body, src, len);
659
660 // IPCC indicate.
661 LL_C1_IPCC_SetFlag_CHx(IPCC, ch);
662 }
663
rfcore_ble_check_msg(int (* cb)(void *,const uint8_t *,size_t),void * env)664 void rfcore_ble_check_msg(int (*cb)(void *, const uint8_t *, size_t), void *env) {
665 parse_hci_info_t parse = { cb, env, false };
666 tl_check_msg(&ipcc_mem_ble_evt_queue, IPCC_CH_BLE, &parse);
667
668 // Intercept HCI_Reset events and reconfigure the controller following the reset
669 if (parse.was_hci_reset_evt) {
670 uint8_t buf[8];
671 buf[0] = 0; // config offset
672 buf[1] = 6; // config length
673 mp_hal_get_mac(MP_HAL_MAC_BDADDR, &buf[2]);
674 #define SWAP_UINT8(a, b) { uint8_t temp = a; a = b; b = temp; \
675 }
676 SWAP_UINT8(buf[2], buf[7]);
677 SWAP_UINT8(buf[3], buf[6]);
678 SWAP_UINT8(buf[4], buf[5]);
679 tl_ble_hci_cmd_resp(HCI_OPCODE(OGF_VENDOR, OCF_WRITE_CONFIG), buf, 8); // set BDADDR
680 }
681 }
682
683 // "level" is 0x00-0x1f, ranging from -40 dBm to +6 dBm (not linear).
rfcore_ble_set_txpower(uint8_t level)684 void rfcore_ble_set_txpower(uint8_t level) {
685 uint8_t buf[2] = { 0x00, level };
686 tl_ble_hci_cmd_resp(HCI_OPCODE(OGF_VENDOR, OCF_SET_TX_POWER), buf, 2);
687 }
688
rfcore_start_flash_erase(void)689 void rfcore_start_flash_erase(void) {
690 uint8_t buf = 1; // ERASE_ACTIVITY_ON
691 tl_sys_hci_cmd_resp(HCI_OPCODE(OGF_VENDOR, OCF_C2_FLASH_ERASE_ACTIVITY), &buf, 1, 0);
692 }
693
rfcore_end_flash_erase(void)694 void rfcore_end_flash_erase(void) {
695 uint8_t buf = 0; // ERASE_ACTIVITY_OFF
696 tl_sys_hci_cmd_resp(HCI_OPCODE(OGF_VENDOR, OCF_C2_FLASH_ERASE_ACTIVITY), &buf, 1, 0);
697 }
698
699 /******************************************************************************/
700 // IPCC IRQ Handlers
701
IPCC_C1_TX_IRQHandler(void)702 void IPCC_C1_TX_IRQHandler(void) {
703 IRQ_ENTER(IPCC_C1_TX_IRQn);
704 IRQ_EXIT(IPCC_C1_TX_IRQn);
705 }
706
IPCC_C1_RX_IRQHandler(void)707 void IPCC_C1_RX_IRQHandler(void) {
708 IRQ_ENTER(IPCC_C1_RX_IRQn);
709
710 DEBUG_printf("IPCC_C1_RX_IRQHandler\n");
711
712 if (LL_C2_IPCC_IsActiveFlag_CHx(IPCC, IPCC_CH_BLE)) {
713 // Disable this IRQ until the incoming data is processed (in tl_check_msg).
714 LL_C1_IPCC_DisableReceiveChannel(IPCC, IPCC_CH_BLE);
715
716 #if MICROPY_PY_BLUETOOTH
717 // Queue up the scheduler to process UART data and run events.
718 mp_bluetooth_hci_poll_now();
719 #endif
720 }
721
722 IRQ_EXIT(IPCC_C1_RX_IRQn);
723 }
724
725 /******************************************************************************/
726 // MicroPython bindings
727
rfcore_status(void)728 STATIC mp_obj_t rfcore_status(void) {
729 return mp_obj_new_int_from_uint(ipcc_mem_dev_info_tab.fus.table_state);
730 }
731 MP_DEFINE_CONST_FUN_OBJ_0(rfcore_status_obj, rfcore_status);
732
get_version_tuple(uint32_t data)733 STATIC mp_obj_t get_version_tuple(uint32_t data) {
734 mp_obj_t items[] = {
735 MP_OBJ_NEW_SMALL_INT(data >> 24), MP_OBJ_NEW_SMALL_INT(data >> 16 & 0xFF), MP_OBJ_NEW_SMALL_INT(data >> 8 & 0xFF), MP_OBJ_NEW_SMALL_INT(data >> 4 & 0xF), MP_OBJ_NEW_SMALL_INT(data & 0xF)
736 };
737 return mp_obj_new_tuple(5, items);
738 }
739
rfcore_fw_version(mp_obj_t fw_id_in)740 STATIC mp_obj_t rfcore_fw_version(mp_obj_t fw_id_in) {
741 if (ipcc_mem_dev_info_tab.fus.table_state == MAGIC_IPCC_MEM_INCORRECT) {
742 mp_raise_OSError(MP_EINVAL);
743 }
744 mp_int_t fw_id = mp_obj_get_int(fw_id_in);
745 bool fus_active = ipcc_mem_dev_info_tab.fus.table_state == MAGIC_FUS_ACTIVE;
746 uint32_t v;
747 if (fw_id == 0) {
748 // FUS
749 v = fus_active ? ipcc_mem_dev_info_tab.fus.fus_version : ipcc_mem_dev_info_tab.ws.fus_version;
750 } else {
751 // WS
752 v = fus_active ? ipcc_mem_dev_info_tab.fus.ws_version : ipcc_mem_dev_info_tab.ws.fw_version;
753 }
754 return get_version_tuple(v);
755 }
756 MP_DEFINE_CONST_FUN_OBJ_1(rfcore_fw_version_obj, rfcore_fw_version);
757
rfcore_sys_hci(size_t n_args,const mp_obj_t * args)758 STATIC mp_obj_t rfcore_sys_hci(size_t n_args, const mp_obj_t *args) {
759 if (ipcc_mem_dev_info_tab.fus.table_state == MAGIC_IPCC_MEM_INCORRECT) {
760 mp_raise_OSError(MP_EINVAL);
761 }
762 mp_int_t ogf = mp_obj_get_int(args[0]);
763 mp_int_t ocf = mp_obj_get_int(args[1]);
764 mp_buffer_info_t bufinfo = {0};
765 mp_get_buffer_raise(args[2], &bufinfo, MP_BUFFER_READ);
766 mp_int_t timeout_ms = 0;
767 if (n_args >= 4) {
768 timeout_ms = mp_obj_get_int(args[3]);
769 }
770 ssize_t len = tl_sys_hci_cmd_resp(HCI_OPCODE(ogf, ocf), bufinfo.buf, bufinfo.len, timeout_ms);
771 if (len < 0) {
772 mp_raise_OSError(-len);
773 }
774 return mp_obj_new_bytes(ipcc_membuf_sys_cmd_buf, len);
775 }
776 MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(rfcore_sys_hci_obj, 3, 4, rfcore_sys_hci);
777
778 #endif // defined(STM32WB)
779