Home
last modified time | relevance | path

Searched refs:is_mersenne_prime (Results 1 – 15 of 15) sorted by relevance

/dports/math/py-sympy/sympy-1.9/sympy/ntheory/tests/
H A Dtest_factor_.py13 mersenne_prime_exponent, is_perfect, is_mersenne_prime, is_abundant,
631 assert is_mersenne_prime(10) is False
632 assert is_mersenne_prime(127) is True
633 assert is_mersenne_prime(511) is False
634 assert is_mersenne_prime(131071) is True
635 assert is_mersenne_prime(2147483647) is True
/dports/math/p5-Math-Prime-Util/Math-Prime-Util-0.73/t/
H A D29-mersenne.t16 is_deeply( [grep { is_mersenne_prime($_) } 0 .. $A000043[-1]],
/dports/math/p5-Math-Prime-Util-GMP/Math-Prime-Util-GMP-0.52/t/
H A D26-mersenne.t15 is_deeply( [grep { is_mersenne_prime($_) } 0 .. $A000043[-1]],
/dports/math/py-sympy/sympy-1.9/sympy/ntheory/
H A D__init__.py13 is_perfect, is_mersenne_prime, is_abundant, is_deficient, is_amicable, \
H A Dfactor_.py2428 def is_mersenne_prime(n): function
/dports/math/p5-Math-Prime-Util/Math-Prime-Util-0.73/
H A Dprimality.h17 extern int is_mersenne_prime(UV p);
H A Dprimality.c1253 int is_mersenne_prime(UV p) in is_mersenne_prime() function
H A DXS.xs1243 is_mersenne_prime = 18
1271 case 18: ret = is_mersenne_prime(n); if (ret == -1) status = 0; break;
H A DChanges831 - is_mersenne_prime(p) returns 1 iff 2^p-1 is prime
/dports/math/py-sympy/sympy-1.9/doc/src/modules/
H A Dntheory.rst99 .. autofunction:: is_mersenne_prime
/dports/math/p5-Math-Prime-Util/Math-Prime-Util-0.73/bin/
H A Dprimes.pl225 push @mprimes, $Mp if $Mp >= $start && is_mersenne_prime($p);
/dports/math/p5-Math-Prime-Util/Math-Prime-Util-0.73/lib/Math/Prime/Util/
H A DPPFE.pm399 sub is_mersenne_prime { subroutine
402 return Math::Prime::Util::PP::is_mersenne_prime($p);
/dports/math/py-sympy/sympy-1.9/sympy/
H A D__init__.py139 mersenne_prime_exponent, is_perfect, is_mersenne_prime, is_abundant,
/dports/math/p5-Math-Prime-Util-GMP/Math-Prime-Util-GMP-0.52/
H A DXS.xs953 int is_mersenne_prime(IN UV n)
H A DChanges531 - is_mersenne_prime(p) returns 1 iff 2^p-1 is prime