/dports/science/py-scikit-learn/scikit-learn-1.0.2/sklearn/linear_model/_glm/ |
H A D | link.py | 41 def inverse(self, lin_pred): argument 54 def inverse_derivative(self, lin_pred): argument 73 def inverse(self, lin_pred): argument 74 return lin_pred 77 return np.ones_like(lin_pred) 89 def inverse(self, lin_pred): argument 90 return np.exp(lin_pred) 93 return np.exp(lin_pred) 105 def inverse(self, lin_pred): argument 106 return expit(lin_pred) [all …]
|
H A D | glm.py | 39 lin_pred = _safe_lin_pred(X, coef) 40 y_pred = link.inverse(lin_pred) 41 d1 = link.inverse_derivative(lin_pred)
|
/dports/math/py-statsmodels/statsmodels-0.13.1/statsmodels/genmod/tests/ |
H A D | test_glm_weights.py | 387 mu = link().inverse(lin_pred) 460 lin_pred = 20 + exog.sum(1) 464 lin_pred = -2 + exog.sum(1) 488 lin_pred = np.clip(lin_pred, 1e-4, np.inf) 501 lin_pred = np.clip(lin_pred, 1e-3, np.inf) 596 lin_pred = (exog * beta).sum(axis=1) 627 lin_pred = (exog * beta).sum(axis=1) 658 lin_pred = (exog * beta).sum(axis=1) 690 lin_pred = (exog * beta).sum(axis=1) 723 lin_pred = (exog * beta).sum(axis=1) [all …]
|
H A D | test_glm.py | 1043 lin_pred = params[0] + params[1]*x 1044 pr = 1 / (1 + np.exp(-lin_pred)) 1083 lin_pred = exog[:, 0] + exog[:, 1]**2 1084 prob = 1 / (1 + np.exp(-lin_pred)) 1128 mu = link().inverse(lin_pred) 1225 lin_pred = 2 + exog.sum(1) 1231 lin_pred = np.clip(lin_pred, 1e-4, np.inf) 1239 lin_pred = np.clip(lin_pred, 1e-4, np.inf) 1342 lin_pred = 2 + exog.sum(1) 1349 lin_pred = np.clip(lin_pred, 1e-4, np.inf) [all …]
|
/dports/math/py-statsmodels/statsmodels-0.13.1/statsmodels/genmod/tests/results/ |
H A D | elastic_net_generate_tests.py | 12 lin_pred = exog.sum(1) * 0.2 variable 13 exp_val = 1 / (1 + np.exp(-lin_pred)) 20 lin_pred = exog.sum(1) * 0.2 variable 21 exp_val = np.exp(lin_pred)
|
/dports/math/py-statsmodels/statsmodels-0.13.1/statsmodels/gam/ |
H A D | generalized_additive_model.py | 693 lin_pred = self.family.predict(mu) 695 lin_pred = np.dot(wlsexog, start_params) + self._offset_exposure 696 mu = self.family.fitted(lin_pred) 705 mu = self.family.fitted(lin_pred) 718 wlsendog = (lin_pred + self.family.link.deriv(mu) * (endog - mu) 723 lin_pred = np.dot(wlsexog, wls_results.params).ravel() 724 lin_pred += self._offset_exposure 725 mu = self.family.fitted(lin_pred)
|
/dports/math/py-statsmodels/statsmodels-0.13.1/statsmodels/graphics/tests/ |
H A D | test_regressionplots.py | 240 lin_pred = 4 + exog[:, 0] + 0.2 * exog[:, 1]**2 241 expval = np.exp(lin_pred) 291 lin_pred = 4 + exog[:, 1] + 0.2*exog[:, 2]**2 292 expval = np.exp(lin_pred) 327 lin_pred = 4 + exog[:, 1] + 0.2*exog[:, 2]**2 328 expval = np.exp(lin_pred)
|
/dports/math/py-statsmodels/statsmodels-0.13.1/statsmodels/genmod/ |
H A D | generalized_linear_model.py | 435 lin_pred = np.dot(self.exog, params) + self._offset_exposure 436 expval = self.family.link.inverse(lin_pred) 632 lin_pred = self.predict(params, linear=True) 633 idl = self.family.link.inverse_deriv(lin_pred) 1184 lin_pred = self.family.predict(mu) 1186 lin_pred = np.dot(wlsexog, start_params) + self._offset_exposure 1187 mu = self.family.fitted(lin_pred) 1204 mu = self.family.fitted(lin_pred) 1217 lin_pred = np.dot(self.exog, wls_results.params) 1218 lin_pred += self._offset_exposure [all …]
|
H A D | generalized_estimating_equations.py | 963 def mean_deriv(self, exog, lin_pred): argument 985 idl = self.family.link.inverse_deriv(lin_pred) 1008 lin_pred = np.dot(exog, params) 1010 lin_pred += offset_exposure 1012 idl = self.family.link.inverse_deriv(lin_pred) 2701 def mean_deriv(self, exog, lin_pred): argument 2720 expval = np.exp(lin_pred)
|
/dports/math/py-statsmodels/statsmodels-0.13.1/statsmodels/discrete/tests/ |
H A D | test_conditional.py | 172 lin_pred = np.dot(x, params) + group_effects 174 mean = 1 / (1 + np.exp(-lin_pred)) 213 lin_pred = np.dot(x, params) + group_effects 215 mean = np.exp(lin_pred)
|
/dports/math/py-statsmodels/statsmodels-0.13.1/statsmodels/discrete/ |
H A D | count_model.py | 427 lin_pred = np.dot(exog, params_main[:self.exog.shape[1]]) + exposure + offset 457 return prob_main * np.exp(lin_pred) 459 return np.exp(lin_pred) 461 return lin_pred 463 return prob_main * np.exp(lin_pred) / (1 - prob_zero)
|
/dports/math/py-statsmodels/statsmodels-0.13.1/statsmodels/stats/ |
H A D | _diagnostic_other.py | 262 lin_pred = res.predict(linear=True) 263 dm_incl = dm(x, lin_pred) 265 dm_excl = dm(x2, lin_pred)
|
/dports/math/py-spglm/spglm-1.0.8/spglm/ |
H A D | family.py | 161 def fitted(self, lin_pred): argument 177 fits = self.link.inverse(lin_pred)
|
/dports/math/py-statsmodels/statsmodels-0.13.1/statsmodels/sandbox/tests/ |
H A D | test_predict_functional.py | 233 lin_pred = -1 + 0.5*x1**2 + (x3 == "B") 234 prob = 1 / (1 + np.exp(-lin_pred))
|
/dports/math/py-statsmodels/statsmodels-0.13.1/statsmodels/genmod/families/ |
H A D | family.py | 215 def fitted(self, lin_pred): argument 231 fits = self.link.inverse(lin_pred)
|
/dports/math/py-statsmodels/statsmodels-0.13.1/statsmodels/duration/tests/ |
H A D | test_phreg.py | 347 lin_pred = exog.sum(1) 348 elin_pred = np.exp(-lin_pred)
|
/dports/lang/clover/mesa-21.3.6/src/amd/compiler/ |
H A D | aco_insert_NOPs.cpp | 261 for (unsigned lin_pred : block->linear_preds) { in handle_raw_hazard_internal() local 264 state, &state.program->blocks[lin_pred], nops_needed, reg, mask, true)); in handle_raw_hazard_internal()
|
/dports/graphics/libosmesa-gallium/mesa-21.3.6/src/amd/compiler/ |
H A D | aco_insert_NOPs.cpp | 261 for (unsigned lin_pred : block->linear_preds) { in handle_raw_hazard_internal() local 264 state, &state.program->blocks[lin_pred], nops_needed, reg, mask, true)); in handle_raw_hazard_internal()
|
/dports/math/py-statsmodels/statsmodels-0.13.1/statsmodels/gam/tests/ |
H A D | test_gam.py | 87 lin_pred = np.dot(pol.basis, params) 89 expval = gaussian.link.inverse(lin_pred)
|
/dports/graphics/mesa-gallium-xa/mesa-21.3.6/src/amd/compiler/ |
H A D | aco_insert_NOPs.cpp | 261 for (unsigned lin_pred : block->linear_preds) { in handle_raw_hazard_internal() local 264 state, &state.program->blocks[lin_pred], nops_needed, reg, mask, true)); in handle_raw_hazard_internal()
|
/dports/graphics/mesa-libs/mesa-21.3.6/src/amd/compiler/ |
H A D | aco_insert_NOPs.cpp | 261 for (unsigned lin_pred : block->linear_preds) { in handle_raw_hazard_internal() local 264 state, &state.program->blocks[lin_pred], nops_needed, reg, mask, true)); in handle_raw_hazard_internal()
|
/dports/graphics/mesa-gallium-va/mesa-21.3.6/src/amd/compiler/ |
H A D | aco_insert_NOPs.cpp | 261 for (unsigned lin_pred : block->linear_preds) { in handle_raw_hazard_internal() local 264 state, &state.program->blocks[lin_pred], nops_needed, reg, mask, true)); in handle_raw_hazard_internal()
|
/dports/graphics/mesa-gallium-vdpau/mesa-21.3.6/src/amd/compiler/ |
H A D | aco_insert_NOPs.cpp | 261 for (unsigned lin_pred : block->linear_preds) { in handle_raw_hazard_internal() local 264 state, &state.program->blocks[lin_pred], nops_needed, reg, mask, true)); in handle_raw_hazard_internal()
|
/dports/graphics/mesa-dri-gallium/mesa-21.3.6/src/amd/compiler/ |
H A D | aco_insert_NOPs.cpp | 261 for (unsigned lin_pred : block->linear_preds) { in handle_raw_hazard_internal() local 264 state, &state.program->blocks[lin_pred], nops_needed, reg, mask, true)); in handle_raw_hazard_internal()
|
/dports/graphics/mesa-devel/mesa-22.0-branchpoint-2059-ge8a63cf61ec/src/amd/compiler/ |
H A D | aco_insert_NOPs.cpp | 261 for (unsigned lin_pred : block->linear_preds) { in handle_raw_hazard_internal() local 264 state, &state.program->blocks[lin_pred], nops_needed, reg, mask, true)); in handle_raw_hazard_internal()
|