/dports/math/p5-Math-Prime-Util/Math-Prime-Util-0.73/t/ |
H A D | 27-bernfrac.t | 75 my @stirling1 = ( 100 $#stirling1 = 12; 108 + 2 + scalar(@stirling3) + scalar(@stirling2) + scalar(@stirling1) + 2*$extra 175 foreach my $narr (@stirling1) {
|
/dports/math/reduce/Reduce-svn5758-src/packages/specfn/ |
H A D | sfbinom.red | 69 algebraic operator stirling1, stirling2; 72 let {stirling1(~n,~n) => 1, 73 stirling1(~n,0) => 0 when not(n=0), 74 stirling1(~n,~n-1) => - binomial(n,2), 75 stirling1(~n,~m) => 0 when fixp n and fixp m and n < m, 76 stirling1(~n,~m) => (for k:=0:(n-m) sum 98 put('stirling1, 'prifn, 'plain!-symbol); 100 put('stirling1, 'plain!-functionsymbol, '!s); 102 % put('stirling1, 'fancy!-functionsymbol, "\mathrm{s}");
|
/dports/math/p5-Math-Prime-Util-GMP/Math-Prime-Util-GMP-0.52/t/ |
H A D | 24-bernfrac.t | 59 my @stirling1 = ( 83 plan tests => 2 + scalar(@stirling3) + scalar(@stirling2) + scalar(@stirling1) + 3 + 2+6 + 4; 110 foreach my $narr (@stirling1) {
|
/dports/math/maxima/maxima-5.43.2/tests/ |
H A D | rtestnset.mac | 1123 stirling1(b,a); 1124 stirling1(b,a)$ 1188 stirling1(n,n); 1191 stirling1(kk,kk); 1194 stirling1(1,kk); 1195 stirling1(1,kk)$ 1197 stirling1(1,k); 1200 stirling1(n,0); 1201 stirling1(n,0)$ 1206 stirling1(n,1); [all …]
|
/dports/math/maxima/maxima-5.43.2/tests/wester_problems/ |
H A D | test_combinatorics.mac | 38 /*stirling1(5, 2);*/
|
/dports/math/fricas/fricas-1.3.7/src/algebra/ |
H A D | combinat.spad | 44 stirling1 : (I, I) -> I 45 ++ \spad{stirling1(n, m)} returns the Stirling number of the first kind 157 stirling1(n, m) ==
|
/dports/math/pari/pari-2.13.3/src/functions/combinatorics/ |
H A D | stirling | 40 Variant: Also available are \fun{GEN}{stirling1}{ulong n, ulong k}
|
/dports/math/py-mpmath/mpmath-1.2.1/mpmath/libmp/ |
H A D | __init__.py | 73 list_primes, isprime, moebius, gcd, eulernum, stirling1, stirling2)
|
H A D | libintmath.py | 549 def stirling1(n, k): function
|
/dports/math/calc/calc-2.14.0.14/cal/ |
H A D | factorial2.cal | 486 define stirling1(n,m){ 488 if(n<0)return newerror("stirling1(n,m): n <= 0"); 489 if(m<0)return newerror("stirling1(n,m): m < 0"); 712 print "stirling1(n,m)";
|
H A D | test8900.cal | 2008 if ((stirling1(10, 0) - (0)) != 0) { 2012 if ((stirling1(0, 10) - (0)) != 0) { 2016 if ((stirling1(0, 0) - (1)) != 0) { 2020 if ((stirling1(10, 10) - (1)) != 0) { 2024 if ((stirling1(10, 1) - (-362880)) != 0) { 2028 if ((stirling1(10, 5) - (-269325)) != 0) {
|
/dports/math/py-mpmath/mpmath-1.2.1/mpmath/ |
H A D | function_docs.py | 9967 stirling1 = r""" variable
|
H A D | __init__.py | 426 stirling1 = mp.stirling1 variable
|
H A D | ctx_base.py | 350 _stirling1 = staticmethod(libmp.stirling1)
|
/dports/math/maxima/maxima-5.43.2/doc/info/ |
H A D | nset.texi | 2010 @anchor{stirling1} 2011 @deffn {Function} stirling1 (@var{n}, @var{m}) 2016 integers, the magnitude of @code{stirling1 (@var{n}, @var{m})} is the number of 2019 @code{stirling1} is a simplifying function. 2024 @math{stirling1(1,k) = kron_delta(1,k), k >= 0},(see @url{http://dlmf.nist.gov/26.8.E2}) 2026 @math{stirling1(n,n) = 1, n >= 0} (see @url{http://dlmf.nist.gov/26.8.E1}) 2033 @math{stirling1(n,1) =(-1)^(n-1) (n-1)!, n >= 1} (see @url{http://dlmf.nist.gov/26.8.E14}) 2035 @math{stirling1(n,k) = 0, n >= 0} and @math{k > n}. 2040 @code{stirling1} does not simplify for non-integer arguments. 2048 @c stirling1 (n, n); [all …]
|
/dports/math/p5-Math-Prime-Util/Math-Prime-Util-0.73/ |
H A D | util.h | 79 extern IV stirling1(UV n, UV m);
|
/dports/math/maxima/maxima-5.43.2/doc/info/pt.utf8/ |
H A D | maxima.info | 192 Ref: stirling11068650
|
H A D | maxima.info-4 | 3428 -- Função da class: stirling1 (<n>, <m>) 3443 1. stirling1(0, n) = kron_delta(0, n) (Ref. [1]) 3444 2. stirling1(n, n) = 1 (Ref. [1]) 3446 4. stirling1(n + 1, 0) = 0 (Ref. [1]) 3447 5. stirling1(n + 1, 1) = n! (Ref. [1]) 3448 6. stirling1(n + 1, 2) = 2^n - 1 (Ref. [1]) 3464 (%i3) stirling1 (n, n); 3469 (%i1) stirling1 (sqrt(2), sqrt(2)); 3472 Maxima aplica identidades a 'stirling1'. 3476 (%i3) stirling1 (n + 1, n); [all …]
|
/dports/math/maxima/maxima-5.43.2/doc/info/pt/ |
H A D | maxima.info | 192 Ref: stirling11068652
|
/dports/math/py-mpmath/mpmath-1.2.1/mpmath/functions/ |
H A D | functions.py | 632 def stirling1(ctx, n, k, exact=False): function
|
/dports/math/maxima/maxima-5.43.2/doc/info/de.utf8/ |
H A D | maxima.info-3 | 1689 -- Funktion: stirling1 (<n>, <m>) 1704 * 'stirling1(0, n) = kron_delta(0, n)' 1705 * 'stirling1(n, n) = 1' 1706 * 'stirling1(n, n - 1) = binomial(n, 2)' 1707 * 'stirling1(n + 1, 0) = 0' 1708 * 'stirling1(n + 1, 1) = n!' 1709 * 'stirling1(n + 1, 2) = 2^n - 1' 1725 (%i3) stirling1 (n, n); 1731 (%i1) stirling1 (sqrt(2), sqrt(2)); 1738 (%i3) stirling1 (n + 1, n); [all …]
|
/dports/math/maxima/maxima-5.43.2/doc/info/de/ |
H A D | maxima.info-3 | 1689 -- Funktion: stirling1 (<n>, <m>) 1704 * 'stirling1(0, n) = kron_delta(0, n)' 1705 * 'stirling1(n, n) = 1' 1706 * 'stirling1(n, n - 1) = binomial(n, 2)' 1707 * 'stirling1(n + 1, 0) = 0' 1708 * 'stirling1(n + 1, 1) = n!' 1709 * 'stirling1(n + 1, 2) = 2^n - 1' 1725 (%i3) stirling1 (n, n); 1731 (%i1) stirling1 (sqrt(2), sqrt(2)); 1738 (%i3) stirling1 (n + 1, n); [all …]
|
/dports/math/maxima/maxima-5.43.2/doc/info/es/ |
H A D | maxima.info-5 | 1387 -- Funci�n: stirling1 (<n>, <m>) 1402 1. stirling1(0, n) = kron_delta(0, n) (Ref. [1]) 1403 2. stirling1(n, n) = 1 (Ref. [1]) 1405 4. stirling1(n + 1, 0) = 0 (Ref. [1]) 1406 5. stirling1(n + 1, 1) = n! (Ref. [1]) 1407 6. stirling1(n + 1, 2) = 2^n - 1 (Ref. [1]) 1423 (%i3) stirling1 (n, n); 1429 (%i1) stirling1 (sqrt(2), sqrt(2)); 1432 Maxima aplicas algunas identidades a 'stirling1', 1436 (%i3) stirling1 (n + 1, n); [all …]
|
/dports/math/maxima/maxima-5.43.2/doc/info/es.utf8/ |
H A D | maxima.info-5 | 1387 -- Función: stirling1 (<n>, <m>) 1402 1. stirling1(0, n) = kron_delta(0, n) (Ref. [1]) 1403 2. stirling1(n, n) = 1 (Ref. [1]) 1405 4. stirling1(n + 1, 0) = 0 (Ref. [1]) 1406 5. stirling1(n + 1, 1) = n! (Ref. [1]) 1407 6. stirling1(n + 1, 2) = 2^n - 1 (Ref. [1]) 1423 (%i3) stirling1 (n, n); 1429 (%i1) stirling1 (sqrt(2), sqrt(2)); 1432 Maxima aplicas algunas identidades a 'stirling1', 1436 (%i3) stirling1 (n + 1, n); [all …]
|
/dports/math/maxima/maxima-5.43.2/doc/info/pt_BR/ |
H A D | maxima.info-4 | 3486 -- Fun��o: stirling1 (<n>, <m>) 3501 1. stirling1(0, n) = kron_delta(0, n) (Ref. [1]) 3502 2. stirling1(n, n) = 1 (Ref. [1]) 3504 4. stirling1(n + 1, 0) = 0 (Ref. [1]) 3505 5. stirling1(n + 1, 1) = n! (Ref. [1]) 3506 6. stirling1(n + 1, 2) = 2^n - 1 (Ref. [1]) 3522 (%i3) stirling1 (n, n); 3527 (%i1) stirling1 (sqrt(2), sqrt(2)); 3530 Maxima aplica identidades a 'stirling1'. 3534 (%i3) stirling1 (n + 1, n); [all …]
|