/dports/math/R-cran-survey/survey/ |
H A D | NAMESPACE | 21 S3method(svyloglin,survey.design) 76 S3method(svymean, survey.design) 92 S3method(svyratio, survey.design) 93 S3method(svyratio, svyrep.design) 94 S3method(svyratio, survey.design2) 100 S3method(svyvar, survey.design) 124 S3method(svyglm,survey.design) 233 S3method(svykm, survey.design) 290 S3method(print, survey.design) 313 S3method(dim,survey.design) [all …]
|
H A D | INDEX | 1 svydesign Specify a survey design 4 as.svrepdesign Compute replication weights for a design 6 subset.survey.design Subset of survey 7 update.survey.design Add variables to a survey design 8 postStratify Post-stratify a survey design 9 rake Rake a survey design 17 svycoplot Conditioning plots for survey data 18 svyqqplot Quantile-quantile plots for survey data 30 deff extract design effect 46 svyratio [all …]
|
/dports/math/R-cran-survey/survey/man/ |
H A D | svyratio.Rd | 5 \alias{svyratio.svyrep.design} 6 \alias{svyratio.survey.design} 7 \alias{svyratio.survey.design2} 22 \method{svyratio}{survey.design2}(numerator=formula, denominator, 25 \method{svyratio}{svyrep.design}(numerator=formula, denominator, design, 40 \item{design}{survey design object} 91 ## survey design objects 106 svyratio(~alive, ~arrests, design=scddes) 107 svyratio(~alive, ~arrests, design=scdnofpc) 108 svyratio(~alive, ~arrests, design=scd2brr) [all …]
|
H A D | as.svrepdesign.Rd | 7 \title{Convert a survey design to use replicate weights} 9 Creates a replicate-weights survey design object from a traditional 10 strata/cluster survey design object. \code{JK1} and \code{JKn} are 24 mse=getOption("survey.replicates.mse")) 28 mse=getOption("survey.replicates.mse")) 32 \item{design}{Object of class \code{survey.design} or \code{svyimputationList}} 85 svyratio(~alive, ~arrests, design=scd2brr) 86 svyratio(~alive, ~arrests, design=scd2brr1) 87 svyratio(~alive, ~arrests, design=scd2fay) 88 svyratio(~alive, ~arrests, design=scd2jkn) [all …]
|
H A D | surveysummary.Rd | 3 \alias{svymean.survey.design} 9 \alias{svytotal.survey.design} 13 \alias{svyvar.survey.design} 19 \alias{cv.svyratio} 36 \method{svymean}{survey.design}(x, design, na.rm=FALSE,deff=FALSE,influence=FALSE,...) 41 \method{svyvar}{survey.design}(x, design, na.rm=FALSE,...) 44 \method{svytotal}{survey.design}(x, design, na.rm=FALSE,deff=FALSE,influence=FALSE,...) 62 \item{design}{\code{survey.design} or \code{svyrep.design} object} 181 svyratio(~api.stu, ~enroll, dclus1) 200 svyratio(~api.stu, ~enroll, jkstrat) [all …]
|
H A D | scd.Rd | 28 ## survey design objects 45 svyratio(~alive, ~arrests, design=scddes) 46 svyratio(~alive, ~arrests, design=scdnofpc) 47 svyratio(~alive, ~arrests, design=scd2brr) 48 svyratio(~alive, ~arrests, design=scd2boot) 49 svyratio(~alive, ~arrests, design=scdrep) 52 summary(svyglm(cbind(alive,arrests-alive)~1, family=quasibinomial, design=scdnofpc)) 53 summary(svyglm(cbind(alive,arrests-alive)~1, family=quasibinomial, design=scdrep)) 55 # Because no sampling weights are given, can't compute design effects
|
H A D | svyby.Rd | 10 \alias{svyby.survey.design2} 14 Compute survey statistics on subsets of a survey defined by factors. 17 svyby(formula, by ,design,...) 22 multicore=getOption("survey.multicore")) 23 \method{svyby}{survey.design2}(formula, by, design, FUN, ..., deff=FALSE,keep.var = TRUE, 26 na.rm.by=FALSE, na.rm.all=FALSE, multicore=getOption("survey.multicore")) 42 \item{FUN}{A function taking a formula and survey design object as its 119 \code{\link{update.survey.design}} to add variables to the design 185 svyby(~api.stu, by=~stype, denominator=~enroll, design=dclus1, svyratio) 187 ratios<-svyby(~api.stu, by=~stype, denominator=~enroll, design=dclus1, svyratio,covmat=TRUE) [all …]
|
H A D | svrepdesign.Rd | 6 \alias{[.svyrep.design} 7 \alias{image.svyrep.design} 8 \alias{print.svyrep.design} 10 \alias{summary.svyrep.design} 13 \title{Specify survey design with replicate weights} 17 data structure for such a survey. 26 mse=getOption("survey.replicates.mse"),...) 57 \item{x}{survey design with replicate weights} 121 \code{RSQLite} for SQLite). The survey design 133 \code{\link{as.svrepdesign}} on a \code{survey.design} object, or see [all …]
|
/dports/math/R-cran-survey/survey/tests/testoutput/ |
H A D | bycovmat.R | 2 library(survey) 8 a<-svyby(~api00+api99, ~comp.imp+sch.wide,design=rclus1,svymean, 10 b<-svyby(~api00+api99, ~comp.imp+sch.wide,design=rclus1,svymean, 20 rat <- svyratio(~ell+mobility, ~mobility+meals, dclus1,covmat=TRUE) 31 rat <- svyratio(~ell+mobility, ~mobility+meals, rclus1,covmat=TRUE) 39 stopifnot(all(abs(survey:::svrVar(con$replicates, rclus1$scale,rclus1$rscales,mse=rclus1$mse, coef=… 45 a<-svyby(~api00+api99, ~comp.imp+sch.wide,design=rclus1,svymean, 47 b<-svyby(~api00+api99, ~comp.imp+sch.wide,design=rclus1,svymean, 57 rat <- svyratio(~ell+mobility, ~mobility+meals, dclus1,covmat=TRUE) 68 rat <- svyratio(~ell+mobility, ~mobility+meals, rclus1,covmat=TRUE) [all …]
|
H A D | bycovmat.Rout.save | 19 > library(survey) 21 Attaching package: 'survey' 28 > options(survey.replicates.mse=TRUE) 32 > a<-svyby(~api00+api99, ~comp.imp+sch.wide,design=rclus1,svymean, 34 > b<-svyby(~api00+api99, ~comp.imp+sch.wide,design=rclus1,svymean, 44 > rat <- svyratio(~ell+mobility, ~mobility+meals, dclus1,covmat=TRUE) 55 > rat <- svyratio(~ell+mobility, ~mobility+meals, rclus1,covmat=TRUE) 65 > options(survey.replicates.mse=FALSE) 69 > a<-svyby(~api00+api99, ~comp.imp+sch.wide,design=rclus1,svymean, 71 > b<-svyby(~api00+api99, ~comp.imp+sch.wide,design=rclus1,svymean, [all …]
|
H A D | DBIcheck.Rout.save | 21 > library(survey) 26 Attaching package: ‘survey’ 39 + data="apiclus1",dbtype="SQLite", dbname=system.file("api.db",package="survey")) 48 > r<-svyratio(~api_stu, ~enroll, design=dclus1) 49 > r.db<-svyratio(~api_stu, ~enroll, design=dbclus1) 55 > b<-svyby(~api99+api00,~stype, design=dclus1, svymean, deff=TRUE) 56 > b.db<-svyby(~api99+api00,~stype, design=dbclus1,svymean, deff=TRUE) 64 > l<-svyglm(api00~api99+mobility, design=dclus1) 65 > l.db<-svyglm(api00~api99+mobility, design=dbclus1) 94 DB-backed replicate weight design [all …]
|
H A D | DBIcheck.R | 2 library(survey) 17 r<-svyratio(~api_stu, ~enroll, design=dclus1) 18 r.db<-svyratio(~api_stu, ~enroll, design=dbclus1) 22 b<-svyby(~api99+api00,~stype, design=dclus1, svymean, deff=TRUE) 23 b.db<-svyby(~api99+api00,~stype, design=dbclus1,svymean, deff=TRUE) 28 l<-svyglm(api00~api99+mobility, design=dclus1) 29 l.db<-svyglm(api00~api99+mobility, design=dbclus1)
|
/dports/math/R-cran-survey/survey/tests/ |
H A D | bycovmat.R | 2 library(survey) 8 a<-svyby(~api00+api99, ~comp.imp+sch.wide,design=rclus1,svymean, 10 b<-svyby(~api00+api99, ~comp.imp+sch.wide,design=rclus1,svymean, 20 rat <- svyratio(~ell+mobility, ~mobility+meals, dclus1,covmat=TRUE) 31 rat <- svyratio(~ell+mobility, ~mobility+meals, rclus1,covmat=TRUE) 39 stopifnot(all(abs(survey:::svrVar(con$replicates, rclus1$scale,rclus1$rscales,mse=rclus1$mse, coef=… 45 a<-svyby(~api00+api99, ~comp.imp+sch.wide,design=rclus1,svymean, 47 b<-svyby(~api00+api99, ~comp.imp+sch.wide,design=rclus1,svymean, 57 rat <- svyratio(~ell+mobility, ~mobility+meals, dclus1,covmat=TRUE) 68 rat <- svyratio(~ell+mobility, ~mobility+meals, rclus1,covmat=TRUE) [all …]
|
H A D | domain.Rout.save | 26 > library(survey) 28 Attaching package: 'survey' 37 > (m1<-svymean(~x,design=dsub)) 46 > m3<-svyglm(x~I(x>4)+0,design=dfpc) 50 svyglm(formula = x ~ I(x > 4) + 0, design = dfpc) 52 Survey design: 67 > (m4<-svyratio(~I(x*(x>4)),~as.numeric(x>4), dfpc)) 68 Ratio estimator: svyratio.survey.design2(~I(x * (x > 4)), ~as.numeric(x > 4), 84 > m3<- svyratio(~I(enroll*(comp.imp=="Yes")), ~as.numeric(comp.imp=="Yes"), dstrat) 92 1 - level Cluster Sampling design [all …]
|
H A D | DBIcheck.R | 2 library(survey) 17 r<-svyratio(~api_stu, ~enroll, design=dclus1) 18 r.db<-svyratio(~api_stu, ~enroll, design=dbclus1) 22 b<-svyby(~api99+api00,~stype, design=dclus1, svymean, deff=TRUE) 23 b.db<-svyby(~api99+api00,~stype, design=dbclus1,svymean, deff=TRUE) 28 l<-svyglm(api00~api99+mobility, design=dclus1) 29 l.db<-svyglm(api00~api99+mobility, design=dbclus1)
|
H A D | domain.R | 9 library(survey) 13 (m1<-svymean(~x,design=dsub)) 16 (m2<-svyby(~x,~I(x>4),design=dfpc, svymean,keep.var=TRUE)) 17 m3<-svyglm(x~I(x>4)+0,design=dfpc) 19 (m4<-svyratio(~I(x*(x>4)),~as.numeric(x>4), dfpc)) 28 m3<- svyratio(~I(enroll*(comp.imp=="Yes")), ~as.numeric(comp.imp=="Yes"), dstrat) 38 m3<-svyratio(~I(api00*(comp.imp=="Yes")), ~as.numeric(comp.imp=="Yes"), dclus1g3) 49 m3<-svyratio(~I(api00*(comp.imp=="Yes")), ~as.numeric(comp.imp=="Yes"), dclus1r) 110 reg<-svyglm(y~I(y<4), design=des.rei2)
|
H A D | regpredict.R | 1 library(survey) 10 api.reg <- svyglm(api.stu~enroll, design=dstrat) 23 api.reg2 <- svyglm(api.stu~enroll-1, design=dstrat, 29 e <- predict(svyratio(~api.stu, ~enroll, dstrat),total=pop$enroll)
|
H A D | regpredict.Rout.save | 18 > library(survey) 20 Attaching package: 'survey' 34 > api.reg <- svyglm(api.stu~enroll, design=dstrat) 49 > api.reg2 <- svyglm(api.stu~enroll-1, design=dstrat, 55 > e <- predict(svyratio(~api.stu, ~enroll, dstrat),total=pop$enroll)
|
/dports/math/R-cran-survey/survey/inst/doc/ |
H A D | domain.Rnw | 20 survey design objects automatically do the necessary adjustments, but 30 library(survey) 34 svymean(~x,design=dsub) 37 The \texttt{subset} function constructs a survey design object with 42 svyby(~x,~I(x>4),design=dfpc, svymean) 50 summary(svyglm(x~I(x>4)+0,design=dfpc)) 58 svyratio(~I(x*(x>4)),~as.numeric(x>4), dfpc) 62 for observations not in the domain. For most survey design objects 83 svyratio(~I(api00*(comp.imp=="Yes")), ~as.numeric(comp.imp=="Yes"), gclus1) 93 svyratio(~I(y1*(y1>40)),~as.numeric(y1>40),dmu284) [all …]
|
H A D | survey.R | 6 library(survey) 24 svyratio(~api.stu,~enroll, dclus1) 30 svyratio(~api.stu, ~enroll, design=subset(dclus1, stype=="H")) 43 svyby(~ell+meals, ~stype, design=dclus1, svymean) 49 regmodel <- svyglm(api00~ell+meals,design=dclus1) 50 logitmodel <- svyglm(I(sch.wide=="Yes")~ell+meals, design=dclus1, family=quasibinomial()) 68 svyratio(~api.stu,~enroll, gclus1)
|
H A D | survey.Rnw | 3 %\VignetteIndexEntry{A survey analysis example} 6 \title{A survey analysis example} 11 This document provides a simple example analysis of a survey data set, 27 library(survey) 42 design object containing the data. 48 svyratio(~api.stu,~enroll, dclus1) 56 svyratio(~api.stu, ~enroll, design=subset(dclus1, stype=="H")) 74 svyby(~ell+meals, ~stype, design=dclus1, svymean) 80 regmodel <- svyglm(api00~ell+meals,design=dclus1) 81 logitmodel <- svyglm(I(sch.wide=="Yes")~ell+meals, design=dclus1, family=quasibinomial()) [all …]
|
H A D | domain.R | 6 library(survey) 10 svymean(~x,design=dsub) 16 svyby(~x,~I(x>4),design=dfpc, svymean) 22 summary(svyglm(x~I(x>4)+0,design=dfpc)) 28 svyratio(~I(x*(x>4)),~as.numeric(x>4), dfpc) 40 svyratio(~I(api00*(comp.imp=="Yes")), ~as.numeric(comp.imp=="Yes"), gclus1) 51 svyratio(~I(y1*(y1>40)),~as.numeric(y1>40),dmu284) 64 svyratio(~I(rel*as.numeric(age>36)), ~as.numeric(age>36), dccs8)
|
/dports/math/R-cran-survey/survey/vignettes/ |
H A D | domain.Rnw | 20 survey design objects automatically do the necessary adjustments, but 30 library(survey) 34 svymean(~x,design=dsub) 37 The \texttt{subset} function constructs a survey design object with 42 svyby(~x,~I(x>4),design=dfpc, svymean) 50 summary(svyglm(x~I(x>4)+0,design=dfpc)) 58 svyratio(~I(x*(x>4)),~as.numeric(x>4), dfpc) 62 for observations not in the domain. For most survey design objects 83 svyratio(~I(api00*(comp.imp=="Yes")), ~as.numeric(comp.imp=="Yes"), gclus1) 93 svyratio(~I(y1*(y1>40)),~as.numeric(y1>40),dmu284) [all …]
|
H A D | survey.Rnw | 3 %\VignetteIndexEntry{A survey analysis example} 6 \title{A survey analysis example} 11 This document provides a simple example analysis of a survey data set, 27 library(survey) 42 design object containing the data. 48 svyratio(~api.stu,~enroll, dclus1) 56 svyratio(~api.stu, ~enroll, design=subset(dclus1, stype=="H")) 74 svyby(~ell+meals, ~stype, design=dclus1, svymean) 80 regmodel <- svyglm(api00~ell+meals,design=dclus1) 81 logitmodel <- svyglm(I(sch.wide=="Yes")~ell+meals, design=dclus1, family=quasibinomial()) [all …]
|
/dports/math/R-cran-survey/survey/inst/ |
H A D | NEWS | 78 regTermTest(,method="LRT") didn't work if the survey design object and model were 155 3.36 Add withPV.survey.design for plausible-value analyses (needs mitools >=2.4) 545 3.21-3 svyratio() can now estimate design effects (for Scott Kostyshak) 943 3.6-2 covmat=TRUE option for svyratio. 1015 svyratio() for two-phase designs. 1064 svyratio handles missing data. 1165 cv.svyratio was inverted. 1167 rake() on survey design objects was accumulating cruft in the 1199 2.9 Added full multistage sampling, involving a redesign of the survey.design 1204 about old-style survey objects. If you must create old-style survey [all …]
|