1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
4 */
5 #ifndef LINUX_DMAENGINE_H
6 #define LINUX_DMAENGINE_H
7
8 #include <linux/device.h>
9 #include <linux/err.h>
10 #include <linux/uio.h>
11 #include <linux/bug.h>
12 #include <linux/scatterlist.h>
13 #include <linux/bitmap.h>
14 #include <linux/types.h>
15 #include <asm/page.h>
16
17 /**
18 * typedef dma_cookie_t - an opaque DMA cookie
19 *
20 * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code
21 */
22 typedef s32 dma_cookie_t;
23 #define DMA_MIN_COOKIE 1
24
dma_submit_error(dma_cookie_t cookie)25 static inline int dma_submit_error(dma_cookie_t cookie)
26 {
27 return cookie < 0 ? cookie : 0;
28 }
29
30 /**
31 * enum dma_status - DMA transaction status
32 * @DMA_COMPLETE: transaction completed
33 * @DMA_IN_PROGRESS: transaction not yet processed
34 * @DMA_PAUSED: transaction is paused
35 * @DMA_ERROR: transaction failed
36 */
37 enum dma_status {
38 DMA_COMPLETE,
39 DMA_IN_PROGRESS,
40 DMA_PAUSED,
41 DMA_ERROR,
42 DMA_OUT_OF_ORDER,
43 };
44
45 /**
46 * enum dma_transaction_type - DMA transaction types/indexes
47 *
48 * Note: The DMA_ASYNC_TX capability is not to be set by drivers. It is
49 * automatically set as dma devices are registered.
50 */
51 enum dma_transaction_type {
52 DMA_MEMCPY,
53 DMA_XOR,
54 DMA_PQ,
55 DMA_XOR_VAL,
56 DMA_PQ_VAL,
57 DMA_MEMSET,
58 DMA_MEMSET_SG,
59 DMA_INTERRUPT,
60 DMA_PRIVATE,
61 DMA_ASYNC_TX,
62 DMA_SLAVE,
63 DMA_CYCLIC,
64 DMA_INTERLEAVE,
65 DMA_COMPLETION_NO_ORDER,
66 DMA_REPEAT,
67 DMA_LOAD_EOT,
68 /* last transaction type for creation of the capabilities mask */
69 DMA_TX_TYPE_END,
70 };
71
72 /**
73 * enum dma_transfer_direction - dma transfer mode and direction indicator
74 * @DMA_MEM_TO_MEM: Async/Memcpy mode
75 * @DMA_MEM_TO_DEV: Slave mode & From Memory to Device
76 * @DMA_DEV_TO_MEM: Slave mode & From Device to Memory
77 * @DMA_DEV_TO_DEV: Slave mode & From Device to Device
78 */
79 enum dma_transfer_direction {
80 DMA_MEM_TO_MEM,
81 DMA_MEM_TO_DEV,
82 DMA_DEV_TO_MEM,
83 DMA_DEV_TO_DEV,
84 DMA_TRANS_NONE,
85 };
86
87 /**
88 * Interleaved Transfer Request
89 * ----------------------------
90 * A chunk is collection of contiguous bytes to be transferred.
91 * The gap(in bytes) between two chunks is called inter-chunk-gap(ICG).
92 * ICGs may or may not change between chunks.
93 * A FRAME is the smallest series of contiguous {chunk,icg} pairs,
94 * that when repeated an integral number of times, specifies the transfer.
95 * A transfer template is specification of a Frame, the number of times
96 * it is to be repeated and other per-transfer attributes.
97 *
98 * Practically, a client driver would have ready a template for each
99 * type of transfer it is going to need during its lifetime and
100 * set only 'src_start' and 'dst_start' before submitting the requests.
101 *
102 *
103 * | Frame-1 | Frame-2 | ~ | Frame-'numf' |
104 * |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...|
105 *
106 * == Chunk size
107 * ... ICG
108 */
109
110 /**
111 * struct data_chunk - Element of scatter-gather list that makes a frame.
112 * @size: Number of bytes to read from source.
113 * size_dst := fn(op, size_src), so doesn't mean much for destination.
114 * @icg: Number of bytes to jump after last src/dst address of this
115 * chunk and before first src/dst address for next chunk.
116 * Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false.
117 * Ignored for src(assumed 0), if src_inc is true and src_sgl is false.
118 * @dst_icg: Number of bytes to jump after last dst address of this
119 * chunk and before the first dst address for next chunk.
120 * Ignored if dst_inc is true and dst_sgl is false.
121 * @src_icg: Number of bytes to jump after last src address of this
122 * chunk and before the first src address for next chunk.
123 * Ignored if src_inc is true and src_sgl is false.
124 */
125 struct data_chunk {
126 size_t size;
127 size_t icg;
128 size_t dst_icg;
129 size_t src_icg;
130 };
131
132 /**
133 * struct dma_interleaved_template - Template to convey DMAC the transfer pattern
134 * and attributes.
135 * @src_start: Bus address of source for the first chunk.
136 * @dst_start: Bus address of destination for the first chunk.
137 * @dir: Specifies the type of Source and Destination.
138 * @src_inc: If the source address increments after reading from it.
139 * @dst_inc: If the destination address increments after writing to it.
140 * @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read).
141 * Otherwise, source is read contiguously (icg ignored).
142 * Ignored if src_inc is false.
143 * @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write).
144 * Otherwise, destination is filled contiguously (icg ignored).
145 * Ignored if dst_inc is false.
146 * @numf: Number of frames in this template.
147 * @frame_size: Number of chunks in a frame i.e, size of sgl[].
148 * @sgl: Array of {chunk,icg} pairs that make up a frame.
149 */
150 struct dma_interleaved_template {
151 dma_addr_t src_start;
152 dma_addr_t dst_start;
153 enum dma_transfer_direction dir;
154 bool src_inc;
155 bool dst_inc;
156 bool src_sgl;
157 bool dst_sgl;
158 size_t numf;
159 size_t frame_size;
160 struct data_chunk sgl[];
161 };
162
163 /**
164 * struct dma_vec - DMA vector
165 * @addr: Bus address of the start of the vector
166 * @len: Length in bytes of the DMA vector
167 */
168 struct dma_vec {
169 dma_addr_t addr;
170 size_t len;
171 };
172
173 /**
174 * enum dma_ctrl_flags - DMA flags to augment operation preparation,
175 * control completion, and communicate status.
176 * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of
177 * this transaction
178 * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client
179 * acknowledges receipt, i.e. has a chance to establish any dependency
180 * chains
181 * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q
182 * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P
183 * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as
184 * sources that were the result of a previous operation, in the case of a PQ
185 * operation it continues the calculation with new sources
186 * @DMA_PREP_FENCE - tell the driver that subsequent operations depend
187 * on the result of this operation
188 * @DMA_CTRL_REUSE: client can reuse the descriptor and submit again till
189 * cleared or freed
190 * @DMA_PREP_CMD: tell the driver that the data passed to DMA API is command
191 * data and the descriptor should be in different format from normal
192 * data descriptors.
193 * @DMA_PREP_REPEAT: tell the driver that the transaction shall be automatically
194 * repeated when it ends until a transaction is issued on the same channel
195 * with the DMA_PREP_LOAD_EOT flag set. This flag is only applicable to
196 * interleaved transactions and is ignored for all other transaction types.
197 * @DMA_PREP_LOAD_EOT: tell the driver that the transaction shall replace any
198 * active repeated (as indicated by DMA_PREP_REPEAT) transaction when the
199 * repeated transaction ends. Not setting this flag when the previously queued
200 * transaction is marked with DMA_PREP_REPEAT will cause the new transaction
201 * to never be processed and stay in the issued queue forever. The flag is
202 * ignored if the previous transaction is not a repeated transaction.
203 */
204 enum dma_ctrl_flags {
205 DMA_PREP_INTERRUPT = (1 << 0),
206 DMA_CTRL_ACK = (1 << 1),
207 DMA_PREP_PQ_DISABLE_P = (1 << 2),
208 DMA_PREP_PQ_DISABLE_Q = (1 << 3),
209 DMA_PREP_CONTINUE = (1 << 4),
210 DMA_PREP_FENCE = (1 << 5),
211 DMA_CTRL_REUSE = (1 << 6),
212 DMA_PREP_CMD = (1 << 7),
213 DMA_PREP_REPEAT = (1 << 8),
214 DMA_PREP_LOAD_EOT = (1 << 9),
215 };
216
217 /**
218 * enum sum_check_bits - bit position of pq_check_flags
219 */
220 enum sum_check_bits {
221 SUM_CHECK_P = 0,
222 SUM_CHECK_Q = 1,
223 };
224
225 /**
226 * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations
227 * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise
228 * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise
229 */
230 enum sum_check_flags {
231 SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P),
232 SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q),
233 };
234
235
236 /**
237 * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t.
238 * See linux/cpumask.h
239 */
240 typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t;
241
242 /**
243 * enum dma_desc_metadata_mode - per descriptor metadata mode types supported
244 * @DESC_METADATA_CLIENT - the metadata buffer is allocated/provided by the
245 * client driver and it is attached (via the dmaengine_desc_attach_metadata()
246 * helper) to the descriptor.
247 *
248 * Client drivers interested to use this mode can follow:
249 * - DMA_MEM_TO_DEV / DEV_MEM_TO_MEM:
250 * 1. prepare the descriptor (dmaengine_prep_*)
251 * construct the metadata in the client's buffer
252 * 2. use dmaengine_desc_attach_metadata() to attach the buffer to the
253 * descriptor
254 * 3. submit the transfer
255 * - DMA_DEV_TO_MEM:
256 * 1. prepare the descriptor (dmaengine_prep_*)
257 * 2. use dmaengine_desc_attach_metadata() to attach the buffer to the
258 * descriptor
259 * 3. submit the transfer
260 * 4. when the transfer is completed, the metadata should be available in the
261 * attached buffer
262 *
263 * @DESC_METADATA_ENGINE - the metadata buffer is allocated/managed by the DMA
264 * driver. The client driver can ask for the pointer, maximum size and the
265 * currently used size of the metadata and can directly update or read it.
266 * dmaengine_desc_get_metadata_ptr() and dmaengine_desc_set_metadata_len() is
267 * provided as helper functions.
268 *
269 * Note: the metadata area for the descriptor is no longer valid after the
270 * transfer has been completed (valid up to the point when the completion
271 * callback returns if used).
272 *
273 * Client drivers interested to use this mode can follow:
274 * - DMA_MEM_TO_DEV / DEV_MEM_TO_MEM:
275 * 1. prepare the descriptor (dmaengine_prep_*)
276 * 2. use dmaengine_desc_get_metadata_ptr() to get the pointer to the engine's
277 * metadata area
278 * 3. update the metadata at the pointer
279 * 4. use dmaengine_desc_set_metadata_len() to tell the DMA engine the amount
280 * of data the client has placed into the metadata buffer
281 * 5. submit the transfer
282 * - DMA_DEV_TO_MEM:
283 * 1. prepare the descriptor (dmaengine_prep_*)
284 * 2. submit the transfer
285 * 3. on transfer completion, use dmaengine_desc_get_metadata_ptr() to get the
286 * pointer to the engine's metadata area
287 * 4. Read out the metadata from the pointer
288 *
289 * Note: the two mode is not compatible and clients must use one mode for a
290 * descriptor.
291 */
292 enum dma_desc_metadata_mode {
293 DESC_METADATA_NONE = 0,
294 DESC_METADATA_CLIENT = BIT(0),
295 DESC_METADATA_ENGINE = BIT(1),
296 };
297
298 /**
299 * struct dma_chan_percpu - the per-CPU part of struct dma_chan
300 * @memcpy_count: transaction counter
301 * @bytes_transferred: byte counter
302 */
303 struct dma_chan_percpu {
304 /* stats */
305 unsigned long memcpy_count;
306 unsigned long bytes_transferred;
307 };
308
309 /**
310 * struct dma_router - DMA router structure
311 * @dev: pointer to the DMA router device
312 * @route_free: function to be called when the route can be disconnected
313 */
314 struct dma_router {
315 struct device *dev;
316 void (*route_free)(struct device *dev, void *route_data);
317 };
318
319 /**
320 * struct dma_chan - devices supply DMA channels, clients use them
321 * @device: ptr to the dma device who supplies this channel, always !%NULL
322 * @slave: ptr to the device using this channel
323 * @cookie: last cookie value returned to client
324 * @completed_cookie: last completed cookie for this channel
325 * @chan_id: channel ID for sysfs
326 * @dev: class device for sysfs
327 * @name: backlink name for sysfs
328 * @dbg_client_name: slave name for debugfs in format:
329 * dev_name(requester's dev):channel name, for example: "2b00000.mcasp:tx"
330 * @device_node: used to add this to the device chan list
331 * @local: per-cpu pointer to a struct dma_chan_percpu
332 * @client_count: how many clients are using this channel
333 * @table_count: number of appearances in the mem-to-mem allocation table
334 * @router: pointer to the DMA router structure
335 * @route_data: channel specific data for the router
336 * @private: private data for certain client-channel associations
337 */
338 struct dma_chan {
339 struct dma_device *device;
340 struct device *slave;
341 dma_cookie_t cookie;
342 dma_cookie_t completed_cookie;
343
344 /* sysfs */
345 int chan_id;
346 struct dma_chan_dev *dev;
347 const char *name;
348 #ifdef CONFIG_DEBUG_FS
349 char *dbg_client_name;
350 #endif
351
352 struct list_head device_node;
353 struct dma_chan_percpu __percpu *local;
354 int client_count;
355 int table_count;
356
357 /* DMA router */
358 struct dma_router *router;
359 void *route_data;
360
361 void *private;
362 };
363
364 /**
365 * struct dma_chan_dev - relate sysfs device node to backing channel device
366 * @chan: driver channel device
367 * @device: sysfs device
368 * @dev_id: parent dma_device dev_id
369 * @chan_dma_dev: The channel is using custom/different dma-mapping
370 * compared to the parent dma_device
371 */
372 struct dma_chan_dev {
373 struct dma_chan *chan;
374 struct device device;
375 int dev_id;
376 bool chan_dma_dev;
377 };
378
379 /**
380 * enum dma_slave_buswidth - defines bus width of the DMA slave
381 * device, source or target buses
382 */
383 enum dma_slave_buswidth {
384 DMA_SLAVE_BUSWIDTH_UNDEFINED = 0,
385 DMA_SLAVE_BUSWIDTH_1_BYTE = 1,
386 DMA_SLAVE_BUSWIDTH_2_BYTES = 2,
387 DMA_SLAVE_BUSWIDTH_3_BYTES = 3,
388 DMA_SLAVE_BUSWIDTH_4_BYTES = 4,
389 DMA_SLAVE_BUSWIDTH_8_BYTES = 8,
390 DMA_SLAVE_BUSWIDTH_16_BYTES = 16,
391 DMA_SLAVE_BUSWIDTH_32_BYTES = 32,
392 DMA_SLAVE_BUSWIDTH_64_BYTES = 64,
393 DMA_SLAVE_BUSWIDTH_128_BYTES = 128,
394 };
395
396 /**
397 * struct dma_slave_config - dma slave channel runtime config
398 * @direction: whether the data shall go in or out on this slave
399 * channel, right now. DMA_MEM_TO_DEV and DMA_DEV_TO_MEM are
400 * legal values. DEPRECATED, drivers should use the direction argument
401 * to the device_prep_slave_sg and device_prep_dma_cyclic functions or
402 * the dir field in the dma_interleaved_template structure.
403 * @src_addr: this is the physical address where DMA slave data
404 * should be read (RX), if the source is memory this argument is
405 * ignored.
406 * @dst_addr: this is the physical address where DMA slave data
407 * should be written (TX), if the destination is memory this argument
408 * is ignored.
409 * @src_addr_width: this is the width in bytes of the source (RX)
410 * register where DMA data shall be read. If the source
411 * is memory this may be ignored depending on architecture.
412 * Legal values: 1, 2, 3, 4, 8, 16, 32, 64, 128.
413 * @dst_addr_width: same as src_addr_width but for destination
414 * target (TX) mutatis mutandis.
415 * @src_maxburst: the maximum number of words (note: words, as in
416 * units of the src_addr_width member, not bytes) that can be sent
417 * in one burst to the device. Typically something like half the
418 * FIFO depth on I/O peripherals so you don't overflow it. This
419 * may or may not be applicable on memory sources.
420 * @dst_maxburst: same as src_maxburst but for destination target
421 * mutatis mutandis.
422 * @src_port_window_size: The length of the register area in words the data need
423 * to be accessed on the device side. It is only used for devices which is using
424 * an area instead of a single register to receive the data. Typically the DMA
425 * loops in this area in order to transfer the data.
426 * @dst_port_window_size: same as src_port_window_size but for the destination
427 * port.
428 * @device_fc: Flow Controller Settings. Only valid for slave channels. Fill
429 * with 'true' if peripheral should be flow controller. Direction will be
430 * selected at Runtime.
431 * @peripheral_config: peripheral configuration for programming peripheral
432 * for dmaengine transfer
433 * @peripheral_size: peripheral configuration buffer size
434 *
435 * This struct is passed in as configuration data to a DMA engine
436 * in order to set up a certain channel for DMA transport at runtime.
437 * The DMA device/engine has to provide support for an additional
438 * callback in the dma_device structure, device_config and this struct
439 * will then be passed in as an argument to the function.
440 *
441 * The rationale for adding configuration information to this struct is as
442 * follows: if it is likely that more than one DMA slave controllers in
443 * the world will support the configuration option, then make it generic.
444 * If not: if it is fixed so that it be sent in static from the platform
445 * data, then prefer to do that.
446 */
447 struct dma_slave_config {
448 enum dma_transfer_direction direction;
449 phys_addr_t src_addr;
450 phys_addr_t dst_addr;
451 enum dma_slave_buswidth src_addr_width;
452 enum dma_slave_buswidth dst_addr_width;
453 u32 src_maxburst;
454 u32 dst_maxburst;
455 u32 src_port_window_size;
456 u32 dst_port_window_size;
457 bool device_fc;
458 void *peripheral_config;
459 size_t peripheral_size;
460 };
461
462 /**
463 * enum dma_residue_granularity - Granularity of the reported transfer residue
464 * @DMA_RESIDUE_GRANULARITY_DESCRIPTOR: Residue reporting is not support. The
465 * DMA channel is only able to tell whether a descriptor has been completed or
466 * not, which means residue reporting is not supported by this channel. The
467 * residue field of the dma_tx_state field will always be 0.
468 * @DMA_RESIDUE_GRANULARITY_SEGMENT: Residue is updated after each successfully
469 * completed segment of the transfer (For cyclic transfers this is after each
470 * period). This is typically implemented by having the hardware generate an
471 * interrupt after each transferred segment and then the drivers updates the
472 * outstanding residue by the size of the segment. Another possibility is if
473 * the hardware supports scatter-gather and the segment descriptor has a field
474 * which gets set after the segment has been completed. The driver then counts
475 * the number of segments without the flag set to compute the residue.
476 * @DMA_RESIDUE_GRANULARITY_BURST: Residue is updated after each transferred
477 * burst. This is typically only supported if the hardware has a progress
478 * register of some sort (E.g. a register with the current read/write address
479 * or a register with the amount of bursts/beats/bytes that have been
480 * transferred or still need to be transferred).
481 */
482 enum dma_residue_granularity {
483 DMA_RESIDUE_GRANULARITY_DESCRIPTOR = 0,
484 DMA_RESIDUE_GRANULARITY_SEGMENT = 1,
485 DMA_RESIDUE_GRANULARITY_BURST = 2,
486 };
487
488 /**
489 * struct dma_slave_caps - expose capabilities of a slave channel only
490 * @src_addr_widths: bit mask of src addr widths the channel supports.
491 * Width is specified in bytes, e.g. for a channel supporting
492 * a width of 4 the mask should have BIT(4) set.
493 * @dst_addr_widths: bit mask of dst addr widths the channel supports
494 * @directions: bit mask of slave directions the channel supports.
495 * Since the enum dma_transfer_direction is not defined as bit flag for
496 * each type, the dma controller should set BIT(<TYPE>) and same
497 * should be checked by controller as well
498 * @min_burst: min burst capability per-transfer
499 * @max_burst: max burst capability per-transfer
500 * @max_sg_burst: max number of SG list entries executed in a single burst
501 * DMA tansaction with no software intervention for reinitialization.
502 * Zero value means unlimited number of entries.
503 * @cmd_pause: true, if pause is supported (i.e. for reading residue or
504 * for resume later)
505 * @cmd_resume: true, if resume is supported
506 * @cmd_terminate: true, if terminate cmd is supported
507 * @residue_granularity: granularity of the reported transfer residue
508 * @descriptor_reuse: if a descriptor can be reused by client and
509 * resubmitted multiple times
510 */
511 struct dma_slave_caps {
512 u32 src_addr_widths;
513 u32 dst_addr_widths;
514 u32 directions;
515 u32 min_burst;
516 u32 max_burst;
517 u32 max_sg_burst;
518 bool cmd_pause;
519 bool cmd_resume;
520 bool cmd_terminate;
521 enum dma_residue_granularity residue_granularity;
522 bool descriptor_reuse;
523 };
524
dma_chan_name(struct dma_chan * chan)525 static inline const char *dma_chan_name(struct dma_chan *chan)
526 {
527 return dev_name(&chan->dev->device);
528 }
529
530 /**
531 * typedef dma_filter_fn - callback filter for dma_request_channel
532 * @chan: channel to be reviewed
533 * @filter_param: opaque parameter passed through dma_request_channel
534 *
535 * When this optional parameter is specified in a call to dma_request_channel a
536 * suitable channel is passed to this routine for further dispositioning before
537 * being returned. Where 'suitable' indicates a non-busy channel that
538 * satisfies the given capability mask. It returns 'true' to indicate that the
539 * channel is suitable.
540 */
541 typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param);
542
543 typedef void (*dma_async_tx_callback)(void *dma_async_param);
544
545 enum dmaengine_tx_result {
546 DMA_TRANS_NOERROR = 0, /* SUCCESS */
547 DMA_TRANS_READ_FAILED, /* Source DMA read failed */
548 DMA_TRANS_WRITE_FAILED, /* Destination DMA write failed */
549 DMA_TRANS_ABORTED, /* Op never submitted / aborted */
550 };
551
552 struct dmaengine_result {
553 enum dmaengine_tx_result result;
554 u32 residue;
555 };
556
557 typedef void (*dma_async_tx_callback_result)(void *dma_async_param,
558 const struct dmaengine_result *result);
559
560 struct dmaengine_unmap_data {
561 #if IS_ENABLED(CONFIG_DMA_ENGINE_RAID)
562 u16 map_cnt;
563 #else
564 u8 map_cnt;
565 #endif
566 u8 to_cnt;
567 u8 from_cnt;
568 u8 bidi_cnt;
569 struct device *dev;
570 struct kref kref;
571 size_t len;
572 dma_addr_t addr[];
573 };
574
575 struct dma_async_tx_descriptor;
576
577 struct dma_descriptor_metadata_ops {
578 int (*attach)(struct dma_async_tx_descriptor *desc, void *data,
579 size_t len);
580
581 void *(*get_ptr)(struct dma_async_tx_descriptor *desc,
582 size_t *payload_len, size_t *max_len);
583 int (*set_len)(struct dma_async_tx_descriptor *desc,
584 size_t payload_len);
585 };
586
587 /**
588 * struct dma_async_tx_descriptor - async transaction descriptor
589 * ---dma generic offload fields---
590 * @cookie: tracking cookie for this transaction, set to -EBUSY if
591 * this tx is sitting on a dependency list
592 * @flags: flags to augment operation preparation, control completion, and
593 * communicate status
594 * @phys: physical address of the descriptor
595 * @chan: target channel for this operation
596 * @tx_submit: accept the descriptor, assign ordered cookie and mark the
597 * descriptor pending. To be pushed on .issue_pending() call
598 * @callback: routine to call after this operation is complete
599 * @callback_param: general parameter to pass to the callback routine
600 * @desc_metadata_mode: core managed metadata mode to protect mixed use of
601 * DESC_METADATA_CLIENT or DESC_METADATA_ENGINE. Otherwise
602 * DESC_METADATA_NONE
603 * @metadata_ops: DMA driver provided metadata mode ops, need to be set by the
604 * DMA driver if metadata mode is supported with the descriptor
605 * ---async_tx api specific fields---
606 * @next: at completion submit this descriptor
607 * @parent: pointer to the next level up in the dependency chain
608 * @lock: protect the parent and next pointers
609 */
610 struct dma_async_tx_descriptor {
611 dma_cookie_t cookie;
612 enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */
613 dma_addr_t phys;
614 struct dma_chan *chan;
615 dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx);
616 int (*desc_free)(struct dma_async_tx_descriptor *tx);
617 dma_async_tx_callback callback;
618 dma_async_tx_callback_result callback_result;
619 void *callback_param;
620 struct dmaengine_unmap_data *unmap;
621 enum dma_desc_metadata_mode desc_metadata_mode;
622 struct dma_descriptor_metadata_ops *metadata_ops;
623 #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
624 struct dma_async_tx_descriptor *next;
625 struct dma_async_tx_descriptor *parent;
626 spinlock_t lock;
627 #endif
628 };
629
630 #ifdef CONFIG_DMA_ENGINE
dma_set_unmap(struct dma_async_tx_descriptor * tx,struct dmaengine_unmap_data * unmap)631 static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
632 struct dmaengine_unmap_data *unmap)
633 {
634 kref_get(&unmap->kref);
635 tx->unmap = unmap;
636 }
637
638 struct dmaengine_unmap_data *
639 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags);
640 void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap);
641 #else
dma_set_unmap(struct dma_async_tx_descriptor * tx,struct dmaengine_unmap_data * unmap)642 static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
643 struct dmaengine_unmap_data *unmap)
644 {
645 }
646 static inline struct dmaengine_unmap_data *
dmaengine_get_unmap_data(struct device * dev,int nr,gfp_t flags)647 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags)
648 {
649 return NULL;
650 }
dmaengine_unmap_put(struct dmaengine_unmap_data * unmap)651 static inline void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap)
652 {
653 }
654 #endif
655
dma_descriptor_unmap(struct dma_async_tx_descriptor * tx)656 static inline void dma_descriptor_unmap(struct dma_async_tx_descriptor *tx)
657 {
658 if (!tx->unmap)
659 return;
660
661 dmaengine_unmap_put(tx->unmap);
662 tx->unmap = NULL;
663 }
664
665 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
txd_lock(struct dma_async_tx_descriptor * txd)666 static inline void txd_lock(struct dma_async_tx_descriptor *txd)
667 {
668 }
txd_unlock(struct dma_async_tx_descriptor * txd)669 static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
670 {
671 }
txd_chain(struct dma_async_tx_descriptor * txd,struct dma_async_tx_descriptor * next)672 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
673 {
674 BUG();
675 }
txd_clear_parent(struct dma_async_tx_descriptor * txd)676 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
677 {
678 }
txd_clear_next(struct dma_async_tx_descriptor * txd)679 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
680 {
681 }
txd_next(struct dma_async_tx_descriptor * txd)682 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
683 {
684 return NULL;
685 }
txd_parent(struct dma_async_tx_descriptor * txd)686 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
687 {
688 return NULL;
689 }
690
691 #else
txd_lock(struct dma_async_tx_descriptor * txd)692 static inline void txd_lock(struct dma_async_tx_descriptor *txd)
693 {
694 spin_lock_bh(&txd->lock);
695 }
txd_unlock(struct dma_async_tx_descriptor * txd)696 static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
697 {
698 spin_unlock_bh(&txd->lock);
699 }
txd_chain(struct dma_async_tx_descriptor * txd,struct dma_async_tx_descriptor * next)700 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
701 {
702 txd->next = next;
703 next->parent = txd;
704 }
txd_clear_parent(struct dma_async_tx_descriptor * txd)705 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
706 {
707 txd->parent = NULL;
708 }
txd_clear_next(struct dma_async_tx_descriptor * txd)709 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
710 {
711 txd->next = NULL;
712 }
txd_parent(struct dma_async_tx_descriptor * txd)713 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
714 {
715 return txd->parent;
716 }
txd_next(struct dma_async_tx_descriptor * txd)717 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
718 {
719 return txd->next;
720 }
721 #endif
722
723 /**
724 * struct dma_tx_state - filled in to report the status of
725 * a transfer.
726 * @last: last completed DMA cookie
727 * @used: last issued DMA cookie (i.e. the one in progress)
728 * @residue: the remaining number of bytes left to transmit
729 * on the selected transfer for states DMA_IN_PROGRESS and
730 * DMA_PAUSED if this is implemented in the driver, else 0
731 * @in_flight_bytes: amount of data in bytes cached by the DMA.
732 */
733 struct dma_tx_state {
734 dma_cookie_t last;
735 dma_cookie_t used;
736 u32 residue;
737 u32 in_flight_bytes;
738 };
739
740 /**
741 * enum dmaengine_alignment - defines alignment of the DMA async tx
742 * buffers
743 */
744 enum dmaengine_alignment {
745 DMAENGINE_ALIGN_1_BYTE = 0,
746 DMAENGINE_ALIGN_2_BYTES = 1,
747 DMAENGINE_ALIGN_4_BYTES = 2,
748 DMAENGINE_ALIGN_8_BYTES = 3,
749 DMAENGINE_ALIGN_16_BYTES = 4,
750 DMAENGINE_ALIGN_32_BYTES = 5,
751 DMAENGINE_ALIGN_64_BYTES = 6,
752 DMAENGINE_ALIGN_128_BYTES = 7,
753 DMAENGINE_ALIGN_256_BYTES = 8,
754 };
755
756 /**
757 * struct dma_slave_map - associates slave device and it's slave channel with
758 * parameter to be used by a filter function
759 * @devname: name of the device
760 * @slave: slave channel name
761 * @param: opaque parameter to pass to struct dma_filter.fn
762 */
763 struct dma_slave_map {
764 const char *devname;
765 const char *slave;
766 void *param;
767 };
768
769 /**
770 * struct dma_filter - information for slave device/channel to filter_fn/param
771 * mapping
772 * @fn: filter function callback
773 * @mapcnt: number of slave device/channel in the map
774 * @map: array of channel to filter mapping data
775 */
776 struct dma_filter {
777 dma_filter_fn fn;
778 int mapcnt;
779 const struct dma_slave_map *map;
780 };
781
782 /**
783 * struct dma_device - info on the entity supplying DMA services
784 * @ref: reference is taken and put every time a channel is allocated or freed
785 * @chancnt: how many DMA channels are supported
786 * @privatecnt: how many DMA channels are requested by dma_request_channel
787 * @channels: the list of struct dma_chan
788 * @global_node: list_head for global dma_device_list
789 * @filter: information for device/slave to filter function/param mapping
790 * @cap_mask: one or more dma_capability flags
791 * @desc_metadata_modes: supported metadata modes by the DMA device
792 * @max_xor: maximum number of xor sources, 0 if no capability
793 * @max_pq: maximum number of PQ sources and PQ-continue capability
794 * @copy_align: alignment shift for memcpy operations
795 * @xor_align: alignment shift for xor operations
796 * @pq_align: alignment shift for pq operations
797 * @fill_align: alignment shift for memset operations
798 * @dev_id: unique device ID
799 * @dev: struct device reference for dma mapping api
800 * @owner: owner module (automatically set based on the provided dev)
801 * @chan_ida: unique channel ID
802 * @src_addr_widths: bit mask of src addr widths the device supports
803 * Width is specified in bytes, e.g. for a device supporting
804 * a width of 4 the mask should have BIT(4) set.
805 * @dst_addr_widths: bit mask of dst addr widths the device supports
806 * @directions: bit mask of slave directions the device supports.
807 * Since the enum dma_transfer_direction is not defined as bit flag for
808 * each type, the dma controller should set BIT(<TYPE>) and same
809 * should be checked by controller as well
810 * @min_burst: min burst capability per-transfer
811 * @max_burst: max burst capability per-transfer
812 * @max_sg_burst: max number of SG list entries executed in a single burst
813 * DMA tansaction with no software intervention for reinitialization.
814 * Zero value means unlimited number of entries.
815 * @descriptor_reuse: a submitted transfer can be resubmitted after completion
816 * @residue_granularity: granularity of the transfer residue reported
817 * by tx_status
818 * @device_alloc_chan_resources: allocate resources and return the
819 * number of allocated descriptors
820 * @device_router_config: optional callback for DMA router configuration
821 * @device_free_chan_resources: release DMA channel's resources
822 * @device_prep_dma_memcpy: prepares a memcpy operation
823 * @device_prep_dma_xor: prepares a xor operation
824 * @device_prep_dma_xor_val: prepares a xor validation operation
825 * @device_prep_dma_pq: prepares a pq operation
826 * @device_prep_dma_pq_val: prepares a pqzero_sum operation
827 * @device_prep_dma_memset: prepares a memset operation
828 * @device_prep_dma_memset_sg: prepares a memset operation over a scatter list
829 * @device_prep_dma_interrupt: prepares an end of chain interrupt operation
830 * @device_prep_slave_sg: prepares a slave dma operation
831 * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio.
832 * The function takes a buffer of size buf_len. The callback function will
833 * be called after period_len bytes have been transferred.
834 * @device_prep_interleaved_dma: Transfer expression in a generic way.
835 * @device_prep_dma_imm_data: DMA's 8 byte immediate data to the dst address
836 * @device_caps: May be used to override the generic DMA slave capabilities
837 * with per-channel specific ones
838 * @device_config: Pushes a new configuration to a channel, return 0 or an error
839 * code
840 * @device_pause: Pauses any transfer happening on a channel. Returns
841 * 0 or an error code
842 * @device_resume: Resumes any transfer on a channel previously
843 * paused. Returns 0 or an error code
844 * @device_terminate_all: Aborts all transfers on a channel. Returns 0
845 * or an error code
846 * @device_synchronize: Synchronizes the termination of a transfers to the
847 * current context.
848 * @device_tx_status: poll for transaction completion, the optional
849 * txstate parameter can be supplied with a pointer to get a
850 * struct with auxiliary transfer status information, otherwise the call
851 * will just return a simple status code
852 * @device_issue_pending: push pending transactions to hardware
853 * @device_release: called sometime atfer dma_async_device_unregister() is
854 * called and there are no further references to this structure. This
855 * must be implemented to free resources however many existing drivers
856 * do not and are therefore not safe to unbind while in use.
857 * @dbg_summary_show: optional routine to show contents in debugfs; default code
858 * will be used when this is omitted, but custom code can show extra,
859 * controller specific information.
860 * @dbg_dev_root: the root folder in debugfs for this device
861 */
862 struct dma_device {
863 struct kref ref;
864 unsigned int chancnt;
865 unsigned int privatecnt;
866 struct list_head channels;
867 struct list_head global_node;
868 struct dma_filter filter;
869 dma_cap_mask_t cap_mask;
870 enum dma_desc_metadata_mode desc_metadata_modes;
871 unsigned short max_xor;
872 unsigned short max_pq;
873 enum dmaengine_alignment copy_align;
874 enum dmaengine_alignment xor_align;
875 enum dmaengine_alignment pq_align;
876 enum dmaengine_alignment fill_align;
877 #define DMA_HAS_PQ_CONTINUE (1 << 15)
878
879 int dev_id;
880 struct device *dev;
881 struct module *owner;
882 struct ida chan_ida;
883
884 u32 src_addr_widths;
885 u32 dst_addr_widths;
886 u32 directions;
887 u32 min_burst;
888 u32 max_burst;
889 u32 max_sg_burst;
890 bool descriptor_reuse;
891 enum dma_residue_granularity residue_granularity;
892
893 int (*device_alloc_chan_resources)(struct dma_chan *chan);
894 int (*device_router_config)(struct dma_chan *chan);
895 void (*device_free_chan_resources)(struct dma_chan *chan);
896
897 struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)(
898 struct dma_chan *chan, dma_addr_t dst, dma_addr_t src,
899 size_t len, unsigned long flags);
900 struct dma_async_tx_descriptor *(*device_prep_dma_xor)(
901 struct dma_chan *chan, dma_addr_t dst, dma_addr_t *src,
902 unsigned int src_cnt, size_t len, unsigned long flags);
903 struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)(
904 struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt,
905 size_t len, enum sum_check_flags *result, unsigned long flags);
906 struct dma_async_tx_descriptor *(*device_prep_dma_pq)(
907 struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
908 unsigned int src_cnt, const unsigned char *scf,
909 size_t len, unsigned long flags);
910 struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)(
911 struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
912 unsigned int src_cnt, const unsigned char *scf, size_t len,
913 enum sum_check_flags *pqres, unsigned long flags);
914 struct dma_async_tx_descriptor *(*device_prep_dma_memset)(
915 struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
916 unsigned long flags);
917 struct dma_async_tx_descriptor *(*device_prep_dma_memset_sg)(
918 struct dma_chan *chan, struct scatterlist *sg,
919 unsigned int nents, int value, unsigned long flags);
920 struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)(
921 struct dma_chan *chan, unsigned long flags);
922
923 struct dma_async_tx_descriptor *(*device_prep_peripheral_dma_vec)(
924 struct dma_chan *chan, const struct dma_vec *vecs,
925 size_t nents, enum dma_transfer_direction direction,
926 unsigned long flags);
927 struct dma_async_tx_descriptor *(*device_prep_slave_sg)(
928 struct dma_chan *chan, struct scatterlist *sgl,
929 unsigned int sg_len, enum dma_transfer_direction direction,
930 unsigned long flags, void *context);
931 struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)(
932 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
933 size_t period_len, enum dma_transfer_direction direction,
934 unsigned long flags);
935 struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)(
936 struct dma_chan *chan, struct dma_interleaved_template *xt,
937 unsigned long flags);
938 struct dma_async_tx_descriptor *(*device_prep_dma_imm_data)(
939 struct dma_chan *chan, dma_addr_t dst, u64 data,
940 unsigned long flags);
941
942 void (*device_caps)(struct dma_chan *chan, struct dma_slave_caps *caps);
943 int (*device_config)(struct dma_chan *chan, struct dma_slave_config *config);
944 int (*device_pause)(struct dma_chan *chan);
945 int (*device_resume)(struct dma_chan *chan);
946 int (*device_terminate_all)(struct dma_chan *chan);
947 void (*device_synchronize)(struct dma_chan *chan);
948
949 enum dma_status (*device_tx_status)(struct dma_chan *chan,
950 dma_cookie_t cookie,
951 struct dma_tx_state *txstate);
952 void (*device_issue_pending)(struct dma_chan *chan);
953 void (*device_release)(struct dma_device *dev);
954 /* debugfs support */
955 void (*dbg_summary_show)(struct seq_file *s, struct dma_device *dev);
956 struct dentry *dbg_dev_root;
957 };
958
dmaengine_slave_config(struct dma_chan * chan,struct dma_slave_config * config)959 static inline int dmaengine_slave_config(struct dma_chan *chan,
960 struct dma_slave_config *config)
961 {
962 if (chan->device->device_config)
963 return chan->device->device_config(chan, config);
964
965 return -ENOSYS;
966 }
967
is_slave_direction(enum dma_transfer_direction direction)968 static inline bool is_slave_direction(enum dma_transfer_direction direction)
969 {
970 return (direction == DMA_MEM_TO_DEV) || (direction == DMA_DEV_TO_MEM) ||
971 (direction == DMA_DEV_TO_DEV);
972 }
973
dmaengine_prep_slave_single(struct dma_chan * chan,dma_addr_t buf,size_t len,enum dma_transfer_direction dir,unsigned long flags)974 static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single(
975 struct dma_chan *chan, dma_addr_t buf, size_t len,
976 enum dma_transfer_direction dir, unsigned long flags)
977 {
978 struct scatterlist sg;
979 sg_init_table(&sg, 1);
980 sg_dma_address(&sg) = buf;
981 sg_dma_len(&sg) = len;
982
983 if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
984 return NULL;
985
986 return chan->device->device_prep_slave_sg(chan, &sg, 1,
987 dir, flags, NULL);
988 }
989
990 /**
991 * dmaengine_prep_peripheral_dma_vec() - Prepare a DMA scatter-gather descriptor
992 * @chan: The channel to be used for this descriptor
993 * @vecs: The array of DMA vectors that should be transferred
994 * @nents: The number of DMA vectors in the array
995 * @dir: Specifies the direction of the data transfer
996 * @flags: DMA engine flags
997 */
dmaengine_prep_peripheral_dma_vec(struct dma_chan * chan,const struct dma_vec * vecs,size_t nents,enum dma_transfer_direction dir,unsigned long flags)998 static inline struct dma_async_tx_descriptor *dmaengine_prep_peripheral_dma_vec(
999 struct dma_chan *chan, const struct dma_vec *vecs, size_t nents,
1000 enum dma_transfer_direction dir, unsigned long flags)
1001 {
1002 if (!chan || !chan->device || !chan->device->device_prep_peripheral_dma_vec)
1003 return NULL;
1004
1005 return chan->device->device_prep_peripheral_dma_vec(chan, vecs, nents,
1006 dir, flags);
1007 }
1008
dmaengine_prep_slave_sg(struct dma_chan * chan,struct scatterlist * sgl,unsigned int sg_len,enum dma_transfer_direction dir,unsigned long flags)1009 static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_sg(
1010 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
1011 enum dma_transfer_direction dir, unsigned long flags)
1012 {
1013 if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
1014 return NULL;
1015
1016 return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
1017 dir, flags, NULL);
1018 }
1019
1020 #ifdef CONFIG_RAPIDIO_DMA_ENGINE
1021 struct rio_dma_ext;
dmaengine_prep_rio_sg(struct dma_chan * chan,struct scatterlist * sgl,unsigned int sg_len,enum dma_transfer_direction dir,unsigned long flags,struct rio_dma_ext * rio_ext)1022 static inline struct dma_async_tx_descriptor *dmaengine_prep_rio_sg(
1023 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
1024 enum dma_transfer_direction dir, unsigned long flags,
1025 struct rio_dma_ext *rio_ext)
1026 {
1027 if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
1028 return NULL;
1029
1030 return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
1031 dir, flags, rio_ext);
1032 }
1033 #endif
1034
dmaengine_prep_dma_cyclic(struct dma_chan * chan,dma_addr_t buf_addr,size_t buf_len,size_t period_len,enum dma_transfer_direction dir,unsigned long flags)1035 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic(
1036 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1037 size_t period_len, enum dma_transfer_direction dir,
1038 unsigned long flags)
1039 {
1040 if (!chan || !chan->device || !chan->device->device_prep_dma_cyclic)
1041 return NULL;
1042
1043 return chan->device->device_prep_dma_cyclic(chan, buf_addr, buf_len,
1044 period_len, dir, flags);
1045 }
1046
dmaengine_prep_interleaved_dma(struct dma_chan * chan,struct dma_interleaved_template * xt,unsigned long flags)1047 static inline struct dma_async_tx_descriptor *dmaengine_prep_interleaved_dma(
1048 struct dma_chan *chan, struct dma_interleaved_template *xt,
1049 unsigned long flags)
1050 {
1051 if (!chan || !chan->device || !chan->device->device_prep_interleaved_dma)
1052 return NULL;
1053 if (flags & DMA_PREP_REPEAT &&
1054 !test_bit(DMA_REPEAT, chan->device->cap_mask.bits))
1055 return NULL;
1056
1057 return chan->device->device_prep_interleaved_dma(chan, xt, flags);
1058 }
1059
1060 /**
1061 * dmaengine_prep_dma_memset() - Prepare a DMA memset descriptor.
1062 * @chan: The channel to be used for this descriptor
1063 * @dest: Address of buffer to be set
1064 * @value: Treated as a single byte value that fills the destination buffer
1065 * @len: The total size of dest
1066 * @flags: DMA engine flags
1067 */
dmaengine_prep_dma_memset(struct dma_chan * chan,dma_addr_t dest,int value,size_t len,unsigned long flags)1068 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memset(
1069 struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
1070 unsigned long flags)
1071 {
1072 if (!chan || !chan->device || !chan->device->device_prep_dma_memset)
1073 return NULL;
1074
1075 return chan->device->device_prep_dma_memset(chan, dest, value,
1076 len, flags);
1077 }
1078
dmaengine_prep_dma_memcpy(struct dma_chan * chan,dma_addr_t dest,dma_addr_t src,size_t len,unsigned long flags)1079 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memcpy(
1080 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1081 size_t len, unsigned long flags)
1082 {
1083 if (!chan || !chan->device || !chan->device->device_prep_dma_memcpy)
1084 return NULL;
1085
1086 return chan->device->device_prep_dma_memcpy(chan, dest, src,
1087 len, flags);
1088 }
1089
dmaengine_is_metadata_mode_supported(struct dma_chan * chan,enum dma_desc_metadata_mode mode)1090 static inline bool dmaengine_is_metadata_mode_supported(struct dma_chan *chan,
1091 enum dma_desc_metadata_mode mode)
1092 {
1093 if (!chan)
1094 return false;
1095
1096 return !!(chan->device->desc_metadata_modes & mode);
1097 }
1098
1099 #ifdef CONFIG_DMA_ENGINE
1100 int dmaengine_desc_attach_metadata(struct dma_async_tx_descriptor *desc,
1101 void *data, size_t len);
1102 void *dmaengine_desc_get_metadata_ptr(struct dma_async_tx_descriptor *desc,
1103 size_t *payload_len, size_t *max_len);
1104 int dmaengine_desc_set_metadata_len(struct dma_async_tx_descriptor *desc,
1105 size_t payload_len);
1106 #else /* CONFIG_DMA_ENGINE */
dmaengine_desc_attach_metadata(struct dma_async_tx_descriptor * desc,void * data,size_t len)1107 static inline int dmaengine_desc_attach_metadata(
1108 struct dma_async_tx_descriptor *desc, void *data, size_t len)
1109 {
1110 return -EINVAL;
1111 }
dmaengine_desc_get_metadata_ptr(struct dma_async_tx_descriptor * desc,size_t * payload_len,size_t * max_len)1112 static inline void *dmaengine_desc_get_metadata_ptr(
1113 struct dma_async_tx_descriptor *desc, size_t *payload_len,
1114 size_t *max_len)
1115 {
1116 return NULL;
1117 }
dmaengine_desc_set_metadata_len(struct dma_async_tx_descriptor * desc,size_t payload_len)1118 static inline int dmaengine_desc_set_metadata_len(
1119 struct dma_async_tx_descriptor *desc, size_t payload_len)
1120 {
1121 return -EINVAL;
1122 }
1123 #endif /* CONFIG_DMA_ENGINE */
1124
1125 /**
1126 * dmaengine_terminate_all() - Terminate all active DMA transfers
1127 * @chan: The channel for which to terminate the transfers
1128 *
1129 * This function is DEPRECATED use either dmaengine_terminate_sync() or
1130 * dmaengine_terminate_async() instead.
1131 */
dmaengine_terminate_all(struct dma_chan * chan)1132 static inline int dmaengine_terminate_all(struct dma_chan *chan)
1133 {
1134 if (chan->device->device_terminate_all)
1135 return chan->device->device_terminate_all(chan);
1136
1137 return -ENOSYS;
1138 }
1139
1140 /**
1141 * dmaengine_terminate_async() - Terminate all active DMA transfers
1142 * @chan: The channel for which to terminate the transfers
1143 *
1144 * Calling this function will terminate all active and pending descriptors
1145 * that have previously been submitted to the channel. It is not guaranteed
1146 * though that the transfer for the active descriptor has stopped when the
1147 * function returns. Furthermore it is possible the complete callback of a
1148 * submitted transfer is still running when this function returns.
1149 *
1150 * dmaengine_synchronize() needs to be called before it is safe to free
1151 * any memory that is accessed by previously submitted descriptors or before
1152 * freeing any resources accessed from within the completion callback of any
1153 * previously submitted descriptors.
1154 *
1155 * This function can be called from atomic context as well as from within a
1156 * complete callback of a descriptor submitted on the same channel.
1157 *
1158 * If none of the two conditions above apply consider using
1159 * dmaengine_terminate_sync() instead.
1160 */
dmaengine_terminate_async(struct dma_chan * chan)1161 static inline int dmaengine_terminate_async(struct dma_chan *chan)
1162 {
1163 if (chan->device->device_terminate_all)
1164 return chan->device->device_terminate_all(chan);
1165
1166 return -EINVAL;
1167 }
1168
1169 /**
1170 * dmaengine_synchronize() - Synchronize DMA channel termination
1171 * @chan: The channel to synchronize
1172 *
1173 * Synchronizes to the DMA channel termination to the current context. When this
1174 * function returns it is guaranteed that all transfers for previously issued
1175 * descriptors have stopped and it is safe to free the memory associated
1176 * with them. Furthermore it is guaranteed that all complete callback functions
1177 * for a previously submitted descriptor have finished running and it is safe to
1178 * free resources accessed from within the complete callbacks.
1179 *
1180 * The behavior of this function is undefined if dma_async_issue_pending() has
1181 * been called between dmaengine_terminate_async() and this function.
1182 *
1183 * This function must only be called from non-atomic context and must not be
1184 * called from within a complete callback of a descriptor submitted on the same
1185 * channel.
1186 */
dmaengine_synchronize(struct dma_chan * chan)1187 static inline void dmaengine_synchronize(struct dma_chan *chan)
1188 {
1189 might_sleep();
1190
1191 if (chan->device->device_synchronize)
1192 chan->device->device_synchronize(chan);
1193 }
1194
1195 /**
1196 * dmaengine_terminate_sync() - Terminate all active DMA transfers
1197 * @chan: The channel for which to terminate the transfers
1198 *
1199 * Calling this function will terminate all active and pending transfers
1200 * that have previously been submitted to the channel. It is similar to
1201 * dmaengine_terminate_async() but guarantees that the DMA transfer has actually
1202 * stopped and that all complete callbacks have finished running when the
1203 * function returns.
1204 *
1205 * This function must only be called from non-atomic context and must not be
1206 * called from within a complete callback of a descriptor submitted on the same
1207 * channel.
1208 */
dmaengine_terminate_sync(struct dma_chan * chan)1209 static inline int dmaengine_terminate_sync(struct dma_chan *chan)
1210 {
1211 int ret;
1212
1213 ret = dmaengine_terminate_async(chan);
1214 if (ret)
1215 return ret;
1216
1217 dmaengine_synchronize(chan);
1218
1219 return 0;
1220 }
1221
dmaengine_pause(struct dma_chan * chan)1222 static inline int dmaengine_pause(struct dma_chan *chan)
1223 {
1224 if (chan->device->device_pause)
1225 return chan->device->device_pause(chan);
1226
1227 return -ENOSYS;
1228 }
1229
dmaengine_resume(struct dma_chan * chan)1230 static inline int dmaengine_resume(struct dma_chan *chan)
1231 {
1232 if (chan->device->device_resume)
1233 return chan->device->device_resume(chan);
1234
1235 return -ENOSYS;
1236 }
1237
dmaengine_tx_status(struct dma_chan * chan,dma_cookie_t cookie,struct dma_tx_state * state)1238 static inline enum dma_status dmaengine_tx_status(struct dma_chan *chan,
1239 dma_cookie_t cookie, struct dma_tx_state *state)
1240 {
1241 return chan->device->device_tx_status(chan, cookie, state);
1242 }
1243
dmaengine_submit(struct dma_async_tx_descriptor * desc)1244 static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc)
1245 {
1246 return desc->tx_submit(desc);
1247 }
1248
dmaengine_check_align(enum dmaengine_alignment align,size_t off1,size_t off2,size_t len)1249 static inline bool dmaengine_check_align(enum dmaengine_alignment align,
1250 size_t off1, size_t off2, size_t len)
1251 {
1252 return !(((1 << align) - 1) & (off1 | off2 | len));
1253 }
1254
is_dma_copy_aligned(struct dma_device * dev,size_t off1,size_t off2,size_t len)1255 static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1,
1256 size_t off2, size_t len)
1257 {
1258 return dmaengine_check_align(dev->copy_align, off1, off2, len);
1259 }
1260
is_dma_xor_aligned(struct dma_device * dev,size_t off1,size_t off2,size_t len)1261 static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1,
1262 size_t off2, size_t len)
1263 {
1264 return dmaengine_check_align(dev->xor_align, off1, off2, len);
1265 }
1266
is_dma_pq_aligned(struct dma_device * dev,size_t off1,size_t off2,size_t len)1267 static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1,
1268 size_t off2, size_t len)
1269 {
1270 return dmaengine_check_align(dev->pq_align, off1, off2, len);
1271 }
1272
is_dma_fill_aligned(struct dma_device * dev,size_t off1,size_t off2,size_t len)1273 static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1,
1274 size_t off2, size_t len)
1275 {
1276 return dmaengine_check_align(dev->fill_align, off1, off2, len);
1277 }
1278
1279 static inline void
dma_set_maxpq(struct dma_device * dma,int maxpq,int has_pq_continue)1280 dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue)
1281 {
1282 dma->max_pq = maxpq;
1283 if (has_pq_continue)
1284 dma->max_pq |= DMA_HAS_PQ_CONTINUE;
1285 }
1286
dmaf_continue(enum dma_ctrl_flags flags)1287 static inline bool dmaf_continue(enum dma_ctrl_flags flags)
1288 {
1289 return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE;
1290 }
1291
dmaf_p_disabled_continue(enum dma_ctrl_flags flags)1292 static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags)
1293 {
1294 enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P;
1295
1296 return (flags & mask) == mask;
1297 }
1298
dma_dev_has_pq_continue(struct dma_device * dma)1299 static inline bool dma_dev_has_pq_continue(struct dma_device *dma)
1300 {
1301 return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE;
1302 }
1303
dma_dev_to_maxpq(struct dma_device * dma)1304 static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma)
1305 {
1306 return dma->max_pq & ~DMA_HAS_PQ_CONTINUE;
1307 }
1308
1309 /* dma_maxpq - reduce maxpq in the face of continued operations
1310 * @dma - dma device with PQ capability
1311 * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set
1312 *
1313 * When an engine does not support native continuation we need 3 extra
1314 * source slots to reuse P and Q with the following coefficients:
1315 * 1/ {00} * P : remove P from Q', but use it as a source for P'
1316 * 2/ {01} * Q : use Q to continue Q' calculation
1317 * 3/ {00} * Q : subtract Q from P' to cancel (2)
1318 *
1319 * In the case where P is disabled we only need 1 extra source:
1320 * 1/ {01} * Q : use Q to continue Q' calculation
1321 */
dma_maxpq(struct dma_device * dma,enum dma_ctrl_flags flags)1322 static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags)
1323 {
1324 if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags))
1325 return dma_dev_to_maxpq(dma);
1326 if (dmaf_p_disabled_continue(flags))
1327 return dma_dev_to_maxpq(dma) - 1;
1328 if (dmaf_continue(flags))
1329 return dma_dev_to_maxpq(dma) - 3;
1330 BUG();
1331 }
1332
dmaengine_get_icg(bool inc,bool sgl,size_t icg,size_t dir_icg)1333 static inline size_t dmaengine_get_icg(bool inc, bool sgl, size_t icg,
1334 size_t dir_icg)
1335 {
1336 if (inc) {
1337 if (dir_icg)
1338 return dir_icg;
1339 if (sgl)
1340 return icg;
1341 }
1342
1343 return 0;
1344 }
1345
dmaengine_get_dst_icg(struct dma_interleaved_template * xt,struct data_chunk * chunk)1346 static inline size_t dmaengine_get_dst_icg(struct dma_interleaved_template *xt,
1347 struct data_chunk *chunk)
1348 {
1349 return dmaengine_get_icg(xt->dst_inc, xt->dst_sgl,
1350 chunk->icg, chunk->dst_icg);
1351 }
1352
dmaengine_get_src_icg(struct dma_interleaved_template * xt,struct data_chunk * chunk)1353 static inline size_t dmaengine_get_src_icg(struct dma_interleaved_template *xt,
1354 struct data_chunk *chunk)
1355 {
1356 return dmaengine_get_icg(xt->src_inc, xt->src_sgl,
1357 chunk->icg, chunk->src_icg);
1358 }
1359
1360 /* --- public DMA engine API --- */
1361
1362 #ifdef CONFIG_DMA_ENGINE
1363 void dmaengine_get(void);
1364 void dmaengine_put(void);
1365 #else
dmaengine_get(void)1366 static inline void dmaengine_get(void)
1367 {
1368 }
dmaengine_put(void)1369 static inline void dmaengine_put(void)
1370 {
1371 }
1372 #endif
1373
1374 #ifdef CONFIG_ASYNC_TX_DMA
1375 #define async_dmaengine_get() dmaengine_get()
1376 #define async_dmaengine_put() dmaengine_put()
1377 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
1378 #define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX)
1379 #else
1380 #define async_dma_find_channel(type) dma_find_channel(type)
1381 #endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */
1382 #else
async_dmaengine_get(void)1383 static inline void async_dmaengine_get(void)
1384 {
1385 }
async_dmaengine_put(void)1386 static inline void async_dmaengine_put(void)
1387 {
1388 }
1389 static inline struct dma_chan *
async_dma_find_channel(enum dma_transaction_type type)1390 async_dma_find_channel(enum dma_transaction_type type)
1391 {
1392 return NULL;
1393 }
1394 #endif /* CONFIG_ASYNC_TX_DMA */
1395 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
1396 struct dma_chan *chan);
1397
async_tx_ack(struct dma_async_tx_descriptor * tx)1398 static inline void async_tx_ack(struct dma_async_tx_descriptor *tx)
1399 {
1400 tx->flags |= DMA_CTRL_ACK;
1401 }
1402
async_tx_clear_ack(struct dma_async_tx_descriptor * tx)1403 static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx)
1404 {
1405 tx->flags &= ~DMA_CTRL_ACK;
1406 }
1407
async_tx_test_ack(struct dma_async_tx_descriptor * tx)1408 static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx)
1409 {
1410 return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK;
1411 }
1412
1413 #define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask))
1414 static inline void
__dma_cap_set(enum dma_transaction_type tx_type,dma_cap_mask_t * dstp)1415 __dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
1416 {
1417 set_bit(tx_type, dstp->bits);
1418 }
1419
1420 #define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask))
1421 static inline void
__dma_cap_clear(enum dma_transaction_type tx_type,dma_cap_mask_t * dstp)1422 __dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
1423 {
1424 clear_bit(tx_type, dstp->bits);
1425 }
1426
1427 #define dma_cap_zero(mask) __dma_cap_zero(&(mask))
__dma_cap_zero(dma_cap_mask_t * dstp)1428 static inline void __dma_cap_zero(dma_cap_mask_t *dstp)
1429 {
1430 bitmap_zero(dstp->bits, DMA_TX_TYPE_END);
1431 }
1432
1433 #define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask))
1434 static inline int
__dma_has_cap(enum dma_transaction_type tx_type,dma_cap_mask_t * srcp)1435 __dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp)
1436 {
1437 return test_bit(tx_type, srcp->bits);
1438 }
1439
1440 #define for_each_dma_cap_mask(cap, mask) \
1441 for_each_set_bit(cap, mask.bits, DMA_TX_TYPE_END)
1442
1443 /**
1444 * dma_async_issue_pending - flush pending transactions to HW
1445 * @chan: target DMA channel
1446 *
1447 * This allows drivers to push copies to HW in batches,
1448 * reducing MMIO writes where possible.
1449 */
dma_async_issue_pending(struct dma_chan * chan)1450 static inline void dma_async_issue_pending(struct dma_chan *chan)
1451 {
1452 chan->device->device_issue_pending(chan);
1453 }
1454
1455 /**
1456 * dma_async_is_tx_complete - poll for transaction completion
1457 * @chan: DMA channel
1458 * @cookie: transaction identifier to check status of
1459 * @last: returns last completed cookie, can be NULL
1460 * @used: returns last issued cookie, can be NULL
1461 *
1462 * If @last and @used are passed in, upon return they reflect the driver
1463 * internal state and can be used with dma_async_is_complete() to check
1464 * the status of multiple cookies without re-checking hardware state.
1465 */
dma_async_is_tx_complete(struct dma_chan * chan,dma_cookie_t cookie,dma_cookie_t * last,dma_cookie_t * used)1466 static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan,
1467 dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used)
1468 {
1469 struct dma_tx_state state;
1470 enum dma_status status;
1471
1472 status = chan->device->device_tx_status(chan, cookie, &state);
1473 if (last)
1474 *last = state.last;
1475 if (used)
1476 *used = state.used;
1477 return status;
1478 }
1479
1480 /**
1481 * dma_async_is_complete - test a cookie against chan state
1482 * @cookie: transaction identifier to test status of
1483 * @last_complete: last know completed transaction
1484 * @last_used: last cookie value handed out
1485 *
1486 * dma_async_is_complete() is used in dma_async_is_tx_complete()
1487 * the test logic is separated for lightweight testing of multiple cookies
1488 */
dma_async_is_complete(dma_cookie_t cookie,dma_cookie_t last_complete,dma_cookie_t last_used)1489 static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie,
1490 dma_cookie_t last_complete, dma_cookie_t last_used)
1491 {
1492 if (last_complete <= last_used) {
1493 if ((cookie <= last_complete) || (cookie > last_used))
1494 return DMA_COMPLETE;
1495 } else {
1496 if ((cookie <= last_complete) && (cookie > last_used))
1497 return DMA_COMPLETE;
1498 }
1499 return DMA_IN_PROGRESS;
1500 }
1501
1502 static inline void
dma_set_tx_state(struct dma_tx_state * st,dma_cookie_t last,dma_cookie_t used,u32 residue)1503 dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue)
1504 {
1505 if (!st)
1506 return;
1507
1508 st->last = last;
1509 st->used = used;
1510 st->residue = residue;
1511 }
1512
1513 #ifdef CONFIG_DMA_ENGINE
1514 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type);
1515 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie);
1516 enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx);
1517 void dma_issue_pending_all(void);
1518 struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
1519 dma_filter_fn fn, void *fn_param,
1520 struct device_node *np);
1521
1522 struct dma_chan *dma_request_chan(struct device *dev, const char *name);
1523 struct dma_chan *dma_request_chan_by_mask(const dma_cap_mask_t *mask);
1524
1525 void dma_release_channel(struct dma_chan *chan);
1526 int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps);
1527 #else
dma_find_channel(enum dma_transaction_type tx_type)1528 static inline struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
1529 {
1530 return NULL;
1531 }
dma_sync_wait(struct dma_chan * chan,dma_cookie_t cookie)1532 static inline enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
1533 {
1534 return DMA_COMPLETE;
1535 }
dma_wait_for_async_tx(struct dma_async_tx_descriptor * tx)1536 static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
1537 {
1538 return DMA_COMPLETE;
1539 }
dma_issue_pending_all(void)1540 static inline void dma_issue_pending_all(void)
1541 {
1542 }
__dma_request_channel(const dma_cap_mask_t * mask,dma_filter_fn fn,void * fn_param,struct device_node * np)1543 static inline struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
1544 dma_filter_fn fn,
1545 void *fn_param,
1546 struct device_node *np)
1547 {
1548 return NULL;
1549 }
dma_request_chan(struct device * dev,const char * name)1550 static inline struct dma_chan *dma_request_chan(struct device *dev,
1551 const char *name)
1552 {
1553 return ERR_PTR(-ENODEV);
1554 }
dma_request_chan_by_mask(const dma_cap_mask_t * mask)1555 static inline struct dma_chan *dma_request_chan_by_mask(
1556 const dma_cap_mask_t *mask)
1557 {
1558 return ERR_PTR(-ENODEV);
1559 }
dma_release_channel(struct dma_chan * chan)1560 static inline void dma_release_channel(struct dma_chan *chan)
1561 {
1562 }
dma_get_slave_caps(struct dma_chan * chan,struct dma_slave_caps * caps)1563 static inline int dma_get_slave_caps(struct dma_chan *chan,
1564 struct dma_slave_caps *caps)
1565 {
1566 return -ENXIO;
1567 }
1568 #endif
1569
dmaengine_desc_set_reuse(struct dma_async_tx_descriptor * tx)1570 static inline int dmaengine_desc_set_reuse(struct dma_async_tx_descriptor *tx)
1571 {
1572 struct dma_slave_caps caps;
1573 int ret;
1574
1575 ret = dma_get_slave_caps(tx->chan, &caps);
1576 if (ret)
1577 return ret;
1578
1579 if (!caps.descriptor_reuse)
1580 return -EPERM;
1581
1582 tx->flags |= DMA_CTRL_REUSE;
1583 return 0;
1584 }
1585
dmaengine_desc_clear_reuse(struct dma_async_tx_descriptor * tx)1586 static inline void dmaengine_desc_clear_reuse(struct dma_async_tx_descriptor *tx)
1587 {
1588 tx->flags &= ~DMA_CTRL_REUSE;
1589 }
1590
dmaengine_desc_test_reuse(struct dma_async_tx_descriptor * tx)1591 static inline bool dmaengine_desc_test_reuse(struct dma_async_tx_descriptor *tx)
1592 {
1593 return (tx->flags & DMA_CTRL_REUSE) == DMA_CTRL_REUSE;
1594 }
1595
dmaengine_desc_free(struct dma_async_tx_descriptor * desc)1596 static inline int dmaengine_desc_free(struct dma_async_tx_descriptor *desc)
1597 {
1598 /* this is supported for reusable desc, so check that */
1599 if (!dmaengine_desc_test_reuse(desc))
1600 return -EPERM;
1601
1602 return desc->desc_free(desc);
1603 }
1604
1605 /* --- DMA device --- */
1606
1607 int dma_async_device_register(struct dma_device *device);
1608 int dmaenginem_async_device_register(struct dma_device *device);
1609 void dma_async_device_unregister(struct dma_device *device);
1610 int dma_async_device_channel_register(struct dma_device *device,
1611 struct dma_chan *chan,
1612 const char *name);
1613 void dma_async_device_channel_unregister(struct dma_device *device,
1614 struct dma_chan *chan);
1615 void dma_run_dependencies(struct dma_async_tx_descriptor *tx);
1616 #define dma_request_channel(mask, x, y) \
1617 __dma_request_channel(&(mask), x, y, NULL)
1618
1619 /* Deprecated, please use dma_request_chan() directly */
1620 static inline struct dma_chan * __deprecated
dma_request_slave_channel(struct device * dev,const char * name)1621 dma_request_slave_channel(struct device *dev, const char *name)
1622 {
1623 struct dma_chan *ch = dma_request_chan(dev, name);
1624
1625 return IS_ERR(ch) ? NULL : ch;
1626 }
1627
1628 static inline struct dma_chan
dma_request_slave_channel_compat(const dma_cap_mask_t mask,dma_filter_fn fn,void * fn_param,struct device * dev,const char * name)1629 *dma_request_slave_channel_compat(const dma_cap_mask_t mask,
1630 dma_filter_fn fn, void *fn_param,
1631 struct device *dev, const char *name)
1632 {
1633 struct dma_chan *chan;
1634
1635 chan = dma_request_slave_channel(dev, name);
1636 if (chan)
1637 return chan;
1638
1639 if (!fn || !fn_param)
1640 return NULL;
1641
1642 return __dma_request_channel(&mask, fn, fn_param, NULL);
1643 }
1644
1645 static inline char *
dmaengine_get_direction_text(enum dma_transfer_direction dir)1646 dmaengine_get_direction_text(enum dma_transfer_direction dir)
1647 {
1648 switch (dir) {
1649 case DMA_DEV_TO_MEM:
1650 return "DEV_TO_MEM";
1651 case DMA_MEM_TO_DEV:
1652 return "MEM_TO_DEV";
1653 case DMA_MEM_TO_MEM:
1654 return "MEM_TO_MEM";
1655 case DMA_DEV_TO_DEV:
1656 return "DEV_TO_DEV";
1657 default:
1658 return "invalid";
1659 }
1660 }
1661
dmaengine_get_dma_device(struct dma_chan * chan)1662 static inline struct device *dmaengine_get_dma_device(struct dma_chan *chan)
1663 {
1664 if (chan->dev->chan_dma_dev)
1665 return &chan->dev->device;
1666
1667 return chan->device->dev;
1668 }
1669
1670 #endif /* DMAENGINE_H */
1671