xref: /linux/drivers/isdn/hardware/mISDN/hfcmulti.c (revision 61ab7514)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * hfcmulti.c  low level driver for hfc-4s/hfc-8s/hfc-e1 based cards
4  *
5  * Author	Andreas Eversberg (jolly@eversberg.eu)
6  * ported to mqueue mechanism:
7  *		Peter Sprenger (sprengermoving-bytes.de)
8  *
9  * inspired by existing hfc-pci driver:
10  * Copyright 1999  by Werner Cornelius (werner@isdn-development.de)
11  * Copyright 2008  by Karsten Keil (kkeil@suse.de)
12  * Copyright 2008  by Andreas Eversberg (jolly@eversberg.eu)
13  *
14  * Thanks to Cologne Chip AG for this great controller!
15  */
16 
17 /*
18  * module parameters:
19  * type:
20  *	By default (0), the card is automatically detected.
21  *	Or use the following combinations:
22  *	Bit 0-7   = 0x00001 = HFC-E1 (1 port)
23  * or	Bit 0-7   = 0x00004 = HFC-4S (4 ports)
24  * or	Bit 0-7   = 0x00008 = HFC-8S (8 ports)
25  *	Bit 8     = 0x00100 = uLaw (instead of aLaw)
26  *	Bit 9     = 0x00200 = Disable DTMF detect on all B-channels via hardware
27  *	Bit 10    = spare
28  *	Bit 11    = 0x00800 = Force PCM bus into slave mode. (otherwhise auto)
29  * or   Bit 12    = 0x01000 = Force PCM bus into master mode. (otherwhise auto)
30  *	Bit 13	  = spare
31  *	Bit 14    = 0x04000 = Use external ram (128K)
32  *	Bit 15    = 0x08000 = Use external ram (512K)
33  *	Bit 16    = 0x10000 = Use 64 timeslots instead of 32
34  * or	Bit 17    = 0x20000 = Use 128 timeslots instead of anything else
35  *	Bit 18    = spare
36  *	Bit 19    = 0x80000 = Send the Watchdog a Signal (Dual E1 with Watchdog)
37  * (all other bits are reserved and shall be 0)
38  *	example: 0x20204 one HFC-4S with dtmf detection and 128 timeslots on PCM
39  *		 bus (PCM master)
40  *
41  * port: (optional or required for all ports on all installed cards)
42  *	HFC-4S/HFC-8S only bits:
43  *	Bit 0	  = 0x001 = Use master clock for this S/T interface
44  *			    (ony once per chip).
45  *	Bit 1     = 0x002 = transmitter line setup (non capacitive mode)
46  *			    Don't use this unless you know what you are doing!
47  *	Bit 2     = 0x004 = Disable E-channel. (No E-channel processing)
48  *	example: 0x0001,0x0000,0x0000,0x0000 one HFC-4S with master clock
49  *		 received from port 1
50  *
51  *	HFC-E1 only bits:
52  *	Bit 0     = 0x0001 = interface: 0=copper, 1=optical
53  *	Bit 1     = 0x0002 = reserved (later for 32 B-channels transparent mode)
54  *	Bit 2     = 0x0004 = Report LOS
55  *	Bit 3     = 0x0008 = Report AIS
56  *	Bit 4     = 0x0010 = Report SLIP
57  *	Bit 5     = 0x0020 = Report RDI
58  *	Bit 8     = 0x0100 = Turn off CRC-4 Multiframe Mode, use double frame
59  *			     mode instead.
60  *	Bit 9	  = 0x0200 = Force get clock from interface, even in NT mode.
61  * or	Bit 10	  = 0x0400 = Force put clock to interface, even in TE mode.
62  *	Bit 11    = 0x0800 = Use direct RX clock for PCM sync rather than PLL.
63  *			     (E1 only)
64  *	Bit 12-13 = 0xX000 = elastic jitter buffer (1-3), Set both bits to 0
65  *			     for default.
66  * (all other bits are reserved and shall be 0)
67  *
68  * debug:
69  *	NOTE: only one debug value must be given for all cards
70  *	enable debugging (see hfc_multi.h for debug options)
71  *
72  * poll:
73  *	NOTE: only one poll value must be given for all cards
74  *	Give the number of samples for each fifo process.
75  *	By default 128 is used. Decrease to reduce delay, increase to
76  *	reduce cpu load. If unsure, don't mess with it!
77  *	Valid is 8, 16, 32, 64, 128, 256.
78  *
79  * pcm:
80  *	NOTE: only one pcm value must be given for every card.
81  *	The PCM bus id tells the mISDNdsp module about the connected PCM bus.
82  *	By default (0), the PCM bus id is 100 for the card that is PCM master.
83  *	If multiple cards are PCM master (because they are not interconnected),
84  *	each card with PCM master will have increasing PCM id.
85  *	All PCM busses with the same ID are expected to be connected and have
86  *	common time slots slots.
87  *	Only one chip of the PCM bus must be master, the others slave.
88  *	-1 means no support of PCM bus not even.
89  *	Omit this value, if all cards are interconnected or none is connected.
90  *	If unsure, don't give this parameter.
91  *
92  * dmask and bmask:
93  *	NOTE: One dmask value must be given for every HFC-E1 card.
94  *	If omitted, the E1 card has D-channel on time slot 16, which is default.
95  *	dmask is a 32 bit mask. The bit must be set for an alternate time slot.
96  *	If multiple bits are set, multiple virtual card fragments are created.
97  *	For each bit set, a bmask value must be given. Each bit on the bmask
98  *	value stands for a B-channel. The bmask may not overlap with dmask or
99  *	with other bmask values for that card.
100  *	Example: dmask=0x00020002 bmask=0x0000fffc,0xfffc0000
101  *		This will create one fragment with D-channel on slot 1 with
102  *		B-channels on slots 2..15, and a second fragment with D-channel
103  *		on slot 17 with B-channels on slot 18..31. Slot 16 is unused.
104  *	If bit 0 is set (dmask=0x00000001) the D-channel is on slot 0 and will
105  *	not function.
106  *	Example: dmask=0x00000001 bmask=0xfffffffe
107  *		This will create a port with all 31 usable timeslots as
108  *		B-channels.
109  *	If no bits are set on bmask, no B-channel is created for that fragment.
110  *	Example: dmask=0xfffffffe bmask=0,0,0,0.... (31 0-values for bmask)
111  *		This will create 31 ports with one D-channel only.
112  *	If you don't know how to use it, you don't need it!
113  *
114  * iomode:
115  *	NOTE: only one mode value must be given for every card.
116  *	-> See hfc_multi.h for HFC_IO_MODE_* values
117  *	By default, the IO mode is pci memory IO (MEMIO).
118  *	Some cards require specific IO mode, so it cannot be changed.
119  *	It may be useful to set IO mode to register io (REGIO) to solve
120  *	PCI bridge problems.
121  *	If unsure, don't give this parameter.
122  *
123  * clockdelay_nt:
124  *	NOTE: only one clockdelay_nt value must be given once for all cards.
125  *	Give the value of the clock control register (A_ST_CLK_DLY)
126  *	of the S/T interfaces in NT mode.
127  *	This register is needed for the TBR3 certification, so don't change it.
128  *
129  * clockdelay_te:
130  *	NOTE: only one clockdelay_te value must be given once
131  *	Give the value of the clock control register (A_ST_CLK_DLY)
132  *	of the S/T interfaces in TE mode.
133  *	This register is needed for the TBR3 certification, so don't change it.
134  *
135  * clock:
136  *	NOTE: only one clock value must be given once
137  *	Selects interface with clock source for mISDN and applications.
138  *	Set to card number starting with 1. Set to -1 to disable.
139  *	By default, the first card is used as clock source.
140  *
141  * hwid:
142  *	NOTE: only one hwid value must be given once
143  *	Enable special embedded devices with XHFC controllers.
144  */
145 
146 /*
147  * debug register access (never use this, it will flood your system log)
148  * #define HFC_REGISTER_DEBUG
149  */
150 
151 #define HFC_MULTI_VERSION	"2.03"
152 
153 #include <linux/interrupt.h>
154 #include <linux/module.h>
155 #include <linux/slab.h>
156 #include <linux/pci.h>
157 #include <linux/delay.h>
158 #include <linux/mISDNhw.h>
159 #include <linux/mISDNdsp.h>
160 
161 /*
162   #define IRQCOUNT_DEBUG
163   #define IRQ_DEBUG
164 */
165 
166 #include "hfc_multi.h"
167 #ifdef ECHOPREP
168 #include "gaintab.h"
169 #endif
170 
171 #define	MAX_CARDS	8
172 #define	MAX_PORTS	(8 * MAX_CARDS)
173 #define	MAX_FRAGS	(32 * MAX_CARDS)
174 
175 static LIST_HEAD(HFClist);
176 static DEFINE_SPINLOCK(HFClock); /* global hfc list lock */
177 
178 static void ph_state_change(struct dchannel *);
179 
180 static struct hfc_multi *syncmaster;
181 static int plxsd_master; /* if we have a master card (yet) */
182 static DEFINE_SPINLOCK(plx_lock); /* may not acquire other lock inside */
183 
184 #define	TYP_E1		1
185 #define	TYP_4S		4
186 #define TYP_8S		8
187 
188 static int poll_timer = 6;	/* default = 128 samples = 16ms */
189 /* number of POLL_TIMER interrupts for G2 timeout (ca 1s) */
190 static int nt_t1_count[] = { 3840, 1920, 960, 480, 240, 120, 60, 30  };
191 #define	CLKDEL_TE	0x0f	/* CLKDEL in TE mode */
192 #define	CLKDEL_NT	0x6c	/* CLKDEL in NT mode
193 				   (0x60 MUST be included!) */
194 
195 #define	DIP_4S	0x1		/* DIP Switches for Beronet 1S/2S/4S cards */
196 #define	DIP_8S	0x2		/* DIP Switches for Beronet 8S+ cards */
197 #define	DIP_E1	0x3		/* DIP Switches for Beronet E1 cards */
198 
199 /*
200  * module stuff
201  */
202 
203 static uint	type[MAX_CARDS];
204 static int	pcm[MAX_CARDS];
205 static uint	dmask[MAX_CARDS];
206 static uint	bmask[MAX_FRAGS];
207 static uint	iomode[MAX_CARDS];
208 static uint	port[MAX_PORTS];
209 static uint	debug;
210 static uint	poll;
211 static int	clock;
212 static uint	timer;
213 static uint	clockdelay_te = CLKDEL_TE;
214 static uint	clockdelay_nt = CLKDEL_NT;
215 #define HWID_NONE	0
216 #define HWID_MINIP4	1
217 #define HWID_MINIP8	2
218 #define HWID_MINIP16	3
219 static uint	hwid = HWID_NONE;
220 
221 static int	HFC_cnt, E1_cnt, bmask_cnt, Port_cnt, PCM_cnt = 99;
222 
223 MODULE_AUTHOR("Andreas Eversberg");
224 MODULE_DESCRIPTION("mISDN driver for hfc-4s/hfc-8s/hfc-e1 based cards");
225 MODULE_LICENSE("GPL");
226 MODULE_VERSION(HFC_MULTI_VERSION);
227 module_param(debug, uint, S_IRUGO | S_IWUSR);
228 module_param(poll, uint, S_IRUGO | S_IWUSR);
229 module_param(clock, int, S_IRUGO | S_IWUSR);
230 module_param(timer, uint, S_IRUGO | S_IWUSR);
231 module_param(clockdelay_te, uint, S_IRUGO | S_IWUSR);
232 module_param(clockdelay_nt, uint, S_IRUGO | S_IWUSR);
233 module_param_array(type, uint, NULL, S_IRUGO | S_IWUSR);
234 module_param_array(pcm, int, NULL, S_IRUGO | S_IWUSR);
235 module_param_array(dmask, uint, NULL, S_IRUGO | S_IWUSR);
236 module_param_array(bmask, uint, NULL, S_IRUGO | S_IWUSR);
237 module_param_array(iomode, uint, NULL, S_IRUGO | S_IWUSR);
238 module_param_array(port, uint, NULL, S_IRUGO | S_IWUSR);
239 module_param(hwid, uint, S_IRUGO | S_IWUSR); /* The hardware ID */
240 
241 #ifdef HFC_REGISTER_DEBUG
242 #define HFC_outb(hc, reg, val)					\
243 	(hc->HFC_outb(hc, reg, val, __func__, __LINE__))
244 #define HFC_outb_nodebug(hc, reg, val)					\
245 	(hc->HFC_outb_nodebug(hc, reg, val, __func__, __LINE__))
246 #define HFC_inb(hc, reg)				\
247 	(hc->HFC_inb(hc, reg, __func__, __LINE__))
248 #define HFC_inb_nodebug(hc, reg)				\
249 	(hc->HFC_inb_nodebug(hc, reg, __func__, __LINE__))
250 #define HFC_inw(hc, reg)				\
251 	(hc->HFC_inw(hc, reg, __func__, __LINE__))
252 #define HFC_inw_nodebug(hc, reg)				\
253 	(hc->HFC_inw_nodebug(hc, reg, __func__, __LINE__))
254 #define HFC_wait(hc)				\
255 	(hc->HFC_wait(hc, __func__, __LINE__))
256 #define HFC_wait_nodebug(hc)				\
257 	(hc->HFC_wait_nodebug(hc, __func__, __LINE__))
258 #else
259 #define HFC_outb(hc, reg, val)		(hc->HFC_outb(hc, reg, val))
260 #define HFC_outb_nodebug(hc, reg, val)	(hc->HFC_outb_nodebug(hc, reg, val))
261 #define HFC_inb(hc, reg)		(hc->HFC_inb(hc, reg))
262 #define HFC_inb_nodebug(hc, reg)	(hc->HFC_inb_nodebug(hc, reg))
263 #define HFC_inw(hc, reg)		(hc->HFC_inw(hc, reg))
264 #define HFC_inw_nodebug(hc, reg)	(hc->HFC_inw_nodebug(hc, reg))
265 #define HFC_wait(hc)			(hc->HFC_wait(hc))
266 #define HFC_wait_nodebug(hc)		(hc->HFC_wait_nodebug(hc))
267 #endif
268 
269 #ifdef CONFIG_MISDN_HFCMULTI_8xx
270 #include "hfc_multi_8xx.h"
271 #endif
272 
273 /* HFC_IO_MODE_PCIMEM */
274 static void
275 #ifdef HFC_REGISTER_DEBUG
HFC_outb_pcimem(struct hfc_multi * hc,u_char reg,u_char val,const char * function,int line)276 HFC_outb_pcimem(struct hfc_multi *hc, u_char reg, u_char val,
277 		const char *function, int line)
278 #else
279 	HFC_outb_pcimem(struct hfc_multi *hc, u_char reg, u_char val)
280 #endif
281 {
282 	writeb(val, hc->pci_membase + reg);
283 }
284 static u_char
285 #ifdef HFC_REGISTER_DEBUG
HFC_inb_pcimem(struct hfc_multi * hc,u_char reg,const char * function,int line)286 HFC_inb_pcimem(struct hfc_multi *hc, u_char reg, const char *function, int line)
287 #else
288 	HFC_inb_pcimem(struct hfc_multi *hc, u_char reg)
289 #endif
290 {
291 	return readb(hc->pci_membase + reg);
292 }
293 static u_short
294 #ifdef HFC_REGISTER_DEBUG
HFC_inw_pcimem(struct hfc_multi * hc,u_char reg,const char * function,int line)295 HFC_inw_pcimem(struct hfc_multi *hc, u_char reg, const char *function, int line)
296 #else
297 	HFC_inw_pcimem(struct hfc_multi *hc, u_char reg)
298 #endif
299 {
300 	return readw(hc->pci_membase + reg);
301 }
302 static void
303 #ifdef HFC_REGISTER_DEBUG
HFC_wait_pcimem(struct hfc_multi * hc,const char * function,int line)304 HFC_wait_pcimem(struct hfc_multi *hc, const char *function, int line)
305 #else
306 	HFC_wait_pcimem(struct hfc_multi *hc)
307 #endif
308 {
309 	while (readb(hc->pci_membase + R_STATUS) & V_BUSY)
310 		cpu_relax();
311 }
312 
313 /* HFC_IO_MODE_REGIO */
314 static void
315 #ifdef HFC_REGISTER_DEBUG
HFC_outb_regio(struct hfc_multi * hc,u_char reg,u_char val,const char * function,int line)316 HFC_outb_regio(struct hfc_multi *hc, u_char reg, u_char val,
317 	       const char *function, int line)
318 #else
319 	HFC_outb_regio(struct hfc_multi *hc, u_char reg, u_char val)
320 #endif
321 {
322 	outb(reg, hc->pci_iobase + 4);
323 	outb(val, hc->pci_iobase);
324 }
325 static u_char
326 #ifdef HFC_REGISTER_DEBUG
HFC_inb_regio(struct hfc_multi * hc,u_char reg,const char * function,int line)327 HFC_inb_regio(struct hfc_multi *hc, u_char reg, const char *function, int line)
328 #else
329 	HFC_inb_regio(struct hfc_multi *hc, u_char reg)
330 #endif
331 {
332 	outb(reg, hc->pci_iobase + 4);
333 	return inb(hc->pci_iobase);
334 }
335 static u_short
336 #ifdef HFC_REGISTER_DEBUG
HFC_inw_regio(struct hfc_multi * hc,u_char reg,const char * function,int line)337 HFC_inw_regio(struct hfc_multi *hc, u_char reg, const char *function, int line)
338 #else
339 	HFC_inw_regio(struct hfc_multi *hc, u_char reg)
340 #endif
341 {
342 	outb(reg, hc->pci_iobase + 4);
343 	return inw(hc->pci_iobase);
344 }
345 static void
346 #ifdef HFC_REGISTER_DEBUG
HFC_wait_regio(struct hfc_multi * hc,const char * function,int line)347 HFC_wait_regio(struct hfc_multi *hc, const char *function, int line)
348 #else
349 	HFC_wait_regio(struct hfc_multi *hc)
350 #endif
351 {
352 	outb(R_STATUS, hc->pci_iobase + 4);
353 	while (inb(hc->pci_iobase) & V_BUSY)
354 		cpu_relax();
355 }
356 
357 #ifdef HFC_REGISTER_DEBUG
358 static void
HFC_outb_debug(struct hfc_multi * hc,u_char reg,u_char val,const char * function,int line)359 HFC_outb_debug(struct hfc_multi *hc, u_char reg, u_char val,
360 	       const char *function, int line)
361 {
362 	char regname[256] = "", bits[9] = "xxxxxxxx";
363 	int i;
364 
365 	i = -1;
366 	while (hfc_register_names[++i].name) {
367 		if (hfc_register_names[i].reg == reg)
368 			strcat(regname, hfc_register_names[i].name);
369 	}
370 	if (regname[0] == '\0')
371 		strcpy(regname, "register");
372 
373 	bits[7] = '0' + (!!(val & 1));
374 	bits[6] = '0' + (!!(val & 2));
375 	bits[5] = '0' + (!!(val & 4));
376 	bits[4] = '0' + (!!(val & 8));
377 	bits[3] = '0' + (!!(val & 16));
378 	bits[2] = '0' + (!!(val & 32));
379 	bits[1] = '0' + (!!(val & 64));
380 	bits[0] = '0' + (!!(val & 128));
381 	printk(KERN_DEBUG
382 	       "HFC_outb(chip %d, %02x=%s, 0x%02x=%s); in %s() line %d\n",
383 	       hc->id, reg, regname, val, bits, function, line);
384 	HFC_outb_nodebug(hc, reg, val);
385 }
386 static u_char
HFC_inb_debug(struct hfc_multi * hc,u_char reg,const char * function,int line)387 HFC_inb_debug(struct hfc_multi *hc, u_char reg, const char *function, int line)
388 {
389 	char regname[256] = "", bits[9] = "xxxxxxxx";
390 	u_char val = HFC_inb_nodebug(hc, reg);
391 	int i;
392 
393 	i = 0;
394 	while (hfc_register_names[i++].name)
395 		;
396 	while (hfc_register_names[++i].name) {
397 		if (hfc_register_names[i].reg == reg)
398 			strcat(regname, hfc_register_names[i].name);
399 	}
400 	if (regname[0] == '\0')
401 		strcpy(regname, "register");
402 
403 	bits[7] = '0' + (!!(val & 1));
404 	bits[6] = '0' + (!!(val & 2));
405 	bits[5] = '0' + (!!(val & 4));
406 	bits[4] = '0' + (!!(val & 8));
407 	bits[3] = '0' + (!!(val & 16));
408 	bits[2] = '0' + (!!(val & 32));
409 	bits[1] = '0' + (!!(val & 64));
410 	bits[0] = '0' + (!!(val & 128));
411 	printk(KERN_DEBUG
412 	       "HFC_inb(chip %d, %02x=%s) = 0x%02x=%s; in %s() line %d\n",
413 	       hc->id, reg, regname, val, bits, function, line);
414 	return val;
415 }
416 static u_short
HFC_inw_debug(struct hfc_multi * hc,u_char reg,const char * function,int line)417 HFC_inw_debug(struct hfc_multi *hc, u_char reg, const char *function, int line)
418 {
419 	char regname[256] = "";
420 	u_short val = HFC_inw_nodebug(hc, reg);
421 	int i;
422 
423 	i = 0;
424 	while (hfc_register_names[i++].name)
425 		;
426 	while (hfc_register_names[++i].name) {
427 		if (hfc_register_names[i].reg == reg)
428 			strcat(regname, hfc_register_names[i].name);
429 	}
430 	if (regname[0] == '\0')
431 		strcpy(regname, "register");
432 
433 	printk(KERN_DEBUG
434 	       "HFC_inw(chip %d, %02x=%s) = 0x%04x; in %s() line %d\n",
435 	       hc->id, reg, regname, val, function, line);
436 	return val;
437 }
438 static void
HFC_wait_debug(struct hfc_multi * hc,const char * function,int line)439 HFC_wait_debug(struct hfc_multi *hc, const char *function, int line)
440 {
441 	printk(KERN_DEBUG "HFC_wait(chip %d); in %s() line %d\n",
442 	       hc->id, function, line);
443 	HFC_wait_nodebug(hc);
444 }
445 #endif
446 
447 /* write fifo data (REGIO) */
448 static void
write_fifo_regio(struct hfc_multi * hc,u_char * data,int len)449 write_fifo_regio(struct hfc_multi *hc, u_char *data, int len)
450 {
451 	outb(A_FIFO_DATA0, (hc->pci_iobase) + 4);
452 	while (len >> 2) {
453 		outl(cpu_to_le32(*(u32 *)data), hc->pci_iobase);
454 		data += 4;
455 		len -= 4;
456 	}
457 	while (len >> 1) {
458 		outw(cpu_to_le16(*(u16 *)data), hc->pci_iobase);
459 		data += 2;
460 		len -= 2;
461 	}
462 	while (len) {
463 		outb(*data, hc->pci_iobase);
464 		data++;
465 		len--;
466 	}
467 }
468 /* write fifo data (PCIMEM) */
469 static void
write_fifo_pcimem(struct hfc_multi * hc,u_char * data,int len)470 write_fifo_pcimem(struct hfc_multi *hc, u_char *data, int len)
471 {
472 	while (len >> 2) {
473 		writel(cpu_to_le32(*(u32 *)data),
474 		       hc->pci_membase + A_FIFO_DATA0);
475 		data += 4;
476 		len -= 4;
477 	}
478 	while (len >> 1) {
479 		writew(cpu_to_le16(*(u16 *)data),
480 		       hc->pci_membase + A_FIFO_DATA0);
481 		data += 2;
482 		len -= 2;
483 	}
484 	while (len) {
485 		writeb(*data, hc->pci_membase + A_FIFO_DATA0);
486 		data++;
487 		len--;
488 	}
489 }
490 
491 /* read fifo data (REGIO) */
492 static void
read_fifo_regio(struct hfc_multi * hc,u_char * data,int len)493 read_fifo_regio(struct hfc_multi *hc, u_char *data, int len)
494 {
495 	outb(A_FIFO_DATA0, (hc->pci_iobase) + 4);
496 	while (len >> 2) {
497 		*(u32 *)data = le32_to_cpu(inl(hc->pci_iobase));
498 		data += 4;
499 		len -= 4;
500 	}
501 	while (len >> 1) {
502 		*(u16 *)data = le16_to_cpu(inw(hc->pci_iobase));
503 		data += 2;
504 		len -= 2;
505 	}
506 	while (len) {
507 		*data = inb(hc->pci_iobase);
508 		data++;
509 		len--;
510 	}
511 }
512 
513 /* read fifo data (PCIMEM) */
514 static void
read_fifo_pcimem(struct hfc_multi * hc,u_char * data,int len)515 read_fifo_pcimem(struct hfc_multi *hc, u_char *data, int len)
516 {
517 	while (len >> 2) {
518 		*(u32 *)data =
519 			le32_to_cpu(readl(hc->pci_membase + A_FIFO_DATA0));
520 		data += 4;
521 		len -= 4;
522 	}
523 	while (len >> 1) {
524 		*(u16 *)data =
525 			le16_to_cpu(readw(hc->pci_membase + A_FIFO_DATA0));
526 		data += 2;
527 		len -= 2;
528 	}
529 	while (len) {
530 		*data = readb(hc->pci_membase + A_FIFO_DATA0);
531 		data++;
532 		len--;
533 	}
534 }
535 
536 static void
enable_hwirq(struct hfc_multi * hc)537 enable_hwirq(struct hfc_multi *hc)
538 {
539 	hc->hw.r_irq_ctrl |= V_GLOB_IRQ_EN;
540 	HFC_outb(hc, R_IRQ_CTRL, hc->hw.r_irq_ctrl);
541 }
542 
543 static void
disable_hwirq(struct hfc_multi * hc)544 disable_hwirq(struct hfc_multi *hc)
545 {
546 	hc->hw.r_irq_ctrl &= ~((u_char)V_GLOB_IRQ_EN);
547 	HFC_outb(hc, R_IRQ_CTRL, hc->hw.r_irq_ctrl);
548 }
549 
550 #define	NUM_EC 2
551 #define	MAX_TDM_CHAN 32
552 
553 
554 static inline void
enablepcibridge(struct hfc_multi * c)555 enablepcibridge(struct hfc_multi *c)
556 {
557 	HFC_outb(c, R_BRG_PCM_CFG, (0x0 << 6) | 0x3); /* was _io before */
558 }
559 
560 static inline void
disablepcibridge(struct hfc_multi * c)561 disablepcibridge(struct hfc_multi *c)
562 {
563 	HFC_outb(c, R_BRG_PCM_CFG, (0x0 << 6) | 0x2); /* was _io before */
564 }
565 
566 static inline unsigned char
readpcibridge(struct hfc_multi * hc,unsigned char address)567 readpcibridge(struct hfc_multi *hc, unsigned char address)
568 {
569 	unsigned short cipv;
570 	unsigned char data;
571 
572 	if (!hc->pci_iobase)
573 		return 0;
574 
575 	/* slow down a PCI read access by 1 PCI clock cycle */
576 	HFC_outb(hc, R_CTRL, 0x4); /*was _io before*/
577 
578 	if (address == 0)
579 		cipv = 0x4000;
580 	else
581 		cipv = 0x5800;
582 
583 	/* select local bridge port address by writing to CIP port */
584 	/* data = HFC_inb(c, cipv); * was _io before */
585 	outw(cipv, hc->pci_iobase + 4);
586 	data = inb(hc->pci_iobase);
587 
588 	/* restore R_CTRL for normal PCI read cycle speed */
589 	HFC_outb(hc, R_CTRL, 0x0); /* was _io before */
590 
591 	return data;
592 }
593 
594 static inline void
writepcibridge(struct hfc_multi * hc,unsigned char address,unsigned char data)595 writepcibridge(struct hfc_multi *hc, unsigned char address, unsigned char data)
596 {
597 	unsigned short cipv;
598 	unsigned int datav;
599 
600 	if (!hc->pci_iobase)
601 		return;
602 
603 	if (address == 0)
604 		cipv = 0x4000;
605 	else
606 		cipv = 0x5800;
607 
608 	/* select local bridge port address by writing to CIP port */
609 	outw(cipv, hc->pci_iobase + 4);
610 	/* define a 32 bit dword with 4 identical bytes for write sequence */
611 	datav = data | ((__u32) data << 8) | ((__u32) data << 16) |
612 		((__u32) data << 24);
613 
614 	/*
615 	 * write this 32 bit dword to the bridge data port
616 	 * this will initiate a write sequence of up to 4 writes to the same
617 	 * address on the local bus interface the number of write accesses
618 	 * is undefined but >=1 and depends on the next PCI transaction
619 	 * during write sequence on the local bus
620 	 */
621 	outl(datav, hc->pci_iobase);
622 }
623 
624 static inline void
cpld_set_reg(struct hfc_multi * hc,unsigned char reg)625 cpld_set_reg(struct hfc_multi *hc, unsigned char reg)
626 {
627 	/* Do data pin read low byte */
628 	HFC_outb(hc, R_GPIO_OUT1, reg);
629 }
630 
631 static inline void
cpld_write_reg(struct hfc_multi * hc,unsigned char reg,unsigned char val)632 cpld_write_reg(struct hfc_multi *hc, unsigned char reg, unsigned char val)
633 {
634 	cpld_set_reg(hc, reg);
635 
636 	enablepcibridge(hc);
637 	writepcibridge(hc, 1, val);
638 	disablepcibridge(hc);
639 
640 	return;
641 }
642 
643 static inline void
vpm_write_address(struct hfc_multi * hc,unsigned short addr)644 vpm_write_address(struct hfc_multi *hc, unsigned short addr)
645 {
646 	cpld_write_reg(hc, 0, 0xff & addr);
647 	cpld_write_reg(hc, 1, 0x01 & (addr >> 8));
648 }
649 
650 static inline unsigned char
vpm_in(struct hfc_multi * c,int which,unsigned short addr)651 vpm_in(struct hfc_multi *c, int which, unsigned short addr)
652 {
653 	unsigned char res;
654 
655 	vpm_write_address(c, addr);
656 
657 	if (!which)
658 		cpld_set_reg(c, 2);
659 	else
660 		cpld_set_reg(c, 3);
661 
662 	enablepcibridge(c);
663 	res = readpcibridge(c, 1);
664 	disablepcibridge(c);
665 
666 	cpld_set_reg(c, 0);
667 
668 	return res;
669 }
670 
671 static inline void
vpm_out(struct hfc_multi * c,int which,unsigned short addr,unsigned char data)672 vpm_out(struct hfc_multi *c, int which, unsigned short addr,
673 	unsigned char data)
674 {
675 	vpm_write_address(c, addr);
676 
677 	enablepcibridge(c);
678 
679 	if (!which)
680 		cpld_set_reg(c, 2);
681 	else
682 		cpld_set_reg(c, 3);
683 
684 	writepcibridge(c, 1, data);
685 
686 	cpld_set_reg(c, 0);
687 
688 	disablepcibridge(c);
689 
690 	{
691 		unsigned char regin;
692 		regin = vpm_in(c, which, addr);
693 		if (regin != data)
694 			printk(KERN_DEBUG "Wrote 0x%x to register 0x%x but got back "
695 			       "0x%x\n", data, addr, regin);
696 	}
697 
698 }
699 
700 
701 static void
vpm_init(struct hfc_multi * wc)702 vpm_init(struct hfc_multi *wc)
703 {
704 	unsigned char reg;
705 	unsigned int mask;
706 	unsigned int i, x, y;
707 	unsigned int ver;
708 
709 	for (x = 0; x < NUM_EC; x++) {
710 		/* Setup GPIO's */
711 		if (!x) {
712 			ver = vpm_in(wc, x, 0x1a0);
713 			printk(KERN_DEBUG "VPM: Chip %d: ver %02x\n", x, ver);
714 		}
715 
716 		for (y = 0; y < 4; y++) {
717 			vpm_out(wc, x, 0x1a8 + y, 0x00); /* GPIO out */
718 			vpm_out(wc, x, 0x1ac + y, 0x00); /* GPIO dir */
719 			vpm_out(wc, x, 0x1b0 + y, 0x00); /* GPIO sel */
720 		}
721 
722 		/* Setup TDM path - sets fsync and tdm_clk as inputs */
723 		reg = vpm_in(wc, x, 0x1a3); /* misc_con */
724 		vpm_out(wc, x, 0x1a3, reg & ~2);
725 
726 		/* Setup Echo length (256 taps) */
727 		vpm_out(wc, x, 0x022, 1);
728 		vpm_out(wc, x, 0x023, 0xff);
729 
730 		/* Setup timeslots */
731 		vpm_out(wc, x, 0x02f, 0x00);
732 		mask = 0x02020202 << (x * 4);
733 
734 		/* Setup the tdm channel masks for all chips */
735 		for (i = 0; i < 4; i++)
736 			vpm_out(wc, x, 0x33 - i, (mask >> (i << 3)) & 0xff);
737 
738 		/* Setup convergence rate */
739 		printk(KERN_DEBUG "VPM: A-law mode\n");
740 		reg = 0x00 | 0x10 | 0x01;
741 		vpm_out(wc, x, 0x20, reg);
742 		printk(KERN_DEBUG "VPM reg 0x20 is %x\n", reg);
743 		/*vpm_out(wc, x, 0x20, (0x00 | 0x08 | 0x20 | 0x10)); */
744 
745 		vpm_out(wc, x, 0x24, 0x02);
746 		reg = vpm_in(wc, x, 0x24);
747 		printk(KERN_DEBUG "NLP Thresh is set to %d (0x%x)\n", reg, reg);
748 
749 		/* Initialize echo cans */
750 		for (i = 0; i < MAX_TDM_CHAN; i++) {
751 			if (mask & (0x00000001 << i))
752 				vpm_out(wc, x, i, 0x00);
753 		}
754 
755 		/*
756 		 * ARM arch at least disallows a udelay of
757 		 * more than 2ms... it gives a fake "__bad_udelay"
758 		 * reference at link-time.
759 		 * long delays in kernel code are pretty sucky anyway
760 		 * for now work around it using 5 x 2ms instead of 1 x 10ms
761 		 */
762 
763 		udelay(2000);
764 		udelay(2000);
765 		udelay(2000);
766 		udelay(2000);
767 		udelay(2000);
768 
769 		/* Put in bypass mode */
770 		for (i = 0; i < MAX_TDM_CHAN; i++) {
771 			if (mask & (0x00000001 << i))
772 				vpm_out(wc, x, i, 0x01);
773 		}
774 
775 		/* Enable bypass */
776 		for (i = 0; i < MAX_TDM_CHAN; i++) {
777 			if (mask & (0x00000001 << i))
778 				vpm_out(wc, x, 0x78 + i, 0x01);
779 		}
780 
781 	}
782 }
783 
784 #ifdef UNUSED
785 static void
vpm_check(struct hfc_multi * hctmp)786 vpm_check(struct hfc_multi *hctmp)
787 {
788 	unsigned char gpi2;
789 
790 	gpi2 = HFC_inb(hctmp, R_GPI_IN2);
791 
792 	if ((gpi2 & 0x3) != 0x3)
793 		printk(KERN_DEBUG "Got interrupt 0x%x from VPM!\n", gpi2);
794 }
795 #endif /* UNUSED */
796 
797 
798 /*
799  * Interface to enable/disable the HW Echocan
800  *
801  * these functions are called within a spin_lock_irqsave on
802  * the channel instance lock, so we are not disturbed by irqs
803  *
804  * we can later easily change the interface to make  other
805  * things configurable, for now we configure the taps
806  *
807  */
808 
809 static void
vpm_echocan_on(struct hfc_multi * hc,int ch,int taps)810 vpm_echocan_on(struct hfc_multi *hc, int ch, int taps)
811 {
812 	unsigned int timeslot;
813 	unsigned int unit;
814 	struct bchannel *bch = hc->chan[ch].bch;
815 #ifdef TXADJ
816 	int txadj = -4;
817 	struct sk_buff *skb;
818 #endif
819 	if (hc->chan[ch].protocol != ISDN_P_B_RAW)
820 		return;
821 
822 	if (!bch)
823 		return;
824 
825 #ifdef TXADJ
826 	skb = _alloc_mISDN_skb(PH_CONTROL_IND, HFC_VOL_CHANGE_TX,
827 			       sizeof(int), &txadj, GFP_ATOMIC);
828 	if (skb)
829 		recv_Bchannel_skb(bch, skb);
830 #endif
831 
832 	timeslot = ((ch / 4) * 8) + ((ch % 4) * 4) + 1;
833 	unit = ch % 4;
834 
835 	printk(KERN_NOTICE "vpm_echocan_on called taps [%d] on timeslot %d\n",
836 	       taps, timeslot);
837 
838 	vpm_out(hc, unit, timeslot, 0x7e);
839 }
840 
841 static void
vpm_echocan_off(struct hfc_multi * hc,int ch)842 vpm_echocan_off(struct hfc_multi *hc, int ch)
843 {
844 	unsigned int timeslot;
845 	unsigned int unit;
846 	struct bchannel *bch = hc->chan[ch].bch;
847 #ifdef TXADJ
848 	int txadj = 0;
849 	struct sk_buff *skb;
850 #endif
851 
852 	if (hc->chan[ch].protocol != ISDN_P_B_RAW)
853 		return;
854 
855 	if (!bch)
856 		return;
857 
858 #ifdef TXADJ
859 	skb = _alloc_mISDN_skb(PH_CONTROL_IND, HFC_VOL_CHANGE_TX,
860 			       sizeof(int), &txadj, GFP_ATOMIC);
861 	if (skb)
862 		recv_Bchannel_skb(bch, skb);
863 #endif
864 
865 	timeslot = ((ch / 4) * 8) + ((ch % 4) * 4) + 1;
866 	unit = ch % 4;
867 
868 	printk(KERN_NOTICE "vpm_echocan_off called on timeslot %d\n",
869 	       timeslot);
870 	/* FILLME */
871 	vpm_out(hc, unit, timeslot, 0x01);
872 }
873 
874 
875 /*
876  * Speech Design resync feature
877  * NOTE: This is called sometimes outside interrupt handler.
878  * We must lock irqsave, so no other interrupt (other card) will occur!
879  * Also multiple interrupts may nest, so must lock each access (lists, card)!
880  */
881 static inline void
hfcmulti_resync(struct hfc_multi * locked,struct hfc_multi * newmaster,int rm)882 hfcmulti_resync(struct hfc_multi *locked, struct hfc_multi *newmaster, int rm)
883 {
884 	struct hfc_multi *hc, *next, *pcmmaster = NULL;
885 	void __iomem *plx_acc_32;
886 	u_int pv;
887 	u_long flags;
888 
889 	spin_lock_irqsave(&HFClock, flags);
890 	spin_lock(&plx_lock); /* must be locked inside other locks */
891 
892 	if (debug & DEBUG_HFCMULTI_PLXSD)
893 		printk(KERN_DEBUG "%s: RESYNC(syncmaster=0x%p)\n",
894 		       __func__, syncmaster);
895 
896 	/* select new master */
897 	if (newmaster) {
898 		if (debug & DEBUG_HFCMULTI_PLXSD)
899 			printk(KERN_DEBUG "using provided controller\n");
900 	} else {
901 		list_for_each_entry_safe(hc, next, &HFClist, list) {
902 			if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
903 				if (hc->syncronized) {
904 					newmaster = hc;
905 					break;
906 				}
907 			}
908 		}
909 	}
910 
911 	/* Disable sync of all cards */
912 	list_for_each_entry_safe(hc, next, &HFClist, list) {
913 		if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
914 			plx_acc_32 = hc->plx_membase + PLX_GPIOC;
915 			pv = readl(plx_acc_32);
916 			pv &= ~PLX_SYNC_O_EN;
917 			writel(pv, plx_acc_32);
918 			if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip)) {
919 				pcmmaster = hc;
920 				if (hc->ctype == HFC_TYPE_E1) {
921 					if (debug & DEBUG_HFCMULTI_PLXSD)
922 						printk(KERN_DEBUG
923 						       "Schedule SYNC_I\n");
924 					hc->e1_resync |= 1; /* get SYNC_I */
925 				}
926 			}
927 		}
928 	}
929 
930 	if (newmaster) {
931 		hc = newmaster;
932 		if (debug & DEBUG_HFCMULTI_PLXSD)
933 			printk(KERN_DEBUG "id=%d (0x%p) = syncronized with "
934 			       "interface.\n", hc->id, hc);
935 		/* Enable new sync master */
936 		plx_acc_32 = hc->plx_membase + PLX_GPIOC;
937 		pv = readl(plx_acc_32);
938 		pv |= PLX_SYNC_O_EN;
939 		writel(pv, plx_acc_32);
940 		/* switch to jatt PLL, if not disabled by RX_SYNC */
941 		if (hc->ctype == HFC_TYPE_E1
942 		    && !test_bit(HFC_CHIP_RX_SYNC, &hc->chip)) {
943 			if (debug & DEBUG_HFCMULTI_PLXSD)
944 				printk(KERN_DEBUG "Schedule jatt PLL\n");
945 			hc->e1_resync |= 2; /* switch to jatt */
946 		}
947 	} else {
948 		if (pcmmaster) {
949 			hc = pcmmaster;
950 			if (debug & DEBUG_HFCMULTI_PLXSD)
951 				printk(KERN_DEBUG
952 				       "id=%d (0x%p) = PCM master syncronized "
953 				       "with QUARTZ\n", hc->id, hc);
954 			if (hc->ctype == HFC_TYPE_E1) {
955 				/* Use the crystal clock for the PCM
956 				   master card */
957 				if (debug & DEBUG_HFCMULTI_PLXSD)
958 					printk(KERN_DEBUG
959 					       "Schedule QUARTZ for HFC-E1\n");
960 				hc->e1_resync |= 4; /* switch quartz */
961 			} else {
962 				if (debug & DEBUG_HFCMULTI_PLXSD)
963 					printk(KERN_DEBUG
964 					       "QUARTZ is automatically "
965 					       "enabled by HFC-%dS\n", hc->ctype);
966 			}
967 			plx_acc_32 = hc->plx_membase + PLX_GPIOC;
968 			pv = readl(plx_acc_32);
969 			pv |= PLX_SYNC_O_EN;
970 			writel(pv, plx_acc_32);
971 		} else
972 			if (!rm)
973 				printk(KERN_ERR "%s no pcm master, this MUST "
974 				       "not happen!\n", __func__);
975 	}
976 	syncmaster = newmaster;
977 
978 	spin_unlock(&plx_lock);
979 	spin_unlock_irqrestore(&HFClock, flags);
980 }
981 
982 /* This must be called AND hc must be locked irqsave!!! */
983 static inline void
plxsd_checksync(struct hfc_multi * hc,int rm)984 plxsd_checksync(struct hfc_multi *hc, int rm)
985 {
986 	if (hc->syncronized) {
987 		if (syncmaster == NULL) {
988 			if (debug & DEBUG_HFCMULTI_PLXSD)
989 				printk(KERN_DEBUG "%s: GOT sync on card %d"
990 				       " (id=%d)\n", __func__, hc->id + 1,
991 				       hc->id);
992 			hfcmulti_resync(hc, hc, rm);
993 		}
994 	} else {
995 		if (syncmaster == hc) {
996 			if (debug & DEBUG_HFCMULTI_PLXSD)
997 				printk(KERN_DEBUG "%s: LOST sync on card %d"
998 				       " (id=%d)\n", __func__, hc->id + 1,
999 				       hc->id);
1000 			hfcmulti_resync(hc, NULL, rm);
1001 		}
1002 	}
1003 }
1004 
1005 
1006 /*
1007  * free hardware resources used by driver
1008  */
1009 static void
release_io_hfcmulti(struct hfc_multi * hc)1010 release_io_hfcmulti(struct hfc_multi *hc)
1011 {
1012 	void __iomem *plx_acc_32;
1013 	u_int	pv;
1014 	u_long	plx_flags;
1015 
1016 	if (debug & DEBUG_HFCMULTI_INIT)
1017 		printk(KERN_DEBUG "%s: entered\n", __func__);
1018 
1019 	/* soft reset also masks all interrupts */
1020 	hc->hw.r_cirm |= V_SRES;
1021 	HFC_outb(hc, R_CIRM, hc->hw.r_cirm);
1022 	udelay(1000);
1023 	hc->hw.r_cirm &= ~V_SRES;
1024 	HFC_outb(hc, R_CIRM, hc->hw.r_cirm);
1025 	udelay(1000); /* instead of 'wait' that may cause locking */
1026 
1027 	/* release Speech Design card, if PLX was initialized */
1028 	if (test_bit(HFC_CHIP_PLXSD, &hc->chip) && hc->plx_membase) {
1029 		if (debug & DEBUG_HFCMULTI_PLXSD)
1030 			printk(KERN_DEBUG "%s: release PLXSD card %d\n",
1031 			       __func__, hc->id + 1);
1032 		spin_lock_irqsave(&plx_lock, plx_flags);
1033 		plx_acc_32 = hc->plx_membase + PLX_GPIOC;
1034 		writel(PLX_GPIOC_INIT, plx_acc_32);
1035 		pv = readl(plx_acc_32);
1036 		/* Termination off */
1037 		pv &= ~PLX_TERM_ON;
1038 		/* Disconnect the PCM */
1039 		pv |= PLX_SLAVE_EN_N;
1040 		pv &= ~PLX_MASTER_EN;
1041 		pv &= ~PLX_SYNC_O_EN;
1042 		/* Put the DSP in Reset */
1043 		pv &= ~PLX_DSP_RES_N;
1044 		writel(pv, plx_acc_32);
1045 		if (debug & DEBUG_HFCMULTI_INIT)
1046 			printk(KERN_DEBUG "%s: PCM off: PLX_GPIO=%x\n",
1047 			       __func__, pv);
1048 		spin_unlock_irqrestore(&plx_lock, plx_flags);
1049 	}
1050 
1051 	/* disable memory mapped ports / io ports */
1052 	test_and_clear_bit(HFC_CHIP_PLXSD, &hc->chip); /* prevent resync */
1053 	if (hc->pci_dev)
1054 		pci_write_config_word(hc->pci_dev, PCI_COMMAND, 0);
1055 	if (hc->pci_membase)
1056 		iounmap(hc->pci_membase);
1057 	if (hc->plx_membase)
1058 		iounmap(hc->plx_membase);
1059 	if (hc->pci_iobase)
1060 		release_region(hc->pci_iobase, 8);
1061 	if (hc->xhfc_membase)
1062 		iounmap((void *)hc->xhfc_membase);
1063 
1064 	if (hc->pci_dev) {
1065 		pci_disable_device(hc->pci_dev);
1066 		pci_set_drvdata(hc->pci_dev, NULL);
1067 	}
1068 	if (debug & DEBUG_HFCMULTI_INIT)
1069 		printk(KERN_DEBUG "%s: done\n", __func__);
1070 }
1071 
1072 /*
1073  * function called to reset the HFC chip. A complete software reset of chip
1074  * and fifos is done. All configuration of the chip is done.
1075  */
1076 
1077 static int
init_chip(struct hfc_multi * hc)1078 init_chip(struct hfc_multi *hc)
1079 {
1080 	u_long			flags, val, val2 = 0, rev;
1081 	int			i, err = 0;
1082 	u_char			r_conf_en, rval;
1083 	void __iomem		*plx_acc_32;
1084 	u_int			pv;
1085 	u_long			plx_flags, hfc_flags;
1086 	int			plx_count;
1087 	struct hfc_multi	*pos, *next, *plx_last_hc;
1088 
1089 	spin_lock_irqsave(&hc->lock, flags);
1090 	/* reset all registers */
1091 	memset(&hc->hw, 0, sizeof(struct hfcm_hw));
1092 
1093 	/* revision check */
1094 	if (debug & DEBUG_HFCMULTI_INIT)
1095 		printk(KERN_DEBUG "%s: entered\n", __func__);
1096 	val = HFC_inb(hc, R_CHIP_ID);
1097 	if ((val >> 4) != 0x8 && (val >> 4) != 0xc && (val >> 4) != 0xe &&
1098 	    (val >> 1) != 0x31) {
1099 		printk(KERN_INFO "HFC_multi: unknown CHIP_ID:%x\n", (u_int)val);
1100 		err = -EIO;
1101 		goto out;
1102 	}
1103 	rev = HFC_inb(hc, R_CHIP_RV);
1104 	printk(KERN_INFO
1105 	       "HFC_multi: detected HFC with chip ID=0x%lx revision=%ld%s\n",
1106 	       val, rev, (rev == 0 && (hc->ctype != HFC_TYPE_XHFC)) ?
1107 	       " (old FIFO handling)" : "");
1108 	if (hc->ctype != HFC_TYPE_XHFC && rev == 0) {
1109 		test_and_set_bit(HFC_CHIP_REVISION0, &hc->chip);
1110 		printk(KERN_WARNING
1111 		       "HFC_multi: NOTE: Your chip is revision 0, "
1112 		       "ask Cologne Chip for update. Newer chips "
1113 		       "have a better FIFO handling. Old chips "
1114 		       "still work but may have slightly lower "
1115 		       "HDLC transmit performance.\n");
1116 	}
1117 	if (rev > 1) {
1118 		printk(KERN_WARNING "HFC_multi: WARNING: This driver doesn't "
1119 		       "consider chip revision = %ld. The chip / "
1120 		       "bridge may not work.\n", rev);
1121 	}
1122 
1123 	/* set s-ram size */
1124 	hc->Flen = 0x10;
1125 	hc->Zmin = 0x80;
1126 	hc->Zlen = 384;
1127 	hc->DTMFbase = 0x1000;
1128 	if (test_bit(HFC_CHIP_EXRAM_128, &hc->chip)) {
1129 		if (debug & DEBUG_HFCMULTI_INIT)
1130 			printk(KERN_DEBUG "%s: changing to 128K external RAM\n",
1131 			       __func__);
1132 		hc->hw.r_ctrl |= V_EXT_RAM;
1133 		hc->hw.r_ram_sz = 1;
1134 		hc->Flen = 0x20;
1135 		hc->Zmin = 0xc0;
1136 		hc->Zlen = 1856;
1137 		hc->DTMFbase = 0x2000;
1138 	}
1139 	if (test_bit(HFC_CHIP_EXRAM_512, &hc->chip)) {
1140 		if (debug & DEBUG_HFCMULTI_INIT)
1141 			printk(KERN_DEBUG "%s: changing to 512K external RAM\n",
1142 			       __func__);
1143 		hc->hw.r_ctrl |= V_EXT_RAM;
1144 		hc->hw.r_ram_sz = 2;
1145 		hc->Flen = 0x20;
1146 		hc->Zmin = 0xc0;
1147 		hc->Zlen = 8000;
1148 		hc->DTMFbase = 0x2000;
1149 	}
1150 	if (hc->ctype == HFC_TYPE_XHFC) {
1151 		hc->Flen = 0x8;
1152 		hc->Zmin = 0x0;
1153 		hc->Zlen = 64;
1154 		hc->DTMFbase = 0x0;
1155 	}
1156 	hc->max_trans = poll << 1;
1157 	if (hc->max_trans > hc->Zlen)
1158 		hc->max_trans = hc->Zlen;
1159 
1160 	/* Speech Design PLX bridge */
1161 	if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1162 		if (debug & DEBUG_HFCMULTI_PLXSD)
1163 			printk(KERN_DEBUG "%s: initializing PLXSD card %d\n",
1164 			       __func__, hc->id + 1);
1165 		spin_lock_irqsave(&plx_lock, plx_flags);
1166 		plx_acc_32 = hc->plx_membase + PLX_GPIOC;
1167 		writel(PLX_GPIOC_INIT, plx_acc_32);
1168 		pv = readl(plx_acc_32);
1169 		/* The first and the last cards are terminating the PCM bus */
1170 		pv |= PLX_TERM_ON; /* hc is currently the last */
1171 		/* Disconnect the PCM */
1172 		pv |= PLX_SLAVE_EN_N;
1173 		pv &= ~PLX_MASTER_EN;
1174 		pv &= ~PLX_SYNC_O_EN;
1175 		/* Put the DSP in Reset */
1176 		pv &= ~PLX_DSP_RES_N;
1177 		writel(pv, plx_acc_32);
1178 		spin_unlock_irqrestore(&plx_lock, plx_flags);
1179 		if (debug & DEBUG_HFCMULTI_INIT)
1180 			printk(KERN_DEBUG "%s: slave/term: PLX_GPIO=%x\n",
1181 			       __func__, pv);
1182 		/*
1183 		 * If we are the 3rd PLXSD card or higher, we must turn
1184 		 * termination of last PLXSD card off.
1185 		 */
1186 		spin_lock_irqsave(&HFClock, hfc_flags);
1187 		plx_count = 0;
1188 		plx_last_hc = NULL;
1189 		list_for_each_entry_safe(pos, next, &HFClist, list) {
1190 			if (test_bit(HFC_CHIP_PLXSD, &pos->chip)) {
1191 				plx_count++;
1192 				if (pos != hc)
1193 					plx_last_hc = pos;
1194 			}
1195 		}
1196 		if (plx_count >= 3) {
1197 			if (debug & DEBUG_HFCMULTI_PLXSD)
1198 				printk(KERN_DEBUG "%s: card %d is between, so "
1199 				       "we disable termination\n",
1200 				       __func__, plx_last_hc->id + 1);
1201 			spin_lock_irqsave(&plx_lock, plx_flags);
1202 			plx_acc_32 = plx_last_hc->plx_membase + PLX_GPIOC;
1203 			pv = readl(plx_acc_32);
1204 			pv &= ~PLX_TERM_ON;
1205 			writel(pv, plx_acc_32);
1206 			spin_unlock_irqrestore(&plx_lock, plx_flags);
1207 			if (debug & DEBUG_HFCMULTI_INIT)
1208 				printk(KERN_DEBUG
1209 				       "%s: term off: PLX_GPIO=%x\n",
1210 				       __func__, pv);
1211 		}
1212 		spin_unlock_irqrestore(&HFClock, hfc_flags);
1213 		hc->hw.r_pcm_md0 = V_F0_LEN; /* shift clock for DSP */
1214 	}
1215 
1216 	if (test_bit(HFC_CHIP_EMBSD, &hc->chip))
1217 		hc->hw.r_pcm_md0 = V_F0_LEN; /* shift clock for DSP */
1218 
1219 	/* we only want the real Z2 read-pointer for revision > 0 */
1220 	if (!test_bit(HFC_CHIP_REVISION0, &hc->chip))
1221 		hc->hw.r_ram_sz |= V_FZ_MD;
1222 
1223 	/* select pcm mode */
1224 	if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) {
1225 		if (debug & DEBUG_HFCMULTI_INIT)
1226 			printk(KERN_DEBUG "%s: setting PCM into slave mode\n",
1227 			       __func__);
1228 	} else
1229 		if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip) && !plxsd_master) {
1230 			if (debug & DEBUG_HFCMULTI_INIT)
1231 				printk(KERN_DEBUG "%s: setting PCM into master mode\n",
1232 				       __func__);
1233 			hc->hw.r_pcm_md0 |= V_PCM_MD;
1234 		} else {
1235 			if (debug & DEBUG_HFCMULTI_INIT)
1236 				printk(KERN_DEBUG "%s: performing PCM auto detect\n",
1237 				       __func__);
1238 		}
1239 
1240 	/* soft reset */
1241 	HFC_outb(hc, R_CTRL, hc->hw.r_ctrl);
1242 	if (hc->ctype == HFC_TYPE_XHFC)
1243 		HFC_outb(hc, 0x0C /* R_FIFO_THRES */,
1244 			 0x11 /* 16 Bytes TX/RX */);
1245 	else
1246 		HFC_outb(hc, R_RAM_SZ, hc->hw.r_ram_sz);
1247 	HFC_outb(hc, R_FIFO_MD, 0);
1248 	if (hc->ctype == HFC_TYPE_XHFC)
1249 		hc->hw.r_cirm = V_SRES | V_HFCRES | V_PCMRES | V_STRES;
1250 	else
1251 		hc->hw.r_cirm = V_SRES | V_HFCRES | V_PCMRES | V_STRES
1252 			| V_RLD_EPR;
1253 	HFC_outb(hc, R_CIRM, hc->hw.r_cirm);
1254 	udelay(100);
1255 	hc->hw.r_cirm = 0;
1256 	HFC_outb(hc, R_CIRM, hc->hw.r_cirm);
1257 	udelay(100);
1258 	if (hc->ctype != HFC_TYPE_XHFC)
1259 		HFC_outb(hc, R_RAM_SZ, hc->hw.r_ram_sz);
1260 
1261 	/* Speech Design PLX bridge pcm and sync mode */
1262 	if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1263 		spin_lock_irqsave(&plx_lock, plx_flags);
1264 		plx_acc_32 = hc->plx_membase + PLX_GPIOC;
1265 		pv = readl(plx_acc_32);
1266 		/* Connect PCM */
1267 		if (hc->hw.r_pcm_md0 & V_PCM_MD) {
1268 			pv |= PLX_MASTER_EN | PLX_SLAVE_EN_N;
1269 			pv |= PLX_SYNC_O_EN;
1270 			if (debug & DEBUG_HFCMULTI_INIT)
1271 				printk(KERN_DEBUG "%s: master: PLX_GPIO=%x\n",
1272 				       __func__, pv);
1273 		} else {
1274 			pv &= ~(PLX_MASTER_EN | PLX_SLAVE_EN_N);
1275 			pv &= ~PLX_SYNC_O_EN;
1276 			if (debug & DEBUG_HFCMULTI_INIT)
1277 				printk(KERN_DEBUG "%s: slave: PLX_GPIO=%x\n",
1278 				       __func__, pv);
1279 		}
1280 		writel(pv, plx_acc_32);
1281 		spin_unlock_irqrestore(&plx_lock, plx_flags);
1282 	}
1283 
1284 	/* PCM setup */
1285 	HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0x90);
1286 	if (hc->slots == 32)
1287 		HFC_outb(hc, R_PCM_MD1, 0x00);
1288 	if (hc->slots == 64)
1289 		HFC_outb(hc, R_PCM_MD1, 0x10);
1290 	if (hc->slots == 128)
1291 		HFC_outb(hc, R_PCM_MD1, 0x20);
1292 	HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0xa0);
1293 	if (test_bit(HFC_CHIP_PLXSD, &hc->chip))
1294 		HFC_outb(hc, R_PCM_MD2, V_SYNC_SRC); /* sync via SYNC_I / O */
1295 	else if (test_bit(HFC_CHIP_EMBSD, &hc->chip))
1296 		HFC_outb(hc, R_PCM_MD2, 0x10); /* V_C2O_EN */
1297 	else
1298 		HFC_outb(hc, R_PCM_MD2, 0x00); /* sync from interface */
1299 	HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0x00);
1300 	for (i = 0; i < 256; i++) {
1301 		HFC_outb_nodebug(hc, R_SLOT, i);
1302 		HFC_outb_nodebug(hc, A_SL_CFG, 0);
1303 		if (hc->ctype != HFC_TYPE_XHFC)
1304 			HFC_outb_nodebug(hc, A_CONF, 0);
1305 		hc->slot_owner[i] = -1;
1306 	}
1307 
1308 	/* set clock speed */
1309 	if (test_bit(HFC_CHIP_CLOCK2, &hc->chip)) {
1310 		if (debug & DEBUG_HFCMULTI_INIT)
1311 			printk(KERN_DEBUG
1312 			       "%s: setting double clock\n", __func__);
1313 		HFC_outb(hc, R_BRG_PCM_CFG, V_PCM_CLK);
1314 	}
1315 
1316 	if (test_bit(HFC_CHIP_EMBSD, &hc->chip))
1317 		HFC_outb(hc, 0x02 /* R_CLK_CFG */, 0x40 /* V_CLKO_OFF */);
1318 
1319 	/* B410P GPIO */
1320 	if (test_bit(HFC_CHIP_B410P, &hc->chip)) {
1321 		printk(KERN_NOTICE "Setting GPIOs\n");
1322 		HFC_outb(hc, R_GPIO_SEL, 0x30);
1323 		HFC_outb(hc, R_GPIO_EN1, 0x3);
1324 		udelay(1000);
1325 		printk(KERN_NOTICE "calling vpm_init\n");
1326 		vpm_init(hc);
1327 	}
1328 
1329 	/* check if R_F0_CNT counts (8 kHz frame count) */
1330 	val = HFC_inb(hc, R_F0_CNTL);
1331 	val += HFC_inb(hc, R_F0_CNTH) << 8;
1332 	if (debug & DEBUG_HFCMULTI_INIT)
1333 		printk(KERN_DEBUG
1334 		       "HFC_multi F0_CNT %ld after reset\n", val);
1335 	spin_unlock_irqrestore(&hc->lock, flags);
1336 	set_current_state(TASK_UNINTERRUPTIBLE);
1337 	schedule_timeout((HZ / 100) ? : 1); /* Timeout minimum 10ms */
1338 	spin_lock_irqsave(&hc->lock, flags);
1339 	val2 = HFC_inb(hc, R_F0_CNTL);
1340 	val2 += HFC_inb(hc, R_F0_CNTH) << 8;
1341 	if (debug & DEBUG_HFCMULTI_INIT)
1342 		printk(KERN_DEBUG
1343 		       "HFC_multi F0_CNT %ld after 10 ms (1st try)\n",
1344 		       val2);
1345 	if (val2 >= val + 8) { /* 1 ms */
1346 		/* it counts, so we keep the pcm mode */
1347 		if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip))
1348 			printk(KERN_INFO "controller is PCM bus MASTER\n");
1349 		else
1350 			if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip))
1351 				printk(KERN_INFO "controller is PCM bus SLAVE\n");
1352 			else {
1353 				test_and_set_bit(HFC_CHIP_PCM_SLAVE, &hc->chip);
1354 				printk(KERN_INFO "controller is PCM bus SLAVE "
1355 				       "(auto detected)\n");
1356 			}
1357 	} else {
1358 		/* does not count */
1359 		if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip)) {
1360 		controller_fail:
1361 			printk(KERN_ERR "HFC_multi ERROR, getting no 125us "
1362 			       "pulse. Seems that controller fails.\n");
1363 			err = -EIO;
1364 			goto out;
1365 		}
1366 		if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) {
1367 			printk(KERN_INFO "controller is PCM bus SLAVE "
1368 			       "(ignoring missing PCM clock)\n");
1369 		} else {
1370 			/* only one pcm master */
1371 			if (test_bit(HFC_CHIP_PLXSD, &hc->chip)
1372 			    && plxsd_master) {
1373 				printk(KERN_ERR "HFC_multi ERROR, no clock "
1374 				       "on another Speech Design card found. "
1375 				       "Please be sure to connect PCM cable.\n");
1376 				err = -EIO;
1377 				goto out;
1378 			}
1379 			/* retry with master clock */
1380 			if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1381 				spin_lock_irqsave(&plx_lock, plx_flags);
1382 				plx_acc_32 = hc->plx_membase + PLX_GPIOC;
1383 				pv = readl(plx_acc_32);
1384 				pv |= PLX_MASTER_EN | PLX_SLAVE_EN_N;
1385 				pv |= PLX_SYNC_O_EN;
1386 				writel(pv, plx_acc_32);
1387 				spin_unlock_irqrestore(&plx_lock, plx_flags);
1388 				if (debug & DEBUG_HFCMULTI_INIT)
1389 					printk(KERN_DEBUG "%s: master: "
1390 					       "PLX_GPIO=%x\n", __func__, pv);
1391 			}
1392 			hc->hw.r_pcm_md0 |= V_PCM_MD;
1393 			HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0x00);
1394 			spin_unlock_irqrestore(&hc->lock, flags);
1395 			set_current_state(TASK_UNINTERRUPTIBLE);
1396 			schedule_timeout((HZ / 100) ?: 1); /* Timeout min. 10ms */
1397 			spin_lock_irqsave(&hc->lock, flags);
1398 			val2 = HFC_inb(hc, R_F0_CNTL);
1399 			val2 += HFC_inb(hc, R_F0_CNTH) << 8;
1400 			if (debug & DEBUG_HFCMULTI_INIT)
1401 				printk(KERN_DEBUG "HFC_multi F0_CNT %ld after "
1402 				       "10 ms (2nd try)\n", val2);
1403 			if (val2 >= val + 8) { /* 1 ms */
1404 				test_and_set_bit(HFC_CHIP_PCM_MASTER,
1405 						 &hc->chip);
1406 				printk(KERN_INFO "controller is PCM bus MASTER "
1407 				       "(auto detected)\n");
1408 			} else
1409 				goto controller_fail;
1410 		}
1411 	}
1412 
1413 	/* Release the DSP Reset */
1414 	if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1415 		if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip))
1416 			plxsd_master = 1;
1417 		spin_lock_irqsave(&plx_lock, plx_flags);
1418 		plx_acc_32 = hc->plx_membase + PLX_GPIOC;
1419 		pv = readl(plx_acc_32);
1420 		pv |=  PLX_DSP_RES_N;
1421 		writel(pv, plx_acc_32);
1422 		spin_unlock_irqrestore(&plx_lock, plx_flags);
1423 		if (debug & DEBUG_HFCMULTI_INIT)
1424 			printk(KERN_DEBUG "%s: reset off: PLX_GPIO=%x\n",
1425 			       __func__, pv);
1426 	}
1427 
1428 	/* pcm id */
1429 	if (hc->pcm)
1430 		printk(KERN_INFO "controller has given PCM BUS ID %d\n",
1431 		       hc->pcm);
1432 	else {
1433 		if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip)
1434 		    || test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1435 			PCM_cnt++; /* SD has proprietary bridging */
1436 		}
1437 		hc->pcm = PCM_cnt;
1438 		printk(KERN_INFO "controller has PCM BUS ID %d "
1439 		       "(auto selected)\n", hc->pcm);
1440 	}
1441 
1442 	/* set up timer */
1443 	HFC_outb(hc, R_TI_WD, poll_timer);
1444 	hc->hw.r_irqmsk_misc |= V_TI_IRQMSK;
1445 
1446 	/* set E1 state machine IRQ */
1447 	if (hc->ctype == HFC_TYPE_E1)
1448 		hc->hw.r_irqmsk_misc |= V_STA_IRQMSK;
1449 
1450 	/* set DTMF detection */
1451 	if (test_bit(HFC_CHIP_DTMF, &hc->chip)) {
1452 		if (debug & DEBUG_HFCMULTI_INIT)
1453 			printk(KERN_DEBUG "%s: enabling DTMF detection "
1454 			       "for all B-channel\n", __func__);
1455 		hc->hw.r_dtmf = V_DTMF_EN | V_DTMF_STOP;
1456 		if (test_bit(HFC_CHIP_ULAW, &hc->chip))
1457 			hc->hw.r_dtmf |= V_ULAW_SEL;
1458 		HFC_outb(hc, R_DTMF_N, 102 - 1);
1459 		hc->hw.r_irqmsk_misc |= V_DTMF_IRQMSK;
1460 	}
1461 
1462 	/* conference engine */
1463 	if (test_bit(HFC_CHIP_ULAW, &hc->chip))
1464 		r_conf_en = V_CONF_EN | V_ULAW;
1465 	else
1466 		r_conf_en = V_CONF_EN;
1467 	if (hc->ctype != HFC_TYPE_XHFC)
1468 		HFC_outb(hc, R_CONF_EN, r_conf_en);
1469 
1470 	/* setting leds */
1471 	switch (hc->leds) {
1472 	case 1: /* HFC-E1 OEM */
1473 		if (test_bit(HFC_CHIP_WATCHDOG, &hc->chip))
1474 			HFC_outb(hc, R_GPIO_SEL, 0x32);
1475 		else
1476 			HFC_outb(hc, R_GPIO_SEL, 0x30);
1477 
1478 		HFC_outb(hc, R_GPIO_EN1, 0x0f);
1479 		HFC_outb(hc, R_GPIO_OUT1, 0x00);
1480 
1481 		HFC_outb(hc, R_GPIO_EN0, V_GPIO_EN2 | V_GPIO_EN3);
1482 		break;
1483 
1484 	case 2: /* HFC-4S OEM */
1485 	case 3:
1486 		HFC_outb(hc, R_GPIO_SEL, 0xf0);
1487 		HFC_outb(hc, R_GPIO_EN1, 0xff);
1488 		HFC_outb(hc, R_GPIO_OUT1, 0x00);
1489 		break;
1490 	}
1491 
1492 	if (test_bit(HFC_CHIP_EMBSD, &hc->chip)) {
1493 		hc->hw.r_st_sync = 0x10; /* V_AUTO_SYNCI */
1494 		HFC_outb(hc, R_ST_SYNC, hc->hw.r_st_sync);
1495 	}
1496 
1497 	/* set master clock */
1498 	if (hc->masterclk >= 0) {
1499 		if (debug & DEBUG_HFCMULTI_INIT)
1500 			printk(KERN_DEBUG "%s: setting ST master clock "
1501 			       "to port %d (0..%d)\n",
1502 			       __func__, hc->masterclk, hc->ports - 1);
1503 		hc->hw.r_st_sync |= (hc->masterclk | V_AUTO_SYNC);
1504 		HFC_outb(hc, R_ST_SYNC, hc->hw.r_st_sync);
1505 	}
1506 
1507 
1508 
1509 	/* setting misc irq */
1510 	HFC_outb(hc, R_IRQMSK_MISC, hc->hw.r_irqmsk_misc);
1511 	if (debug & DEBUG_HFCMULTI_INIT)
1512 		printk(KERN_DEBUG "r_irqmsk_misc.2: 0x%x\n",
1513 		       hc->hw.r_irqmsk_misc);
1514 
1515 	/* RAM access test */
1516 	HFC_outb(hc, R_RAM_ADDR0, 0);
1517 	HFC_outb(hc, R_RAM_ADDR1, 0);
1518 	HFC_outb(hc, R_RAM_ADDR2, 0);
1519 	for (i = 0; i < 256; i++) {
1520 		HFC_outb_nodebug(hc, R_RAM_ADDR0, i);
1521 		HFC_outb_nodebug(hc, R_RAM_DATA, ((i * 3) & 0xff));
1522 	}
1523 	for (i = 0; i < 256; i++) {
1524 		HFC_outb_nodebug(hc, R_RAM_ADDR0, i);
1525 		HFC_inb_nodebug(hc, R_RAM_DATA);
1526 		rval = HFC_inb_nodebug(hc, R_INT_DATA);
1527 		if (rval != ((i * 3) & 0xff)) {
1528 			printk(KERN_DEBUG
1529 			       "addr:%x val:%x should:%x\n", i, rval,
1530 			       (i * 3) & 0xff);
1531 			err++;
1532 		}
1533 	}
1534 	if (err) {
1535 		printk(KERN_DEBUG "aborting - %d RAM access errors\n", err);
1536 		err = -EIO;
1537 		goto out;
1538 	}
1539 
1540 	if (debug & DEBUG_HFCMULTI_INIT)
1541 		printk(KERN_DEBUG "%s: done\n", __func__);
1542 out:
1543 	spin_unlock_irqrestore(&hc->lock, flags);
1544 	return err;
1545 }
1546 
1547 
1548 /*
1549  * control the watchdog
1550  */
1551 static void
hfcmulti_watchdog(struct hfc_multi * hc)1552 hfcmulti_watchdog(struct hfc_multi *hc)
1553 {
1554 	hc->wdcount++;
1555 
1556 	if (hc->wdcount > 10) {
1557 		hc->wdcount = 0;
1558 		hc->wdbyte = hc->wdbyte == V_GPIO_OUT2 ?
1559 			V_GPIO_OUT3 : V_GPIO_OUT2;
1560 
1561 		/* printk("Sending Watchdog Kill %x\n",hc->wdbyte); */
1562 		HFC_outb(hc, R_GPIO_EN0, V_GPIO_EN2 | V_GPIO_EN3);
1563 		HFC_outb(hc, R_GPIO_OUT0, hc->wdbyte);
1564 	}
1565 }
1566 
1567 
1568 
1569 /*
1570  * output leds
1571  */
1572 static void
hfcmulti_leds(struct hfc_multi * hc)1573 hfcmulti_leds(struct hfc_multi *hc)
1574 {
1575 	unsigned long lled;
1576 	unsigned long leddw;
1577 	int i, state, active, leds;
1578 	struct dchannel *dch;
1579 	int led[4];
1580 
1581 	switch (hc->leds) {
1582 	case 1: /* HFC-E1 OEM */
1583 		/* 2 red steady:       LOS
1584 		 * 1 red steady:       L1 not active
1585 		 * 2 green steady:     L1 active
1586 		 * 1st green flashing: activity on TX
1587 		 * 2nd green flashing: activity on RX
1588 		 */
1589 		led[0] = 0;
1590 		led[1] = 0;
1591 		led[2] = 0;
1592 		led[3] = 0;
1593 		dch = hc->chan[hc->dnum[0]].dch;
1594 		if (dch) {
1595 			if (hc->chan[hc->dnum[0]].los)
1596 				led[1] = 1;
1597 			if (hc->e1_state != 1) {
1598 				led[0] = 1;
1599 				hc->flash[2] = 0;
1600 				hc->flash[3] = 0;
1601 			} else {
1602 				led[2] = 1;
1603 				led[3] = 1;
1604 				if (!hc->flash[2] && hc->activity_tx)
1605 					hc->flash[2] = poll;
1606 				if (!hc->flash[3] && hc->activity_rx)
1607 					hc->flash[3] = poll;
1608 				if (hc->flash[2] && hc->flash[2] < 1024)
1609 					led[2] = 0;
1610 				if (hc->flash[3] && hc->flash[3] < 1024)
1611 					led[3] = 0;
1612 				if (hc->flash[2] >= 2048)
1613 					hc->flash[2] = 0;
1614 				if (hc->flash[3] >= 2048)
1615 					hc->flash[3] = 0;
1616 				if (hc->flash[2])
1617 					hc->flash[2] += poll;
1618 				if (hc->flash[3])
1619 					hc->flash[3] += poll;
1620 			}
1621 		}
1622 		leds = (led[0] | (led[1]<<2) | (led[2]<<1) | (led[3]<<3))^0xF;
1623 		/* leds are inverted */
1624 		if (leds != (int)hc->ledstate) {
1625 			HFC_outb_nodebug(hc, R_GPIO_OUT1, leds);
1626 			hc->ledstate = leds;
1627 		}
1628 		break;
1629 
1630 	case 2: /* HFC-4S OEM */
1631 		/* red steady:     PH_DEACTIVATE
1632 		 * green steady:   PH_ACTIVATE
1633 		 * green flashing: activity on TX
1634 		 */
1635 		for (i = 0; i < 4; i++) {
1636 			state = 0;
1637 			active = -1;
1638 			dch = hc->chan[(i << 2) | 2].dch;
1639 			if (dch) {
1640 				state = dch->state;
1641 				if (dch->dev.D.protocol == ISDN_P_NT_S0)
1642 					active = 3;
1643 				else
1644 					active = 7;
1645 			}
1646 			if (state) {
1647 				if (state == active) {
1648 					led[i] = 1; /* led green */
1649 					hc->activity_tx |= hc->activity_rx;
1650 					if (!hc->flash[i] &&
1651 						(hc->activity_tx & (1 << i)))
1652 							hc->flash[i] = poll;
1653 					if (hc->flash[i] && hc->flash[i] < 1024)
1654 						led[i] = 0; /* led off */
1655 					if (hc->flash[i] >= 2048)
1656 						hc->flash[i] = 0;
1657 					if (hc->flash[i])
1658 						hc->flash[i] += poll;
1659 				} else {
1660 					led[i] = 2; /* led red */
1661 					hc->flash[i] = 0;
1662 				}
1663 			} else
1664 				led[i] = 0; /* led off */
1665 		}
1666 		if (test_bit(HFC_CHIP_B410P, &hc->chip)) {
1667 			leds = 0;
1668 			for (i = 0; i < 4; i++) {
1669 				if (led[i] == 1) {
1670 					/*green*/
1671 					leds |= (0x2 << (i * 2));
1672 				} else if (led[i] == 2) {
1673 					/*red*/
1674 					leds |= (0x1 << (i * 2));
1675 				}
1676 			}
1677 			if (leds != (int)hc->ledstate) {
1678 				vpm_out(hc, 0, 0x1a8 + 3, leds);
1679 				hc->ledstate = leds;
1680 			}
1681 		} else {
1682 			leds = ((led[3] > 0) << 0) | ((led[1] > 0) << 1) |
1683 				((led[0] > 0) << 2) | ((led[2] > 0) << 3) |
1684 				((led[3] & 1) << 4) | ((led[1] & 1) << 5) |
1685 				((led[0] & 1) << 6) | ((led[2] & 1) << 7);
1686 			if (leds != (int)hc->ledstate) {
1687 				HFC_outb_nodebug(hc, R_GPIO_EN1, leds & 0x0F);
1688 				HFC_outb_nodebug(hc, R_GPIO_OUT1, leds >> 4);
1689 				hc->ledstate = leds;
1690 			}
1691 		}
1692 		break;
1693 
1694 	case 3: /* HFC 1S/2S Beronet */
1695 		/* red steady:     PH_DEACTIVATE
1696 		 * green steady:   PH_ACTIVATE
1697 		 * green flashing: activity on TX
1698 		 */
1699 		for (i = 0; i < 2; i++) {
1700 			state = 0;
1701 			active = -1;
1702 			dch = hc->chan[(i << 2) | 2].dch;
1703 			if (dch) {
1704 				state = dch->state;
1705 				if (dch->dev.D.protocol == ISDN_P_NT_S0)
1706 					active = 3;
1707 				else
1708 					active = 7;
1709 			}
1710 			if (state) {
1711 				if (state == active) {
1712 					led[i] = 1; /* led green */
1713 					hc->activity_tx |= hc->activity_rx;
1714 					if (!hc->flash[i] &&
1715 						(hc->activity_tx & (1 << i)))
1716 							hc->flash[i] = poll;
1717 					if (hc->flash[i] < 1024)
1718 						led[i] = 0; /* led off */
1719 					if (hc->flash[i] >= 2048)
1720 						hc->flash[i] = 0;
1721 					if (hc->flash[i])
1722 						hc->flash[i] += poll;
1723 				} else {
1724 					led[i] = 2; /* led red */
1725 					hc->flash[i] = 0;
1726 				}
1727 			} else
1728 				led[i] = 0; /* led off */
1729 		}
1730 		leds = (led[0] > 0) | ((led[1] > 0) << 1) | ((led[0]&1) << 2)
1731 			| ((led[1]&1) << 3);
1732 		if (leds != (int)hc->ledstate) {
1733 			HFC_outb_nodebug(hc, R_GPIO_EN1,
1734 					 ((led[0] > 0) << 2) | ((led[1] > 0) << 3));
1735 			HFC_outb_nodebug(hc, R_GPIO_OUT1,
1736 					 ((led[0] & 1) << 2) | ((led[1] & 1) << 3));
1737 			hc->ledstate = leds;
1738 		}
1739 		break;
1740 	case 8: /* HFC 8S+ Beronet */
1741 		/* off:      PH_DEACTIVATE
1742 		 * steady:   PH_ACTIVATE
1743 		 * flashing: activity on TX
1744 		 */
1745 		lled = 0xff; /* leds off */
1746 		for (i = 0; i < 8; i++) {
1747 			state = 0;
1748 			active = -1;
1749 			dch = hc->chan[(i << 2) | 2].dch;
1750 			if (dch) {
1751 				state = dch->state;
1752 				if (dch->dev.D.protocol == ISDN_P_NT_S0)
1753 					active = 3;
1754 				else
1755 					active = 7;
1756 			}
1757 			if (state) {
1758 				if (state == active) {
1759 					lled &= ~(1 << i); /* led on */
1760 					hc->activity_tx |= hc->activity_rx;
1761 					if (!hc->flash[i] &&
1762 						(hc->activity_tx & (1 << i)))
1763 							hc->flash[i] = poll;
1764 					if (hc->flash[i] < 1024)
1765 						lled |= 1 << i; /* led off */
1766 					if (hc->flash[i] >= 2048)
1767 						hc->flash[i] = 0;
1768 					if (hc->flash[i])
1769 						hc->flash[i] += poll;
1770 				} else
1771 					hc->flash[i] = 0;
1772 			}
1773 		}
1774 		leddw = lled << 24 | lled << 16 | lled << 8 | lled;
1775 		if (leddw != hc->ledstate) {
1776 			/* HFC_outb(hc, R_BRG_PCM_CFG, 1);
1777 			   HFC_outb(c, R_BRG_PCM_CFG, (0x0 << 6) | 0x3); */
1778 			/* was _io before */
1779 			HFC_outb_nodebug(hc, R_BRG_PCM_CFG, 1 | V_PCM_CLK);
1780 			outw(0x4000, hc->pci_iobase + 4);
1781 			outl(leddw, hc->pci_iobase);
1782 			HFC_outb_nodebug(hc, R_BRG_PCM_CFG, V_PCM_CLK);
1783 			hc->ledstate = leddw;
1784 		}
1785 		break;
1786 	}
1787 	hc->activity_tx = 0;
1788 	hc->activity_rx = 0;
1789 }
1790 /*
1791  * read dtmf coefficients
1792  */
1793 
1794 static void
hfcmulti_dtmf(struct hfc_multi * hc)1795 hfcmulti_dtmf(struct hfc_multi *hc)
1796 {
1797 	s32		*coeff;
1798 	u_int		mantissa;
1799 	int		co, ch;
1800 	struct bchannel	*bch = NULL;
1801 	u8		exponent;
1802 	int		dtmf = 0;
1803 	int		addr;
1804 	u16		w_float;
1805 	struct sk_buff	*skb;
1806 	struct mISDNhead *hh;
1807 
1808 	if (debug & DEBUG_HFCMULTI_DTMF)
1809 		printk(KERN_DEBUG "%s: dtmf detection irq\n", __func__);
1810 	for (ch = 0; ch <= 31; ch++) {
1811 		/* only process enabled B-channels */
1812 		bch = hc->chan[ch].bch;
1813 		if (!bch)
1814 			continue;
1815 		if (!hc->created[hc->chan[ch].port])
1816 			continue;
1817 		if (!test_bit(FLG_TRANSPARENT, &bch->Flags))
1818 			continue;
1819 		if (debug & DEBUG_HFCMULTI_DTMF)
1820 			printk(KERN_DEBUG "%s: dtmf channel %d:",
1821 			       __func__, ch);
1822 		coeff = &(hc->chan[ch].coeff[hc->chan[ch].coeff_count * 16]);
1823 		dtmf = 1;
1824 		for (co = 0; co < 8; co++) {
1825 			/* read W(n-1) coefficient */
1826 			addr = hc->DTMFbase + ((co << 7) | (ch << 2));
1827 			HFC_outb_nodebug(hc, R_RAM_ADDR0, addr);
1828 			HFC_outb_nodebug(hc, R_RAM_ADDR1, addr >> 8);
1829 			HFC_outb_nodebug(hc, R_RAM_ADDR2, (addr >> 16)
1830 					 | V_ADDR_INC);
1831 			w_float = HFC_inb_nodebug(hc, R_RAM_DATA);
1832 			w_float |= (HFC_inb_nodebug(hc, R_RAM_DATA) << 8);
1833 			if (debug & DEBUG_HFCMULTI_DTMF)
1834 				printk(" %04x", w_float);
1835 
1836 			/* decode float (see chip doc) */
1837 			mantissa = w_float & 0x0fff;
1838 			if (w_float & 0x8000)
1839 				mantissa |= 0xfffff000;
1840 			exponent = (w_float >> 12) & 0x7;
1841 			if (exponent) {
1842 				mantissa ^= 0x1000;
1843 				mantissa <<= (exponent - 1);
1844 			}
1845 
1846 			/* store coefficient */
1847 			coeff[co << 1] = mantissa;
1848 
1849 			/* read W(n) coefficient */
1850 			w_float = HFC_inb_nodebug(hc, R_RAM_DATA);
1851 			w_float |= (HFC_inb_nodebug(hc, R_RAM_DATA) << 8);
1852 			if (debug & DEBUG_HFCMULTI_DTMF)
1853 				printk(" %04x", w_float);
1854 
1855 			/* decode float (see chip doc) */
1856 			mantissa = w_float & 0x0fff;
1857 			if (w_float & 0x8000)
1858 				mantissa |= 0xfffff000;
1859 			exponent = (w_float >> 12) & 0x7;
1860 			if (exponent) {
1861 				mantissa ^= 0x1000;
1862 				mantissa <<= (exponent - 1);
1863 			}
1864 
1865 			/* store coefficient */
1866 			coeff[(co << 1) | 1] = mantissa;
1867 		}
1868 		if (debug & DEBUG_HFCMULTI_DTMF)
1869 			printk(" DTMF ready %08x %08x %08x %08x "
1870 			       "%08x %08x %08x %08x\n",
1871 			       coeff[0], coeff[1], coeff[2], coeff[3],
1872 			       coeff[4], coeff[5], coeff[6], coeff[7]);
1873 		hc->chan[ch].coeff_count++;
1874 		if (hc->chan[ch].coeff_count == 8) {
1875 			hc->chan[ch].coeff_count = 0;
1876 			skb = mI_alloc_skb(512, GFP_ATOMIC);
1877 			if (!skb) {
1878 				printk(KERN_DEBUG "%s: No memory for skb\n",
1879 				       __func__);
1880 				continue;
1881 			}
1882 			hh = mISDN_HEAD_P(skb);
1883 			hh->prim = PH_CONTROL_IND;
1884 			hh->id = DTMF_HFC_COEF;
1885 			skb_put_data(skb, hc->chan[ch].coeff, 512);
1886 			recv_Bchannel_skb(bch, skb);
1887 		}
1888 	}
1889 
1890 	/* restart DTMF processing */
1891 	hc->dtmf = dtmf;
1892 	if (dtmf)
1893 		HFC_outb_nodebug(hc, R_DTMF, hc->hw.r_dtmf | V_RST_DTMF);
1894 }
1895 
1896 
1897 /*
1898  * fill fifo as much as possible
1899  */
1900 
1901 static void
hfcmulti_tx(struct hfc_multi * hc,int ch)1902 hfcmulti_tx(struct hfc_multi *hc, int ch)
1903 {
1904 	int i, ii, temp, tmp_len, len = 0;
1905 	int Zspace, z1, z2; /* must be int for calculation */
1906 	int Fspace, f1, f2;
1907 	u_char *d;
1908 	int *txpending, slot_tx;
1909 	struct	bchannel *bch;
1910 	struct  dchannel *dch;
1911 	struct  sk_buff **sp = NULL;
1912 	int *idxp;
1913 
1914 	bch = hc->chan[ch].bch;
1915 	dch = hc->chan[ch].dch;
1916 	if ((!dch) && (!bch))
1917 		return;
1918 
1919 	txpending = &hc->chan[ch].txpending;
1920 	slot_tx = hc->chan[ch].slot_tx;
1921 	if (dch) {
1922 		if (!test_bit(FLG_ACTIVE, &dch->Flags))
1923 			return;
1924 		sp = &dch->tx_skb;
1925 		idxp = &dch->tx_idx;
1926 	} else {
1927 		if (!test_bit(FLG_ACTIVE, &bch->Flags))
1928 			return;
1929 		sp = &bch->tx_skb;
1930 		idxp = &bch->tx_idx;
1931 	}
1932 	if (*sp)
1933 		len = (*sp)->len;
1934 
1935 	if ((!len) && *txpending != 1)
1936 		return; /* no data */
1937 
1938 	if (test_bit(HFC_CHIP_B410P, &hc->chip) &&
1939 	    (hc->chan[ch].protocol == ISDN_P_B_RAW) &&
1940 	    (hc->chan[ch].slot_rx < 0) &&
1941 	    (hc->chan[ch].slot_tx < 0))
1942 		HFC_outb_nodebug(hc, R_FIFO, 0x20 | (ch << 1));
1943 	else
1944 		HFC_outb_nodebug(hc, R_FIFO, ch << 1);
1945 	HFC_wait_nodebug(hc);
1946 
1947 	if (*txpending == 2) {
1948 		/* reset fifo */
1949 		HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_RES_F);
1950 		HFC_wait_nodebug(hc);
1951 		HFC_outb(hc, A_SUBCH_CFG, 0);
1952 		*txpending = 1;
1953 	}
1954 next_frame:
1955 	if (dch || test_bit(FLG_HDLC, &bch->Flags)) {
1956 		f1 = HFC_inb_nodebug(hc, A_F1);
1957 		f2 = HFC_inb_nodebug(hc, A_F2);
1958 		while (f2 != (temp = HFC_inb_nodebug(hc, A_F2))) {
1959 			if (debug & DEBUG_HFCMULTI_FIFO)
1960 				printk(KERN_DEBUG
1961 				       "%s(card %d): reread f2 because %d!=%d\n",
1962 				       __func__, hc->id + 1, temp, f2);
1963 			f2 = temp; /* repeat until F2 is equal */
1964 		}
1965 		Fspace = f2 - f1 - 1;
1966 		if (Fspace < 0)
1967 			Fspace += hc->Flen;
1968 		/*
1969 		 * Old FIFO handling doesn't give us the current Z2 read
1970 		 * pointer, so we cannot send the next frame before the fifo
1971 		 * is empty. It makes no difference except for a slightly
1972 		 * lower performance.
1973 		 */
1974 		if (test_bit(HFC_CHIP_REVISION0, &hc->chip)) {
1975 			if (f1 != f2)
1976 				Fspace = 0;
1977 			else
1978 				Fspace = 1;
1979 		}
1980 		/* one frame only for ST D-channels, to allow resending */
1981 		if (hc->ctype != HFC_TYPE_E1 && dch) {
1982 			if (f1 != f2)
1983 				Fspace = 0;
1984 		}
1985 		/* F-counter full condition */
1986 		if (Fspace == 0)
1987 			return;
1988 	}
1989 	z1 = HFC_inw_nodebug(hc, A_Z1) - hc->Zmin;
1990 	z2 = HFC_inw_nodebug(hc, A_Z2) - hc->Zmin;
1991 	while (z2 != (temp = (HFC_inw_nodebug(hc, A_Z2) - hc->Zmin))) {
1992 		if (debug & DEBUG_HFCMULTI_FIFO)
1993 			printk(KERN_DEBUG "%s(card %d): reread z2 because "
1994 			       "%d!=%d\n", __func__, hc->id + 1, temp, z2);
1995 		z2 = temp; /* repeat unti Z2 is equal */
1996 	}
1997 	hc->chan[ch].Zfill = z1 - z2;
1998 	if (hc->chan[ch].Zfill < 0)
1999 		hc->chan[ch].Zfill += hc->Zlen;
2000 	Zspace = z2 - z1;
2001 	if (Zspace <= 0)
2002 		Zspace += hc->Zlen;
2003 	Zspace -= 4; /* keep not too full, so pointers will not overrun */
2004 	/* fill transparent data only to maxinum transparent load (minus 4) */
2005 	if (bch && test_bit(FLG_TRANSPARENT, &bch->Flags))
2006 		Zspace = Zspace - hc->Zlen + hc->max_trans;
2007 	if (Zspace <= 0) /* no space of 4 bytes */
2008 		return;
2009 
2010 	/* if no data */
2011 	if (!len) {
2012 		if (z1 == z2) { /* empty */
2013 			/* if done with FIFO audio data during PCM connection */
2014 			if (bch && (!test_bit(FLG_HDLC, &bch->Flags)) &&
2015 			    *txpending && slot_tx >= 0) {
2016 				if (debug & DEBUG_HFCMULTI_MODE)
2017 					printk(KERN_DEBUG
2018 					       "%s: reconnecting PCM due to no "
2019 					       "more FIFO data: channel %d "
2020 					       "slot_tx %d\n",
2021 					       __func__, ch, slot_tx);
2022 				/* connect slot */
2023 				if (hc->ctype == HFC_TYPE_XHFC)
2024 					HFC_outb(hc, A_CON_HDLC, 0xc0
2025 						 | 0x07 << 2 | V_HDLC_TRP | V_IFF);
2026 				/* Enable FIFO, no interrupt */
2027 				else
2028 					HFC_outb(hc, A_CON_HDLC, 0xc0 | 0x00 |
2029 						 V_HDLC_TRP | V_IFF);
2030 				HFC_outb_nodebug(hc, R_FIFO, ch << 1 | 1);
2031 				HFC_wait_nodebug(hc);
2032 				if (hc->ctype == HFC_TYPE_XHFC)
2033 					HFC_outb(hc, A_CON_HDLC, 0xc0
2034 						 | 0x07 << 2 | V_HDLC_TRP | V_IFF);
2035 				/* Enable FIFO, no interrupt */
2036 				else
2037 					HFC_outb(hc, A_CON_HDLC, 0xc0 | 0x00 |
2038 						 V_HDLC_TRP | V_IFF);
2039 				HFC_outb_nodebug(hc, R_FIFO, ch << 1);
2040 				HFC_wait_nodebug(hc);
2041 			}
2042 			*txpending = 0;
2043 		}
2044 		return; /* no data */
2045 	}
2046 
2047 	/* "fill fifo if empty" feature */
2048 	if (bch && test_bit(FLG_FILLEMPTY, &bch->Flags)
2049 	    && !test_bit(FLG_HDLC, &bch->Flags) && z2 == z1) {
2050 		if (debug & DEBUG_HFCMULTI_FILL)
2051 			printk(KERN_DEBUG "%s: buffer empty, so we have "
2052 			       "underrun\n", __func__);
2053 		/* fill buffer, to prevent future underrun */
2054 		hc->write_fifo(hc, hc->silence_data, poll >> 1);
2055 		Zspace -= (poll >> 1);
2056 	}
2057 
2058 	/* if audio data and connected slot */
2059 	if (bch && (!test_bit(FLG_HDLC, &bch->Flags)) && (!*txpending)
2060 	    && slot_tx >= 0) {
2061 		if (debug & DEBUG_HFCMULTI_MODE)
2062 			printk(KERN_DEBUG "%s: disconnecting PCM due to "
2063 			       "FIFO data: channel %d slot_tx %d\n",
2064 			       __func__, ch, slot_tx);
2065 		/* disconnect slot */
2066 		if (hc->ctype == HFC_TYPE_XHFC)
2067 			HFC_outb(hc, A_CON_HDLC, 0x80
2068 				 | 0x07 << 2 | V_HDLC_TRP | V_IFF);
2069 		/* Enable FIFO, no interrupt */
2070 		else
2071 			HFC_outb(hc, A_CON_HDLC, 0x80 | 0x00 |
2072 				 V_HDLC_TRP | V_IFF);
2073 		HFC_outb_nodebug(hc, R_FIFO, ch << 1 | 1);
2074 		HFC_wait_nodebug(hc);
2075 		if (hc->ctype == HFC_TYPE_XHFC)
2076 			HFC_outb(hc, A_CON_HDLC, 0x80
2077 				 | 0x07 << 2 | V_HDLC_TRP | V_IFF);
2078 		/* Enable FIFO, no interrupt */
2079 		else
2080 			HFC_outb(hc, A_CON_HDLC, 0x80 | 0x00 |
2081 				 V_HDLC_TRP | V_IFF);
2082 		HFC_outb_nodebug(hc, R_FIFO, ch << 1);
2083 		HFC_wait_nodebug(hc);
2084 	}
2085 	*txpending = 1;
2086 
2087 	/* show activity */
2088 	if (dch)
2089 		hc->activity_tx |= 1 << hc->chan[ch].port;
2090 
2091 	/* fill fifo to what we have left */
2092 	ii = len;
2093 	if (dch || test_bit(FLG_HDLC, &bch->Flags))
2094 		temp = 1;
2095 	else
2096 		temp = 0;
2097 	i = *idxp;
2098 	d = (*sp)->data + i;
2099 	if (ii - i > Zspace)
2100 		ii = Zspace + i;
2101 	if (debug & DEBUG_HFCMULTI_FIFO)
2102 		printk(KERN_DEBUG "%s(card %d): fifo(%d) has %d bytes space "
2103 		       "left (z1=%04x, z2=%04x) sending %d of %d bytes %s\n",
2104 		       __func__, hc->id + 1, ch, Zspace, z1, z2, ii-i, len-i,
2105 		       temp ? "HDLC" : "TRANS");
2106 
2107 	/* Have to prep the audio data */
2108 	hc->write_fifo(hc, d, ii - i);
2109 	hc->chan[ch].Zfill += ii - i;
2110 	*idxp = ii;
2111 
2112 	/* if not all data has been written */
2113 	if (ii != len) {
2114 		/* NOTE: fifo is started by the calling function */
2115 		return;
2116 	}
2117 
2118 	/* if all data has been written, terminate frame */
2119 	if (dch || test_bit(FLG_HDLC, &bch->Flags)) {
2120 		/* increment f-counter */
2121 		HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_INC_F);
2122 		HFC_wait_nodebug(hc);
2123 	}
2124 
2125 	tmp_len = (*sp)->len;
2126 	dev_kfree_skb(*sp);
2127 	/* check for next frame */
2128 	if (bch && get_next_bframe(bch)) {
2129 		len = tmp_len;
2130 		goto next_frame;
2131 	}
2132 	if (dch && get_next_dframe(dch)) {
2133 		len = tmp_len;
2134 		goto next_frame;
2135 	}
2136 
2137 	/*
2138 	 * now we have no more data, so in case of transparent,
2139 	 * we set the last byte in fifo to 'silence' in case we will get
2140 	 * no more data at all. this prevents sending an undefined value.
2141 	 */
2142 	if (bch && test_bit(FLG_TRANSPARENT, &bch->Flags))
2143 		HFC_outb_nodebug(hc, A_FIFO_DATA0_NOINC, hc->silence);
2144 }
2145 
2146 
2147 /* NOTE: only called if E1 card is in active state */
2148 static void
hfcmulti_rx(struct hfc_multi * hc,int ch)2149 hfcmulti_rx(struct hfc_multi *hc, int ch)
2150 {
2151 	int temp;
2152 	int Zsize, z1, z2 = 0; /* = 0, to make GCC happy */
2153 	int f1 = 0, f2 = 0; /* = 0, to make GCC happy */
2154 	int again = 0;
2155 	struct	bchannel *bch;
2156 	struct  dchannel *dch = NULL;
2157 	struct sk_buff	*skb, **sp = NULL;
2158 	int	maxlen;
2159 
2160 	bch = hc->chan[ch].bch;
2161 	if (bch) {
2162 		if (!test_bit(FLG_ACTIVE, &bch->Flags))
2163 			return;
2164 	} else if (hc->chan[ch].dch) {
2165 		dch = hc->chan[ch].dch;
2166 		if (!test_bit(FLG_ACTIVE, &dch->Flags))
2167 			return;
2168 	} else {
2169 		return;
2170 	}
2171 next_frame:
2172 	/* on first AND before getting next valid frame, R_FIFO must be written
2173 	   to. */
2174 	if (test_bit(HFC_CHIP_B410P, &hc->chip) &&
2175 	    (hc->chan[ch].protocol == ISDN_P_B_RAW) &&
2176 	    (hc->chan[ch].slot_rx < 0) &&
2177 	    (hc->chan[ch].slot_tx < 0))
2178 		HFC_outb_nodebug(hc, R_FIFO, 0x20 | (ch << 1) | 1);
2179 	else
2180 		HFC_outb_nodebug(hc, R_FIFO, (ch << 1) | 1);
2181 	HFC_wait_nodebug(hc);
2182 
2183 	/* ignore if rx is off BUT change fifo (above) to start pending TX */
2184 	if (hc->chan[ch].rx_off) {
2185 		if (bch)
2186 			bch->dropcnt += poll; /* not exact but fair enough */
2187 		return;
2188 	}
2189 
2190 	if (dch || test_bit(FLG_HDLC, &bch->Flags)) {
2191 		f1 = HFC_inb_nodebug(hc, A_F1);
2192 		while (f1 != (temp = HFC_inb_nodebug(hc, A_F1))) {
2193 			if (debug & DEBUG_HFCMULTI_FIFO)
2194 				printk(KERN_DEBUG
2195 				       "%s(card %d): reread f1 because %d!=%d\n",
2196 				       __func__, hc->id + 1, temp, f1);
2197 			f1 = temp; /* repeat until F1 is equal */
2198 		}
2199 		f2 = HFC_inb_nodebug(hc, A_F2);
2200 	}
2201 	z1 = HFC_inw_nodebug(hc, A_Z1) - hc->Zmin;
2202 	while (z1 != (temp = (HFC_inw_nodebug(hc, A_Z1) - hc->Zmin))) {
2203 		if (debug & DEBUG_HFCMULTI_FIFO)
2204 			printk(KERN_DEBUG "%s(card %d): reread z2 because "
2205 			       "%d!=%d\n", __func__, hc->id + 1, temp, z2);
2206 		z1 = temp; /* repeat until Z1 is equal */
2207 	}
2208 	z2 = HFC_inw_nodebug(hc, A_Z2) - hc->Zmin;
2209 	Zsize = z1 - z2;
2210 	if ((dch || test_bit(FLG_HDLC, &bch->Flags)) && f1 != f2)
2211 		/* complete hdlc frame */
2212 		Zsize++;
2213 	if (Zsize < 0)
2214 		Zsize += hc->Zlen;
2215 	/* if buffer is empty */
2216 	if (Zsize <= 0)
2217 		return;
2218 
2219 	if (bch) {
2220 		maxlen = bchannel_get_rxbuf(bch, Zsize);
2221 		if (maxlen < 0) {
2222 			pr_warn("card%d.B%d: No bufferspace for %d bytes\n",
2223 				hc->id + 1, bch->nr, Zsize);
2224 			return;
2225 		}
2226 		sp = &bch->rx_skb;
2227 		maxlen = bch->maxlen;
2228 	} else { /* Dchannel */
2229 		sp = &dch->rx_skb;
2230 		maxlen = dch->maxlen + 3;
2231 		if (*sp == NULL) {
2232 			*sp = mI_alloc_skb(maxlen, GFP_ATOMIC);
2233 			if (*sp == NULL) {
2234 				pr_warn("card%d: No mem for dch rx_skb\n",
2235 					hc->id + 1);
2236 				return;
2237 			}
2238 		}
2239 	}
2240 	/* show activity */
2241 	if (dch)
2242 		hc->activity_rx |= 1 << hc->chan[ch].port;
2243 
2244 	/* empty fifo with what we have */
2245 	if (dch || test_bit(FLG_HDLC, &bch->Flags)) {
2246 		if (debug & DEBUG_HFCMULTI_FIFO)
2247 			printk(KERN_DEBUG "%s(card %d): fifo(%d) reading %d "
2248 			       "bytes (z1=%04x, z2=%04x) HDLC %s (f1=%d, f2=%d) "
2249 			       "got=%d (again %d)\n", __func__, hc->id + 1, ch,
2250 			       Zsize, z1, z2, (f1 == f2) ? "fragment" : "COMPLETE",
2251 			       f1, f2, Zsize + (*sp)->len, again);
2252 		/* HDLC */
2253 		if ((Zsize + (*sp)->len) > maxlen) {
2254 			if (debug & DEBUG_HFCMULTI_FIFO)
2255 				printk(KERN_DEBUG
2256 				       "%s(card %d): hdlc-frame too large.\n",
2257 				       __func__, hc->id + 1);
2258 			skb_trim(*sp, 0);
2259 			HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_RES_F);
2260 			HFC_wait_nodebug(hc);
2261 			return;
2262 		}
2263 
2264 		hc->read_fifo(hc, skb_put(*sp, Zsize), Zsize);
2265 
2266 		if (f1 != f2) {
2267 			/* increment Z2,F2-counter */
2268 			HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_INC_F);
2269 			HFC_wait_nodebug(hc);
2270 			/* check size */
2271 			if ((*sp)->len < 4) {
2272 				if (debug & DEBUG_HFCMULTI_FIFO)
2273 					printk(KERN_DEBUG
2274 					       "%s(card %d): Frame below minimum "
2275 					       "size\n", __func__, hc->id + 1);
2276 				skb_trim(*sp, 0);
2277 				goto next_frame;
2278 			}
2279 			/* there is at least one complete frame, check crc */
2280 			if ((*sp)->data[(*sp)->len - 1]) {
2281 				if (debug & DEBUG_HFCMULTI_CRC)
2282 					printk(KERN_DEBUG
2283 					       "%s: CRC-error\n", __func__);
2284 				skb_trim(*sp, 0);
2285 				goto next_frame;
2286 			}
2287 			skb_trim(*sp, (*sp)->len - 3);
2288 			if ((*sp)->len < MISDN_COPY_SIZE) {
2289 				skb = *sp;
2290 				*sp = mI_alloc_skb(skb->len, GFP_ATOMIC);
2291 				if (*sp) {
2292 					skb_put_data(*sp, skb->data, skb->len);
2293 					skb_trim(skb, 0);
2294 				} else {
2295 					printk(KERN_DEBUG "%s: No mem\n",
2296 					       __func__);
2297 					*sp = skb;
2298 					skb = NULL;
2299 				}
2300 			} else {
2301 				skb = NULL;
2302 			}
2303 			if (debug & DEBUG_HFCMULTI_FIFO) {
2304 				printk(KERN_DEBUG "%s(card %d):",
2305 				       __func__, hc->id + 1);
2306 				temp = 0;
2307 				while (temp < (*sp)->len)
2308 					printk(" %02x", (*sp)->data[temp++]);
2309 				printk("\n");
2310 			}
2311 			if (dch)
2312 				recv_Dchannel(dch);
2313 			else
2314 				recv_Bchannel(bch, MISDN_ID_ANY, false);
2315 			*sp = skb;
2316 			again++;
2317 			goto next_frame;
2318 		}
2319 		/* there is an incomplete frame */
2320 	} else {
2321 		/* transparent */
2322 		hc->read_fifo(hc, skb_put(*sp, Zsize), Zsize);
2323 		if (debug & DEBUG_HFCMULTI_FIFO)
2324 			printk(KERN_DEBUG
2325 			       "%s(card %d): fifo(%d) reading %d bytes "
2326 			       "(z1=%04x, z2=%04x) TRANS\n",
2327 			       __func__, hc->id + 1, ch, Zsize, z1, z2);
2328 		/* only bch is transparent */
2329 		recv_Bchannel(bch, hc->chan[ch].Zfill, false);
2330 	}
2331 }
2332 
2333 
2334 /*
2335  * Interrupt handler
2336  */
2337 static void
signal_state_up(struct dchannel * dch,int info,char * msg)2338 signal_state_up(struct dchannel *dch, int info, char *msg)
2339 {
2340 	struct sk_buff	*skb;
2341 	int		id, data = info;
2342 
2343 	if (debug & DEBUG_HFCMULTI_STATE)
2344 		printk(KERN_DEBUG "%s: %s\n", __func__, msg);
2345 
2346 	id = TEI_SAPI | (GROUP_TEI << 8); /* manager address */
2347 
2348 	skb = _alloc_mISDN_skb(MPH_INFORMATION_IND, id, sizeof(data), &data,
2349 			       GFP_ATOMIC);
2350 	if (!skb)
2351 		return;
2352 	recv_Dchannel_skb(dch, skb);
2353 }
2354 
2355 static inline void
handle_timer_irq(struct hfc_multi * hc)2356 handle_timer_irq(struct hfc_multi *hc)
2357 {
2358 	int		ch, temp;
2359 	struct dchannel	*dch;
2360 	u_long		flags;
2361 
2362 	/* process queued resync jobs */
2363 	if (hc->e1_resync) {
2364 		/* lock, so e1_resync gets not changed */
2365 		spin_lock_irqsave(&HFClock, flags);
2366 		if (hc->e1_resync & 1) {
2367 			if (debug & DEBUG_HFCMULTI_PLXSD)
2368 				printk(KERN_DEBUG "Enable SYNC_I\n");
2369 			HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC);
2370 			/* disable JATT, if RX_SYNC is set */
2371 			if (test_bit(HFC_CHIP_RX_SYNC, &hc->chip))
2372 				HFC_outb(hc, R_SYNC_OUT, V_SYNC_E1_RX);
2373 		}
2374 		if (hc->e1_resync & 2) {
2375 			if (debug & DEBUG_HFCMULTI_PLXSD)
2376 				printk(KERN_DEBUG "Enable jatt PLL\n");
2377 			HFC_outb(hc, R_SYNC_CTRL, V_SYNC_OFFS);
2378 		}
2379 		if (hc->e1_resync & 4) {
2380 			if (debug & DEBUG_HFCMULTI_PLXSD)
2381 				printk(KERN_DEBUG
2382 				       "Enable QUARTZ for HFC-E1\n");
2383 			/* set jatt to quartz */
2384 			HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC
2385 				 | V_JATT_OFF);
2386 			/* switch to JATT, in case it is not already */
2387 			HFC_outb(hc, R_SYNC_OUT, 0);
2388 		}
2389 		hc->e1_resync = 0;
2390 		spin_unlock_irqrestore(&HFClock, flags);
2391 	}
2392 
2393 	if (hc->ctype != HFC_TYPE_E1 || hc->e1_state == 1)
2394 		for (ch = 0; ch <= 31; ch++) {
2395 			if (hc->created[hc->chan[ch].port]) {
2396 				hfcmulti_tx(hc, ch);
2397 				/* fifo is started when switching to rx-fifo */
2398 				hfcmulti_rx(hc, ch);
2399 				if (hc->chan[ch].dch &&
2400 				    hc->chan[ch].nt_timer > -1) {
2401 					dch = hc->chan[ch].dch;
2402 					if (!(--hc->chan[ch].nt_timer)) {
2403 						schedule_event(dch,
2404 							       FLG_PHCHANGE);
2405 						if (debug &
2406 						    DEBUG_HFCMULTI_STATE)
2407 							printk(KERN_DEBUG
2408 							       "%s: nt_timer at "
2409 							       "state %x\n",
2410 							       __func__,
2411 							       dch->state);
2412 					}
2413 				}
2414 			}
2415 		}
2416 	if (hc->ctype == HFC_TYPE_E1 && hc->created[0]) {
2417 		dch = hc->chan[hc->dnum[0]].dch;
2418 		/* LOS */
2419 		temp = HFC_inb_nodebug(hc, R_SYNC_STA) & V_SIG_LOS;
2420 		hc->chan[hc->dnum[0]].los = temp;
2421 		if (test_bit(HFC_CFG_REPORT_LOS, &hc->chan[hc->dnum[0]].cfg)) {
2422 			if (!temp && hc->chan[hc->dnum[0]].los)
2423 				signal_state_up(dch, L1_SIGNAL_LOS_ON,
2424 						"LOS detected");
2425 			if (temp && !hc->chan[hc->dnum[0]].los)
2426 				signal_state_up(dch, L1_SIGNAL_LOS_OFF,
2427 						"LOS gone");
2428 		}
2429 		if (test_bit(HFC_CFG_REPORT_AIS, &hc->chan[hc->dnum[0]].cfg)) {
2430 			/* AIS */
2431 			temp = HFC_inb_nodebug(hc, R_SYNC_STA) & V_AIS;
2432 			if (!temp && hc->chan[hc->dnum[0]].ais)
2433 				signal_state_up(dch, L1_SIGNAL_AIS_ON,
2434 						"AIS detected");
2435 			if (temp && !hc->chan[hc->dnum[0]].ais)
2436 				signal_state_up(dch, L1_SIGNAL_AIS_OFF,
2437 						"AIS gone");
2438 			hc->chan[hc->dnum[0]].ais = temp;
2439 		}
2440 		if (test_bit(HFC_CFG_REPORT_SLIP, &hc->chan[hc->dnum[0]].cfg)) {
2441 			/* SLIP */
2442 			temp = HFC_inb_nodebug(hc, R_SLIP) & V_FOSLIP_RX;
2443 			if (!temp && hc->chan[hc->dnum[0]].slip_rx)
2444 				signal_state_up(dch, L1_SIGNAL_SLIP_RX,
2445 						" bit SLIP detected RX");
2446 			hc->chan[hc->dnum[0]].slip_rx = temp;
2447 			temp = HFC_inb_nodebug(hc, R_SLIP) & V_FOSLIP_TX;
2448 			if (!temp && hc->chan[hc->dnum[0]].slip_tx)
2449 				signal_state_up(dch, L1_SIGNAL_SLIP_TX,
2450 						" bit SLIP detected TX");
2451 			hc->chan[hc->dnum[0]].slip_tx = temp;
2452 		}
2453 		if (test_bit(HFC_CFG_REPORT_RDI, &hc->chan[hc->dnum[0]].cfg)) {
2454 			/* RDI */
2455 			temp = HFC_inb_nodebug(hc, R_RX_SL0_0) & V_A;
2456 			if (!temp && hc->chan[hc->dnum[0]].rdi)
2457 				signal_state_up(dch, L1_SIGNAL_RDI_ON,
2458 						"RDI detected");
2459 			if (temp && !hc->chan[hc->dnum[0]].rdi)
2460 				signal_state_up(dch, L1_SIGNAL_RDI_OFF,
2461 						"RDI gone");
2462 			hc->chan[hc->dnum[0]].rdi = temp;
2463 		}
2464 		temp = HFC_inb_nodebug(hc, R_JATT_DIR);
2465 		switch (hc->chan[hc->dnum[0]].sync) {
2466 		case 0:
2467 			if ((temp & 0x60) == 0x60) {
2468 				if (debug & DEBUG_HFCMULTI_SYNC)
2469 					printk(KERN_DEBUG
2470 					       "%s: (id=%d) E1 now "
2471 					       "in clock sync\n",
2472 					       __func__, hc->id);
2473 				HFC_outb(hc, R_RX_OFF,
2474 				    hc->chan[hc->dnum[0]].jitter | V_RX_INIT);
2475 				HFC_outb(hc, R_TX_OFF,
2476 				    hc->chan[hc->dnum[0]].jitter | V_RX_INIT);
2477 				hc->chan[hc->dnum[0]].sync = 1;
2478 				goto check_framesync;
2479 			}
2480 			break;
2481 		case 1:
2482 			if ((temp & 0x60) != 0x60) {
2483 				if (debug & DEBUG_HFCMULTI_SYNC)
2484 					printk(KERN_DEBUG
2485 					       "%s: (id=%d) E1 "
2486 					       "lost clock sync\n",
2487 					       __func__, hc->id);
2488 				hc->chan[hc->dnum[0]].sync = 0;
2489 				break;
2490 			}
2491 		check_framesync:
2492 			temp = HFC_inb_nodebug(hc, R_SYNC_STA);
2493 			if (temp == 0x27) {
2494 				if (debug & DEBUG_HFCMULTI_SYNC)
2495 					printk(KERN_DEBUG
2496 					       "%s: (id=%d) E1 "
2497 					       "now in frame sync\n",
2498 					       __func__, hc->id);
2499 				hc->chan[hc->dnum[0]].sync = 2;
2500 			}
2501 			break;
2502 		case 2:
2503 			if ((temp & 0x60) != 0x60) {
2504 				if (debug & DEBUG_HFCMULTI_SYNC)
2505 					printk(KERN_DEBUG
2506 					       "%s: (id=%d) E1 lost "
2507 					       "clock & frame sync\n",
2508 					       __func__, hc->id);
2509 				hc->chan[hc->dnum[0]].sync = 0;
2510 				break;
2511 			}
2512 			temp = HFC_inb_nodebug(hc, R_SYNC_STA);
2513 			if (temp != 0x27) {
2514 				if (debug & DEBUG_HFCMULTI_SYNC)
2515 					printk(KERN_DEBUG
2516 					       "%s: (id=%d) E1 "
2517 					       "lost frame sync\n",
2518 					       __func__, hc->id);
2519 				hc->chan[hc->dnum[0]].sync = 1;
2520 			}
2521 			break;
2522 		}
2523 	}
2524 
2525 	if (test_bit(HFC_CHIP_WATCHDOG, &hc->chip))
2526 		hfcmulti_watchdog(hc);
2527 
2528 	if (hc->leds)
2529 		hfcmulti_leds(hc);
2530 }
2531 
2532 static void
ph_state_irq(struct hfc_multi * hc,u_char r_irq_statech)2533 ph_state_irq(struct hfc_multi *hc, u_char r_irq_statech)
2534 {
2535 	struct dchannel	*dch;
2536 	int		ch;
2537 	int		active;
2538 	u_char		st_status, temp;
2539 
2540 	/* state machine */
2541 	for (ch = 0; ch <= 31; ch++) {
2542 		if (hc->chan[ch].dch) {
2543 			dch = hc->chan[ch].dch;
2544 			if (r_irq_statech & 1) {
2545 				HFC_outb_nodebug(hc, R_ST_SEL,
2546 						 hc->chan[ch].port);
2547 				/* undocumented: delay after R_ST_SEL */
2548 				udelay(1);
2549 				/* undocumented: status changes during read */
2550 				st_status = HFC_inb_nodebug(hc, A_ST_RD_STATE);
2551 				while (st_status != (temp =
2552 						     HFC_inb_nodebug(hc, A_ST_RD_STATE))) {
2553 					if (debug & DEBUG_HFCMULTI_STATE)
2554 						printk(KERN_DEBUG "%s: reread "
2555 						       "STATE because %d!=%d\n",
2556 						       __func__, temp,
2557 						       st_status);
2558 					st_status = temp; /* repeat */
2559 				}
2560 
2561 				/* Speech Design TE-sync indication */
2562 				if (test_bit(HFC_CHIP_PLXSD, &hc->chip) &&
2563 				    dch->dev.D.protocol == ISDN_P_TE_S0) {
2564 					if (st_status & V_FR_SYNC_ST)
2565 						hc->syncronized |=
2566 							(1 << hc->chan[ch].port);
2567 					else
2568 						hc->syncronized &=
2569 							~(1 << hc->chan[ch].port);
2570 				}
2571 				dch->state = st_status & 0x0f;
2572 				if (dch->dev.D.protocol == ISDN_P_NT_S0)
2573 					active = 3;
2574 				else
2575 					active = 7;
2576 				if (dch->state == active) {
2577 					HFC_outb_nodebug(hc, R_FIFO,
2578 							 (ch << 1) | 1);
2579 					HFC_wait_nodebug(hc);
2580 					HFC_outb_nodebug(hc,
2581 							 R_INC_RES_FIFO, V_RES_F);
2582 					HFC_wait_nodebug(hc);
2583 					dch->tx_idx = 0;
2584 				}
2585 				schedule_event(dch, FLG_PHCHANGE);
2586 				if (debug & DEBUG_HFCMULTI_STATE)
2587 					printk(KERN_DEBUG
2588 					       "%s: S/T newstate %x port %d\n",
2589 					       __func__, dch->state,
2590 					       hc->chan[ch].port);
2591 			}
2592 			r_irq_statech >>= 1;
2593 		}
2594 	}
2595 	if (test_bit(HFC_CHIP_PLXSD, &hc->chip))
2596 		plxsd_checksync(hc, 0);
2597 }
2598 
2599 static void
fifo_irq(struct hfc_multi * hc,int block)2600 fifo_irq(struct hfc_multi *hc, int block)
2601 {
2602 	int	ch, j;
2603 	struct dchannel	*dch;
2604 	struct bchannel	*bch;
2605 	u_char r_irq_fifo_bl;
2606 
2607 	r_irq_fifo_bl = HFC_inb_nodebug(hc, R_IRQ_FIFO_BL0 + block);
2608 	j = 0;
2609 	while (j < 8) {
2610 		ch = (block << 2) + (j >> 1);
2611 		dch = hc->chan[ch].dch;
2612 		bch = hc->chan[ch].bch;
2613 		if (((!dch) && (!bch)) || (!hc->created[hc->chan[ch].port])) {
2614 			j += 2;
2615 			continue;
2616 		}
2617 		if (dch && (r_irq_fifo_bl & (1 << j)) &&
2618 		    test_bit(FLG_ACTIVE, &dch->Flags)) {
2619 			hfcmulti_tx(hc, ch);
2620 			/* start fifo */
2621 			HFC_outb_nodebug(hc, R_FIFO, 0);
2622 			HFC_wait_nodebug(hc);
2623 		}
2624 		if (bch && (r_irq_fifo_bl & (1 << j)) &&
2625 		    test_bit(FLG_ACTIVE, &bch->Flags)) {
2626 			hfcmulti_tx(hc, ch);
2627 			/* start fifo */
2628 			HFC_outb_nodebug(hc, R_FIFO, 0);
2629 			HFC_wait_nodebug(hc);
2630 		}
2631 		j++;
2632 		if (dch && (r_irq_fifo_bl & (1 << j)) &&
2633 		    test_bit(FLG_ACTIVE, &dch->Flags)) {
2634 			hfcmulti_rx(hc, ch);
2635 		}
2636 		if (bch && (r_irq_fifo_bl & (1 << j)) &&
2637 		    test_bit(FLG_ACTIVE, &bch->Flags)) {
2638 			hfcmulti_rx(hc, ch);
2639 		}
2640 		j++;
2641 	}
2642 }
2643 
2644 #ifdef IRQ_DEBUG
2645 int irqsem;
2646 #endif
2647 static irqreturn_t
hfcmulti_interrupt(int intno,void * dev_id)2648 hfcmulti_interrupt(int intno, void *dev_id)
2649 {
2650 #ifdef IRQCOUNT_DEBUG
2651 	static int iq1 = 0, iq2 = 0, iq3 = 0, iq4 = 0,
2652 		iq5 = 0, iq6 = 0, iqcnt = 0;
2653 #endif
2654 	struct hfc_multi	*hc = dev_id;
2655 	struct dchannel		*dch;
2656 	u_char			r_irq_statech, status, r_irq_misc, r_irq_oview;
2657 	int			i;
2658 	void __iomem		*plx_acc;
2659 	u_short			wval;
2660 	u_char			e1_syncsta, temp, temp2;
2661 	u_long			flags;
2662 
2663 	if (!hc) {
2664 		printk(KERN_ERR "HFC-multi: Spurious interrupt!\n");
2665 		return IRQ_NONE;
2666 	}
2667 
2668 	spin_lock(&hc->lock);
2669 
2670 #ifdef IRQ_DEBUG
2671 	if (irqsem)
2672 		printk(KERN_ERR "irq for card %d during irq from "
2673 		       "card %d, this is no bug.\n", hc->id + 1, irqsem);
2674 	irqsem = hc->id + 1;
2675 #endif
2676 #ifdef CONFIG_MISDN_HFCMULTI_8xx
2677 	if (hc->immap->im_cpm.cp_pbdat & hc->pb_irqmsk)
2678 		goto irq_notforus;
2679 #endif
2680 	if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
2681 		spin_lock_irqsave(&plx_lock, flags);
2682 		plx_acc = hc->plx_membase + PLX_INTCSR;
2683 		wval = readw(plx_acc);
2684 		spin_unlock_irqrestore(&plx_lock, flags);
2685 		if (!(wval & PLX_INTCSR_LINTI1_STATUS))
2686 			goto irq_notforus;
2687 	}
2688 
2689 	status = HFC_inb_nodebug(hc, R_STATUS);
2690 	r_irq_statech = HFC_inb_nodebug(hc, R_IRQ_STATECH);
2691 #ifdef IRQCOUNT_DEBUG
2692 	if (r_irq_statech)
2693 		iq1++;
2694 	if (status & V_DTMF_STA)
2695 		iq2++;
2696 	if (status & V_LOST_STA)
2697 		iq3++;
2698 	if (status & V_EXT_IRQSTA)
2699 		iq4++;
2700 	if (status & V_MISC_IRQSTA)
2701 		iq5++;
2702 	if (status & V_FR_IRQSTA)
2703 		iq6++;
2704 	if (iqcnt++ > 5000) {
2705 		printk(KERN_ERR "iq1:%x iq2:%x iq3:%x iq4:%x iq5:%x iq6:%x\n",
2706 		       iq1, iq2, iq3, iq4, iq5, iq6);
2707 		iqcnt = 0;
2708 	}
2709 #endif
2710 
2711 	if (!r_irq_statech &&
2712 	    !(status & (V_DTMF_STA | V_LOST_STA | V_EXT_IRQSTA |
2713 			V_MISC_IRQSTA | V_FR_IRQSTA))) {
2714 		/* irq is not for us */
2715 		goto irq_notforus;
2716 	}
2717 	hc->irqcnt++;
2718 	if (r_irq_statech) {
2719 		if (hc->ctype != HFC_TYPE_E1)
2720 			ph_state_irq(hc, r_irq_statech);
2721 	}
2722 	if (status & V_LOST_STA) {
2723 		/* LOST IRQ */
2724 		HFC_outb(hc, R_INC_RES_FIFO, V_RES_LOST); /* clear irq! */
2725 	}
2726 	if (status & V_MISC_IRQSTA) {
2727 		/* misc IRQ */
2728 		r_irq_misc = HFC_inb_nodebug(hc, R_IRQ_MISC);
2729 		r_irq_misc &= hc->hw.r_irqmsk_misc; /* ignore disabled irqs */
2730 		if (r_irq_misc & V_STA_IRQ) {
2731 			if (hc->ctype == HFC_TYPE_E1) {
2732 				/* state machine */
2733 				dch = hc->chan[hc->dnum[0]].dch;
2734 				e1_syncsta = HFC_inb_nodebug(hc, R_SYNC_STA);
2735 				if (test_bit(HFC_CHIP_PLXSD, &hc->chip)
2736 				    && hc->e1_getclock) {
2737 					if (e1_syncsta & V_FR_SYNC_E1)
2738 						hc->syncronized = 1;
2739 					else
2740 						hc->syncronized = 0;
2741 				}
2742 				/* undocumented: status changes during read */
2743 				temp = HFC_inb_nodebug(hc, R_E1_RD_STA);
2744 				while (temp != (temp2 =
2745 						      HFC_inb_nodebug(hc, R_E1_RD_STA))) {
2746 					if (debug & DEBUG_HFCMULTI_STATE)
2747 						printk(KERN_DEBUG "%s: reread "
2748 						       "STATE because %d!=%d\n",
2749 						    __func__, temp, temp2);
2750 					temp = temp2; /* repeat */
2751 				}
2752 				/* broadcast state change to all fragments */
2753 				if (debug & DEBUG_HFCMULTI_STATE)
2754 					printk(KERN_DEBUG
2755 					       "%s: E1 (id=%d) newstate %x\n",
2756 					    __func__, hc->id, temp & 0x7);
2757 				for (i = 0; i < hc->ports; i++) {
2758 					dch = hc->chan[hc->dnum[i]].dch;
2759 					dch->state = temp & 0x7;
2760 					schedule_event(dch, FLG_PHCHANGE);
2761 				}
2762 
2763 				if (test_bit(HFC_CHIP_PLXSD, &hc->chip))
2764 					plxsd_checksync(hc, 0);
2765 			}
2766 		}
2767 		if (r_irq_misc & V_TI_IRQ) {
2768 			if (hc->iclock_on)
2769 				mISDN_clock_update(hc->iclock, poll, NULL);
2770 			handle_timer_irq(hc);
2771 		}
2772 
2773 		if (r_irq_misc & V_DTMF_IRQ)
2774 			hfcmulti_dtmf(hc);
2775 
2776 		if (r_irq_misc & V_IRQ_PROC) {
2777 			static int irq_proc_cnt;
2778 			if (!irq_proc_cnt++)
2779 				printk(KERN_DEBUG "%s: got V_IRQ_PROC -"
2780 				       " this should not happen\n", __func__);
2781 		}
2782 
2783 	}
2784 	if (status & V_FR_IRQSTA) {
2785 		/* FIFO IRQ */
2786 		r_irq_oview = HFC_inb_nodebug(hc, R_IRQ_OVIEW);
2787 		for (i = 0; i < 8; i++) {
2788 			if (r_irq_oview & (1 << i))
2789 				fifo_irq(hc, i);
2790 		}
2791 	}
2792 
2793 #ifdef IRQ_DEBUG
2794 	irqsem = 0;
2795 #endif
2796 	spin_unlock(&hc->lock);
2797 	return IRQ_HANDLED;
2798 
2799 irq_notforus:
2800 #ifdef IRQ_DEBUG
2801 	irqsem = 0;
2802 #endif
2803 	spin_unlock(&hc->lock);
2804 	return IRQ_NONE;
2805 }
2806 
2807 
2808 /*
2809  * timer callback for D-chan busy resolution. Currently no function
2810  */
2811 
2812 static void
hfcmulti_dbusy_timer(struct timer_list * t)2813 hfcmulti_dbusy_timer(struct timer_list *t)
2814 {
2815 }
2816 
2817 
2818 /*
2819  * activate/deactivate hardware for selected channels and mode
2820  *
2821  * configure B-channel with the given protocol
2822  * ch eqals to the HFC-channel (0-31)
2823  * ch is the number of channel (0-4,4-7,8-11,12-15,16-19,20-23,24-27,28-31
2824  * for S/T, 1-31 for E1)
2825  * the hdlc interrupts will be set/unset
2826  */
2827 static int
mode_hfcmulti(struct hfc_multi * hc,int ch,int protocol,int slot_tx,int bank_tx,int slot_rx,int bank_rx)2828 mode_hfcmulti(struct hfc_multi *hc, int ch, int protocol, int slot_tx,
2829 	      int bank_tx, int slot_rx, int bank_rx)
2830 {
2831 	int flow_tx = 0, flow_rx = 0, routing = 0;
2832 	int oslot_tx, oslot_rx;
2833 	int conf;
2834 
2835 	if (ch < 0 || ch > 31)
2836 		return -EINVAL;
2837 	oslot_tx = hc->chan[ch].slot_tx;
2838 	oslot_rx = hc->chan[ch].slot_rx;
2839 	conf = hc->chan[ch].conf;
2840 
2841 	if (debug & DEBUG_HFCMULTI_MODE)
2842 		printk(KERN_DEBUG
2843 		       "%s: card %d channel %d protocol %x slot old=%d new=%d "
2844 		       "bank new=%d (TX) slot old=%d new=%d bank new=%d (RX)\n",
2845 		       __func__, hc->id, ch, protocol, oslot_tx, slot_tx,
2846 		       bank_tx, oslot_rx, slot_rx, bank_rx);
2847 
2848 	if (oslot_tx >= 0 && slot_tx != oslot_tx) {
2849 		/* remove from slot */
2850 		if (debug & DEBUG_HFCMULTI_MODE)
2851 			printk(KERN_DEBUG "%s: remove from slot %d (TX)\n",
2852 			       __func__, oslot_tx);
2853 		if (hc->slot_owner[oslot_tx << 1] == ch) {
2854 			HFC_outb(hc, R_SLOT, oslot_tx << 1);
2855 			HFC_outb(hc, A_SL_CFG, 0);
2856 			if (hc->ctype != HFC_TYPE_XHFC)
2857 				HFC_outb(hc, A_CONF, 0);
2858 			hc->slot_owner[oslot_tx << 1] = -1;
2859 		} else {
2860 			if (debug & DEBUG_HFCMULTI_MODE)
2861 				printk(KERN_DEBUG
2862 				       "%s: we are not owner of this tx slot "
2863 				       "anymore, channel %d is.\n",
2864 				       __func__, hc->slot_owner[oslot_tx << 1]);
2865 		}
2866 	}
2867 
2868 	if (oslot_rx >= 0 && slot_rx != oslot_rx) {
2869 		/* remove from slot */
2870 		if (debug & DEBUG_HFCMULTI_MODE)
2871 			printk(KERN_DEBUG
2872 			       "%s: remove from slot %d (RX)\n",
2873 			       __func__, oslot_rx);
2874 		if (hc->slot_owner[(oslot_rx << 1) | 1] == ch) {
2875 			HFC_outb(hc, R_SLOT, (oslot_rx << 1) | V_SL_DIR);
2876 			HFC_outb(hc, A_SL_CFG, 0);
2877 			hc->slot_owner[(oslot_rx << 1) | 1] = -1;
2878 		} else {
2879 			if (debug & DEBUG_HFCMULTI_MODE)
2880 				printk(KERN_DEBUG
2881 				       "%s: we are not owner of this rx slot "
2882 				       "anymore, channel %d is.\n",
2883 				       __func__,
2884 				       hc->slot_owner[(oslot_rx << 1) | 1]);
2885 		}
2886 	}
2887 
2888 	if (slot_tx < 0) {
2889 		flow_tx = 0x80; /* FIFO->ST */
2890 		/* disable pcm slot */
2891 		hc->chan[ch].slot_tx = -1;
2892 		hc->chan[ch].bank_tx = 0;
2893 	} else {
2894 		/* set pcm slot */
2895 		if (hc->chan[ch].txpending)
2896 			flow_tx = 0x80; /* FIFO->ST */
2897 		else
2898 			flow_tx = 0xc0; /* PCM->ST */
2899 		/* put on slot */
2900 		routing = bank_tx ? 0xc0 : 0x80;
2901 		if (conf >= 0 || bank_tx > 1)
2902 			routing = 0x40; /* loop */
2903 		if (debug & DEBUG_HFCMULTI_MODE)
2904 			printk(KERN_DEBUG "%s: put channel %d to slot %d bank"
2905 			       " %d flow %02x routing %02x conf %d (TX)\n",
2906 			       __func__, ch, slot_tx, bank_tx,
2907 			       flow_tx, routing, conf);
2908 		HFC_outb(hc, R_SLOT, slot_tx << 1);
2909 		HFC_outb(hc, A_SL_CFG, (ch << 1) | routing);
2910 		if (hc->ctype != HFC_TYPE_XHFC)
2911 			HFC_outb(hc, A_CONF,
2912 				 (conf < 0) ? 0 : (conf | V_CONF_SL));
2913 		hc->slot_owner[slot_tx << 1] = ch;
2914 		hc->chan[ch].slot_tx = slot_tx;
2915 		hc->chan[ch].bank_tx = bank_tx;
2916 	}
2917 	if (slot_rx < 0) {
2918 		/* disable pcm slot */
2919 		flow_rx = 0x80; /* ST->FIFO */
2920 		hc->chan[ch].slot_rx = -1;
2921 		hc->chan[ch].bank_rx = 0;
2922 	} else {
2923 		/* set pcm slot */
2924 		if (hc->chan[ch].txpending)
2925 			flow_rx = 0x80; /* ST->FIFO */
2926 		else
2927 			flow_rx = 0xc0; /* ST->(FIFO,PCM) */
2928 		/* put on slot */
2929 		routing = bank_rx ? 0x80 : 0xc0; /* reversed */
2930 		if (conf >= 0 || bank_rx > 1)
2931 			routing = 0x40; /* loop */
2932 		if (debug & DEBUG_HFCMULTI_MODE)
2933 			printk(KERN_DEBUG "%s: put channel %d to slot %d bank"
2934 			       " %d flow %02x routing %02x conf %d (RX)\n",
2935 			       __func__, ch, slot_rx, bank_rx,
2936 			       flow_rx, routing, conf);
2937 		HFC_outb(hc, R_SLOT, (slot_rx << 1) | V_SL_DIR);
2938 		HFC_outb(hc, A_SL_CFG, (ch << 1) | V_CH_DIR | routing);
2939 		hc->slot_owner[(slot_rx << 1) | 1] = ch;
2940 		hc->chan[ch].slot_rx = slot_rx;
2941 		hc->chan[ch].bank_rx = bank_rx;
2942 	}
2943 
2944 	switch (protocol) {
2945 	case (ISDN_P_NONE):
2946 		/* disable TX fifo */
2947 		HFC_outb(hc, R_FIFO, ch << 1);
2948 		HFC_wait(hc);
2949 		HFC_outb(hc, A_CON_HDLC, flow_tx | 0x00 | V_IFF);
2950 		HFC_outb(hc, A_SUBCH_CFG, 0);
2951 		HFC_outb(hc, A_IRQ_MSK, 0);
2952 		HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
2953 		HFC_wait(hc);
2954 		/* disable RX fifo */
2955 		HFC_outb(hc, R_FIFO, (ch << 1) | 1);
2956 		HFC_wait(hc);
2957 		HFC_outb(hc, A_CON_HDLC, flow_rx | 0x00);
2958 		HFC_outb(hc, A_SUBCH_CFG, 0);
2959 		HFC_outb(hc, A_IRQ_MSK, 0);
2960 		HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
2961 		HFC_wait(hc);
2962 		if (hc->chan[ch].bch && hc->ctype != HFC_TYPE_E1) {
2963 			hc->hw.a_st_ctrl0[hc->chan[ch].port] &=
2964 				((ch & 0x3) == 0) ? ~V_B1_EN : ~V_B2_EN;
2965 			HFC_outb(hc, R_ST_SEL, hc->chan[ch].port);
2966 			/* undocumented: delay after R_ST_SEL */
2967 			udelay(1);
2968 			HFC_outb(hc, A_ST_CTRL0,
2969 				 hc->hw.a_st_ctrl0[hc->chan[ch].port]);
2970 		}
2971 		if (hc->chan[ch].bch) {
2972 			test_and_clear_bit(FLG_HDLC, &hc->chan[ch].bch->Flags);
2973 			test_and_clear_bit(FLG_TRANSPARENT,
2974 					   &hc->chan[ch].bch->Flags);
2975 		}
2976 		break;
2977 	case (ISDN_P_B_RAW): /* B-channel */
2978 
2979 		if (test_bit(HFC_CHIP_B410P, &hc->chip) &&
2980 		    (hc->chan[ch].slot_rx < 0) &&
2981 		    (hc->chan[ch].slot_tx < 0)) {
2982 
2983 			printk(KERN_DEBUG
2984 			       "Setting B-channel %d to echo cancelable "
2985 			       "state on PCM slot %d\n", ch,
2986 			       ((ch / 4) * 8) + ((ch % 4) * 4) + 1);
2987 			printk(KERN_DEBUG
2988 			       "Enabling pass through for channel\n");
2989 			vpm_out(hc, ch, ((ch / 4) * 8) +
2990 				((ch % 4) * 4) + 1, 0x01);
2991 			/* rx path */
2992 			/* S/T -> PCM */
2993 			HFC_outb(hc, R_FIFO, (ch << 1));
2994 			HFC_wait(hc);
2995 			HFC_outb(hc, A_CON_HDLC, 0xc0 | V_HDLC_TRP | V_IFF);
2996 			HFC_outb(hc, R_SLOT, (((ch / 4) * 8) +
2997 					      ((ch % 4) * 4) + 1) << 1);
2998 			HFC_outb(hc, A_SL_CFG, 0x80 | (ch << 1));
2999 
3000 			/* PCM -> FIFO */
3001 			HFC_outb(hc, R_FIFO, 0x20 | (ch << 1) | 1);
3002 			HFC_wait(hc);
3003 			HFC_outb(hc, A_CON_HDLC, 0x20 | V_HDLC_TRP | V_IFF);
3004 			HFC_outb(hc, A_SUBCH_CFG, 0);
3005 			HFC_outb(hc, A_IRQ_MSK, 0);
3006 			if (hc->chan[ch].protocol != protocol) {
3007 				HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3008 				HFC_wait(hc);
3009 			}
3010 			HFC_outb(hc, R_SLOT, ((((ch / 4) * 8) +
3011 					       ((ch % 4) * 4) + 1) << 1) | 1);
3012 			HFC_outb(hc, A_SL_CFG, 0x80 | 0x20 | (ch << 1) | 1);
3013 
3014 			/* tx path */
3015 			/* PCM -> S/T */
3016 			HFC_outb(hc, R_FIFO, (ch << 1) | 1);
3017 			HFC_wait(hc);
3018 			HFC_outb(hc, A_CON_HDLC, 0xc0 | V_HDLC_TRP | V_IFF);
3019 			HFC_outb(hc, R_SLOT, ((((ch / 4) * 8) +
3020 					       ((ch % 4) * 4)) << 1) | 1);
3021 			HFC_outb(hc, A_SL_CFG, 0x80 | 0x40 | (ch << 1) | 1);
3022 
3023 			/* FIFO -> PCM */
3024 			HFC_outb(hc, R_FIFO, 0x20 | (ch << 1));
3025 			HFC_wait(hc);
3026 			HFC_outb(hc, A_CON_HDLC, 0x20 | V_HDLC_TRP | V_IFF);
3027 			HFC_outb(hc, A_SUBCH_CFG, 0);
3028 			HFC_outb(hc, A_IRQ_MSK, 0);
3029 			if (hc->chan[ch].protocol != protocol) {
3030 				HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3031 				HFC_wait(hc);
3032 			}
3033 			/* tx silence */
3034 			HFC_outb_nodebug(hc, A_FIFO_DATA0_NOINC, hc->silence);
3035 			HFC_outb(hc, R_SLOT, (((ch / 4) * 8) +
3036 					      ((ch % 4) * 4)) << 1);
3037 			HFC_outb(hc, A_SL_CFG, 0x80 | 0x20 | (ch << 1));
3038 		} else {
3039 			/* enable TX fifo */
3040 			HFC_outb(hc, R_FIFO, ch << 1);
3041 			HFC_wait(hc);
3042 			if (hc->ctype == HFC_TYPE_XHFC)
3043 				HFC_outb(hc, A_CON_HDLC, flow_tx | 0x07 << 2 |
3044 					 V_HDLC_TRP | V_IFF);
3045 			/* Enable FIFO, no interrupt */
3046 			else
3047 				HFC_outb(hc, A_CON_HDLC, flow_tx | 0x00 |
3048 					 V_HDLC_TRP | V_IFF);
3049 			HFC_outb(hc, A_SUBCH_CFG, 0);
3050 			HFC_outb(hc, A_IRQ_MSK, 0);
3051 			if (hc->chan[ch].protocol != protocol) {
3052 				HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3053 				HFC_wait(hc);
3054 			}
3055 			/* tx silence */
3056 			HFC_outb_nodebug(hc, A_FIFO_DATA0_NOINC, hc->silence);
3057 			/* enable RX fifo */
3058 			HFC_outb(hc, R_FIFO, (ch << 1) | 1);
3059 			HFC_wait(hc);
3060 			if (hc->ctype == HFC_TYPE_XHFC)
3061 				HFC_outb(hc, A_CON_HDLC, flow_rx | 0x07 << 2 |
3062 					 V_HDLC_TRP);
3063 			/* Enable FIFO, no interrupt*/
3064 			else
3065 				HFC_outb(hc, A_CON_HDLC, flow_rx | 0x00 |
3066 					 V_HDLC_TRP);
3067 			HFC_outb(hc, A_SUBCH_CFG, 0);
3068 			HFC_outb(hc, A_IRQ_MSK, 0);
3069 			if (hc->chan[ch].protocol != protocol) {
3070 				HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3071 				HFC_wait(hc);
3072 			}
3073 		}
3074 		if (hc->ctype != HFC_TYPE_E1) {
3075 			hc->hw.a_st_ctrl0[hc->chan[ch].port] |=
3076 				((ch & 0x3) == 0) ? V_B1_EN : V_B2_EN;
3077 			HFC_outb(hc, R_ST_SEL, hc->chan[ch].port);
3078 			/* undocumented: delay after R_ST_SEL */
3079 			udelay(1);
3080 			HFC_outb(hc, A_ST_CTRL0,
3081 				 hc->hw.a_st_ctrl0[hc->chan[ch].port]);
3082 		}
3083 		if (hc->chan[ch].bch)
3084 			test_and_set_bit(FLG_TRANSPARENT,
3085 					 &hc->chan[ch].bch->Flags);
3086 		break;
3087 	case (ISDN_P_B_HDLC): /* B-channel */
3088 	case (ISDN_P_TE_S0): /* D-channel */
3089 	case (ISDN_P_NT_S0):
3090 	case (ISDN_P_TE_E1):
3091 	case (ISDN_P_NT_E1):
3092 		/* enable TX fifo */
3093 		HFC_outb(hc, R_FIFO, ch << 1);
3094 		HFC_wait(hc);
3095 		if (hc->ctype == HFC_TYPE_E1 || hc->chan[ch].bch) {
3096 			/* E1 or B-channel */
3097 			HFC_outb(hc, A_CON_HDLC, flow_tx | 0x04);
3098 			HFC_outb(hc, A_SUBCH_CFG, 0);
3099 		} else {
3100 			/* D-Channel without HDLC fill flags */
3101 			HFC_outb(hc, A_CON_HDLC, flow_tx | 0x04 | V_IFF);
3102 			HFC_outb(hc, A_SUBCH_CFG, 2);
3103 		}
3104 		HFC_outb(hc, A_IRQ_MSK, V_IRQ);
3105 		HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3106 		HFC_wait(hc);
3107 		/* enable RX fifo */
3108 		HFC_outb(hc, R_FIFO, (ch << 1) | 1);
3109 		HFC_wait(hc);
3110 		HFC_outb(hc, A_CON_HDLC, flow_rx | 0x04);
3111 		if (hc->ctype == HFC_TYPE_E1 || hc->chan[ch].bch)
3112 			HFC_outb(hc, A_SUBCH_CFG, 0); /* full 8 bits */
3113 		else
3114 			HFC_outb(hc, A_SUBCH_CFG, 2); /* 2 bits dchannel */
3115 		HFC_outb(hc, A_IRQ_MSK, V_IRQ);
3116 		HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3117 		HFC_wait(hc);
3118 		if (hc->chan[ch].bch) {
3119 			test_and_set_bit(FLG_HDLC, &hc->chan[ch].bch->Flags);
3120 			if (hc->ctype != HFC_TYPE_E1) {
3121 				hc->hw.a_st_ctrl0[hc->chan[ch].port] |=
3122 					((ch & 0x3) == 0) ? V_B1_EN : V_B2_EN;
3123 				HFC_outb(hc, R_ST_SEL, hc->chan[ch].port);
3124 				/* undocumented: delay after R_ST_SEL */
3125 				udelay(1);
3126 				HFC_outb(hc, A_ST_CTRL0,
3127 					 hc->hw.a_st_ctrl0[hc->chan[ch].port]);
3128 			}
3129 		}
3130 		break;
3131 	default:
3132 		printk(KERN_DEBUG "%s: protocol not known %x\n",
3133 		       __func__, protocol);
3134 		hc->chan[ch].protocol = ISDN_P_NONE;
3135 		return -ENOPROTOOPT;
3136 	}
3137 	hc->chan[ch].protocol = protocol;
3138 	return 0;
3139 }
3140 
3141 
3142 /*
3143  * connect/disconnect PCM
3144  */
3145 
3146 static void
hfcmulti_pcm(struct hfc_multi * hc,int ch,int slot_tx,int bank_tx,int slot_rx,int bank_rx)3147 hfcmulti_pcm(struct hfc_multi *hc, int ch, int slot_tx, int bank_tx,
3148 	     int slot_rx, int bank_rx)
3149 {
3150 	if (slot_tx < 0 || slot_rx < 0 || bank_tx < 0 || bank_rx < 0) {
3151 		/* disable PCM */
3152 		mode_hfcmulti(hc, ch, hc->chan[ch].protocol, -1, 0, -1, 0);
3153 		return;
3154 	}
3155 
3156 	/* enable pcm */
3157 	mode_hfcmulti(hc, ch, hc->chan[ch].protocol, slot_tx, bank_tx,
3158 		      slot_rx, bank_rx);
3159 }
3160 
3161 /*
3162  * set/disable conference
3163  */
3164 
3165 static void
hfcmulti_conf(struct hfc_multi * hc,int ch,int num)3166 hfcmulti_conf(struct hfc_multi *hc, int ch, int num)
3167 {
3168 	if (num >= 0 && num <= 7)
3169 		hc->chan[ch].conf = num;
3170 	else
3171 		hc->chan[ch].conf = -1;
3172 	mode_hfcmulti(hc, ch, hc->chan[ch].protocol, hc->chan[ch].slot_tx,
3173 		      hc->chan[ch].bank_tx, hc->chan[ch].slot_rx,
3174 		      hc->chan[ch].bank_rx);
3175 }
3176 
3177 
3178 /*
3179  * set/disable sample loop
3180  */
3181 
3182 /* NOTE: this function is experimental and therefore disabled */
3183 
3184 /*
3185  * Layer 1 callback function
3186  */
3187 static int
hfcm_l1callback(struct dchannel * dch,u_int cmd)3188 hfcm_l1callback(struct dchannel *dch, u_int cmd)
3189 {
3190 	struct hfc_multi	*hc = dch->hw;
3191 	struct sk_buff_head	free_queue;
3192 	u_long	flags;
3193 
3194 	switch (cmd) {
3195 	case INFO3_P8:
3196 	case INFO3_P10:
3197 		break;
3198 	case HW_RESET_REQ:
3199 		/* start activation */
3200 		spin_lock_irqsave(&hc->lock, flags);
3201 		if (hc->ctype == HFC_TYPE_E1) {
3202 			if (debug & DEBUG_HFCMULTI_MSG)
3203 				printk(KERN_DEBUG
3204 				       "%s: HW_RESET_REQ no BRI\n",
3205 				       __func__);
3206 		} else {
3207 			HFC_outb(hc, R_ST_SEL, hc->chan[dch->slot].port);
3208 			/* undocumented: delay after R_ST_SEL */
3209 			udelay(1);
3210 			HFC_outb(hc, A_ST_WR_STATE, V_ST_LD_STA | 3); /* F3 */
3211 			udelay(6); /* wait at least 5,21us */
3212 			HFC_outb(hc, A_ST_WR_STATE, 3);
3213 			HFC_outb(hc, A_ST_WR_STATE, 3 | (V_ST_ACT * 3));
3214 			/* activate */
3215 		}
3216 		spin_unlock_irqrestore(&hc->lock, flags);
3217 		l1_event(dch->l1, HW_POWERUP_IND);
3218 		break;
3219 	case HW_DEACT_REQ:
3220 		__skb_queue_head_init(&free_queue);
3221 		/* start deactivation */
3222 		spin_lock_irqsave(&hc->lock, flags);
3223 		if (hc->ctype == HFC_TYPE_E1) {
3224 			if (debug & DEBUG_HFCMULTI_MSG)
3225 				printk(KERN_DEBUG
3226 				       "%s: HW_DEACT_REQ no BRI\n",
3227 				       __func__);
3228 		} else {
3229 			HFC_outb(hc, R_ST_SEL, hc->chan[dch->slot].port);
3230 			/* undocumented: delay after R_ST_SEL */
3231 			udelay(1);
3232 			HFC_outb(hc, A_ST_WR_STATE, V_ST_ACT * 2);
3233 			/* deactivate */
3234 			if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
3235 				hc->syncronized &=
3236 					~(1 << hc->chan[dch->slot].port);
3237 				plxsd_checksync(hc, 0);
3238 			}
3239 		}
3240 		skb_queue_splice_init(&dch->squeue, &free_queue);
3241 		if (dch->tx_skb) {
3242 			__skb_queue_tail(&free_queue, dch->tx_skb);
3243 			dch->tx_skb = NULL;
3244 		}
3245 		dch->tx_idx = 0;
3246 		if (dch->rx_skb) {
3247 			__skb_queue_tail(&free_queue, dch->rx_skb);
3248 			dch->rx_skb = NULL;
3249 		}
3250 		test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
3251 		if (test_and_clear_bit(FLG_BUSY_TIMER, &dch->Flags))
3252 			del_timer(&dch->timer);
3253 		spin_unlock_irqrestore(&hc->lock, flags);
3254 		__skb_queue_purge(&free_queue);
3255 		break;
3256 	case HW_POWERUP_REQ:
3257 		spin_lock_irqsave(&hc->lock, flags);
3258 		if (hc->ctype == HFC_TYPE_E1) {
3259 			if (debug & DEBUG_HFCMULTI_MSG)
3260 				printk(KERN_DEBUG
3261 				       "%s: HW_POWERUP_REQ no BRI\n",
3262 				       __func__);
3263 		} else {
3264 			HFC_outb(hc, R_ST_SEL, hc->chan[dch->slot].port);
3265 			/* undocumented: delay after R_ST_SEL */
3266 			udelay(1);
3267 			HFC_outb(hc, A_ST_WR_STATE, 3 | 0x10); /* activate */
3268 			udelay(6); /* wait at least 5,21us */
3269 			HFC_outb(hc, A_ST_WR_STATE, 3); /* activate */
3270 		}
3271 		spin_unlock_irqrestore(&hc->lock, flags);
3272 		break;
3273 	case PH_ACTIVATE_IND:
3274 		test_and_set_bit(FLG_ACTIVE, &dch->Flags);
3275 		_queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
3276 			    GFP_ATOMIC);
3277 		break;
3278 	case PH_DEACTIVATE_IND:
3279 		test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
3280 		_queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
3281 			    GFP_ATOMIC);
3282 		break;
3283 	default:
3284 		if (dch->debug & DEBUG_HW)
3285 			printk(KERN_DEBUG "%s: unknown command %x\n",
3286 			       __func__, cmd);
3287 		return -1;
3288 	}
3289 	return 0;
3290 }
3291 
3292 /*
3293  * Layer2 -> Layer 1 Transfer
3294  */
3295 
3296 static int
handle_dmsg(struct mISDNchannel * ch,struct sk_buff * skb)3297 handle_dmsg(struct mISDNchannel *ch, struct sk_buff *skb)
3298 {
3299 	struct mISDNdevice	*dev = container_of(ch, struct mISDNdevice, D);
3300 	struct dchannel		*dch = container_of(dev, struct dchannel, dev);
3301 	struct hfc_multi	*hc = dch->hw;
3302 	struct mISDNhead	*hh = mISDN_HEAD_P(skb);
3303 	int			ret = -EINVAL;
3304 	unsigned int		id;
3305 	u_long			flags;
3306 
3307 	switch (hh->prim) {
3308 	case PH_DATA_REQ:
3309 		if (skb->len < 1)
3310 			break;
3311 		spin_lock_irqsave(&hc->lock, flags);
3312 		ret = dchannel_senddata(dch, skb);
3313 		if (ret > 0) { /* direct TX */
3314 			id = hh->id; /* skb can be freed */
3315 			hfcmulti_tx(hc, dch->slot);
3316 			ret = 0;
3317 			/* start fifo */
3318 			HFC_outb(hc, R_FIFO, 0);
3319 			HFC_wait(hc);
3320 			spin_unlock_irqrestore(&hc->lock, flags);
3321 			queue_ch_frame(ch, PH_DATA_CNF, id, NULL);
3322 		} else
3323 			spin_unlock_irqrestore(&hc->lock, flags);
3324 		return ret;
3325 	case PH_ACTIVATE_REQ:
3326 		if (dch->dev.D.protocol != ISDN_P_TE_S0) {
3327 			spin_lock_irqsave(&hc->lock, flags);
3328 			ret = 0;
3329 			if (debug & DEBUG_HFCMULTI_MSG)
3330 				printk(KERN_DEBUG
3331 				       "%s: PH_ACTIVATE port %d (0..%d)\n",
3332 				       __func__, hc->chan[dch->slot].port,
3333 				       hc->ports - 1);
3334 			/* start activation */
3335 			if (hc->ctype == HFC_TYPE_E1) {
3336 				ph_state_change(dch);
3337 				if (debug & DEBUG_HFCMULTI_STATE)
3338 					printk(KERN_DEBUG
3339 					       "%s: E1 report state %x \n",
3340 					       __func__, dch->state);
3341 			} else {
3342 				HFC_outb(hc, R_ST_SEL,
3343 					 hc->chan[dch->slot].port);
3344 				/* undocumented: delay after R_ST_SEL */
3345 				udelay(1);
3346 				HFC_outb(hc, A_ST_WR_STATE, V_ST_LD_STA | 1);
3347 				/* G1 */
3348 				udelay(6); /* wait at least 5,21us */
3349 				HFC_outb(hc, A_ST_WR_STATE, 1);
3350 				HFC_outb(hc, A_ST_WR_STATE, 1 |
3351 					 (V_ST_ACT * 3)); /* activate */
3352 				dch->state = 1;
3353 			}
3354 			spin_unlock_irqrestore(&hc->lock, flags);
3355 		} else
3356 			ret = l1_event(dch->l1, hh->prim);
3357 		break;
3358 	case PH_DEACTIVATE_REQ:
3359 		test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
3360 		if (dch->dev.D.protocol != ISDN_P_TE_S0) {
3361 			struct sk_buff_head free_queue;
3362 
3363 			__skb_queue_head_init(&free_queue);
3364 			spin_lock_irqsave(&hc->lock, flags);
3365 			if (debug & DEBUG_HFCMULTI_MSG)
3366 				printk(KERN_DEBUG
3367 				       "%s: PH_DEACTIVATE port %d (0..%d)\n",
3368 				       __func__, hc->chan[dch->slot].port,
3369 				       hc->ports - 1);
3370 			/* start deactivation */
3371 			if (hc->ctype == HFC_TYPE_E1) {
3372 				if (debug & DEBUG_HFCMULTI_MSG)
3373 					printk(KERN_DEBUG
3374 					       "%s: PH_DEACTIVATE no BRI\n",
3375 					       __func__);
3376 			} else {
3377 				HFC_outb(hc, R_ST_SEL,
3378 					 hc->chan[dch->slot].port);
3379 				/* undocumented: delay after R_ST_SEL */
3380 				udelay(1);
3381 				HFC_outb(hc, A_ST_WR_STATE, V_ST_ACT * 2);
3382 				/* deactivate */
3383 				dch->state = 1;
3384 			}
3385 			skb_queue_splice_init(&dch->squeue, &free_queue);
3386 			if (dch->tx_skb) {
3387 				__skb_queue_tail(&free_queue, dch->tx_skb);
3388 				dch->tx_skb = NULL;
3389 			}
3390 			dch->tx_idx = 0;
3391 			if (dch->rx_skb) {
3392 				__skb_queue_tail(&free_queue, dch->rx_skb);
3393 				dch->rx_skb = NULL;
3394 			}
3395 			test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
3396 			if (test_and_clear_bit(FLG_BUSY_TIMER, &dch->Flags))
3397 				del_timer(&dch->timer);
3398 #ifdef FIXME
3399 			if (test_and_clear_bit(FLG_L1_BUSY, &dch->Flags))
3400 				dchannel_sched_event(&hc->dch, D_CLEARBUSY);
3401 #endif
3402 			ret = 0;
3403 			spin_unlock_irqrestore(&hc->lock, flags);
3404 			__skb_queue_purge(&free_queue);
3405 		} else
3406 			ret = l1_event(dch->l1, hh->prim);
3407 		break;
3408 	}
3409 	if (!ret)
3410 		dev_kfree_skb(skb);
3411 	return ret;
3412 }
3413 
3414 static void
deactivate_bchannel(struct bchannel * bch)3415 deactivate_bchannel(struct bchannel *bch)
3416 {
3417 	struct hfc_multi	*hc = bch->hw;
3418 	u_long			flags;
3419 
3420 	spin_lock_irqsave(&hc->lock, flags);
3421 	mISDN_clear_bchannel(bch);
3422 	hc->chan[bch->slot].coeff_count = 0;
3423 	hc->chan[bch->slot].rx_off = 0;
3424 	hc->chan[bch->slot].conf = -1;
3425 	mode_hfcmulti(hc, bch->slot, ISDN_P_NONE, -1, 0, -1, 0);
3426 	spin_unlock_irqrestore(&hc->lock, flags);
3427 }
3428 
3429 static int
handle_bmsg(struct mISDNchannel * ch,struct sk_buff * skb)3430 handle_bmsg(struct mISDNchannel *ch, struct sk_buff *skb)
3431 {
3432 	struct bchannel		*bch = container_of(ch, struct bchannel, ch);
3433 	struct hfc_multi	*hc = bch->hw;
3434 	int			ret = -EINVAL;
3435 	struct mISDNhead	*hh = mISDN_HEAD_P(skb);
3436 	unsigned long		flags;
3437 
3438 	switch (hh->prim) {
3439 	case PH_DATA_REQ:
3440 		if (!skb->len)
3441 			break;
3442 		spin_lock_irqsave(&hc->lock, flags);
3443 		ret = bchannel_senddata(bch, skb);
3444 		if (ret > 0) { /* direct TX */
3445 			hfcmulti_tx(hc, bch->slot);
3446 			ret = 0;
3447 			/* start fifo */
3448 			HFC_outb_nodebug(hc, R_FIFO, 0);
3449 			HFC_wait_nodebug(hc);
3450 		}
3451 		spin_unlock_irqrestore(&hc->lock, flags);
3452 		return ret;
3453 	case PH_ACTIVATE_REQ:
3454 		if (debug & DEBUG_HFCMULTI_MSG)
3455 			printk(KERN_DEBUG "%s: PH_ACTIVATE ch %d (0..32)\n",
3456 			       __func__, bch->slot);
3457 		spin_lock_irqsave(&hc->lock, flags);
3458 		/* activate B-channel if not already activated */
3459 		if (!test_and_set_bit(FLG_ACTIVE, &bch->Flags)) {
3460 			hc->chan[bch->slot].txpending = 0;
3461 			ret = mode_hfcmulti(hc, bch->slot,
3462 					    ch->protocol,
3463 					    hc->chan[bch->slot].slot_tx,
3464 					    hc->chan[bch->slot].bank_tx,
3465 					    hc->chan[bch->slot].slot_rx,
3466 					    hc->chan[bch->slot].bank_rx);
3467 			if (!ret) {
3468 				if (ch->protocol == ISDN_P_B_RAW && !hc->dtmf
3469 				    && test_bit(HFC_CHIP_DTMF, &hc->chip)) {
3470 					/* start decoder */
3471 					hc->dtmf = 1;
3472 					if (debug & DEBUG_HFCMULTI_DTMF)
3473 						printk(KERN_DEBUG
3474 						       "%s: start dtmf decoder\n",
3475 						       __func__);
3476 					HFC_outb(hc, R_DTMF, hc->hw.r_dtmf |
3477 						 V_RST_DTMF);
3478 				}
3479 			}
3480 		} else
3481 			ret = 0;
3482 		spin_unlock_irqrestore(&hc->lock, flags);
3483 		if (!ret)
3484 			_queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY, 0, NULL,
3485 				    GFP_KERNEL);
3486 		break;
3487 	case PH_CONTROL_REQ:
3488 		spin_lock_irqsave(&hc->lock, flags);
3489 		switch (hh->id) {
3490 		case HFC_SPL_LOOP_ON: /* set sample loop */
3491 			if (debug & DEBUG_HFCMULTI_MSG)
3492 				printk(KERN_DEBUG
3493 				       "%s: HFC_SPL_LOOP_ON (len = %d)\n",
3494 				       __func__, skb->len);
3495 			ret = 0;
3496 			break;
3497 		case HFC_SPL_LOOP_OFF: /* set silence */
3498 			if (debug & DEBUG_HFCMULTI_MSG)
3499 				printk(KERN_DEBUG "%s: HFC_SPL_LOOP_OFF\n",
3500 				       __func__);
3501 			ret = 0;
3502 			break;
3503 		default:
3504 			printk(KERN_ERR
3505 			       "%s: unknown PH_CONTROL_REQ info %x\n",
3506 			       __func__, hh->id);
3507 			ret = -EINVAL;
3508 		}
3509 		spin_unlock_irqrestore(&hc->lock, flags);
3510 		break;
3511 	case PH_DEACTIVATE_REQ:
3512 		deactivate_bchannel(bch); /* locked there */
3513 		_queue_data(ch, PH_DEACTIVATE_IND, MISDN_ID_ANY, 0, NULL,
3514 			    GFP_KERNEL);
3515 		ret = 0;
3516 		break;
3517 	}
3518 	if (!ret)
3519 		dev_kfree_skb(skb);
3520 	return ret;
3521 }
3522 
3523 /*
3524  * bchannel control function
3525  */
3526 static int
channel_bctrl(struct bchannel * bch,struct mISDN_ctrl_req * cq)3527 channel_bctrl(struct bchannel *bch, struct mISDN_ctrl_req *cq)
3528 {
3529 	int			ret = 0;
3530 	struct dsp_features	*features =
3531 		(struct dsp_features *)(*((u_long *)&cq->p1));
3532 	struct hfc_multi	*hc = bch->hw;
3533 	int			slot_tx;
3534 	int			bank_tx;
3535 	int			slot_rx;
3536 	int			bank_rx;
3537 	int			num;
3538 
3539 	switch (cq->op) {
3540 	case MISDN_CTRL_GETOP:
3541 		ret = mISDN_ctrl_bchannel(bch, cq);
3542 		cq->op |= MISDN_CTRL_HFC_OP | MISDN_CTRL_HW_FEATURES_OP;
3543 		break;
3544 	case MISDN_CTRL_RX_OFF: /* turn off / on rx stream */
3545 		ret = mISDN_ctrl_bchannel(bch, cq);
3546 		hc->chan[bch->slot].rx_off = !!cq->p1;
3547 		if (!hc->chan[bch->slot].rx_off) {
3548 			/* reset fifo on rx on */
3549 			HFC_outb_nodebug(hc, R_FIFO, (bch->slot << 1) | 1);
3550 			HFC_wait_nodebug(hc);
3551 			HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_RES_F);
3552 			HFC_wait_nodebug(hc);
3553 		}
3554 		if (debug & DEBUG_HFCMULTI_MSG)
3555 			printk(KERN_DEBUG "%s: RX_OFF request (nr=%d off=%d)\n",
3556 			       __func__, bch->nr, hc->chan[bch->slot].rx_off);
3557 		break;
3558 	case MISDN_CTRL_FILL_EMPTY:
3559 		ret = mISDN_ctrl_bchannel(bch, cq);
3560 		hc->silence = bch->fill[0];
3561 		memset(hc->silence_data, hc->silence, sizeof(hc->silence_data));
3562 		break;
3563 	case MISDN_CTRL_HW_FEATURES: /* fill features structure */
3564 		if (debug & DEBUG_HFCMULTI_MSG)
3565 			printk(KERN_DEBUG "%s: HW_FEATURE request\n",
3566 			       __func__);
3567 		/* create confirm */
3568 		features->hfc_id = hc->id;
3569 		if (test_bit(HFC_CHIP_DTMF, &hc->chip))
3570 			features->hfc_dtmf = 1;
3571 		if (test_bit(HFC_CHIP_CONF, &hc->chip))
3572 			features->hfc_conf = 1;
3573 		features->hfc_loops = 0;
3574 		if (test_bit(HFC_CHIP_B410P, &hc->chip)) {
3575 			features->hfc_echocanhw = 1;
3576 		} else {
3577 			features->pcm_id = hc->pcm;
3578 			features->pcm_slots = hc->slots;
3579 			features->pcm_banks = 2;
3580 		}
3581 		break;
3582 	case MISDN_CTRL_HFC_PCM_CONN: /* connect to pcm timeslot (0..N) */
3583 		slot_tx = cq->p1 & 0xff;
3584 		bank_tx = cq->p1 >> 8;
3585 		slot_rx = cq->p2 & 0xff;
3586 		bank_rx = cq->p2 >> 8;
3587 		if (debug & DEBUG_HFCMULTI_MSG)
3588 			printk(KERN_DEBUG
3589 			       "%s: HFC_PCM_CONN slot %d bank %d (TX) "
3590 			       "slot %d bank %d (RX)\n",
3591 			       __func__, slot_tx, bank_tx,
3592 			       slot_rx, bank_rx);
3593 		if (slot_tx < hc->slots && bank_tx <= 2 &&
3594 		    slot_rx < hc->slots && bank_rx <= 2)
3595 			hfcmulti_pcm(hc, bch->slot,
3596 				     slot_tx, bank_tx, slot_rx, bank_rx);
3597 		else {
3598 			printk(KERN_WARNING
3599 			       "%s: HFC_PCM_CONN slot %d bank %d (TX) "
3600 			       "slot %d bank %d (RX) out of range\n",
3601 			       __func__, slot_tx, bank_tx,
3602 			       slot_rx, bank_rx);
3603 			ret = -EINVAL;
3604 		}
3605 		break;
3606 	case MISDN_CTRL_HFC_PCM_DISC: /* release interface from pcm timeslot */
3607 		if (debug & DEBUG_HFCMULTI_MSG)
3608 			printk(KERN_DEBUG "%s: HFC_PCM_DISC\n",
3609 			       __func__);
3610 		hfcmulti_pcm(hc, bch->slot, -1, 0, -1, 0);
3611 		break;
3612 	case MISDN_CTRL_HFC_CONF_JOIN: /* join conference (0..7) */
3613 		num = cq->p1 & 0xff;
3614 		if (debug & DEBUG_HFCMULTI_MSG)
3615 			printk(KERN_DEBUG "%s: HFC_CONF_JOIN conf %d\n",
3616 			       __func__, num);
3617 		if (num <= 7)
3618 			hfcmulti_conf(hc, bch->slot, num);
3619 		else {
3620 			printk(KERN_WARNING
3621 			       "%s: HW_CONF_JOIN conf %d out of range\n",
3622 			       __func__, num);
3623 			ret = -EINVAL;
3624 		}
3625 		break;
3626 	case MISDN_CTRL_HFC_CONF_SPLIT: /* split conference */
3627 		if (debug & DEBUG_HFCMULTI_MSG)
3628 			printk(KERN_DEBUG "%s: HFC_CONF_SPLIT\n", __func__);
3629 		hfcmulti_conf(hc, bch->slot, -1);
3630 		break;
3631 	case MISDN_CTRL_HFC_ECHOCAN_ON:
3632 		if (debug & DEBUG_HFCMULTI_MSG)
3633 			printk(KERN_DEBUG "%s: HFC_ECHOCAN_ON\n", __func__);
3634 		if (test_bit(HFC_CHIP_B410P, &hc->chip))
3635 			vpm_echocan_on(hc, bch->slot, cq->p1);
3636 		else
3637 			ret = -EINVAL;
3638 		break;
3639 
3640 	case MISDN_CTRL_HFC_ECHOCAN_OFF:
3641 		if (debug & DEBUG_HFCMULTI_MSG)
3642 			printk(KERN_DEBUG "%s: HFC_ECHOCAN_OFF\n",
3643 			       __func__);
3644 		if (test_bit(HFC_CHIP_B410P, &hc->chip))
3645 			vpm_echocan_off(hc, bch->slot);
3646 		else
3647 			ret = -EINVAL;
3648 		break;
3649 	default:
3650 		ret = mISDN_ctrl_bchannel(bch, cq);
3651 		break;
3652 	}
3653 	return ret;
3654 }
3655 
3656 static int
hfcm_bctrl(struct mISDNchannel * ch,u_int cmd,void * arg)3657 hfcm_bctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
3658 {
3659 	struct bchannel		*bch = container_of(ch, struct bchannel, ch);
3660 	struct hfc_multi	*hc = bch->hw;
3661 	int			err = -EINVAL;
3662 	u_long	flags;
3663 
3664 	if (bch->debug & DEBUG_HW)
3665 		printk(KERN_DEBUG "%s: cmd:%x %p\n",
3666 		       __func__, cmd, arg);
3667 	switch (cmd) {
3668 	case CLOSE_CHANNEL:
3669 		test_and_clear_bit(FLG_OPEN, &bch->Flags);
3670 		deactivate_bchannel(bch); /* locked there */
3671 		ch->protocol = ISDN_P_NONE;
3672 		ch->peer = NULL;
3673 		module_put(THIS_MODULE);
3674 		err = 0;
3675 		break;
3676 	case CONTROL_CHANNEL:
3677 		spin_lock_irqsave(&hc->lock, flags);
3678 		err = channel_bctrl(bch, arg);
3679 		spin_unlock_irqrestore(&hc->lock, flags);
3680 		break;
3681 	default:
3682 		printk(KERN_WARNING "%s: unknown prim(%x)\n",
3683 		       __func__, cmd);
3684 	}
3685 	return err;
3686 }
3687 
3688 /*
3689  * handle D-channel events
3690  *
3691  * handle state change event
3692  */
3693 static void
ph_state_change(struct dchannel * dch)3694 ph_state_change(struct dchannel *dch)
3695 {
3696 	struct hfc_multi *hc;
3697 	int ch, i;
3698 
3699 	if (!dch) {
3700 		printk(KERN_WARNING "%s: ERROR given dch is NULL\n", __func__);
3701 		return;
3702 	}
3703 	hc = dch->hw;
3704 	ch = dch->slot;
3705 
3706 	if (hc->ctype == HFC_TYPE_E1) {
3707 		if (dch->dev.D.protocol == ISDN_P_TE_E1) {
3708 			if (debug & DEBUG_HFCMULTI_STATE)
3709 				printk(KERN_DEBUG
3710 				       "%s: E1 TE (id=%d) newstate %x\n",
3711 				       __func__, hc->id, dch->state);
3712 		} else {
3713 			if (debug & DEBUG_HFCMULTI_STATE)
3714 				printk(KERN_DEBUG
3715 				       "%s: E1 NT (id=%d) newstate %x\n",
3716 				       __func__, hc->id, dch->state);
3717 		}
3718 		switch (dch->state) {
3719 		case (1):
3720 			if (hc->e1_state != 1) {
3721 				for (i = 1; i <= 31; i++) {
3722 					/* reset fifos on e1 activation */
3723 					HFC_outb_nodebug(hc, R_FIFO,
3724 							 (i << 1) | 1);
3725 					HFC_wait_nodebug(hc);
3726 					HFC_outb_nodebug(hc, R_INC_RES_FIFO,
3727 							 V_RES_F);
3728 					HFC_wait_nodebug(hc);
3729 				}
3730 			}
3731 			test_and_set_bit(FLG_ACTIVE, &dch->Flags);
3732 			_queue_data(&dch->dev.D, PH_ACTIVATE_IND,
3733 				    MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
3734 			break;
3735 
3736 		default:
3737 			if (hc->e1_state != 1)
3738 				return;
3739 			test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
3740 			_queue_data(&dch->dev.D, PH_DEACTIVATE_IND,
3741 				    MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
3742 		}
3743 		hc->e1_state = dch->state;
3744 	} else {
3745 		if (dch->dev.D.protocol == ISDN_P_TE_S0) {
3746 			if (debug & DEBUG_HFCMULTI_STATE)
3747 				printk(KERN_DEBUG
3748 				       "%s: S/T TE newstate %x\n",
3749 				       __func__, dch->state);
3750 			switch (dch->state) {
3751 			case (0):
3752 				l1_event(dch->l1, HW_RESET_IND);
3753 				break;
3754 			case (3):
3755 				l1_event(dch->l1, HW_DEACT_IND);
3756 				break;
3757 			case (5):
3758 			case (8):
3759 				l1_event(dch->l1, ANYSIGNAL);
3760 				break;
3761 			case (6):
3762 				l1_event(dch->l1, INFO2);
3763 				break;
3764 			case (7):
3765 				l1_event(dch->l1, INFO4_P8);
3766 				break;
3767 			}
3768 		} else {
3769 			if (debug & DEBUG_HFCMULTI_STATE)
3770 				printk(KERN_DEBUG "%s: S/T NT newstate %x\n",
3771 				       __func__, dch->state);
3772 			switch (dch->state) {
3773 			case (2):
3774 				if (hc->chan[ch].nt_timer == 0) {
3775 					hc->chan[ch].nt_timer = -1;
3776 					HFC_outb(hc, R_ST_SEL,
3777 						 hc->chan[ch].port);
3778 					/* undocumented: delay after R_ST_SEL */
3779 					udelay(1);
3780 					HFC_outb(hc, A_ST_WR_STATE, 4 |
3781 						 V_ST_LD_STA); /* G4 */
3782 					udelay(6); /* wait at least 5,21us */
3783 					HFC_outb(hc, A_ST_WR_STATE, 4);
3784 					dch->state = 4;
3785 				} else {
3786 					/* one extra count for the next event */
3787 					hc->chan[ch].nt_timer =
3788 						nt_t1_count[poll_timer] + 1;
3789 					HFC_outb(hc, R_ST_SEL,
3790 						 hc->chan[ch].port);
3791 					/* undocumented: delay after R_ST_SEL */
3792 					udelay(1);
3793 					/* allow G2 -> G3 transition */
3794 					HFC_outb(hc, A_ST_WR_STATE, 2 |
3795 						 V_SET_G2_G3);
3796 				}
3797 				break;
3798 			case (1):
3799 				hc->chan[ch].nt_timer = -1;
3800 				test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
3801 				_queue_data(&dch->dev.D, PH_DEACTIVATE_IND,
3802 					    MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
3803 				break;
3804 			case (4):
3805 				hc->chan[ch].nt_timer = -1;
3806 				break;
3807 			case (3):
3808 				hc->chan[ch].nt_timer = -1;
3809 				test_and_set_bit(FLG_ACTIVE, &dch->Flags);
3810 				_queue_data(&dch->dev.D, PH_ACTIVATE_IND,
3811 					    MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
3812 				break;
3813 			}
3814 		}
3815 	}
3816 }
3817 
3818 /*
3819  * called for card mode init message
3820  */
3821 
3822 static void
hfcmulti_initmode(struct dchannel * dch)3823 hfcmulti_initmode(struct dchannel *dch)
3824 {
3825 	struct hfc_multi *hc = dch->hw;
3826 	u_char		a_st_wr_state, r_e1_wr_sta;
3827 	int		i, pt;
3828 
3829 	if (debug & DEBUG_HFCMULTI_INIT)
3830 		printk(KERN_DEBUG "%s: entered\n", __func__);
3831 
3832 	i = dch->slot;
3833 	pt = hc->chan[i].port;
3834 	if (hc->ctype == HFC_TYPE_E1) {
3835 		/* E1 */
3836 		hc->chan[hc->dnum[pt]].slot_tx = -1;
3837 		hc->chan[hc->dnum[pt]].slot_rx = -1;
3838 		hc->chan[hc->dnum[pt]].conf = -1;
3839 		if (hc->dnum[pt]) {
3840 			mode_hfcmulti(hc, dch->slot, dch->dev.D.protocol,
3841 				      -1, 0, -1, 0);
3842 			timer_setup(&dch->timer, hfcmulti_dbusy_timer, 0);
3843 		}
3844 		for (i = 1; i <= 31; i++) {
3845 			if (!((1 << i) & hc->bmask[pt])) /* skip unused chan */
3846 				continue;
3847 			hc->chan[i].slot_tx = -1;
3848 			hc->chan[i].slot_rx = -1;
3849 			hc->chan[i].conf = -1;
3850 			mode_hfcmulti(hc, i, ISDN_P_NONE, -1, 0, -1, 0);
3851 		}
3852 	}
3853 	if (hc->ctype == HFC_TYPE_E1 && pt == 0) {
3854 		/* E1, port 0 */
3855 		dch = hc->chan[hc->dnum[0]].dch;
3856 		if (test_bit(HFC_CFG_REPORT_LOS, &hc->chan[hc->dnum[0]].cfg)) {
3857 			HFC_outb(hc, R_LOS0, 255); /* 2 ms */
3858 			HFC_outb(hc, R_LOS1, 255); /* 512 ms */
3859 		}
3860 		if (test_bit(HFC_CFG_OPTICAL, &hc->chan[hc->dnum[0]].cfg)) {
3861 			HFC_outb(hc, R_RX0, 0);
3862 			hc->hw.r_tx0 = 0 | V_OUT_EN;
3863 		} else {
3864 			HFC_outb(hc, R_RX0, 1);
3865 			hc->hw.r_tx0 = 1 | V_OUT_EN;
3866 		}
3867 		hc->hw.r_tx1 = V_ATX | V_NTRI;
3868 		HFC_outb(hc, R_TX0, hc->hw.r_tx0);
3869 		HFC_outb(hc, R_TX1, hc->hw.r_tx1);
3870 		HFC_outb(hc, R_TX_FR0, 0x00);
3871 		HFC_outb(hc, R_TX_FR1, 0xf8);
3872 
3873 		if (test_bit(HFC_CFG_CRC4, &hc->chan[hc->dnum[0]].cfg))
3874 			HFC_outb(hc, R_TX_FR2, V_TX_MF | V_TX_E | V_NEG_E);
3875 
3876 		HFC_outb(hc, R_RX_FR0, V_AUTO_RESYNC | V_AUTO_RECO | 0);
3877 
3878 		if (test_bit(HFC_CFG_CRC4, &hc->chan[hc->dnum[0]].cfg))
3879 			HFC_outb(hc, R_RX_FR1, V_RX_MF | V_RX_MF_SYNC);
3880 
3881 		if (dch->dev.D.protocol == ISDN_P_NT_E1) {
3882 			if (debug & DEBUG_HFCMULTI_INIT)
3883 				printk(KERN_DEBUG "%s: E1 port is NT-mode\n",
3884 				       __func__);
3885 			r_e1_wr_sta = 0; /* G0 */
3886 			hc->e1_getclock = 0;
3887 		} else {
3888 			if (debug & DEBUG_HFCMULTI_INIT)
3889 				printk(KERN_DEBUG "%s: E1 port is TE-mode\n",
3890 				       __func__);
3891 			r_e1_wr_sta = 0; /* F0 */
3892 			hc->e1_getclock = 1;
3893 		}
3894 		if (test_bit(HFC_CHIP_RX_SYNC, &hc->chip))
3895 			HFC_outb(hc, R_SYNC_OUT, V_SYNC_E1_RX);
3896 		else
3897 			HFC_outb(hc, R_SYNC_OUT, 0);
3898 		if (test_bit(HFC_CHIP_E1CLOCK_GET, &hc->chip))
3899 			hc->e1_getclock = 1;
3900 		if (test_bit(HFC_CHIP_E1CLOCK_PUT, &hc->chip))
3901 			hc->e1_getclock = 0;
3902 		if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) {
3903 			/* SLAVE (clock master) */
3904 			if (debug & DEBUG_HFCMULTI_INIT)
3905 				printk(KERN_DEBUG
3906 				       "%s: E1 port is clock master "
3907 				       "(clock from PCM)\n", __func__);
3908 			HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC | V_PCM_SYNC);
3909 		} else {
3910 			if (hc->e1_getclock) {
3911 				/* MASTER (clock slave) */
3912 				if (debug & DEBUG_HFCMULTI_INIT)
3913 					printk(KERN_DEBUG
3914 					       "%s: E1 port is clock slave "
3915 					       "(clock to PCM)\n", __func__);
3916 				HFC_outb(hc, R_SYNC_CTRL, V_SYNC_OFFS);
3917 			} else {
3918 				/* MASTER (clock master) */
3919 				if (debug & DEBUG_HFCMULTI_INIT)
3920 					printk(KERN_DEBUG "%s: E1 port is "
3921 					       "clock master "
3922 					       "(clock from QUARTZ)\n",
3923 					       __func__);
3924 				HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC |
3925 					 V_PCM_SYNC | V_JATT_OFF);
3926 				HFC_outb(hc, R_SYNC_OUT, 0);
3927 			}
3928 		}
3929 		HFC_outb(hc, R_JATT_ATT, 0x9c); /* undoc register */
3930 		HFC_outb(hc, R_PWM_MD, V_PWM0_MD);
3931 		HFC_outb(hc, R_PWM0, 0x50);
3932 		HFC_outb(hc, R_PWM1, 0xff);
3933 		/* state machine setup */
3934 		HFC_outb(hc, R_E1_WR_STA, r_e1_wr_sta | V_E1_LD_STA);
3935 		udelay(6); /* wait at least 5,21us */
3936 		HFC_outb(hc, R_E1_WR_STA, r_e1_wr_sta);
3937 		if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
3938 			hc->syncronized = 0;
3939 			plxsd_checksync(hc, 0);
3940 		}
3941 	}
3942 	if (hc->ctype != HFC_TYPE_E1) {
3943 		/* ST */
3944 		hc->chan[i].slot_tx = -1;
3945 		hc->chan[i].slot_rx = -1;
3946 		hc->chan[i].conf = -1;
3947 		mode_hfcmulti(hc, i, dch->dev.D.protocol, -1, 0, -1, 0);
3948 		timer_setup(&dch->timer, hfcmulti_dbusy_timer, 0);
3949 		hc->chan[i - 2].slot_tx = -1;
3950 		hc->chan[i - 2].slot_rx = -1;
3951 		hc->chan[i - 2].conf = -1;
3952 		mode_hfcmulti(hc, i - 2, ISDN_P_NONE, -1, 0, -1, 0);
3953 		hc->chan[i - 1].slot_tx = -1;
3954 		hc->chan[i - 1].slot_rx = -1;
3955 		hc->chan[i - 1].conf = -1;
3956 		mode_hfcmulti(hc, i - 1, ISDN_P_NONE, -1, 0, -1, 0);
3957 		/* select interface */
3958 		HFC_outb(hc, R_ST_SEL, pt);
3959 		/* undocumented: delay after R_ST_SEL */
3960 		udelay(1);
3961 		if (dch->dev.D.protocol == ISDN_P_NT_S0) {
3962 			if (debug & DEBUG_HFCMULTI_INIT)
3963 				printk(KERN_DEBUG
3964 				       "%s: ST port %d is NT-mode\n",
3965 				       __func__, pt);
3966 			/* clock delay */
3967 			HFC_outb(hc, A_ST_CLK_DLY, clockdelay_nt);
3968 			a_st_wr_state = 1; /* G1 */
3969 			hc->hw.a_st_ctrl0[pt] = V_ST_MD;
3970 		} else {
3971 			if (debug & DEBUG_HFCMULTI_INIT)
3972 				printk(KERN_DEBUG
3973 				       "%s: ST port %d is TE-mode\n",
3974 				       __func__, pt);
3975 			/* clock delay */
3976 			HFC_outb(hc, A_ST_CLK_DLY, clockdelay_te);
3977 			a_st_wr_state = 2; /* F2 */
3978 			hc->hw.a_st_ctrl0[pt] = 0;
3979 		}
3980 		if (!test_bit(HFC_CFG_NONCAP_TX, &hc->chan[i].cfg))
3981 			hc->hw.a_st_ctrl0[pt] |= V_TX_LI;
3982 		if (hc->ctype == HFC_TYPE_XHFC) {
3983 			hc->hw.a_st_ctrl0[pt] |= 0x40 /* V_ST_PU_CTRL */;
3984 			HFC_outb(hc, 0x35 /* A_ST_CTRL3 */,
3985 				 0x7c << 1 /* V_ST_PULSE */);
3986 		}
3987 		/* line setup */
3988 		HFC_outb(hc, A_ST_CTRL0,  hc->hw.a_st_ctrl0[pt]);
3989 		/* disable E-channel */
3990 		if ((dch->dev.D.protocol == ISDN_P_NT_S0) ||
3991 		    test_bit(HFC_CFG_DIS_ECHANNEL, &hc->chan[i].cfg))
3992 			HFC_outb(hc, A_ST_CTRL1, V_E_IGNO);
3993 		else
3994 			HFC_outb(hc, A_ST_CTRL1, 0);
3995 		/* enable B-channel receive */
3996 		HFC_outb(hc, A_ST_CTRL2,  V_B1_RX_EN | V_B2_RX_EN);
3997 		/* state machine setup */
3998 		HFC_outb(hc, A_ST_WR_STATE, a_st_wr_state | V_ST_LD_STA);
3999 		udelay(6); /* wait at least 5,21us */
4000 		HFC_outb(hc, A_ST_WR_STATE, a_st_wr_state);
4001 		hc->hw.r_sci_msk |= 1 << pt;
4002 		/* state machine interrupts */
4003 		HFC_outb(hc, R_SCI_MSK, hc->hw.r_sci_msk);
4004 		/* unset sync on port */
4005 		if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4006 			hc->syncronized &=
4007 				~(1 << hc->chan[dch->slot].port);
4008 			plxsd_checksync(hc, 0);
4009 		}
4010 	}
4011 	if (debug & DEBUG_HFCMULTI_INIT)
4012 		printk("%s: done\n", __func__);
4013 }
4014 
4015 
4016 static int
open_dchannel(struct hfc_multi * hc,struct dchannel * dch,struct channel_req * rq)4017 open_dchannel(struct hfc_multi *hc, struct dchannel *dch,
4018 	      struct channel_req *rq)
4019 {
4020 	int	err = 0;
4021 	u_long	flags;
4022 
4023 	if (debug & DEBUG_HW_OPEN)
4024 		printk(KERN_DEBUG "%s: dev(%d) open from %p\n", __func__,
4025 		       dch->dev.id, __builtin_return_address(0));
4026 	if (rq->protocol == ISDN_P_NONE)
4027 		return -EINVAL;
4028 	if ((dch->dev.D.protocol != ISDN_P_NONE) &&
4029 	    (dch->dev.D.protocol != rq->protocol)) {
4030 		if (debug & DEBUG_HFCMULTI_MODE)
4031 			printk(KERN_DEBUG "%s: change protocol %x to %x\n",
4032 			       __func__, dch->dev.D.protocol, rq->protocol);
4033 	}
4034 	if ((dch->dev.D.protocol == ISDN_P_TE_S0) &&
4035 	    (rq->protocol != ISDN_P_TE_S0))
4036 		l1_event(dch->l1, CLOSE_CHANNEL);
4037 	if (dch->dev.D.protocol != rq->protocol) {
4038 		if (rq->protocol == ISDN_P_TE_S0) {
4039 			err = create_l1(dch, hfcm_l1callback);
4040 			if (err)
4041 				return err;
4042 		}
4043 		dch->dev.D.protocol = rq->protocol;
4044 		spin_lock_irqsave(&hc->lock, flags);
4045 		hfcmulti_initmode(dch);
4046 		spin_unlock_irqrestore(&hc->lock, flags);
4047 	}
4048 	if (test_bit(FLG_ACTIVE, &dch->Flags))
4049 		_queue_data(&dch->dev.D, PH_ACTIVATE_IND, MISDN_ID_ANY,
4050 			    0, NULL, GFP_KERNEL);
4051 	rq->ch = &dch->dev.D;
4052 	if (!try_module_get(THIS_MODULE))
4053 		printk(KERN_WARNING "%s:cannot get module\n", __func__);
4054 	return 0;
4055 }
4056 
4057 static int
open_bchannel(struct hfc_multi * hc,struct dchannel * dch,struct channel_req * rq)4058 open_bchannel(struct hfc_multi *hc, struct dchannel *dch,
4059 	      struct channel_req *rq)
4060 {
4061 	struct bchannel	*bch;
4062 	int		ch;
4063 
4064 	if (!test_channelmap(rq->adr.channel, dch->dev.channelmap))
4065 		return -EINVAL;
4066 	if (rq->protocol == ISDN_P_NONE)
4067 		return -EINVAL;
4068 	if (hc->ctype == HFC_TYPE_E1)
4069 		ch = rq->adr.channel;
4070 	else
4071 		ch = (rq->adr.channel - 1) + (dch->slot - 2);
4072 	bch = hc->chan[ch].bch;
4073 	if (!bch) {
4074 		printk(KERN_ERR "%s:internal error ch %d has no bch\n",
4075 		       __func__, ch);
4076 		return -EINVAL;
4077 	}
4078 	if (test_and_set_bit(FLG_OPEN, &bch->Flags))
4079 		return -EBUSY; /* b-channel can be only open once */
4080 	bch->ch.protocol = rq->protocol;
4081 	hc->chan[ch].rx_off = 0;
4082 	rq->ch = &bch->ch;
4083 	if (!try_module_get(THIS_MODULE))
4084 		printk(KERN_WARNING "%s:cannot get module\n", __func__);
4085 	return 0;
4086 }
4087 
4088 /*
4089  * device control function
4090  */
4091 static int
channel_dctrl(struct dchannel * dch,struct mISDN_ctrl_req * cq)4092 channel_dctrl(struct dchannel *dch, struct mISDN_ctrl_req *cq)
4093 {
4094 	struct hfc_multi	*hc = dch->hw;
4095 	int	ret = 0;
4096 	int	wd_mode, wd_cnt;
4097 
4098 	switch (cq->op) {
4099 	case MISDN_CTRL_GETOP:
4100 		cq->op = MISDN_CTRL_HFC_OP | MISDN_CTRL_L1_TIMER3;
4101 		break;
4102 	case MISDN_CTRL_HFC_WD_INIT: /* init the watchdog */
4103 		wd_cnt = cq->p1 & 0xf;
4104 		wd_mode = !!(cq->p1 >> 4);
4105 		if (debug & DEBUG_HFCMULTI_MSG)
4106 			printk(KERN_DEBUG "%s: MISDN_CTRL_HFC_WD_INIT mode %s"
4107 			       ", counter 0x%x\n", __func__,
4108 			       wd_mode ? "AUTO" : "MANUAL", wd_cnt);
4109 		/* set the watchdog timer */
4110 		HFC_outb(hc, R_TI_WD, poll_timer | (wd_cnt << 4));
4111 		hc->hw.r_bert_wd_md = (wd_mode ? V_AUTO_WD_RES : 0);
4112 		if (hc->ctype == HFC_TYPE_XHFC)
4113 			hc->hw.r_bert_wd_md |= 0x40 /* V_WD_EN */;
4114 		/* init the watchdog register and reset the counter */
4115 		HFC_outb(hc, R_BERT_WD_MD, hc->hw.r_bert_wd_md | V_WD_RES);
4116 		if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4117 			/* enable the watchdog output for Speech-Design */
4118 			HFC_outb(hc, R_GPIO_SEL,  V_GPIO_SEL7);
4119 			HFC_outb(hc, R_GPIO_EN1,  V_GPIO_EN15);
4120 			HFC_outb(hc, R_GPIO_OUT1, 0);
4121 			HFC_outb(hc, R_GPIO_OUT1, V_GPIO_OUT15);
4122 		}
4123 		break;
4124 	case MISDN_CTRL_HFC_WD_RESET: /* reset the watchdog counter */
4125 		if (debug & DEBUG_HFCMULTI_MSG)
4126 			printk(KERN_DEBUG "%s: MISDN_CTRL_HFC_WD_RESET\n",
4127 			       __func__);
4128 		HFC_outb(hc, R_BERT_WD_MD, hc->hw.r_bert_wd_md | V_WD_RES);
4129 		break;
4130 	case MISDN_CTRL_L1_TIMER3:
4131 		ret = l1_event(dch->l1, HW_TIMER3_VALUE | (cq->p1 & 0xff));
4132 		break;
4133 	default:
4134 		printk(KERN_WARNING "%s: unknown Op %x\n",
4135 		       __func__, cq->op);
4136 		ret = -EINVAL;
4137 		break;
4138 	}
4139 	return ret;
4140 }
4141 
4142 static int
hfcm_dctrl(struct mISDNchannel * ch,u_int cmd,void * arg)4143 hfcm_dctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
4144 {
4145 	struct mISDNdevice	*dev = container_of(ch, struct mISDNdevice, D);
4146 	struct dchannel		*dch = container_of(dev, struct dchannel, dev);
4147 	struct hfc_multi	*hc = dch->hw;
4148 	struct channel_req	*rq;
4149 	int			err = 0;
4150 	u_long			flags;
4151 
4152 	if (dch->debug & DEBUG_HW)
4153 		printk(KERN_DEBUG "%s: cmd:%x %p\n",
4154 		       __func__, cmd, arg);
4155 	switch (cmd) {
4156 	case OPEN_CHANNEL:
4157 		rq = arg;
4158 		switch (rq->protocol) {
4159 		case ISDN_P_TE_S0:
4160 		case ISDN_P_NT_S0:
4161 			if (hc->ctype == HFC_TYPE_E1) {
4162 				err = -EINVAL;
4163 				break;
4164 			}
4165 			err = open_dchannel(hc, dch, rq); /* locked there */
4166 			break;
4167 		case ISDN_P_TE_E1:
4168 		case ISDN_P_NT_E1:
4169 			if (hc->ctype != HFC_TYPE_E1) {
4170 				err = -EINVAL;
4171 				break;
4172 			}
4173 			err = open_dchannel(hc, dch, rq); /* locked there */
4174 			break;
4175 		default:
4176 			spin_lock_irqsave(&hc->lock, flags);
4177 			err = open_bchannel(hc, dch, rq);
4178 			spin_unlock_irqrestore(&hc->lock, flags);
4179 		}
4180 		break;
4181 	case CLOSE_CHANNEL:
4182 		if (debug & DEBUG_HW_OPEN)
4183 			printk(KERN_DEBUG "%s: dev(%d) close from %p\n",
4184 			       __func__, dch->dev.id,
4185 			       __builtin_return_address(0));
4186 		module_put(THIS_MODULE);
4187 		break;
4188 	case CONTROL_CHANNEL:
4189 		spin_lock_irqsave(&hc->lock, flags);
4190 		err = channel_dctrl(dch, arg);
4191 		spin_unlock_irqrestore(&hc->lock, flags);
4192 		break;
4193 	default:
4194 		if (dch->debug & DEBUG_HW)
4195 			printk(KERN_DEBUG "%s: unknown command %x\n",
4196 			       __func__, cmd);
4197 		err = -EINVAL;
4198 	}
4199 	return err;
4200 }
4201 
4202 static int
clockctl(void * priv,int enable)4203 clockctl(void *priv, int enable)
4204 {
4205 	struct hfc_multi *hc = priv;
4206 
4207 	hc->iclock_on = enable;
4208 	return 0;
4209 }
4210 
4211 /*
4212  * initialize the card
4213  */
4214 
4215 /*
4216  * start timer irq, wait some time and check if we have interrupts.
4217  * if not, reset chip and try again.
4218  */
4219 static int
init_card(struct hfc_multi * hc)4220 init_card(struct hfc_multi *hc)
4221 {
4222 	int	err = -EIO;
4223 	u_long	flags;
4224 	void	__iomem *plx_acc;
4225 	u_long	plx_flags;
4226 
4227 	if (debug & DEBUG_HFCMULTI_INIT)
4228 		printk(KERN_DEBUG "%s: entered\n", __func__);
4229 
4230 	spin_lock_irqsave(&hc->lock, flags);
4231 	/* set interrupts but leave global interrupt disabled */
4232 	hc->hw.r_irq_ctrl = V_FIFO_IRQ;
4233 	disable_hwirq(hc);
4234 	spin_unlock_irqrestore(&hc->lock, flags);
4235 
4236 	if (request_irq(hc->irq, hfcmulti_interrupt, IRQF_SHARED,
4237 			"HFC-multi", hc)) {
4238 		printk(KERN_WARNING "mISDN: Could not get interrupt %d.\n",
4239 		       hc->irq);
4240 		hc->irq = 0;
4241 		return -EIO;
4242 	}
4243 
4244 	if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4245 		spin_lock_irqsave(&plx_lock, plx_flags);
4246 		plx_acc = hc->plx_membase + PLX_INTCSR;
4247 		writew((PLX_INTCSR_PCIINT_ENABLE | PLX_INTCSR_LINTI1_ENABLE),
4248 		       plx_acc); /* enable PCI & LINT1 irq */
4249 		spin_unlock_irqrestore(&plx_lock, plx_flags);
4250 	}
4251 
4252 	if (debug & DEBUG_HFCMULTI_INIT)
4253 		printk(KERN_DEBUG "%s: IRQ %d count %d\n",
4254 		       __func__, hc->irq, hc->irqcnt);
4255 	err = init_chip(hc);
4256 	if (err)
4257 		goto error;
4258 	/*
4259 	 * Finally enable IRQ output
4260 	 * this is only allowed, if an IRQ routine is already
4261 	 * established for this HFC, so don't do that earlier
4262 	 */
4263 	spin_lock_irqsave(&hc->lock, flags);
4264 	enable_hwirq(hc);
4265 	spin_unlock_irqrestore(&hc->lock, flags);
4266 	/* printk(KERN_DEBUG "no master irq set!!!\n"); */
4267 	set_current_state(TASK_UNINTERRUPTIBLE);
4268 	schedule_timeout((100 * HZ) / 1000); /* Timeout 100ms */
4269 	/* turn IRQ off until chip is completely initialized */
4270 	spin_lock_irqsave(&hc->lock, flags);
4271 	disable_hwirq(hc);
4272 	spin_unlock_irqrestore(&hc->lock, flags);
4273 	if (debug & DEBUG_HFCMULTI_INIT)
4274 		printk(KERN_DEBUG "%s: IRQ %d count %d\n",
4275 		       __func__, hc->irq, hc->irqcnt);
4276 	if (hc->irqcnt) {
4277 		if (debug & DEBUG_HFCMULTI_INIT)
4278 			printk(KERN_DEBUG "%s: done\n", __func__);
4279 
4280 		return 0;
4281 	}
4282 	if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) {
4283 		printk(KERN_INFO "ignoring missing interrupts\n");
4284 		return 0;
4285 	}
4286 
4287 	printk(KERN_ERR "HFC PCI: IRQ(%d) getting no interrupts during init.\n",
4288 	       hc->irq);
4289 
4290 	err = -EIO;
4291 
4292 error:
4293 	if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4294 		spin_lock_irqsave(&plx_lock, plx_flags);
4295 		plx_acc = hc->plx_membase + PLX_INTCSR;
4296 		writew(0x00, plx_acc); /*disable IRQs*/
4297 		spin_unlock_irqrestore(&plx_lock, plx_flags);
4298 	}
4299 
4300 	if (debug & DEBUG_HFCMULTI_INIT)
4301 		printk(KERN_DEBUG "%s: free irq %d\n", __func__, hc->irq);
4302 	if (hc->irq) {
4303 		free_irq(hc->irq, hc);
4304 		hc->irq = 0;
4305 	}
4306 
4307 	if (debug & DEBUG_HFCMULTI_INIT)
4308 		printk(KERN_DEBUG "%s: done (err=%d)\n", __func__, err);
4309 	return err;
4310 }
4311 
4312 /*
4313  * find pci device and set it up
4314  */
4315 
4316 static int
setup_pci(struct hfc_multi * hc,struct pci_dev * pdev,const struct pci_device_id * ent)4317 setup_pci(struct hfc_multi *hc, struct pci_dev *pdev,
4318 	  const struct pci_device_id *ent)
4319 {
4320 	struct hm_map	*m = (struct hm_map *)ent->driver_data;
4321 
4322 	printk(KERN_INFO
4323 	       "HFC-multi: card manufacturer: '%s' card name: '%s' clock: %s\n",
4324 	       m->vendor_name, m->card_name, m->clock2 ? "double" : "normal");
4325 
4326 	hc->pci_dev = pdev;
4327 	if (m->clock2)
4328 		test_and_set_bit(HFC_CHIP_CLOCK2, &hc->chip);
4329 
4330 	if (ent->vendor == PCI_VENDOR_ID_DIGIUM &&
4331 	    ent->device == PCI_DEVICE_ID_DIGIUM_HFC4S) {
4332 		test_and_set_bit(HFC_CHIP_B410P, &hc->chip);
4333 		test_and_set_bit(HFC_CHIP_PCM_MASTER, &hc->chip);
4334 		test_and_clear_bit(HFC_CHIP_PCM_SLAVE, &hc->chip);
4335 		hc->slots = 32;
4336 	}
4337 
4338 	if (hc->pci_dev->irq <= 0) {
4339 		printk(KERN_WARNING "HFC-multi: No IRQ for PCI card found.\n");
4340 		return -EIO;
4341 	}
4342 	if (pci_enable_device(hc->pci_dev)) {
4343 		printk(KERN_WARNING "HFC-multi: Error enabling PCI card.\n");
4344 		return -EIO;
4345 	}
4346 	hc->leds = m->leds;
4347 	hc->ledstate = 0xAFFEAFFE;
4348 	hc->opticalsupport = m->opticalsupport;
4349 
4350 	hc->pci_iobase = 0;
4351 	hc->pci_membase = NULL;
4352 	hc->plx_membase = NULL;
4353 
4354 	/* set memory access methods */
4355 	if (m->io_mode) /* use mode from card config */
4356 		hc->io_mode = m->io_mode;
4357 	switch (hc->io_mode) {
4358 	case HFC_IO_MODE_PLXSD:
4359 		test_and_set_bit(HFC_CHIP_PLXSD, &hc->chip);
4360 		hc->slots = 128; /* required */
4361 		hc->HFC_outb = HFC_outb_pcimem;
4362 		hc->HFC_inb = HFC_inb_pcimem;
4363 		hc->HFC_inw = HFC_inw_pcimem;
4364 		hc->HFC_wait = HFC_wait_pcimem;
4365 		hc->read_fifo = read_fifo_pcimem;
4366 		hc->write_fifo = write_fifo_pcimem;
4367 		hc->plx_origmembase =  hc->pci_dev->resource[0].start;
4368 		/* MEMBASE 1 is PLX PCI Bridge */
4369 
4370 		if (!hc->plx_origmembase) {
4371 			printk(KERN_WARNING
4372 			       "HFC-multi: No IO-Memory for PCI PLX bridge found\n");
4373 			pci_disable_device(hc->pci_dev);
4374 			return -EIO;
4375 		}
4376 
4377 		hc->plx_membase = ioremap(hc->plx_origmembase, 0x80);
4378 		if (!hc->plx_membase) {
4379 			printk(KERN_WARNING
4380 			       "HFC-multi: failed to remap plx address space. "
4381 			       "(internal error)\n");
4382 			pci_disable_device(hc->pci_dev);
4383 			return -EIO;
4384 		}
4385 		printk(KERN_INFO
4386 		       "HFC-multi: plx_membase:%#lx plx_origmembase:%#lx\n",
4387 		       (u_long)hc->plx_membase, hc->plx_origmembase);
4388 
4389 		hc->pci_origmembase =  hc->pci_dev->resource[2].start;
4390 		/* MEMBASE 1 is PLX PCI Bridge */
4391 		if (!hc->pci_origmembase) {
4392 			printk(KERN_WARNING
4393 			       "HFC-multi: No IO-Memory for PCI card found\n");
4394 			pci_disable_device(hc->pci_dev);
4395 			return -EIO;
4396 		}
4397 
4398 		hc->pci_membase = ioremap(hc->pci_origmembase, 0x400);
4399 		if (!hc->pci_membase) {
4400 			printk(KERN_WARNING "HFC-multi: failed to remap io "
4401 			       "address space. (internal error)\n");
4402 			pci_disable_device(hc->pci_dev);
4403 			return -EIO;
4404 		}
4405 
4406 		printk(KERN_INFO
4407 		       "card %d: defined at MEMBASE %#lx (%#lx) IRQ %d HZ %d "
4408 		       "leds-type %d\n",
4409 		       hc->id, (u_long)hc->pci_membase, hc->pci_origmembase,
4410 		       hc->pci_dev->irq, HZ, hc->leds);
4411 		pci_write_config_word(hc->pci_dev, PCI_COMMAND, PCI_ENA_MEMIO);
4412 		break;
4413 	case HFC_IO_MODE_PCIMEM:
4414 		hc->HFC_outb = HFC_outb_pcimem;
4415 		hc->HFC_inb = HFC_inb_pcimem;
4416 		hc->HFC_inw = HFC_inw_pcimem;
4417 		hc->HFC_wait = HFC_wait_pcimem;
4418 		hc->read_fifo = read_fifo_pcimem;
4419 		hc->write_fifo = write_fifo_pcimem;
4420 		hc->pci_origmembase = hc->pci_dev->resource[1].start;
4421 		if (!hc->pci_origmembase) {
4422 			printk(KERN_WARNING
4423 			       "HFC-multi: No IO-Memory for PCI card found\n");
4424 			pci_disable_device(hc->pci_dev);
4425 			return -EIO;
4426 		}
4427 
4428 		hc->pci_membase = ioremap(hc->pci_origmembase, 256);
4429 		if (!hc->pci_membase) {
4430 			printk(KERN_WARNING
4431 			       "HFC-multi: failed to remap io address space. "
4432 			       "(internal error)\n");
4433 			pci_disable_device(hc->pci_dev);
4434 			return -EIO;
4435 		}
4436 		printk(KERN_INFO "card %d: defined at MEMBASE %#lx (%#lx) IRQ "
4437 		       "%d HZ %d leds-type %d\n", hc->id, (u_long)hc->pci_membase,
4438 		       hc->pci_origmembase, hc->pci_dev->irq, HZ, hc->leds);
4439 		pci_write_config_word(hc->pci_dev, PCI_COMMAND, PCI_ENA_MEMIO);
4440 		break;
4441 	case HFC_IO_MODE_REGIO:
4442 		hc->HFC_outb = HFC_outb_regio;
4443 		hc->HFC_inb = HFC_inb_regio;
4444 		hc->HFC_inw = HFC_inw_regio;
4445 		hc->HFC_wait = HFC_wait_regio;
4446 		hc->read_fifo = read_fifo_regio;
4447 		hc->write_fifo = write_fifo_regio;
4448 		hc->pci_iobase = (u_int) hc->pci_dev->resource[0].start;
4449 		if (!hc->pci_iobase) {
4450 			printk(KERN_WARNING
4451 			       "HFC-multi: No IO for PCI card found\n");
4452 			pci_disable_device(hc->pci_dev);
4453 			return -EIO;
4454 		}
4455 
4456 		if (!request_region(hc->pci_iobase, 8, "hfcmulti")) {
4457 			printk(KERN_WARNING "HFC-multi: failed to request "
4458 			       "address space at 0x%08lx (internal error)\n",
4459 			       hc->pci_iobase);
4460 			pci_disable_device(hc->pci_dev);
4461 			return -EIO;
4462 		}
4463 
4464 		printk(KERN_INFO
4465 		       "%s %s: defined at IOBASE %#x IRQ %d HZ %d leds-type %d\n",
4466 		       m->vendor_name, m->card_name, (u_int) hc->pci_iobase,
4467 		       hc->pci_dev->irq, HZ, hc->leds);
4468 		pci_write_config_word(hc->pci_dev, PCI_COMMAND, PCI_ENA_REGIO);
4469 		break;
4470 	default:
4471 		printk(KERN_WARNING "HFC-multi: Invalid IO mode.\n");
4472 		pci_disable_device(hc->pci_dev);
4473 		return -EIO;
4474 	}
4475 
4476 	pci_set_drvdata(hc->pci_dev, hc);
4477 
4478 	/* At this point the needed PCI config is done */
4479 	/* fifos are still not enabled */
4480 	return 0;
4481 }
4482 
4483 
4484 /*
4485  * remove port
4486  */
4487 
4488 static void
release_port(struct hfc_multi * hc,struct dchannel * dch)4489 release_port(struct hfc_multi *hc, struct dchannel *dch)
4490 {
4491 	int	pt, ci, i = 0;
4492 	u_long	flags;
4493 	struct bchannel *pb;
4494 
4495 	ci = dch->slot;
4496 	pt = hc->chan[ci].port;
4497 
4498 	if (debug & DEBUG_HFCMULTI_INIT)
4499 		printk(KERN_DEBUG "%s: entered for port %d\n",
4500 		       __func__, pt + 1);
4501 
4502 	if (pt >= hc->ports) {
4503 		printk(KERN_WARNING "%s: ERROR port out of range (%d).\n",
4504 		       __func__, pt + 1);
4505 		return;
4506 	}
4507 
4508 	if (debug & DEBUG_HFCMULTI_INIT)
4509 		printk(KERN_DEBUG "%s: releasing port=%d\n",
4510 		       __func__, pt + 1);
4511 
4512 	if (dch->dev.D.protocol == ISDN_P_TE_S0)
4513 		l1_event(dch->l1, CLOSE_CHANNEL);
4514 
4515 	hc->chan[ci].dch = NULL;
4516 
4517 	if (hc->created[pt]) {
4518 		hc->created[pt] = 0;
4519 		mISDN_unregister_device(&dch->dev);
4520 	}
4521 
4522 	spin_lock_irqsave(&hc->lock, flags);
4523 
4524 	if (dch->timer.function) {
4525 		del_timer(&dch->timer);
4526 		dch->timer.function = NULL;
4527 	}
4528 
4529 	if (hc->ctype == HFC_TYPE_E1) { /* E1 */
4530 		/* remove sync */
4531 		if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4532 			hc->syncronized = 0;
4533 			plxsd_checksync(hc, 1);
4534 		}
4535 		/* free channels */
4536 		for (i = 0; i <= 31; i++) {
4537 			if (!((1 << i) & hc->bmask[pt])) /* skip unused chan */
4538 				continue;
4539 			if (hc->chan[i].bch) {
4540 				if (debug & DEBUG_HFCMULTI_INIT)
4541 					printk(KERN_DEBUG
4542 					       "%s: free port %d channel %d\n",
4543 					       __func__, hc->chan[i].port + 1, i);
4544 				pb = hc->chan[i].bch;
4545 				hc->chan[i].bch = NULL;
4546 				spin_unlock_irqrestore(&hc->lock, flags);
4547 				mISDN_freebchannel(pb);
4548 				kfree(pb);
4549 				kfree(hc->chan[i].coeff);
4550 				spin_lock_irqsave(&hc->lock, flags);
4551 			}
4552 		}
4553 	} else {
4554 		/* remove sync */
4555 		if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4556 			hc->syncronized &=
4557 				~(1 << hc->chan[ci].port);
4558 			plxsd_checksync(hc, 1);
4559 		}
4560 		/* free channels */
4561 		if (hc->chan[ci - 2].bch) {
4562 			if (debug & DEBUG_HFCMULTI_INIT)
4563 				printk(KERN_DEBUG
4564 				       "%s: free port %d channel %d\n",
4565 				       __func__, hc->chan[ci - 2].port + 1,
4566 				       ci - 2);
4567 			pb = hc->chan[ci - 2].bch;
4568 			hc->chan[ci - 2].bch = NULL;
4569 			spin_unlock_irqrestore(&hc->lock, flags);
4570 			mISDN_freebchannel(pb);
4571 			kfree(pb);
4572 			kfree(hc->chan[ci - 2].coeff);
4573 			spin_lock_irqsave(&hc->lock, flags);
4574 		}
4575 		if (hc->chan[ci - 1].bch) {
4576 			if (debug & DEBUG_HFCMULTI_INIT)
4577 				printk(KERN_DEBUG
4578 				       "%s: free port %d channel %d\n",
4579 				       __func__, hc->chan[ci - 1].port + 1,
4580 				       ci - 1);
4581 			pb = hc->chan[ci - 1].bch;
4582 			hc->chan[ci - 1].bch = NULL;
4583 			spin_unlock_irqrestore(&hc->lock, flags);
4584 			mISDN_freebchannel(pb);
4585 			kfree(pb);
4586 			kfree(hc->chan[ci - 1].coeff);
4587 			spin_lock_irqsave(&hc->lock, flags);
4588 		}
4589 	}
4590 
4591 	spin_unlock_irqrestore(&hc->lock, flags);
4592 
4593 	if (debug & DEBUG_HFCMULTI_INIT)
4594 		printk(KERN_DEBUG "%s: free port %d channel D(%d)\n", __func__,
4595 			pt+1, ci);
4596 	mISDN_freedchannel(dch);
4597 	kfree(dch);
4598 
4599 	if (debug & DEBUG_HFCMULTI_INIT)
4600 		printk(KERN_DEBUG "%s: done!\n", __func__);
4601 }
4602 
4603 static void
release_card(struct hfc_multi * hc)4604 release_card(struct hfc_multi *hc)
4605 {
4606 	u_long	flags;
4607 	int	ch;
4608 
4609 	if (debug & DEBUG_HFCMULTI_INIT)
4610 		printk(KERN_DEBUG "%s: release card (%d) entered\n",
4611 		       __func__, hc->id);
4612 
4613 	/* unregister clock source */
4614 	if (hc->iclock)
4615 		mISDN_unregister_clock(hc->iclock);
4616 
4617 	/* disable and free irq */
4618 	spin_lock_irqsave(&hc->lock, flags);
4619 	disable_hwirq(hc);
4620 	spin_unlock_irqrestore(&hc->lock, flags);
4621 	udelay(1000);
4622 	if (hc->irq) {
4623 		if (debug & DEBUG_HFCMULTI_INIT)
4624 			printk(KERN_DEBUG "%s: free irq %d (hc=%p)\n",
4625 			    __func__, hc->irq, hc);
4626 		free_irq(hc->irq, hc);
4627 		hc->irq = 0;
4628 
4629 	}
4630 
4631 	/* disable D-channels & B-channels */
4632 	if (debug & DEBUG_HFCMULTI_INIT)
4633 		printk(KERN_DEBUG "%s: disable all channels (d and b)\n",
4634 		       __func__);
4635 	for (ch = 0; ch <= 31; ch++) {
4636 		if (hc->chan[ch].dch)
4637 			release_port(hc, hc->chan[ch].dch);
4638 	}
4639 
4640 	/* dimm leds */
4641 	if (hc->leds)
4642 		hfcmulti_leds(hc);
4643 
4644 	/* release hardware */
4645 	release_io_hfcmulti(hc);
4646 
4647 	if (debug & DEBUG_HFCMULTI_INIT)
4648 		printk(KERN_DEBUG "%s: remove instance from list\n",
4649 		       __func__);
4650 	list_del(&hc->list);
4651 
4652 	if (debug & DEBUG_HFCMULTI_INIT)
4653 		printk(KERN_DEBUG "%s: delete instance\n", __func__);
4654 	if (hc == syncmaster)
4655 		syncmaster = NULL;
4656 	kfree(hc);
4657 	if (debug & DEBUG_HFCMULTI_INIT)
4658 		printk(KERN_DEBUG "%s: card successfully removed\n",
4659 		       __func__);
4660 }
4661 
4662 static void
init_e1_port_hw(struct hfc_multi * hc,struct hm_map * m)4663 init_e1_port_hw(struct hfc_multi *hc, struct hm_map *m)
4664 {
4665 	/* set optical line type */
4666 	if (port[Port_cnt] & 0x001) {
4667 		if (!m->opticalsupport)  {
4668 			printk(KERN_INFO
4669 			       "This board has no optical "
4670 			       "support\n");
4671 		} else {
4672 			if (debug & DEBUG_HFCMULTI_INIT)
4673 				printk(KERN_DEBUG
4674 				       "%s: PORT set optical "
4675 				       "interfacs: card(%d) "
4676 				       "port(%d)\n",
4677 				       __func__,
4678 				       HFC_cnt + 1, 1);
4679 			test_and_set_bit(HFC_CFG_OPTICAL,
4680 			    &hc->chan[hc->dnum[0]].cfg);
4681 		}
4682 	}
4683 	/* set LOS report */
4684 	if (port[Port_cnt] & 0x004) {
4685 		if (debug & DEBUG_HFCMULTI_INIT)
4686 			printk(KERN_DEBUG "%s: PORT set "
4687 			       "LOS report: card(%d) port(%d)\n",
4688 			       __func__, HFC_cnt + 1, 1);
4689 		test_and_set_bit(HFC_CFG_REPORT_LOS,
4690 		    &hc->chan[hc->dnum[0]].cfg);
4691 	}
4692 	/* set AIS report */
4693 	if (port[Port_cnt] & 0x008) {
4694 		if (debug & DEBUG_HFCMULTI_INIT)
4695 			printk(KERN_DEBUG "%s: PORT set "
4696 			       "AIS report: card(%d) port(%d)\n",
4697 			       __func__, HFC_cnt + 1, 1);
4698 		test_and_set_bit(HFC_CFG_REPORT_AIS,
4699 		    &hc->chan[hc->dnum[0]].cfg);
4700 	}
4701 	/* set SLIP report */
4702 	if (port[Port_cnt] & 0x010) {
4703 		if (debug & DEBUG_HFCMULTI_INIT)
4704 			printk(KERN_DEBUG
4705 			       "%s: PORT set SLIP report: "
4706 			       "card(%d) port(%d)\n",
4707 			       __func__, HFC_cnt + 1, 1);
4708 		test_and_set_bit(HFC_CFG_REPORT_SLIP,
4709 		    &hc->chan[hc->dnum[0]].cfg);
4710 	}
4711 	/* set RDI report */
4712 	if (port[Port_cnt] & 0x020) {
4713 		if (debug & DEBUG_HFCMULTI_INIT)
4714 			printk(KERN_DEBUG
4715 			       "%s: PORT set RDI report: "
4716 			       "card(%d) port(%d)\n",
4717 			       __func__, HFC_cnt + 1, 1);
4718 		test_and_set_bit(HFC_CFG_REPORT_RDI,
4719 		    &hc->chan[hc->dnum[0]].cfg);
4720 	}
4721 	/* set CRC-4 Mode */
4722 	if (!(port[Port_cnt] & 0x100)) {
4723 		if (debug & DEBUG_HFCMULTI_INIT)
4724 			printk(KERN_DEBUG "%s: PORT turn on CRC4 report:"
4725 			       " card(%d) port(%d)\n",
4726 			       __func__, HFC_cnt + 1, 1);
4727 		test_and_set_bit(HFC_CFG_CRC4,
4728 		    &hc->chan[hc->dnum[0]].cfg);
4729 	} else {
4730 		if (debug & DEBUG_HFCMULTI_INIT)
4731 			printk(KERN_DEBUG "%s: PORT turn off CRC4"
4732 			       " report: card(%d) port(%d)\n",
4733 			       __func__, HFC_cnt + 1, 1);
4734 	}
4735 	/* set forced clock */
4736 	if (port[Port_cnt] & 0x0200) {
4737 		if (debug & DEBUG_HFCMULTI_INIT)
4738 			printk(KERN_DEBUG "%s: PORT force getting clock from "
4739 			       "E1: card(%d) port(%d)\n",
4740 			       __func__, HFC_cnt + 1, 1);
4741 		test_and_set_bit(HFC_CHIP_E1CLOCK_GET, &hc->chip);
4742 	} else
4743 		if (port[Port_cnt] & 0x0400) {
4744 			if (debug & DEBUG_HFCMULTI_INIT)
4745 				printk(KERN_DEBUG "%s: PORT force putting clock to "
4746 				       "E1: card(%d) port(%d)\n",
4747 				       __func__, HFC_cnt + 1, 1);
4748 			test_and_set_bit(HFC_CHIP_E1CLOCK_PUT, &hc->chip);
4749 		}
4750 	/* set JATT PLL */
4751 	if (port[Port_cnt] & 0x0800) {
4752 		if (debug & DEBUG_HFCMULTI_INIT)
4753 			printk(KERN_DEBUG "%s: PORT disable JATT PLL on "
4754 			       "E1: card(%d) port(%d)\n",
4755 			       __func__, HFC_cnt + 1, 1);
4756 		test_and_set_bit(HFC_CHIP_RX_SYNC, &hc->chip);
4757 	}
4758 	/* set elastic jitter buffer */
4759 	if (port[Port_cnt] & 0x3000) {
4760 		hc->chan[hc->dnum[0]].jitter = (port[Port_cnt]>>12) & 0x3;
4761 		if (debug & DEBUG_HFCMULTI_INIT)
4762 			printk(KERN_DEBUG
4763 			       "%s: PORT set elastic "
4764 			       "buffer to %d: card(%d) port(%d)\n",
4765 			    __func__, hc->chan[hc->dnum[0]].jitter,
4766 			       HFC_cnt + 1, 1);
4767 	} else
4768 		hc->chan[hc->dnum[0]].jitter = 2; /* default */
4769 }
4770 
4771 static int
init_e1_port(struct hfc_multi * hc,struct hm_map * m,int pt)4772 init_e1_port(struct hfc_multi *hc, struct hm_map *m, int pt)
4773 {
4774 	struct dchannel	*dch;
4775 	struct bchannel	*bch;
4776 	int		ch, ret = 0;
4777 	char		name[MISDN_MAX_IDLEN];
4778 	int		bcount = 0;
4779 
4780 	dch = kzalloc(sizeof(struct dchannel), GFP_KERNEL);
4781 	if (!dch)
4782 		return -ENOMEM;
4783 	dch->debug = debug;
4784 	mISDN_initdchannel(dch, MAX_DFRAME_LEN_L1, ph_state_change);
4785 	dch->hw = hc;
4786 	dch->dev.Dprotocols = (1 << ISDN_P_TE_E1) | (1 << ISDN_P_NT_E1);
4787 	dch->dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
4788 	    (1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
4789 	dch->dev.D.send = handle_dmsg;
4790 	dch->dev.D.ctrl = hfcm_dctrl;
4791 	dch->slot = hc->dnum[pt];
4792 	hc->chan[hc->dnum[pt]].dch = dch;
4793 	hc->chan[hc->dnum[pt]].port = pt;
4794 	hc->chan[hc->dnum[pt]].nt_timer = -1;
4795 	for (ch = 1; ch <= 31; ch++) {
4796 		if (!((1 << ch) & hc->bmask[pt])) /* skip unused channel */
4797 			continue;
4798 		bch = kzalloc(sizeof(struct bchannel), GFP_KERNEL);
4799 		if (!bch) {
4800 			printk(KERN_ERR "%s: no memory for bchannel\n",
4801 			    __func__);
4802 			ret = -ENOMEM;
4803 			goto free_chan;
4804 		}
4805 		hc->chan[ch].coeff = kzalloc(512, GFP_KERNEL);
4806 		if (!hc->chan[ch].coeff) {
4807 			printk(KERN_ERR "%s: no memory for coeffs\n",
4808 			    __func__);
4809 			ret = -ENOMEM;
4810 			kfree(bch);
4811 			goto free_chan;
4812 		}
4813 		bch->nr = ch;
4814 		bch->slot = ch;
4815 		bch->debug = debug;
4816 		mISDN_initbchannel(bch, MAX_DATA_MEM, poll >> 1);
4817 		bch->hw = hc;
4818 		bch->ch.send = handle_bmsg;
4819 		bch->ch.ctrl = hfcm_bctrl;
4820 		bch->ch.nr = ch;
4821 		list_add(&bch->ch.list, &dch->dev.bchannels);
4822 		hc->chan[ch].bch = bch;
4823 		hc->chan[ch].port = pt;
4824 		set_channelmap(bch->nr, dch->dev.channelmap);
4825 		bcount++;
4826 	}
4827 	dch->dev.nrbchan = bcount;
4828 	if (pt == 0)
4829 		init_e1_port_hw(hc, m);
4830 	if (hc->ports > 1)
4831 		snprintf(name, MISDN_MAX_IDLEN - 1, "hfc-e1.%d-%d",
4832 				HFC_cnt + 1, pt+1);
4833 	else
4834 		snprintf(name, MISDN_MAX_IDLEN - 1, "hfc-e1.%d", HFC_cnt + 1);
4835 	ret = mISDN_register_device(&dch->dev, &hc->pci_dev->dev, name);
4836 	if (ret)
4837 		goto free_chan;
4838 	hc->created[pt] = 1;
4839 	return ret;
4840 free_chan:
4841 	release_port(hc, dch);
4842 	return ret;
4843 }
4844 
4845 static int
init_multi_port(struct hfc_multi * hc,int pt)4846 init_multi_port(struct hfc_multi *hc, int pt)
4847 {
4848 	struct dchannel	*dch;
4849 	struct bchannel	*bch;
4850 	int		ch, i, ret = 0;
4851 	char		name[MISDN_MAX_IDLEN];
4852 
4853 	dch = kzalloc(sizeof(struct dchannel), GFP_KERNEL);
4854 	if (!dch)
4855 		return -ENOMEM;
4856 	dch->debug = debug;
4857 	mISDN_initdchannel(dch, MAX_DFRAME_LEN_L1, ph_state_change);
4858 	dch->hw = hc;
4859 	dch->dev.Dprotocols = (1 << ISDN_P_TE_S0) | (1 << ISDN_P_NT_S0);
4860 	dch->dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
4861 		(1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
4862 	dch->dev.D.send = handle_dmsg;
4863 	dch->dev.D.ctrl = hfcm_dctrl;
4864 	dch->dev.nrbchan = 2;
4865 	i = pt << 2;
4866 	dch->slot = i + 2;
4867 	hc->chan[i + 2].dch = dch;
4868 	hc->chan[i + 2].port = pt;
4869 	hc->chan[i + 2].nt_timer = -1;
4870 	for (ch = 0; ch < dch->dev.nrbchan; ch++) {
4871 		bch = kzalloc(sizeof(struct bchannel), GFP_KERNEL);
4872 		if (!bch) {
4873 			printk(KERN_ERR "%s: no memory for bchannel\n",
4874 			       __func__);
4875 			ret = -ENOMEM;
4876 			goto free_chan;
4877 		}
4878 		hc->chan[i + ch].coeff = kzalloc(512, GFP_KERNEL);
4879 		if (!hc->chan[i + ch].coeff) {
4880 			printk(KERN_ERR "%s: no memory for coeffs\n",
4881 			       __func__);
4882 			ret = -ENOMEM;
4883 			kfree(bch);
4884 			goto free_chan;
4885 		}
4886 		bch->nr = ch + 1;
4887 		bch->slot = i + ch;
4888 		bch->debug = debug;
4889 		mISDN_initbchannel(bch, MAX_DATA_MEM, poll >> 1);
4890 		bch->hw = hc;
4891 		bch->ch.send = handle_bmsg;
4892 		bch->ch.ctrl = hfcm_bctrl;
4893 		bch->ch.nr = ch + 1;
4894 		list_add(&bch->ch.list, &dch->dev.bchannels);
4895 		hc->chan[i + ch].bch = bch;
4896 		hc->chan[i + ch].port = pt;
4897 		set_channelmap(bch->nr, dch->dev.channelmap);
4898 	}
4899 	/* set master clock */
4900 	if (port[Port_cnt] & 0x001) {
4901 		if (debug & DEBUG_HFCMULTI_INIT)
4902 			printk(KERN_DEBUG
4903 			       "%s: PROTOCOL set master clock: "
4904 			       "card(%d) port(%d)\n",
4905 			       __func__, HFC_cnt + 1, pt + 1);
4906 		if (dch->dev.D.protocol != ISDN_P_TE_S0) {
4907 			printk(KERN_ERR "Error: Master clock "
4908 			       "for port(%d) of card(%d) is only"
4909 			       " possible with TE-mode\n",
4910 			       pt + 1, HFC_cnt + 1);
4911 			ret = -EINVAL;
4912 			goto free_chan;
4913 		}
4914 		if (hc->masterclk >= 0) {
4915 			printk(KERN_ERR "Error: Master clock "
4916 			       "for port(%d) of card(%d) already "
4917 			       "defined for port(%d)\n",
4918 			       pt + 1, HFC_cnt + 1, hc->masterclk + 1);
4919 			ret = -EINVAL;
4920 			goto free_chan;
4921 		}
4922 		hc->masterclk = pt;
4923 	}
4924 	/* set transmitter line to non capacitive */
4925 	if (port[Port_cnt] & 0x002) {
4926 		if (debug & DEBUG_HFCMULTI_INIT)
4927 			printk(KERN_DEBUG
4928 			       "%s: PROTOCOL set non capacitive "
4929 			       "transmitter: card(%d) port(%d)\n",
4930 			       __func__, HFC_cnt + 1, pt + 1);
4931 		test_and_set_bit(HFC_CFG_NONCAP_TX,
4932 				 &hc->chan[i + 2].cfg);
4933 	}
4934 	/* disable E-channel */
4935 	if (port[Port_cnt] & 0x004) {
4936 		if (debug & DEBUG_HFCMULTI_INIT)
4937 			printk(KERN_DEBUG
4938 			       "%s: PROTOCOL disable E-channel: "
4939 			       "card(%d) port(%d)\n",
4940 			       __func__, HFC_cnt + 1, pt + 1);
4941 		test_and_set_bit(HFC_CFG_DIS_ECHANNEL,
4942 				 &hc->chan[i + 2].cfg);
4943 	}
4944 	if (hc->ctype == HFC_TYPE_XHFC) {
4945 		snprintf(name, MISDN_MAX_IDLEN - 1, "xhfc.%d-%d",
4946 			 HFC_cnt + 1, pt + 1);
4947 		ret = mISDN_register_device(&dch->dev, NULL, name);
4948 	} else {
4949 		snprintf(name, MISDN_MAX_IDLEN - 1, "hfc-%ds.%d-%d",
4950 			 hc->ctype, HFC_cnt + 1, pt + 1);
4951 		ret = mISDN_register_device(&dch->dev, &hc->pci_dev->dev, name);
4952 	}
4953 	if (ret)
4954 		goto free_chan;
4955 	hc->created[pt] = 1;
4956 	return ret;
4957 free_chan:
4958 	release_port(hc, dch);
4959 	return ret;
4960 }
4961 
4962 static int
hfcmulti_init(struct hm_map * m,struct pci_dev * pdev,const struct pci_device_id * ent)4963 hfcmulti_init(struct hm_map *m, struct pci_dev *pdev,
4964 	      const struct pci_device_id *ent)
4965 {
4966 	int		ret_err = 0;
4967 	int		pt;
4968 	struct hfc_multi	*hc;
4969 	u_long		flags;
4970 	u_char		dips = 0, pmj = 0; /* dip settings, port mode Jumpers */
4971 	int		i, ch;
4972 	u_int		maskcheck;
4973 
4974 	if (HFC_cnt >= MAX_CARDS) {
4975 		printk(KERN_ERR "too many cards (max=%d).\n",
4976 		       MAX_CARDS);
4977 		return -EINVAL;
4978 	}
4979 	if ((type[HFC_cnt] & 0xff) && (type[HFC_cnt] & 0xff) != m->type) {
4980 		printk(KERN_WARNING "HFC-MULTI: Card '%s:%s' type %d found but "
4981 		       "type[%d] %d was supplied as module parameter\n",
4982 		       m->vendor_name, m->card_name, m->type, HFC_cnt,
4983 		       type[HFC_cnt] & 0xff);
4984 		printk(KERN_WARNING "HFC-MULTI: Load module without parameters "
4985 		       "first, to see cards and their types.");
4986 		return -EINVAL;
4987 	}
4988 	if (debug & DEBUG_HFCMULTI_INIT)
4989 		printk(KERN_DEBUG "%s: Registering %s:%s chip type %d (0x%x)\n",
4990 		       __func__, m->vendor_name, m->card_name, m->type,
4991 		       type[HFC_cnt]);
4992 
4993 	/* allocate card+fifo structure */
4994 	hc = kzalloc(sizeof(struct hfc_multi), GFP_KERNEL);
4995 	if (!hc) {
4996 		printk(KERN_ERR "No kmem for HFC-Multi card\n");
4997 		return -ENOMEM;
4998 	}
4999 	spin_lock_init(&hc->lock);
5000 	hc->mtyp = m;
5001 	hc->ctype =  m->type;
5002 	hc->ports = m->ports;
5003 	hc->id = HFC_cnt;
5004 	hc->pcm = pcm[HFC_cnt];
5005 	hc->io_mode = iomode[HFC_cnt];
5006 	if (hc->ctype == HFC_TYPE_E1 && dmask[E1_cnt]) {
5007 		/* fragment card */
5008 		pt = 0;
5009 		maskcheck = 0;
5010 		for (ch = 0; ch <= 31; ch++) {
5011 			if (!((1 << ch) & dmask[E1_cnt]))
5012 				continue;
5013 			hc->dnum[pt] = ch;
5014 			hc->bmask[pt] = bmask[bmask_cnt++];
5015 			if ((maskcheck & hc->bmask[pt])
5016 			 || (dmask[E1_cnt] & hc->bmask[pt])) {
5017 				printk(KERN_INFO
5018 				       "HFC-E1 #%d has overlapping B-channels on fragment #%d\n",
5019 				       E1_cnt + 1, pt);
5020 				kfree(hc);
5021 				return -EINVAL;
5022 			}
5023 			maskcheck |= hc->bmask[pt];
5024 			printk(KERN_INFO
5025 			       "HFC-E1 #%d uses D-channel on slot %d and a B-channel map of 0x%08x\n",
5026 				E1_cnt + 1, ch, hc->bmask[pt]);
5027 			pt++;
5028 		}
5029 		hc->ports = pt;
5030 	}
5031 	if (hc->ctype == HFC_TYPE_E1 && !dmask[E1_cnt]) {
5032 		/* default card layout */
5033 		hc->dnum[0] = 16;
5034 		hc->bmask[0] = 0xfffefffe;
5035 		hc->ports = 1;
5036 	}
5037 
5038 	/* set chip specific features */
5039 	hc->masterclk = -1;
5040 	if (type[HFC_cnt] & 0x100) {
5041 		test_and_set_bit(HFC_CHIP_ULAW, &hc->chip);
5042 		hc->silence = 0xff; /* ulaw silence */
5043 	} else
5044 		hc->silence = 0x2a; /* alaw silence */
5045 	if ((poll >> 1) > sizeof(hc->silence_data)) {
5046 		printk(KERN_ERR "HFCMULTI error: silence_data too small, "
5047 		       "please fix\n");
5048 		kfree(hc);
5049 		return -EINVAL;
5050 	}
5051 	for (i = 0; i < (poll >> 1); i++)
5052 		hc->silence_data[i] = hc->silence;
5053 
5054 	if (hc->ctype != HFC_TYPE_XHFC) {
5055 		if (!(type[HFC_cnt] & 0x200))
5056 			test_and_set_bit(HFC_CHIP_DTMF, &hc->chip);
5057 		test_and_set_bit(HFC_CHIP_CONF, &hc->chip);
5058 	}
5059 
5060 	if (type[HFC_cnt] & 0x800)
5061 		test_and_set_bit(HFC_CHIP_PCM_SLAVE, &hc->chip);
5062 	if (type[HFC_cnt] & 0x1000) {
5063 		test_and_set_bit(HFC_CHIP_PCM_MASTER, &hc->chip);
5064 		test_and_clear_bit(HFC_CHIP_PCM_SLAVE, &hc->chip);
5065 	}
5066 	if (type[HFC_cnt] & 0x4000)
5067 		test_and_set_bit(HFC_CHIP_EXRAM_128, &hc->chip);
5068 	if (type[HFC_cnt] & 0x8000)
5069 		test_and_set_bit(HFC_CHIP_EXRAM_512, &hc->chip);
5070 	hc->slots = 32;
5071 	if (type[HFC_cnt] & 0x10000)
5072 		hc->slots = 64;
5073 	if (type[HFC_cnt] & 0x20000)
5074 		hc->slots = 128;
5075 	if (type[HFC_cnt] & 0x80000) {
5076 		test_and_set_bit(HFC_CHIP_WATCHDOG, &hc->chip);
5077 		hc->wdcount = 0;
5078 		hc->wdbyte = V_GPIO_OUT2;
5079 		printk(KERN_NOTICE "Watchdog enabled\n");
5080 	}
5081 
5082 	if (pdev && ent)
5083 		/* setup pci, hc->slots may change due to PLXSD */
5084 		ret_err = setup_pci(hc, pdev, ent);
5085 	else
5086 #ifdef CONFIG_MISDN_HFCMULTI_8xx
5087 		ret_err = setup_embedded(hc, m);
5088 #else
5089 	{
5090 		printk(KERN_WARNING "Embedded IO Mode not selected\n");
5091 		ret_err = -EIO;
5092 	}
5093 #endif
5094 	if (ret_err) {
5095 		if (hc == syncmaster)
5096 			syncmaster = NULL;
5097 		kfree(hc);
5098 		return ret_err;
5099 	}
5100 
5101 	hc->HFC_outb_nodebug = hc->HFC_outb;
5102 	hc->HFC_inb_nodebug = hc->HFC_inb;
5103 	hc->HFC_inw_nodebug = hc->HFC_inw;
5104 	hc->HFC_wait_nodebug = hc->HFC_wait;
5105 #ifdef HFC_REGISTER_DEBUG
5106 	hc->HFC_outb = HFC_outb_debug;
5107 	hc->HFC_inb = HFC_inb_debug;
5108 	hc->HFC_inw = HFC_inw_debug;
5109 	hc->HFC_wait = HFC_wait_debug;
5110 #endif
5111 	/* create channels */
5112 	for (pt = 0; pt < hc->ports; pt++) {
5113 		if (Port_cnt >= MAX_PORTS) {
5114 			printk(KERN_ERR "too many ports (max=%d).\n",
5115 			       MAX_PORTS);
5116 			ret_err = -EINVAL;
5117 			goto free_card;
5118 		}
5119 		if (hc->ctype == HFC_TYPE_E1)
5120 			ret_err = init_e1_port(hc, m, pt);
5121 		else
5122 			ret_err = init_multi_port(hc, pt);
5123 		if (debug & DEBUG_HFCMULTI_INIT)
5124 			printk(KERN_DEBUG
5125 			    "%s: Registering D-channel, card(%d) port(%d) "
5126 			       "result %d\n",
5127 			    __func__, HFC_cnt + 1, pt + 1, ret_err);
5128 
5129 		if (ret_err) {
5130 			while (pt) { /* release already registered ports */
5131 				pt--;
5132 				if (hc->ctype == HFC_TYPE_E1)
5133 					release_port(hc,
5134 						hc->chan[hc->dnum[pt]].dch);
5135 				else
5136 					release_port(hc,
5137 						hc->chan[(pt << 2) + 2].dch);
5138 			}
5139 			goto free_card;
5140 		}
5141 		if (hc->ctype != HFC_TYPE_E1)
5142 			Port_cnt++; /* for each S0 port */
5143 	}
5144 	if (hc->ctype == HFC_TYPE_E1) {
5145 		Port_cnt++; /* for each E1 port */
5146 		E1_cnt++;
5147 	}
5148 
5149 	/* disp switches */
5150 	switch (m->dip_type) {
5151 	case DIP_4S:
5152 		/*
5153 		 * Get DIP setting for beroNet 1S/2S/4S cards
5154 		 * DIP Setting: (collect GPIO 13/14/15 (R_GPIO_IN1) +
5155 		 * GPI 19/23 (R_GPI_IN2))
5156 		 */
5157 		dips = ((~HFC_inb(hc, R_GPIO_IN1) & 0xE0) >> 5) |
5158 			((~HFC_inb(hc, R_GPI_IN2) & 0x80) >> 3) |
5159 			(~HFC_inb(hc, R_GPI_IN2) & 0x08);
5160 
5161 		/* Port mode (TE/NT) jumpers */
5162 		pmj = ((HFC_inb(hc, R_GPI_IN3) >> 4)  & 0xf);
5163 
5164 		if (test_bit(HFC_CHIP_B410P, &hc->chip))
5165 			pmj = ~pmj & 0xf;
5166 
5167 		printk(KERN_INFO "%s: %s DIPs(0x%x) jumpers(0x%x)\n",
5168 		       m->vendor_name, m->card_name, dips, pmj);
5169 		break;
5170 	case DIP_8S:
5171 		/*
5172 		 * Get DIP Setting for beroNet 8S0+ cards
5173 		 * Enable PCI auxbridge function
5174 		 */
5175 		HFC_outb(hc, R_BRG_PCM_CFG, 1 | V_PCM_CLK);
5176 		/* prepare access to auxport */
5177 		outw(0x4000, hc->pci_iobase + 4);
5178 		/*
5179 		 * some dummy reads are required to
5180 		 * read valid DIP switch data
5181 		 */
5182 		dips = inb(hc->pci_iobase);
5183 		dips = inb(hc->pci_iobase);
5184 		dips = inb(hc->pci_iobase);
5185 		dips = ~inb(hc->pci_iobase) & 0x3F;
5186 		outw(0x0, hc->pci_iobase + 4);
5187 		/* disable PCI auxbridge function */
5188 		HFC_outb(hc, R_BRG_PCM_CFG, V_PCM_CLK);
5189 		printk(KERN_INFO "%s: %s DIPs(0x%x)\n",
5190 		       m->vendor_name, m->card_name, dips);
5191 		break;
5192 	case DIP_E1:
5193 		/*
5194 		 * get DIP Setting for beroNet E1 cards
5195 		 * DIP Setting: collect GPI 4/5/6/7 (R_GPI_IN0)
5196 		 */
5197 		dips = (~HFC_inb(hc, R_GPI_IN0) & 0xF0) >> 4;
5198 		printk(KERN_INFO "%s: %s DIPs(0x%x)\n",
5199 		       m->vendor_name, m->card_name, dips);
5200 		break;
5201 	}
5202 
5203 	/* add to list */
5204 	spin_lock_irqsave(&HFClock, flags);
5205 	list_add_tail(&hc->list, &HFClist);
5206 	spin_unlock_irqrestore(&HFClock, flags);
5207 
5208 	/* use as clock source */
5209 	if (clock == HFC_cnt + 1)
5210 		hc->iclock = mISDN_register_clock("HFCMulti", 0, clockctl, hc);
5211 
5212 	/* initialize hardware */
5213 	hc->irq = (m->irq) ? : hc->pci_dev->irq;
5214 	ret_err = init_card(hc);
5215 	if (ret_err) {
5216 		printk(KERN_ERR "init card returns %d\n", ret_err);
5217 		release_card(hc);
5218 		return ret_err;
5219 	}
5220 
5221 	/* start IRQ and return */
5222 	spin_lock_irqsave(&hc->lock, flags);
5223 	enable_hwirq(hc);
5224 	spin_unlock_irqrestore(&hc->lock, flags);
5225 	return 0;
5226 
5227 free_card:
5228 	release_io_hfcmulti(hc);
5229 	if (hc == syncmaster)
5230 		syncmaster = NULL;
5231 	kfree(hc);
5232 	return ret_err;
5233 }
5234 
hfc_remove_pci(struct pci_dev * pdev)5235 static void hfc_remove_pci(struct pci_dev *pdev)
5236 {
5237 	struct hfc_multi	*card = pci_get_drvdata(pdev);
5238 	u_long			flags;
5239 
5240 	if (debug)
5241 		printk(KERN_INFO "removing hfc_multi card vendor:%x "
5242 		       "device:%x subvendor:%x subdevice:%x\n",
5243 		       pdev->vendor, pdev->device,
5244 		       pdev->subsystem_vendor, pdev->subsystem_device);
5245 
5246 	if (card) {
5247 		spin_lock_irqsave(&HFClock, flags);
5248 		release_card(card);
5249 		spin_unlock_irqrestore(&HFClock, flags);
5250 	}  else {
5251 		if (debug)
5252 			printk(KERN_DEBUG "%s: drvdata already removed\n",
5253 			       __func__);
5254 	}
5255 }
5256 
5257 #define	VENDOR_CCD	"Cologne Chip AG"
5258 #define	VENDOR_BN	"beroNet GmbH"
5259 #define	VENDOR_DIG	"Digium Inc."
5260 #define VENDOR_JH	"Junghanns.NET GmbH"
5261 #define VENDOR_PRIM	"PrimuX"
5262 
5263 static const struct hm_map hfcm_map[] = {
5264 	/*0*/	{VENDOR_BN, "HFC-1S Card (mini PCI)", 4, 1, 1, 3, 0, DIP_4S, 0, 0},
5265 	/*1*/	{VENDOR_BN, "HFC-2S Card", 4, 2, 1, 3, 0, DIP_4S, 0, 0},
5266 	/*2*/	{VENDOR_BN, "HFC-2S Card (mini PCI)", 4, 2, 1, 3, 0, DIP_4S, 0, 0},
5267 	/*3*/	{VENDOR_BN, "HFC-4S Card", 4, 4, 1, 2, 0, DIP_4S, 0, 0},
5268 	/*4*/	{VENDOR_BN, "HFC-4S Card (mini PCI)", 4, 4, 1, 2, 0, 0, 0, 0},
5269 	/*5*/	{VENDOR_CCD, "HFC-4S Eval (old)", 4, 4, 0, 0, 0, 0, 0, 0},
5270 	/*6*/	{VENDOR_CCD, "HFC-4S IOB4ST", 4, 4, 1, 2, 0, DIP_4S, 0, 0},
5271 	/*7*/	{VENDOR_CCD, "HFC-4S", 4, 4, 1, 2, 0, 0, 0, 0},
5272 	/*8*/	{VENDOR_DIG, "HFC-4S Card", 4, 4, 0, 2, 0, 0, HFC_IO_MODE_REGIO, 0},
5273 	/*9*/	{VENDOR_CCD, "HFC-4S Swyx 4xS0 SX2 QuadBri", 4, 4, 1, 2, 0, 0, 0, 0},
5274 	/*10*/	{VENDOR_JH, "HFC-4S (junghanns 2.0)", 4, 4, 1, 2, 0, 0, 0, 0},
5275 	/*11*/	{VENDOR_PRIM, "HFC-2S Primux Card", 4, 2, 0, 0, 0, 0, 0, 0},
5276 
5277 	/*12*/	{VENDOR_BN, "HFC-8S Card", 8, 8, 1, 0, 0, 0, 0, 0},
5278 	/*13*/	{VENDOR_BN, "HFC-8S Card (+)", 8, 8, 1, 8, 0, DIP_8S,
5279 		 HFC_IO_MODE_REGIO, 0},
5280 	/*14*/	{VENDOR_CCD, "HFC-8S Eval (old)", 8, 8, 0, 0, 0, 0, 0, 0},
5281 	/*15*/	{VENDOR_CCD, "HFC-8S IOB4ST Recording", 8, 8, 1, 0, 0, 0, 0, 0},
5282 
5283 	/*16*/	{VENDOR_CCD, "HFC-8S IOB8ST", 8, 8, 1, 0, 0, 0, 0, 0},
5284 	/*17*/	{VENDOR_CCD, "HFC-8S", 8, 8, 1, 0, 0, 0, 0, 0},
5285 	/*18*/	{VENDOR_CCD, "HFC-8S", 8, 8, 1, 0, 0, 0, 0, 0},
5286 
5287 	/*19*/	{VENDOR_BN, "HFC-E1 Card", 1, 1, 0, 1, 0, DIP_E1, 0, 0},
5288 	/*20*/	{VENDOR_BN, "HFC-E1 Card (mini PCI)", 1, 1, 0, 1, 0, 0, 0, 0},
5289 	/*21*/	{VENDOR_BN, "HFC-E1+ Card (Dual)", 1, 1, 0, 1, 0, DIP_E1, 0, 0},
5290 	/*22*/	{VENDOR_BN, "HFC-E1 Card (Dual)", 1, 1, 0, 1, 0, DIP_E1, 0, 0},
5291 
5292 	/*23*/	{VENDOR_CCD, "HFC-E1 Eval (old)", 1, 1, 0, 0, 0, 0, 0, 0},
5293 	/*24*/	{VENDOR_CCD, "HFC-E1 IOB1E1", 1, 1, 0, 1, 0, 0, 0, 0},
5294 	/*25*/	{VENDOR_CCD, "HFC-E1", 1, 1, 0, 1, 0, 0, 0, 0},
5295 
5296 	/*26*/	{VENDOR_CCD, "HFC-4S Speech Design", 4, 4, 0, 0, 0, 0,
5297 		 HFC_IO_MODE_PLXSD, 0},
5298 	/*27*/	{VENDOR_CCD, "HFC-E1 Speech Design", 1, 1, 0, 0, 0, 0,
5299 		 HFC_IO_MODE_PLXSD, 0},
5300 	/*28*/	{VENDOR_CCD, "HFC-4S OpenVox", 4, 4, 1, 0, 0, 0, 0, 0},
5301 	/*29*/	{VENDOR_CCD, "HFC-2S OpenVox", 4, 2, 1, 0, 0, 0, 0, 0},
5302 	/*30*/	{VENDOR_CCD, "HFC-8S OpenVox", 8, 8, 1, 0, 0, 0, 0, 0},
5303 	/*31*/	{VENDOR_CCD, "XHFC-4S Speech Design", 5, 4, 0, 0, 0, 0,
5304 		 HFC_IO_MODE_EMBSD, XHFC_IRQ},
5305 	/*32*/	{VENDOR_JH, "HFC-8S (junghanns)", 8, 8, 1, 0, 0, 0, 0, 0},
5306 	/*33*/	{VENDOR_BN, "HFC-2S Beronet Card PCIe", 4, 2, 1, 3, 0, DIP_4S, 0, 0},
5307 	/*34*/	{VENDOR_BN, "HFC-4S Beronet Card PCIe", 4, 4, 1, 2, 0, DIP_4S, 0, 0},
5308 };
5309 
5310 #undef H
5311 #define H(x)	((unsigned long)&hfcm_map[x])
5312 static const struct pci_device_id hfmultipci_ids[] = {
5313 
5314 	/* Cards with HFC-4S Chip */
5315 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5316 	  PCI_SUBDEVICE_ID_CCD_BN1SM, 0, 0, H(0)}, /* BN1S mini PCI */
5317 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5318 	  PCI_SUBDEVICE_ID_CCD_BN2S, 0, 0, H(1)}, /* BN2S */
5319 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5320 	  PCI_SUBDEVICE_ID_CCD_BN2SM, 0, 0, H(2)}, /* BN2S mini PCI */
5321 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5322 	  PCI_SUBDEVICE_ID_CCD_BN4S, 0, 0, H(3)}, /* BN4S */
5323 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5324 	  PCI_SUBDEVICE_ID_CCD_BN4SM, 0, 0, H(4)}, /* BN4S mini PCI */
5325 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5326 	  PCI_DEVICE_ID_CCD_HFC4S, 0, 0, H(5)}, /* Old Eval */
5327 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5328 	  PCI_SUBDEVICE_ID_CCD_IOB4ST, 0, 0, H(6)}, /* IOB4ST */
5329 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5330 	  PCI_SUBDEVICE_ID_CCD_HFC4S, 0, 0, H(7)}, /* 4S */
5331 	{ PCI_VENDOR_ID_DIGIUM, PCI_DEVICE_ID_DIGIUM_HFC4S,
5332 	  PCI_VENDOR_ID_DIGIUM, PCI_DEVICE_ID_DIGIUM_HFC4S, 0, 0, H(8)},
5333 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5334 	  PCI_SUBDEVICE_ID_CCD_SWYX4S, 0, 0, H(9)}, /* 4S Swyx */
5335 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5336 	  PCI_SUBDEVICE_ID_CCD_JH4S20, 0, 0, H(10)},
5337 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5338 	  PCI_SUBDEVICE_ID_CCD_PMX2S, 0, 0, H(11)}, /* Primux */
5339 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5340 	  PCI_SUBDEVICE_ID_CCD_OV4S, 0, 0, H(28)}, /* OpenVox 4 */
5341 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5342 	  PCI_SUBDEVICE_ID_CCD_OV2S, 0, 0, H(29)}, /* OpenVox 2 */
5343 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5344 	  0xb761, 0, 0, H(33)}, /* BN2S PCIe */
5345 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5346 	  0xb762, 0, 0, H(34)}, /* BN4S PCIe */
5347 
5348 	/* Cards with HFC-8S Chip */
5349 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5350 	  PCI_SUBDEVICE_ID_CCD_BN8S, 0, 0, H(12)}, /* BN8S */
5351 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5352 	  PCI_SUBDEVICE_ID_CCD_BN8SP, 0, 0, H(13)}, /* BN8S+ */
5353 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5354 	  PCI_DEVICE_ID_CCD_HFC8S, 0, 0, H(14)}, /* old Eval */
5355 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5356 	  PCI_SUBDEVICE_ID_CCD_IOB8STR, 0, 0, H(15)}, /* IOB8ST Recording */
5357 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5358 	  PCI_SUBDEVICE_ID_CCD_IOB8ST, 0, 0, H(16)}, /* IOB8ST  */
5359 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5360 	  PCI_SUBDEVICE_ID_CCD_IOB8ST_1, 0, 0, H(17)}, /* IOB8ST  */
5361 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5362 	  PCI_SUBDEVICE_ID_CCD_HFC8S, 0, 0, H(18)}, /* 8S */
5363 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5364 	  PCI_SUBDEVICE_ID_CCD_OV8S, 0, 0, H(30)}, /* OpenVox 8 */
5365 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5366 	  PCI_SUBDEVICE_ID_CCD_JH8S, 0, 0, H(32)}, /* Junganns 8S  */
5367 
5368 
5369 	/* Cards with HFC-E1 Chip */
5370 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5371 	  PCI_SUBDEVICE_ID_CCD_BNE1, 0, 0, H(19)}, /* BNE1 */
5372 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5373 	  PCI_SUBDEVICE_ID_CCD_BNE1M, 0, 0, H(20)}, /* BNE1 mini PCI */
5374 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5375 	  PCI_SUBDEVICE_ID_CCD_BNE1DP, 0, 0, H(21)}, /* BNE1 + (Dual) */
5376 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5377 	  PCI_SUBDEVICE_ID_CCD_BNE1D, 0, 0, H(22)}, /* BNE1 (Dual) */
5378 
5379 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5380 	  PCI_DEVICE_ID_CCD_HFCE1, 0, 0, H(23)}, /* Old Eval */
5381 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5382 	  PCI_SUBDEVICE_ID_CCD_IOB1E1, 0, 0, H(24)}, /* IOB1E1 */
5383 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5384 	  PCI_SUBDEVICE_ID_CCD_HFCE1, 0, 0, H(25)}, /* E1 */
5385 
5386 	{ PCI_VENDOR_ID_PLX, PCI_DEVICE_ID_PLX_9030, PCI_VENDOR_ID_CCD,
5387 	  PCI_SUBDEVICE_ID_CCD_SPD4S, 0, 0, H(26)}, /* PLX PCI Bridge */
5388 	{ PCI_VENDOR_ID_PLX, PCI_DEVICE_ID_PLX_9030, PCI_VENDOR_ID_CCD,
5389 	  PCI_SUBDEVICE_ID_CCD_SPDE1, 0, 0, H(27)}, /* PLX PCI Bridge */
5390 
5391 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5392 	  PCI_SUBDEVICE_ID_CCD_JHSE1, 0, 0, H(25)}, /* Junghanns E1 */
5393 
5394 	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_HFC4S), 0 },
5395 	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_HFC8S), 0 },
5396 	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_HFCE1), 0 },
5397 	{0, }
5398 };
5399 #undef H
5400 
5401 MODULE_DEVICE_TABLE(pci, hfmultipci_ids);
5402 
5403 static int
hfcmulti_probe(struct pci_dev * pdev,const struct pci_device_id * ent)5404 hfcmulti_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
5405 {
5406 	struct hm_map	*m = (struct hm_map *)ent->driver_data;
5407 	int		ret;
5408 
5409 	if (m == NULL && ent->vendor == PCI_VENDOR_ID_CCD && (
5410 		    ent->device == PCI_DEVICE_ID_CCD_HFC4S ||
5411 		    ent->device == PCI_DEVICE_ID_CCD_HFC8S ||
5412 		    ent->device == PCI_DEVICE_ID_CCD_HFCE1)) {
5413 		printk(KERN_ERR
5414 		       "Unknown HFC multiport controller (vendor:%04x device:%04x "
5415 		       "subvendor:%04x subdevice:%04x)\n", pdev->vendor,
5416 		       pdev->device, pdev->subsystem_vendor,
5417 		       pdev->subsystem_device);
5418 		printk(KERN_ERR
5419 		       "Please contact the driver maintainer for support.\n");
5420 		return -ENODEV;
5421 	}
5422 	ret = hfcmulti_init(m, pdev, ent);
5423 	if (ret)
5424 		return ret;
5425 	HFC_cnt++;
5426 	printk(KERN_INFO "%d devices registered\n", HFC_cnt);
5427 	return 0;
5428 }
5429 
5430 static struct pci_driver hfcmultipci_driver = {
5431 	.name		= "hfc_multi",
5432 	.probe		= hfcmulti_probe,
5433 	.remove		= hfc_remove_pci,
5434 	.id_table	= hfmultipci_ids,
5435 };
5436 
5437 static void __exit
HFCmulti_cleanup(void)5438 HFCmulti_cleanup(void)
5439 {
5440 	struct hfc_multi *card, *next;
5441 
5442 	/* get rid of all devices of this driver */
5443 	list_for_each_entry_safe(card, next, &HFClist, list)
5444 		release_card(card);
5445 	pci_unregister_driver(&hfcmultipci_driver);
5446 }
5447 
5448 static int __init
HFCmulti_init(void)5449 HFCmulti_init(void)
5450 {
5451 	int err;
5452 	int i, xhfc = 0;
5453 	struct hm_map m;
5454 
5455 	printk(KERN_INFO "mISDN: HFC-multi driver %s\n", HFC_MULTI_VERSION);
5456 
5457 #ifdef IRQ_DEBUG
5458 	printk(KERN_DEBUG "%s: IRQ_DEBUG IS ENABLED!\n", __func__);
5459 #endif
5460 
5461 	if (debug & DEBUG_HFCMULTI_INIT)
5462 		printk(KERN_DEBUG "%s: init entered\n", __func__);
5463 
5464 	switch (poll) {
5465 	case 0:
5466 		poll_timer = 6;
5467 		poll = 128;
5468 		break;
5469 	case 8:
5470 		poll_timer = 2;
5471 		break;
5472 	case 16:
5473 		poll_timer = 3;
5474 		break;
5475 	case 32:
5476 		poll_timer = 4;
5477 		break;
5478 	case 64:
5479 		poll_timer = 5;
5480 		break;
5481 	case 128:
5482 		poll_timer = 6;
5483 		break;
5484 	case 256:
5485 		poll_timer = 7;
5486 		break;
5487 	default:
5488 		printk(KERN_ERR
5489 		       "%s: Wrong poll value (%d).\n", __func__, poll);
5490 		err = -EINVAL;
5491 		return err;
5492 
5493 	}
5494 
5495 	if (!clock)
5496 		clock = 1;
5497 
5498 	/* Register the embedded devices.
5499 	 * This should be done before the PCI cards registration */
5500 	switch (hwid) {
5501 	case HWID_MINIP4:
5502 		xhfc = 1;
5503 		m = hfcm_map[31];
5504 		break;
5505 	case HWID_MINIP8:
5506 		xhfc = 2;
5507 		m = hfcm_map[31];
5508 		break;
5509 	case HWID_MINIP16:
5510 		xhfc = 4;
5511 		m = hfcm_map[31];
5512 		break;
5513 	default:
5514 		xhfc = 0;
5515 	}
5516 
5517 	for (i = 0; i < xhfc; ++i) {
5518 		err = hfcmulti_init(&m, NULL, NULL);
5519 		if (err) {
5520 			printk(KERN_ERR "error registering embedded driver: "
5521 			       "%x\n", err);
5522 			return err;
5523 		}
5524 		HFC_cnt++;
5525 		printk(KERN_INFO "%d devices registered\n", HFC_cnt);
5526 	}
5527 
5528 	/* Register the PCI cards */
5529 	err = pci_register_driver(&hfcmultipci_driver);
5530 	if (err < 0) {
5531 		printk(KERN_ERR "error registering pci driver: %x\n", err);
5532 		return err;
5533 	}
5534 
5535 	return 0;
5536 }
5537 
5538 
5539 module_init(HFCmulti_init);
5540 module_exit(HFCmulti_cleanup);
5541