xref: /netbsd/sys/dev/i2c/axppmic.c (revision 1ecfefdd)
1 /* $NetBSD: axppmic.c,v 1.37 2022/10/30 11:51:19 jmcneill Exp $ */
2 
3 /*-
4  * Copyright (c) 2014-2018 Jared McNeill <jmcneill@invisible.ca>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26  * POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __KERNEL_RCSID(0, "$NetBSD: axppmic.c,v 1.37 2022/10/30 11:51:19 jmcneill Exp $");
31 
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/kernel.h>
35 #include <sys/device.h>
36 #include <sys/conf.h>
37 #include <sys/bus.h>
38 #include <sys/kmem.h>
39 #include <sys/workqueue.h>
40 
41 #include <dev/i2c/i2cvar.h>
42 
43 #include <dev/sysmon/sysmonvar.h>
44 #include <dev/sysmon/sysmon_taskq.h>
45 
46 #include <dev/fdt/fdtvar.h>
47 
48 #define	AXP_POWER_SOURCE_REG	0x00
49 #define	 AXP_POWER_SOURCE_ACIN_PRESENT	__BIT(7)
50 #define	 AXP_POWER_SOURCE_VBUS_PRESENT	__BIT(5)
51 #define	 AXP_POWER_SOURCE_CHARGE_DIRECTION __BIT(2)
52 
53 #define	AXP_POWER_MODE_REG	0x01
54 #define	 AXP_POWER_MODE_BATT_VALID	__BIT(4)
55 #define	 AXP_POWER_MODE_BATT_PRESENT	__BIT(5)
56 #define	 AXP_POWER_MODE_BATT_CHARGING	__BIT(6)
57 
58 #define	AXP_CHIP_ID_REG		0x03
59 
60 #define AXP_POWER_DISABLE_REG	0x32
61 #define	 AXP_POWER_DISABLE_CTRL	__BIT(7)
62 
63 #define AXP_IRQ_ENABLE_REG(n)	(0x40 + (n) - 1)
64 #define	 AXP_IRQ1_ACIN_RAISE	__BIT(6)
65 #define	 AXP_IRQ1_ACIN_LOWER	__BIT(5)
66 #define	 AXP_IRQ1_VBUS_RAISE	__BIT(3)
67 #define	 AXP_IRQ1_VBUS_LOWER	__BIT(2)
68 #define AXP_IRQ_STATUS_REG(n)	(0x48 + (n) - 1)
69 
70 #define	AXP_BATSENSE_HI_REG	0x78
71 #define	AXP_BATSENSE_LO_REG	0x79
72 
73 #define	AXP_BATTCHG_HI_REG	0x7a
74 #define	AXP_BATTCHG_LO_REG	0x7b
75 
76 #define	AXP_BATTDISCHG_HI_REG	0x7c
77 #define	AXP_BATTDISCHG_LO_REG	0x7d
78 
79 #define	AXP_ADC_RAW(_hi, _lo)	\
80 	(((u_int)(_hi) << 4) | ((_lo) & 0xf))
81 
82 #define	AXP_GPIO_CTRL_REG(pin)	(0x90 + (pin) * 2)
83 #define	 AXP_GPIO_CTRL_FUNC_MASK 	__BITS(2,0)
84 #define	 AXP_GPIO_CTRL_FUNC_LOW	 	0
85 #define	 AXP_GPIO_CTRL_FUNC_HIGH	1
86 #define	 AXP_GPIO_CTRL_FUNC_INPUT	2
87 #define	AXP_GPIO_SIGNAL_REG	0x94
88 
89 #define	AXP_FUEL_GAUGE_CTRL_REG	0xb8
90 #define	 AXP_FUEL_GAUGE_CTRL_EN	__BIT(7)
91 
92 #define	AXP_BATT_CAP_REG	0xb9
93 #define	 AXP_BATT_CAP_VALID	__BIT(7)
94 #define	 AXP_BATT_CAP_PERCENT	__BITS(6,0)
95 
96 #define	AXP_BATT_MAX_CAP_HI_REG	0xe0
97 #define	 AXP_BATT_MAX_CAP_VALID	__BIT(7)
98 #define	AXP_BATT_MAX_CAP_LO_REG	0xe1
99 
100 #define	AXP_BATT_COULOMB_HI_REG	0xe2
101 #define	 AXP_BATT_COULOMB_VALID	__BIT(7)
102 #define	AXP_BATT_COULOMB_LO_REG	0xe3
103 
104 #define	AXP_COULOMB_RAW(_hi, _lo)	\
105 	(((u_int)(_hi & ~__BIT(7)) << 8) | (_lo))
106 
107 #define	AXP_BATT_CAP_WARN_REG	0xe6
108 #define	 AXP_BATT_CAP_WARN_LV1	__BITS(7,4)
109 #define	 AXP_BATT_CAP_WARN_LV2	__BITS(3,0)
110 
111 #define	AXP_ADDR_EXT_REG	0xff	/* AXP806 */
112 #define	 AXP_ADDR_EXT_MASTER	0
113 #define	 AXP_ADDR_EXT_SLAVE	__BIT(4)
114 
115 struct axppmic_ctrl {
116 	device_t	c_dev;
117 
118 	const char *	c_name;
119 	u_int		c_min;
120 	u_int		c_max;
121 	u_int		c_step1;
122 	u_int		c_step1cnt;
123 	u_int		c_step2;
124 	u_int		c_step2cnt;
125 	u_int		c_step2start;
126 
127 	uint8_t		c_enable_reg;
128 	uint8_t		c_enable_mask;
129 	uint8_t		c_enable_val;
130 	uint8_t		c_disable_val;
131 
132 	uint8_t		c_voltage_reg;
133 	uint8_t		c_voltage_mask;
134 };
135 
136 #define AXP_CTRL(name, min, max, step, ereg, emask, vreg, vmask)	\
137 	{ .c_name = (name), .c_min = (min), .c_max = (max),		\
138 	  .c_step1 = (step), .c_step1cnt = (((max) - (min)) / (step)) + 1, \
139 	  .c_step2 = 0, .c_step2cnt = 0,				\
140 	  .c_enable_reg = (ereg), .c_enable_mask = (emask),		\
141 	  .c_enable_val = (emask), .c_disable_val = 0,			\
142 	  .c_voltage_reg = (vreg), .c_voltage_mask = (vmask) }
143 
144 #define AXP_CTRL2(name, min, max, step1, step1cnt, step2, step2cnt, ereg, emask, vreg, vmask) \
145 	{ .c_name = (name), .c_min = (min), .c_max = (max),		\
146 	  .c_step1 = (step1), .c_step1cnt = (step1cnt),			\
147 	  .c_step2 = (step2), .c_step2cnt = (step2cnt),			\
148 	  .c_enable_reg = (ereg), .c_enable_mask = (emask),		\
149 	  .c_enable_val = (emask), .c_disable_val = 0,			\
150 	  .c_voltage_reg = (vreg), .c_voltage_mask = (vmask) }
151 
152 #define AXP_CTRL2_RANGE(name, min, max, step1, step1cnt, step2start, step2, step2cnt, ereg, emask, vreg, vmask) \
153 	{ .c_name = (name), .c_min = (min), .c_max = (max),		\
154 	  .c_step1 = (step1), .c_step1cnt = (step1cnt),			\
155 	  .c_step2start = (step2start),					\
156 	  .c_step2 = (step2), .c_step2cnt = (step2cnt),			\
157 	  .c_enable_reg = (ereg), .c_enable_mask = (emask),		\
158 	  .c_enable_val = (emask), .c_disable_val = 0,			\
159 	  .c_voltage_reg = (vreg), .c_voltage_mask = (vmask) }
160 
161 #define AXP_CTRL_IO(name, min, max, step, ereg, emask, eval, dval, vreg, vmask)	\
162 	{ .c_name = (name), .c_min = (min), .c_max = (max),		\
163 	  .c_step1 = (step), .c_step1cnt = (((max) - (min)) / (step)) + 1, \
164 	  .c_step2 = 0, .c_step2cnt = 0,				\
165 	  .c_enable_reg = (ereg), .c_enable_mask = (emask),		\
166 	  .c_enable_val = (eval), .c_disable_val = (dval),		\
167 	  .c_voltage_reg = (vreg), .c_voltage_mask = (vmask) }
168 
169 #define AXP_CTRL_SW(name, ereg, emask)					\
170 	{ .c_name = (name), 						\
171 	  .c_enable_reg = (ereg), .c_enable_mask = (emask),		\
172 	  .c_enable_val = (emask), .c_disable_val = 0 }
173 
174 static const struct axppmic_ctrl axp803_ctrls[] = {
175 	AXP_CTRL("dldo1", 700, 3300, 100,
176 		0x12, __BIT(3), 0x15, __BITS(4,0)),
177 	AXP_CTRL2("dldo2", 700, 4200, 100, 28, 200, 4,
178 		0x12, __BIT(4), 0x16, __BITS(4,0)),
179 	AXP_CTRL("dldo3", 700, 3300, 100,
180 	 	0x12, __BIT(5), 0x17, __BITS(4,0)),
181 	AXP_CTRL("dldo4", 700, 3300, 100,
182 		0x12, __BIT(6), 0x18, __BITS(4,0)),
183 	AXP_CTRL("eldo1", 700, 1900, 50,
184 		0x12, __BIT(0), 0x19, __BITS(4,0)),
185 	AXP_CTRL("eldo2", 700, 1900, 50,
186 		0x12, __BIT(1), 0x1a, __BITS(4,0)),
187 	AXP_CTRL("eldo3", 700, 1900, 50,
188 		0x12, __BIT(2), 0x1b, __BITS(4,0)),
189 	AXP_CTRL("fldo1", 700, 1450, 50,
190 		0x13, __BIT(2), 0x1c, __BITS(3,0)),
191 	AXP_CTRL("fldo2", 700, 1450, 50,
192 		0x13, __BIT(3), 0x1d, __BITS(3,0)),
193 	AXP_CTRL("dcdc1", 1600, 3400, 100,
194 		0x10, __BIT(0), 0x20, __BITS(4,0)),
195 	AXP_CTRL2("dcdc2", 500, 1300, 10, 70, 20, 5,
196 		0x10, __BIT(1), 0x21, __BITS(6,0)),
197 	AXP_CTRL2("dcdc3", 500, 1300, 10, 70, 20, 5,
198 		0x10, __BIT(2), 0x22, __BITS(6,0)),
199 	AXP_CTRL2("dcdc4", 500, 1300, 10, 70, 20, 5,
200 		0x10, __BIT(3), 0x23, __BITS(6,0)),
201 	AXP_CTRL2("dcdc5", 800, 1840, 10, 33, 20, 36,
202 		0x10, __BIT(4), 0x24, __BITS(6,0)),
203 	AXP_CTRL2("dcdc6", 600, 1520, 10, 51, 20, 21,
204 		0x10, __BIT(5), 0x25, __BITS(6,0)),
205 	AXP_CTRL("aldo1", 700, 3300, 100,
206 		0x13, __BIT(5), 0x28, __BITS(4,0)),
207 	AXP_CTRL("aldo2", 700, 3300, 100,
208 		0x13, __BIT(6), 0x29, __BITS(4,0)),
209 	AXP_CTRL("aldo3", 700, 3300, 100,
210 		0x13, __BIT(7), 0x2a, __BITS(4,0)),
211 };
212 
213 static const struct axppmic_ctrl axp805_ctrls[] = {
214 	AXP_CTRL2("dcdca", 600, 1520, 10, 51, 20, 21,
215 		0x10, __BIT(0), 0x12, __BITS(6,0)),
216 	AXP_CTRL("dcdcb", 1000, 2550, 50,
217 		0x10, __BIT(1), 0x13, __BITS(4,0)),
218 	AXP_CTRL2("dcdcc", 600, 1520, 10, 51, 20, 21,
219 		0x10, __BIT(2), 0x14, __BITS(6,0)),
220 	AXP_CTRL2("dcdcd", 600, 3300, 20, 46, 100, 18,
221 		0x10, __BIT(3), 0x15, __BITS(5,0)),
222 	AXP_CTRL("dcdce", 1100, 3400, 100,
223 		0x10, __BIT(4), 0x16, __BITS(4,0)),
224 	AXP_CTRL("aldo1", 700, 3300, 100,
225 		0x10, __BIT(5), 0x17, __BITS(4,0)),
226 	AXP_CTRL("aldo2", 700, 3400, 100,
227 		0x10, __BIT(6), 0x18, __BITS(4,0)),
228 	AXP_CTRL("aldo3", 700, 3300, 100,
229 		0x10, __BIT(7), 0x19, __BITS(4,0)),
230 	AXP_CTRL("bldo1", 700, 1900, 100,
231 		0x11, __BIT(0), 0x20, __BITS(3,0)),
232 	AXP_CTRL("bldo2", 700, 1900, 100,
233 		0x11, __BIT(1), 0x21, __BITS(3,0)),
234 	AXP_CTRL("bldo3", 700, 1900, 100,
235 		0x11, __BIT(2), 0x22, __BITS(3,0)),
236 	AXP_CTRL("bldo4", 700, 1900, 100,
237 		0x11, __BIT(3), 0x23, __BITS(3,0)),
238 	AXP_CTRL("cldo1", 700, 3300, 100,
239 		0x11, __BIT(4), 0x24, __BITS(4,0)),
240 	AXP_CTRL2("cldo2", 700, 4200, 100, 28, 200, 4,
241 		0x11, __BIT(5), 0x25, __BITS(4,0)),
242 	AXP_CTRL("cldo3", 700, 3300, 100,
243 		0x11, __BIT(6), 0x26, __BITS(4,0)),
244 };
245 
246 static const struct axppmic_ctrl axp809_ctrls[] = {
247 	AXP_CTRL("dc5ldo", 700, 1400, 100,
248 		0x10, __BIT(0), 0x1c, __BITS(2,0)),
249 	AXP_CTRL("dcdc1", 1600, 3400, 100,
250 		0x10, __BIT(1), 0x21, __BITS(4,0)),
251 	AXP_CTRL("dcdc2", 600, 1540, 20,
252 		0x10, __BIT(2), 0x22, __BITS(5,0)),
253 	AXP_CTRL("dcdc3", 600, 1860, 20,
254 		0x10, __BIT(3), 0x23, __BITS(5,0)),
255 	AXP_CTRL2_RANGE("dcdc4", 600, 2600, 20, 47, 1800, 100, 9,
256 		0x10, __BIT(4), 0x24, __BITS(5,0)),
257 	AXP_CTRL("dcdc5", 1000, 2550, 50,
258 		0x10, __BIT(5), 0x25, __BITS(4,0)),
259 	AXP_CTRL("aldo1", 700, 3300, 100,
260 		0x10, __BIT(6), 0x28, __BITS(4,0)),
261 	AXP_CTRL("aldo2", 700, 3300, 100,
262 		0x10, __BIT(7), 0x29, __BITS(4,0)),
263 	AXP_CTRL("eldo1", 700, 3300, 100,
264 		0x12, __BIT(0), 0x19, __BITS(4,0)),
265 	AXP_CTRL("eldo2", 700, 3300, 100,
266 		0x12, __BIT(1), 0x1a, __BITS(4,0)),
267 	AXP_CTRL("eldo3", 700, 3300, 100,
268 		0x12, __BIT(2), 0x1b, __BITS(4,0)),
269 	AXP_CTRL2_RANGE("dldo1", 700, 4000, 100, 26, 3400, 200, 4,
270 		0x12, __BIT(3), 0x15, __BITS(4,0)),
271 	AXP_CTRL("dldo2", 700, 3300, 100,
272 		0x12, __BIT(4), 0x16, __BITS(4,0)),
273 	AXP_CTRL("aldo3", 700, 3300, 100,
274 		0x12, __BIT(5), 0x2a, __BITS(4,0)),
275 	AXP_CTRL_SW("sw",
276 		0x12, __BIT(6)),
277 	/* dc1sw is another switch for dcdc1 */
278 	AXP_CTRL("dc1sw", 1600, 3400, 100,
279 		0x12, __BIT(7), 0x21, __BITS(4,0)),
280 	AXP_CTRL_IO("ldo_io0", 700, 3300, 100,
281 		0x90, __BITS(3,0), 0x3, 0x7, 0x91, __BITS(4,0)),
282 	AXP_CTRL_IO("ldo_io1", 700, 3300, 100,
283 		0x92, __BITS(3,0), 0x3, 0x7, 0x93, __BITS(4,0)),
284 };
285 
286 static const struct axppmic_ctrl axp813_ctrls[] = {
287 	AXP_CTRL("dldo1", 700, 3300, 100,
288 		0x12, __BIT(3), 0x15, __BITS(4,0)),
289 	AXP_CTRL2("dldo2", 700, 4200, 100, 28, 200, 4,
290 		0x12, __BIT(4), 0x16, __BITS(4,0)),
291 	AXP_CTRL("dldo3", 700, 3300, 100,
292 	 	0x12, __BIT(5), 0x17, __BITS(4,0)),
293 	AXP_CTRL("dldo4", 700, 3300, 100,
294 		0x12, __BIT(6), 0x18, __BITS(4,0)),
295 	AXP_CTRL("eldo1", 700, 1900, 50,
296 		0x12, __BIT(0), 0x19, __BITS(4,0)),
297 	AXP_CTRL("eldo2", 700, 1900, 50,
298 		0x12, __BIT(1), 0x1a, __BITS(4,0)),
299 	AXP_CTRL("eldo3", 700, 1900, 50,
300 		0x12, __BIT(2), 0x1b, __BITS(4,0)),
301 	AXP_CTRL("fldo1", 700, 1450, 50,
302 		0x13, __BIT(2), 0x1c, __BITS(3,0)),
303 	AXP_CTRL("fldo2", 700, 1450, 50,
304 		0x13, __BIT(3), 0x1d, __BITS(3,0)),
305 	AXP_CTRL("dcdc1", 1600, 3400, 100,
306 		0x10, __BIT(0), 0x20, __BITS(4,0)),
307 	AXP_CTRL2("dcdc2", 500, 1300, 10, 70, 20, 5,
308 		0x10, __BIT(1), 0x21, __BITS(6,0)),
309 	AXP_CTRL2("dcdc3", 500, 1300, 10, 70, 20, 5,
310 		0x10, __BIT(2), 0x22, __BITS(6,0)),
311 	AXP_CTRL2("dcdc4", 500, 1300, 10, 70, 20, 5,
312 		0x10, __BIT(3), 0x23, __BITS(6,0)),
313 	AXP_CTRL2("dcdc5", 800, 1840, 10, 33, 20, 36,
314 		0x10, __BIT(4), 0x24, __BITS(6,0)),
315 	AXP_CTRL2("dcdc6", 600, 1520, 10, 51, 20, 21,
316 		0x10, __BIT(5), 0x25, __BITS(6,0)),
317 	AXP_CTRL2("dcdc7", 600, 1520, 10, 51, 20, 21,
318 		0x10, __BIT(6), 0x26, __BITS(6,0)),
319 	AXP_CTRL("aldo1", 700, 3300, 100,
320 		0x13, __BIT(5), 0x28, __BITS(4,0)),
321 	AXP_CTRL("aldo2", 700, 3300, 100,
322 		0x13, __BIT(6), 0x29, __BITS(4,0)),
323 	AXP_CTRL("aldo3", 700, 3300, 100,
324 		0x13, __BIT(7), 0x2a, __BITS(4,0)),
325 };
326 
327 struct axppmic_irq {
328 	u_int reg;
329 	uint8_t mask;
330 };
331 
332 #define	AXPPMIC_IRQ(_reg, _mask)	\
333 	{ .reg = (_reg), .mask = (_mask) }
334 
335 struct axppmic_config {
336 	const char *name;
337 	const char *gpio_compat;
338 	u_int gpio_npins;
339 	const struct axppmic_ctrl *controls;
340 	u_int ncontrols;
341 	u_int irq_regs;
342 	bool has_battery;
343 	bool has_fuel_gauge;
344 	bool has_mode_set;
345 	struct axppmic_irq poklirq;
346 	struct axppmic_irq acinirq;
347 	struct axppmic_irq vbusirq;
348 	struct axppmic_irq battirq;
349 	struct axppmic_irq chargeirq;
350 	struct axppmic_irq chargestirq;
351 	u_int batsense_step;	/* uV */
352 	u_int charge_step;	/* uA */
353 	u_int discharge_step;	/* uA */
354 	u_int maxcap_step;	/* uAh */
355 	u_int coulomb_step;	/* uAh */
356 };
357 
358 enum axppmic_sensor {
359 	AXP_SENSOR_ACIN_PRESENT,
360 	AXP_SENSOR_VBUS_PRESENT,
361 	AXP_SENSOR_BATT_PRESENT,
362 	AXP_SENSOR_BATT_CHARGING,
363 	AXP_SENSOR_BATT_CHARGE_STATE,
364 	AXP_SENSOR_BATT_VOLTAGE,
365 	AXP_SENSOR_BATT_CHARGE_CURRENT,
366 	AXP_SENSOR_BATT_DISCHARGE_CURRENT,
367 	AXP_SENSOR_BATT_CAPACITY_PERCENT,
368 	AXP_SENSOR_BATT_MAXIMUM_CAPACITY,
369 	AXP_SENSOR_BATT_CURRENT_CAPACITY,
370 	AXP_NSENSORS
371 };
372 
373 struct axppmic_softc {
374 	device_t	sc_dev;
375 	i2c_tag_t	sc_i2c;
376 	i2c_addr_t	sc_addr;
377 	int		sc_phandle;
378 
379 	void		*sc_ih;
380 	struct workqueue *sc_wq;
381 
382 	kmutex_t	sc_intr_lock;
383 	struct work	sc_work;
384 	bool		sc_work_scheduled;
385 
386 	const struct axppmic_config *sc_conf;
387 
388 	struct sysmon_pswitch sc_smpsw;
389 
390 	struct sysmon_envsys *sc_sme;
391 
392 	envsys_data_t	sc_sensor[AXP_NSENSORS];
393 
394 	u_int		sc_warn_thres;
395 	u_int		sc_shut_thres;
396 };
397 
398 struct axppmic_gpio_pin {
399 	struct axppmic_softc *pin_sc;
400 	u_int pin_nr;
401 	int pin_flags;
402 	bool pin_actlo;
403 };
404 
405 struct axpreg_softc {
406 	device_t	sc_dev;
407 	i2c_tag_t	sc_i2c;
408 	i2c_addr_t	sc_addr;
409 	const struct axppmic_ctrl *sc_ctrl;
410 };
411 
412 struct axpreg_attach_args {
413 	const struct axppmic_ctrl *reg_ctrl;
414 	int		reg_phandle;
415 	i2c_tag_t	reg_i2c;
416 	i2c_addr_t	reg_addr;
417 };
418 
419 static const struct axppmic_config axp803_config = {
420 	.name = "AXP803",
421 	.gpio_compat = "x-powers,axp803-gpio",
422 	.gpio_npins = 2,
423 	.controls = axp803_ctrls,
424 	.ncontrols = __arraycount(axp803_ctrls),
425 	.irq_regs = 6,
426 	.has_battery = true,
427 	.has_fuel_gauge = true,
428 	.batsense_step = 1100,
429 	.charge_step = 1000,
430 	.discharge_step = 1000,
431 	.maxcap_step = 1456,
432 	.coulomb_step = 1456,
433 	.poklirq = AXPPMIC_IRQ(5, __BIT(3)),
434 	.acinirq = AXPPMIC_IRQ(1, __BITS(6,5)),
435 	.vbusirq = AXPPMIC_IRQ(1, __BITS(3,2)),
436 	.battirq = AXPPMIC_IRQ(2, __BITS(7,6)),
437 	.chargeirq = AXPPMIC_IRQ(2, __BITS(3,2)),
438 	.chargestirq = AXPPMIC_IRQ(4, __BITS(1,0)),
439 };
440 
441 static const struct axppmic_config axp805_config = {
442 	.name = "AXP805",
443 	.controls = axp805_ctrls,
444 	.ncontrols = __arraycount(axp805_ctrls),
445 	.irq_regs = 2,
446 	.poklirq = AXPPMIC_IRQ(2, __BIT(0)),
447 };
448 
449 static const struct axppmic_config axp806_config = {
450 	.name = "AXP806",
451 	.controls = axp805_ctrls,
452 	.ncontrols = __arraycount(axp805_ctrls),
453 #if notyet
454 	.irq_regs = 2,
455 	.poklirq = AXPPMIC_IRQ(2, __BIT(0)),
456 #endif
457 	.has_mode_set = true,
458 };
459 
460 static const struct axppmic_config axp809_config = {
461 	.name = "AXP809",
462 	.controls = axp809_ctrls,
463 	.ncontrols = __arraycount(axp809_ctrls),
464 };
465 
466 static const struct axppmic_config axp813_config = {
467 	.name = "AXP813",
468 	.gpio_compat = "x-powers,axp813-gpio",
469 	.gpio_npins = 2,
470 	.controls = axp813_ctrls,
471 	.ncontrols = __arraycount(axp813_ctrls),
472 	.irq_regs = 6,
473 	.has_battery = true,
474 	.has_fuel_gauge = true,
475 	.batsense_step = 1100,
476 	.charge_step = 1000,
477 	.discharge_step = 1000,
478 	.maxcap_step = 1456,
479 	.coulomb_step = 1456,
480 	.poklirq = AXPPMIC_IRQ(5, __BIT(3)),
481 	.acinirq = AXPPMIC_IRQ(1, __BITS(6,5)),
482 	.vbusirq = AXPPMIC_IRQ(1, __BITS(3,2)),
483 	.battirq = AXPPMIC_IRQ(2, __BITS(7,6)),
484 	.chargeirq = AXPPMIC_IRQ(2, __BITS(3,2)),
485 	.chargestirq = AXPPMIC_IRQ(4, __BITS(1,0)),
486 };
487 
488 static const struct device_compatible_entry compat_data[] = {
489 	{ .compat = "x-powers,axp803",		.data = &axp803_config },
490 	{ .compat = "x-powers,axp805",		.data = &axp805_config },
491 	{ .compat = "x-powers,axp806",		.data = &axp806_config },
492 	{ .compat = "x-powers,axp809",		.data = &axp809_config },
493 	{ .compat = "x-powers,axp813",		.data = &axp813_config },
494 	DEVICE_COMPAT_EOL
495 };
496 
497 static int
axppmic_read(i2c_tag_t tag,i2c_addr_t addr,uint8_t reg,uint8_t * val,int flags)498 axppmic_read(i2c_tag_t tag, i2c_addr_t addr, uint8_t reg, uint8_t *val, int flags)
499 {
500 	return iic_smbus_read_byte(tag, addr, reg, val, flags);
501 }
502 
503 static int
axppmic_write(i2c_tag_t tag,i2c_addr_t addr,uint8_t reg,uint8_t val,int flags)504 axppmic_write(i2c_tag_t tag, i2c_addr_t addr, uint8_t reg, uint8_t val, int flags)
505 {
506 	return iic_smbus_write_byte(tag, addr, reg, val, flags);
507 }
508 
509 static int
axppmic_set_voltage(i2c_tag_t tag,i2c_addr_t addr,const struct axppmic_ctrl * c,u_int min,u_int max)510 axppmic_set_voltage(i2c_tag_t tag, i2c_addr_t addr, const struct axppmic_ctrl *c, u_int min, u_int max)
511 {
512 	u_int vol, reg_val;
513 	int nstep, error;
514 	uint8_t val;
515 
516 	if (!c->c_voltage_mask)
517 		return EINVAL;
518 
519 	if (min < c->c_min || min > c->c_max)
520 		return EINVAL;
521 
522 	reg_val = 0;
523 	nstep = 1;
524 	vol = c->c_min;
525 
526 	for (nstep = 0; nstep < c->c_step1cnt && vol < min; nstep++) {
527 		++reg_val;
528 		vol += c->c_step1;
529 	}
530 
531 	if (c->c_step2start)
532 		vol = c->c_step2start;
533 
534 	for (nstep = 0; nstep < c->c_step2cnt && vol < min; nstep++) {
535 		++reg_val;
536 		vol += c->c_step2;
537 	}
538 
539 	if (vol > max)
540 		return EINVAL;
541 
542 	iic_acquire_bus(tag, 0);
543 	if ((error = axppmic_read(tag, addr, c->c_voltage_reg, &val, 0)) == 0) {
544 		val &= ~c->c_voltage_mask;
545 		val |= __SHIFTIN(reg_val, c->c_voltage_mask);
546 		error = axppmic_write(tag, addr, c->c_voltage_reg, val, 0);
547 	}
548 	iic_release_bus(tag, 0);
549 
550 	return error;
551 }
552 
553 static int
axppmic_get_voltage(i2c_tag_t tag,i2c_addr_t addr,const struct axppmic_ctrl * c,u_int * pvol)554 axppmic_get_voltage(i2c_tag_t tag, i2c_addr_t addr, const struct axppmic_ctrl *c, u_int *pvol)
555 {
556 	int reg_val, error;
557 	uint8_t val;
558 
559 	if (!c->c_voltage_mask)
560 		return EINVAL;
561 
562 	iic_acquire_bus(tag, 0);
563 	error = axppmic_read(tag, addr, c->c_voltage_reg, &val, 0);
564 	iic_release_bus(tag, 0);
565 	if (error)
566 		return error;
567 
568 	reg_val = __SHIFTOUT(val, c->c_voltage_mask);
569 	if (reg_val < c->c_step1cnt) {
570 		*pvol = c->c_min + reg_val * c->c_step1;
571 	} else if (c->c_step2start) {
572 		*pvol = c->c_step2start +
573 		    ((reg_val - c->c_step1cnt) * c->c_step2);
574 	} else {
575 		*pvol = c->c_min + (c->c_step1cnt * c->c_step1) +
576 		    ((reg_val - c->c_step1cnt) * c->c_step2);
577 	}
578 
579 	return 0;
580 }
581 
582 static void
axppmic_power_poweroff(device_t dev)583 axppmic_power_poweroff(device_t dev)
584 {
585 	struct axppmic_softc *sc = device_private(dev);
586 	int error;
587 
588 	delay(1000000);
589 
590 	error = iic_acquire_bus(sc->sc_i2c, 0);
591 	if (error == 0) {
592 		error = axppmic_write(sc->sc_i2c, sc->sc_addr,
593 		    AXP_POWER_DISABLE_REG, AXP_POWER_DISABLE_CTRL, 0);
594 		iic_release_bus(sc->sc_i2c, 0);
595 	}
596 	if (error) {
597 		device_printf(dev, "WARNING: unable to power off, error %d\n",
598 		    error);
599 	}
600 }
601 
602 static struct fdtbus_power_controller_func axppmic_power_funcs = {
603 	.poweroff = axppmic_power_poweroff,
604 };
605 
606 static int
axppmic_gpio_ctl(struct axppmic_softc * sc,uint8_t pin,uint8_t func)607 axppmic_gpio_ctl(struct axppmic_softc *sc, uint8_t pin, uint8_t func)
608 {
609 	uint8_t val;
610 	int error;
611 
612 	KASSERT(pin < sc->sc_conf->gpio_npins);
613 	KASSERT((func & ~AXP_GPIO_CTRL_FUNC_MASK) == 0);
614 
615 	iic_acquire_bus(sc->sc_i2c, 0);
616 	error = axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_GPIO_CTRL_REG(pin),
617 	    &val, 0);
618 	if (error == 0) {
619 		val &= ~AXP_GPIO_CTRL_FUNC_MASK;
620 		val |= func;
621 		error = axppmic_write(sc->sc_i2c, sc->sc_addr,
622 		    AXP_GPIO_CTRL_REG(pin), val, 0);
623 	}
624 	iic_release_bus(sc->sc_i2c, 0);
625 
626 	return error;
627 }
628 
629 static void *
axppmic_gpio_acquire(device_t dev,const void * data,size_t len,int flags)630 axppmic_gpio_acquire(device_t dev, const void *data, size_t len, int flags)
631 {
632 	struct axppmic_softc *sc = device_private(dev);
633 	struct axppmic_gpio_pin *gpin;
634 	const u_int *gpio = data;
635 	int error;
636 
637 	if (len != 12) {
638 		return NULL;
639 	}
640 
641 	const uint8_t pin = be32toh(gpio[1]) & 0xff;
642 	const bool actlo = be32toh(gpio[2]) & 1;
643 
644 	if (pin >= sc->sc_conf->gpio_npins) {
645 		return NULL;
646 	}
647 
648 	if ((flags & GPIO_PIN_INPUT) != 0) {
649 		error = axppmic_gpio_ctl(sc, pin, AXP_GPIO_CTRL_FUNC_INPUT);
650 		if (error != 0) {
651 			return NULL;
652 		}
653 	}
654 
655 	gpin = kmem_zalloc(sizeof(*gpin), KM_SLEEP);
656 	gpin->pin_sc = sc;
657 	gpin->pin_nr = pin;
658 	gpin->pin_flags = flags;
659 	gpin->pin_actlo = actlo;
660 
661 	return gpin;
662 }
663 
664 static void
axppmic_gpio_release(device_t dev,void * priv)665 axppmic_gpio_release(device_t dev, void *priv)
666 {
667 	struct axppmic_softc *sc = device_private(dev);
668 	struct axppmic_gpio_pin *gpin = priv;
669 
670 	axppmic_gpio_ctl(sc, gpin->pin_nr, AXP_GPIO_CTRL_FUNC_INPUT);
671 
672 	kmem_free(gpin, sizeof(*gpin));
673 }
674 
675 static int
axppmic_gpio_read(device_t dev,void * priv,bool raw)676 axppmic_gpio_read(device_t dev, void *priv, bool raw)
677 {
678 	struct axppmic_softc *sc = device_private(dev);
679 	struct axppmic_gpio_pin *gpin = priv;
680 	uint8_t data;
681 	int error, val;
682 
683 	KASSERT(sc == gpin->pin_sc);
684 
685 	const uint8_t data_mask = __BIT(gpin->pin_nr);
686 
687 	iic_acquire_bus(sc->sc_i2c, 0);
688 	error = axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_GPIO_SIGNAL_REG,
689 	    &data, 0);
690 	iic_release_bus(sc->sc_i2c, 0);
691 
692 	if (error != 0) {
693 		device_printf(dev, "WARNING: failed to read pin %d: %d\n",
694 		    gpin->pin_nr, error);
695 		val = 0;
696 	} else {
697 		val = __SHIFTOUT(data, data_mask);
698 	}
699 	if (!raw && gpin->pin_actlo) {
700 		val = !val;
701 	}
702 
703 	return val;
704 }
705 
706 static void
axppmic_gpio_write(device_t dev,void * priv,int val,bool raw)707 axppmic_gpio_write(device_t dev, void *priv, int val, bool raw)
708 {
709 	struct axppmic_softc *sc = device_private(dev);
710 	struct axppmic_gpio_pin *gpin = priv;
711 	int error;
712 
713 	if (!raw && gpin->pin_actlo) {
714 		val = !val;
715 	}
716 
717 	error = axppmic_gpio_ctl(sc, gpin->pin_nr,
718 	    val == 0 ? AXP_GPIO_CTRL_FUNC_LOW : AXP_GPIO_CTRL_FUNC_HIGH);
719 	if (error != 0) {
720 		device_printf(dev, "WARNING: failed to write pin %d: %d\n",
721 		    gpin->pin_nr, error);
722 	}
723 }
724 
725 static struct fdtbus_gpio_controller_func axppmic_gpio_funcs = {
726 	.acquire = axppmic_gpio_acquire,
727 	.release = axppmic_gpio_release,
728 	.read = axppmic_gpio_read,
729 	.write = axppmic_gpio_write,
730 };
731 
732 static void
axppmic_task_shut(void * priv)733 axppmic_task_shut(void *priv)
734 {
735 	struct axppmic_softc *sc = priv;
736 
737 	sysmon_pswitch_event(&sc->sc_smpsw, PSWITCH_EVENT_PRESSED);
738 }
739 
740 static void
axppmic_sensor_update(struct sysmon_envsys * sme,envsys_data_t * e)741 axppmic_sensor_update(struct sysmon_envsys *sme, envsys_data_t *e)
742 {
743 	struct axppmic_softc *sc = sme->sme_cookie;
744 	const struct axppmic_config *c = sc->sc_conf;
745 	uint8_t val, lo, hi;
746 
747 	e->state = ENVSYS_SINVALID;
748 
749 	const bool battery_present =
750 	    sc->sc_sensor[AXP_SENSOR_BATT_PRESENT].state == ENVSYS_SVALID &&
751 	    sc->sc_sensor[AXP_SENSOR_BATT_PRESENT].value_cur == 1;
752 
753 	switch (e->private) {
754 	case AXP_SENSOR_ACIN_PRESENT:
755 		if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_SOURCE_REG, &val, 0) == 0) {
756 			e->state = ENVSYS_SVALID;
757 			e->value_cur = !!(val & AXP_POWER_SOURCE_ACIN_PRESENT);
758 		}
759 		break;
760 	case AXP_SENSOR_VBUS_PRESENT:
761 		if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_SOURCE_REG, &val, 0) == 0) {
762 			e->state = ENVSYS_SVALID;
763 			e->value_cur = !!(val & AXP_POWER_SOURCE_VBUS_PRESENT);
764 		}
765 		break;
766 	case AXP_SENSOR_BATT_PRESENT:
767 		if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_MODE_REG, &val, 0) == 0) {
768 			if (val & AXP_POWER_MODE_BATT_VALID) {
769 				e->state = ENVSYS_SVALID;
770 				e->value_cur = !!(val & AXP_POWER_MODE_BATT_PRESENT);
771 			}
772 		}
773 		break;
774 	case AXP_SENSOR_BATT_CHARGING:
775 		if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_MODE_REG, &val, 0) == 0) {
776 			e->state = ENVSYS_SVALID;
777 			e->value_cur = !!(val & AXP_POWER_MODE_BATT_CHARGING);
778 		}
779 		break;
780 	case AXP_SENSOR_BATT_CHARGE_STATE:
781 		if (battery_present &&
782 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_CAP_REG, &val, 0) == 0 &&
783 		    (val & AXP_BATT_CAP_VALID) != 0) {
784 			const u_int batt_val = __SHIFTOUT(val, AXP_BATT_CAP_PERCENT);
785 			if (batt_val <= sc->sc_shut_thres) {
786 				e->state = ENVSYS_SCRITICAL;
787 				e->value_cur = ENVSYS_BATTERY_CAPACITY_CRITICAL;
788 			} else if (batt_val <= sc->sc_warn_thres) {
789 				e->state = ENVSYS_SWARNUNDER;
790 				e->value_cur = ENVSYS_BATTERY_CAPACITY_WARNING;
791 			} else {
792 				e->state = ENVSYS_SVALID;
793 				e->value_cur = ENVSYS_BATTERY_CAPACITY_NORMAL;
794 			}
795 		}
796 		break;
797 	case AXP_SENSOR_BATT_CAPACITY_PERCENT:
798 		if (battery_present &&
799 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_CAP_REG, &val, 0) == 0 &&
800 		    (val & AXP_BATT_CAP_VALID) != 0) {
801 			e->state = ENVSYS_SVALID;
802 			e->value_cur = __SHIFTOUT(val, AXP_BATT_CAP_PERCENT);
803 		}
804 		break;
805 	case AXP_SENSOR_BATT_VOLTAGE:
806 		if (battery_present &&
807 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATSENSE_HI_REG, &hi, 0) == 0 &&
808 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATSENSE_LO_REG, &lo, 0) == 0) {
809 			e->state = ENVSYS_SVALID;
810 			e->value_cur = AXP_ADC_RAW(hi, lo) * c->batsense_step;
811 		}
812 		break;
813 	case AXP_SENSOR_BATT_CHARGE_CURRENT:
814 		if (battery_present &&
815 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_SOURCE_REG, &val, 0) == 0 &&
816 		    (val & AXP_POWER_SOURCE_CHARGE_DIRECTION) != 0 &&
817 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATTCHG_HI_REG, &hi, 0) == 0 &&
818 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATTCHG_LO_REG, &lo, 0) == 0) {
819 			e->state = ENVSYS_SVALID;
820 			e->value_cur = AXP_ADC_RAW(hi, lo) * c->charge_step;
821 		}
822 		break;
823 	case AXP_SENSOR_BATT_DISCHARGE_CURRENT:
824 		if (battery_present &&
825 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_SOURCE_REG, &val, 0) == 0 &&
826 		    (val & AXP_POWER_SOURCE_CHARGE_DIRECTION) == 0 &&
827 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATTDISCHG_HI_REG, &hi, 0) == 0 &&
828 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATTDISCHG_LO_REG, &lo, 0) == 0) {
829 			e->state = ENVSYS_SVALID;
830 			e->value_cur = AXP_ADC_RAW(hi, lo) * c->discharge_step;
831 		}
832 		break;
833 	case AXP_SENSOR_BATT_MAXIMUM_CAPACITY:
834 		if (battery_present &&
835 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_MAX_CAP_HI_REG, &hi, 0) == 0 &&
836 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_MAX_CAP_LO_REG, &lo, 0) == 0) {
837 			e->state = (hi & AXP_BATT_MAX_CAP_VALID) ? ENVSYS_SVALID : ENVSYS_SINVALID;
838 			e->value_cur = AXP_COULOMB_RAW(hi, lo) * c->maxcap_step;
839 		}
840 		break;
841 	case AXP_SENSOR_BATT_CURRENT_CAPACITY:
842 		if (battery_present &&
843 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_COULOMB_HI_REG, &hi, 0) == 0 &&
844 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_COULOMB_LO_REG, &lo, 0) == 0) {
845 			e->state = (hi & AXP_BATT_COULOMB_VALID) ? ENVSYS_SVALID : ENVSYS_SINVALID;
846 			e->value_cur = AXP_COULOMB_RAW(hi, lo) * c->coulomb_step;
847 		}
848 		break;
849 	}
850 }
851 
852 static void
axppmic_sensor_refresh(struct sysmon_envsys * sme,envsys_data_t * e)853 axppmic_sensor_refresh(struct sysmon_envsys *sme, envsys_data_t *e)
854 {
855 	struct axppmic_softc *sc = sme->sme_cookie;
856 
857 	switch (e->private) {
858 	case AXP_SENSOR_BATT_CAPACITY_PERCENT:
859 	case AXP_SENSOR_BATT_VOLTAGE:
860 	case AXP_SENSOR_BATT_CHARGE_CURRENT:
861 	case AXP_SENSOR_BATT_DISCHARGE_CURRENT:
862 		/* Always update battery capacity and ADCs */
863 		iic_acquire_bus(sc->sc_i2c, 0);
864 		axppmic_sensor_update(sme, e);
865 		iic_release_bus(sc->sc_i2c, 0);
866 		break;
867 	default:
868 		/* Refresh if the sensor is not in valid state */
869 		if (e->state != ENVSYS_SVALID) {
870 			iic_acquire_bus(sc->sc_i2c, 0);
871 			axppmic_sensor_update(sme, e);
872 			iic_release_bus(sc->sc_i2c, 0);
873 		}
874 		break;
875 	}
876 }
877 
878 static int
axppmic_intr(void * priv)879 axppmic_intr(void *priv)
880 {
881 	struct axppmic_softc * const sc = priv;
882 
883 	mutex_enter(&sc->sc_intr_lock);
884 
885 	fdtbus_intr_mask(sc->sc_phandle, sc->sc_ih);
886 
887 	/* Interrupt is always masked when work is scheduled! */
888 	KASSERT(!sc->sc_work_scheduled);
889 	sc->sc_work_scheduled = true;
890 	workqueue_enqueue(sc->sc_wq, &sc->sc_work, NULL);
891 
892 	mutex_exit(&sc->sc_intr_lock);
893 
894 	return 1;
895 }
896 
897 static void
axppmic_work(struct work * work,void * arg)898 axppmic_work(struct work *work, void *arg)
899 {
900 	struct axppmic_softc * const sc =
901 	    container_of(work, struct axppmic_softc, sc_work);
902 	const struct axppmic_config * const c = sc->sc_conf;
903 	const int flags = 0;
904 	uint8_t stat;
905 	u_int n;
906 
907 	KASSERT(sc->sc_work_scheduled);
908 
909 	iic_acquire_bus(sc->sc_i2c, flags);
910 	for (n = 1; n <= c->irq_regs; n++) {
911 		if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_IRQ_STATUS_REG(n), &stat, flags) == 0) {
912 			if (stat != 0) {
913 				axppmic_write(sc->sc_i2c, sc->sc_addr,
914 				    AXP_IRQ_STATUS_REG(n), stat, flags);
915 			}
916 
917 			if (n == c->poklirq.reg && (stat & c->poklirq.mask) != 0)
918 				sysmon_task_queue_sched(0, axppmic_task_shut, sc);
919 			if (n == c->acinirq.reg && (stat & c->acinirq.mask) != 0)
920 				axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_ACIN_PRESENT]);
921 			if (n == c->vbusirq.reg && (stat & c->vbusirq.mask) != 0)
922 				axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_VBUS_PRESENT]);
923 			if (n == c->battirq.reg && (stat & c->battirq.mask) != 0)
924 				axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_BATT_PRESENT]);
925 			if (n == c->chargeirq.reg && (stat & c->chargeirq.mask) != 0)
926 				axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_BATT_CHARGING]);
927 			if (n == c->chargestirq.reg && (stat & c->chargestirq.mask) != 0)
928 				axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_BATT_CHARGE_STATE]);
929 		}
930 	}
931 	iic_release_bus(sc->sc_i2c, flags);
932 
933 	mutex_enter(&sc->sc_intr_lock);
934 	sc->sc_work_scheduled = false;
935 	fdtbus_intr_unmask(sc->sc_phandle, sc->sc_ih);
936 	mutex_exit(&sc->sc_intr_lock);
937 }
938 
939 static void
axppmic_attach_acadapter(struct axppmic_softc * sc)940 axppmic_attach_acadapter(struct axppmic_softc *sc)
941 {
942 	envsys_data_t *e;
943 
944 	e = &sc->sc_sensor[AXP_SENSOR_ACIN_PRESENT];
945 	e->private = AXP_SENSOR_ACIN_PRESENT;
946 	e->units = ENVSYS_INDICATOR;
947 	e->state = ENVSYS_SINVALID;
948 	strlcpy(e->desc, "ACIN present", sizeof(e->desc));
949 	sysmon_envsys_sensor_attach(sc->sc_sme, e);
950 
951 	e = &sc->sc_sensor[AXP_SENSOR_VBUS_PRESENT];
952 	e->private = AXP_SENSOR_VBUS_PRESENT;
953 	e->units = ENVSYS_INDICATOR;
954 	e->state = ENVSYS_SINVALID;
955 	strlcpy(e->desc, "VBUS present", sizeof(e->desc));
956 	sysmon_envsys_sensor_attach(sc->sc_sme, e);
957 }
958 
959 static void
axppmic_attach_battery(struct axppmic_softc * sc)960 axppmic_attach_battery(struct axppmic_softc *sc)
961 {
962 	const struct axppmic_config *c = sc->sc_conf;
963 	envsys_data_t *e;
964 	uint8_t val;
965 
966 	iic_acquire_bus(sc->sc_i2c, 0);
967 	if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_CAP_WARN_REG, &val, 0) == 0) {
968 		sc->sc_warn_thres = __SHIFTOUT(val, AXP_BATT_CAP_WARN_LV1) + 5;
969 		sc->sc_shut_thres = __SHIFTOUT(val, AXP_BATT_CAP_WARN_LV2);
970 	}
971 	iic_release_bus(sc->sc_i2c, 0);
972 
973 	e = &sc->sc_sensor[AXP_SENSOR_BATT_PRESENT];
974 	e->private = AXP_SENSOR_BATT_PRESENT;
975 	e->units = ENVSYS_INDICATOR;
976 	e->state = ENVSYS_SINVALID;
977 	strlcpy(e->desc, "battery present", sizeof(e->desc));
978 	sysmon_envsys_sensor_attach(sc->sc_sme, e);
979 
980 	e = &sc->sc_sensor[AXP_SENSOR_BATT_CHARGING];
981 	e->private = AXP_SENSOR_BATT_CHARGING;
982 	e->units = ENVSYS_BATTERY_CHARGE;
983 	e->state = ENVSYS_SINVALID;
984 	strlcpy(e->desc, "charging", sizeof(e->desc));
985 	sysmon_envsys_sensor_attach(sc->sc_sme, e);
986 
987 	e = &sc->sc_sensor[AXP_SENSOR_BATT_CHARGE_STATE];
988 	e->private = AXP_SENSOR_BATT_CHARGE_STATE;
989 	e->units = ENVSYS_BATTERY_CAPACITY;
990 	e->flags = ENVSYS_FMONSTCHANGED;
991 	e->state = ENVSYS_SINVALID;
992 	e->value_cur = ENVSYS_BATTERY_CAPACITY_NORMAL;
993 	strlcpy(e->desc, "charge state", sizeof(e->desc));
994 	sysmon_envsys_sensor_attach(sc->sc_sme, e);
995 
996 	if (c->batsense_step) {
997 		e = &sc->sc_sensor[AXP_SENSOR_BATT_VOLTAGE];
998 		e->private = AXP_SENSOR_BATT_VOLTAGE;
999 		e->units = ENVSYS_SVOLTS_DC;
1000 		e->state = ENVSYS_SINVALID;
1001 		strlcpy(e->desc, "battery voltage", sizeof(e->desc));
1002 		sysmon_envsys_sensor_attach(sc->sc_sme, e);
1003 	}
1004 
1005 	if (c->charge_step) {
1006 		e = &sc->sc_sensor[AXP_SENSOR_BATT_CHARGE_CURRENT];
1007 		e->private = AXP_SENSOR_BATT_CHARGE_CURRENT;
1008 		e->units = ENVSYS_SAMPS;
1009 		e->state = ENVSYS_SINVALID;
1010 		strlcpy(e->desc, "battery charge current", sizeof(e->desc));
1011 		sysmon_envsys_sensor_attach(sc->sc_sme, e);
1012 	}
1013 
1014 	if (c->discharge_step) {
1015 		e = &sc->sc_sensor[AXP_SENSOR_BATT_DISCHARGE_CURRENT];
1016 		e->private = AXP_SENSOR_BATT_DISCHARGE_CURRENT;
1017 		e->units = ENVSYS_SAMPS;
1018 		e->state = ENVSYS_SINVALID;
1019 		strlcpy(e->desc, "battery discharge current", sizeof(e->desc));
1020 		sysmon_envsys_sensor_attach(sc->sc_sme, e);
1021 	}
1022 
1023 	if (c->has_fuel_gauge) {
1024 		e = &sc->sc_sensor[AXP_SENSOR_BATT_CAPACITY_PERCENT];
1025 		e->private = AXP_SENSOR_BATT_CAPACITY_PERCENT;
1026 		e->units = ENVSYS_INTEGER;
1027 		e->state = ENVSYS_SINVALID;
1028 		e->flags = ENVSYS_FPERCENT;
1029 		strlcpy(e->desc, "battery percent", sizeof(e->desc));
1030 		sysmon_envsys_sensor_attach(sc->sc_sme, e);
1031 	}
1032 
1033 	if (c->maxcap_step) {
1034 		e = &sc->sc_sensor[AXP_SENSOR_BATT_MAXIMUM_CAPACITY];
1035 		e->private = AXP_SENSOR_BATT_MAXIMUM_CAPACITY;
1036 		e->units = ENVSYS_SAMPHOUR;
1037 		e->state = ENVSYS_SINVALID;
1038 		strlcpy(e->desc, "battery maximum capacity", sizeof(e->desc));
1039 		sysmon_envsys_sensor_attach(sc->sc_sme, e);
1040 	}
1041 
1042 	if (c->coulomb_step) {
1043 		e = &sc->sc_sensor[AXP_SENSOR_BATT_CURRENT_CAPACITY];
1044 		e->private = AXP_SENSOR_BATT_CURRENT_CAPACITY;
1045 		e->units = ENVSYS_SAMPHOUR;
1046 		e->state = ENVSYS_SINVALID;
1047 		strlcpy(e->desc, "battery current capacity", sizeof(e->desc));
1048 		sysmon_envsys_sensor_attach(sc->sc_sme, e);
1049 	}
1050 }
1051 
1052 static void
axppmic_attach_sensors(struct axppmic_softc * sc)1053 axppmic_attach_sensors(struct axppmic_softc *sc)
1054 {
1055 	if (sc->sc_conf->has_battery) {
1056 		sc->sc_sme = sysmon_envsys_create();
1057 		sc->sc_sme->sme_name = device_xname(sc->sc_dev);
1058 		sc->sc_sme->sme_cookie = sc;
1059 		sc->sc_sme->sme_refresh = axppmic_sensor_refresh;
1060 		sc->sc_sme->sme_class = SME_CLASS_BATTERY;
1061 		sc->sc_sme->sme_flags = SME_INIT_REFRESH;
1062 
1063 		axppmic_attach_acadapter(sc);
1064 		axppmic_attach_battery(sc);
1065 
1066 		sysmon_envsys_register(sc->sc_sme);
1067 	}
1068 }
1069 
1070 
1071 static int
axppmic_match(device_t parent,cfdata_t match,void * aux)1072 axppmic_match(device_t parent, cfdata_t match, void *aux)
1073 {
1074 	struct i2c_attach_args *ia = aux;
1075 	int match_result;
1076 
1077 	if (iic_use_direct_match(ia, match, compat_data, &match_result))
1078 		return match_result;
1079 
1080 	/* This device is direct-config only. */
1081 
1082 	return 0;
1083 }
1084 
1085 static void
axppmic_attach(device_t parent,device_t self,void * aux)1086 axppmic_attach(device_t parent, device_t self, void *aux)
1087 {
1088 	struct axppmic_softc *sc = device_private(self);
1089 	const struct device_compatible_entry *dce = NULL;
1090 	const struct axppmic_config *c;
1091 	struct axpreg_attach_args aaa;
1092 	struct i2c_attach_args *ia = aux;
1093 	int phandle, child, i;
1094 	uint8_t irq_mask, val;
1095 	int error;
1096 
1097 	dce = iic_compatible_lookup(ia, compat_data);
1098 	KASSERT(dce != NULL);
1099 	c = dce->data;
1100 
1101 	sc->sc_dev = self;
1102 	sc->sc_i2c = ia->ia_tag;
1103 	sc->sc_addr = ia->ia_addr;
1104 	sc->sc_phandle = ia->ia_cookie;
1105 	sc->sc_conf = c;
1106 
1107 	aprint_naive("\n");
1108 	aprint_normal(": %s\n", c->name);
1109 
1110 	if (c->has_mode_set) {
1111 		const bool master_mode = of_hasprop(sc->sc_phandle, "x-powers,self-working-mode") ||
1112 		    of_hasprop(sc->sc_phandle, "x-powers,master-mode");
1113 
1114 		iic_acquire_bus(sc->sc_i2c, 0);
1115 		axppmic_write(sc->sc_i2c, sc->sc_addr, AXP_ADDR_EXT_REG,
1116 		    master_mode ? AXP_ADDR_EXT_MASTER : AXP_ADDR_EXT_SLAVE, 0);
1117 		iic_release_bus(sc->sc_i2c, 0);
1118 	}
1119 
1120 	iic_acquire_bus(sc->sc_i2c, 0);
1121 	error = axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_CHIP_ID_REG, &val, 0);
1122 	iic_release_bus(sc->sc_i2c, 0);
1123 	if (error != 0) {
1124 		aprint_error_dev(self, "couldn't read chipid\n");
1125 		return;
1126 	}
1127 	aprint_debug_dev(self, "chipid %#x\n", val);
1128 
1129 	sc->sc_smpsw.smpsw_name = device_xname(self);
1130 	sc->sc_smpsw.smpsw_type = PSWITCH_TYPE_POWER;
1131 	sysmon_pswitch_register(&sc->sc_smpsw);
1132 
1133 	mutex_init(&sc->sc_intr_lock, MUTEX_DEFAULT, IPL_VM);
1134 
1135 	if (c->irq_regs > 0) {
1136 		char intrstr[128];
1137 
1138 		if (!fdtbus_intr_str(sc->sc_phandle, 0,
1139 				     intrstr, sizeof(intrstr))) {
1140 			aprint_error_dev(self,
1141 			    "WARNING: failed to decode interrupt\n");
1142 		}
1143 
1144 		sc->sc_ih = fdtbus_intr_establish(sc->sc_phandle, 0, IPL_VM,
1145 						  FDT_INTR_MPSAFE,
1146 						  axppmic_intr, sc);
1147 		if (sc->sc_ih == NULL) {
1148 			aprint_error_dev(self,
1149 			    "WARNING: couldn't establish interrupt handler\n");
1150 		}
1151 
1152 		error = workqueue_create(&sc->sc_wq, device_xname(self),
1153 					 axppmic_work, NULL,
1154 					 PRI_SOFTSERIAL, IPL_VM,
1155 					 WQ_MPSAFE);
1156 		if (error) {
1157 			sc->sc_wq = NULL;
1158 			aprint_error_dev(self,
1159 			    "WARNING: couldn't create work queue: error %d\n",
1160 			    error);
1161 		}
1162 
1163 		if (sc->sc_ih != NULL && sc->sc_wq != NULL) {
1164 			iic_acquire_bus(sc->sc_i2c, 0);
1165 			for (i = 1; i <= c->irq_regs; i++) {
1166 				irq_mask = 0;
1167 				if (i == c->poklirq.reg)
1168 					irq_mask |= c->poklirq.mask;
1169 				if (i == c->acinirq.reg)
1170 					irq_mask |= c->acinirq.mask;
1171 				if (i == c->vbusirq.reg)
1172 					irq_mask |= c->vbusirq.mask;
1173 				if (i == c->battirq.reg)
1174 					irq_mask |= c->battirq.mask;
1175 				if (i == c->chargeirq.reg)
1176 					irq_mask |= c->chargeirq.mask;
1177 				if (i == c->chargestirq.reg)
1178 					irq_mask |= c->chargestirq.mask;
1179 				axppmic_write(sc->sc_i2c, sc->sc_addr,
1180 					      AXP_IRQ_ENABLE_REG(i),
1181 					      irq_mask, 0);
1182 			}
1183 			iic_release_bus(sc->sc_i2c, 0);
1184 		}
1185 	}
1186 
1187 	fdtbus_register_power_controller(sc->sc_dev, sc->sc_phandle,
1188 	    &axppmic_power_funcs);
1189 
1190 	if (c->gpio_compat != NULL) {
1191 		phandle = of_find_bycompat(sc->sc_phandle, c->gpio_compat);
1192 		if (phandle > 0) {
1193 			fdtbus_register_gpio_controller(self, phandle,
1194 			    &axppmic_gpio_funcs);
1195 		}
1196 	}
1197 
1198 	phandle = of_find_firstchild_byname(sc->sc_phandle, "regulators");
1199 	if (phandle > 0) {
1200 		aaa.reg_i2c = sc->sc_i2c;
1201 		aaa.reg_addr = sc->sc_addr;
1202 		for (i = 0; i < c->ncontrols; i++) {
1203 			const struct axppmic_ctrl *ctrl = &c->controls[i];
1204 			child = of_find_firstchild_byname(phandle, ctrl->c_name);
1205 			if (child <= 0)
1206 				continue;
1207 			aaa.reg_ctrl = ctrl;
1208 			aaa.reg_phandle = child;
1209 			config_found(sc->sc_dev, &aaa, NULL, CFARGS_NONE);
1210 		}
1211 	}
1212 
1213 	if (c->has_battery)
1214 		axppmic_attach_sensors(sc);
1215 }
1216 
1217 static int
axpreg_acquire(device_t dev)1218 axpreg_acquire(device_t dev)
1219 {
1220 	return 0;
1221 }
1222 
1223 static void
axpreg_release(device_t dev)1224 axpreg_release(device_t dev)
1225 {
1226 }
1227 
1228 static int
axpreg_enable(device_t dev,bool enable)1229 axpreg_enable(device_t dev, bool enable)
1230 {
1231 	struct axpreg_softc *sc = device_private(dev);
1232 	const struct axppmic_ctrl *c = sc->sc_ctrl;
1233 	const int flags = 0;
1234 	uint8_t val;
1235 	int error;
1236 
1237 	if (!c->c_enable_mask)
1238 		return EINVAL;
1239 
1240 	iic_acquire_bus(sc->sc_i2c, flags);
1241 	if ((error = axppmic_read(sc->sc_i2c, sc->sc_addr, c->c_enable_reg, &val, flags)) == 0) {
1242 		val &= ~c->c_enable_mask;
1243 		if (enable)
1244 			val |= c->c_enable_val;
1245 		else
1246 			val |= c->c_disable_val;
1247 		error = axppmic_write(sc->sc_i2c, sc->sc_addr, c->c_enable_reg, val, flags);
1248 	}
1249 	iic_release_bus(sc->sc_i2c, flags);
1250 
1251 	return error;
1252 }
1253 
1254 static int
axpreg_set_voltage(device_t dev,u_int min_uvol,u_int max_uvol)1255 axpreg_set_voltage(device_t dev, u_int min_uvol, u_int max_uvol)
1256 {
1257 	struct axpreg_softc *sc = device_private(dev);
1258 	const struct axppmic_ctrl *c = sc->sc_ctrl;
1259 
1260 	return axppmic_set_voltage(sc->sc_i2c, sc->sc_addr, c,
1261 	    min_uvol / 1000, max_uvol / 1000);
1262 }
1263 
1264 static int
axpreg_get_voltage(device_t dev,u_int * puvol)1265 axpreg_get_voltage(device_t dev, u_int *puvol)
1266 {
1267 	struct axpreg_softc *sc = device_private(dev);
1268 	const struct axppmic_ctrl *c = sc->sc_ctrl;
1269 	int error;
1270 	u_int vol;
1271 
1272 	error = axppmic_get_voltage(sc->sc_i2c, sc->sc_addr, c, &vol);
1273 	if (error)
1274 		return error;
1275 
1276 	*puvol = vol * 1000;
1277 	return 0;
1278 }
1279 
1280 static struct fdtbus_regulator_controller_func axpreg_funcs = {
1281 	.acquire = axpreg_acquire,
1282 	.release = axpreg_release,
1283 	.enable = axpreg_enable,
1284 	.set_voltage = axpreg_set_voltage,
1285 	.get_voltage = axpreg_get_voltage,
1286 };
1287 
1288 static int
axpreg_match(device_t parent,cfdata_t match,void * aux)1289 axpreg_match(device_t parent, cfdata_t match, void *aux)
1290 {
1291 	return 1;
1292 }
1293 
1294 static void
axpreg_attach(device_t parent,device_t self,void * aux)1295 axpreg_attach(device_t parent, device_t self, void *aux)
1296 {
1297 	struct axpreg_softc *sc = device_private(self);
1298 	struct axpreg_attach_args *aaa = aux;
1299 	const int phandle = aaa->reg_phandle;
1300 	const char *name;
1301 	u_int uvol, min_uvol, max_uvol;
1302 
1303 	sc->sc_dev = self;
1304 	sc->sc_i2c = aaa->reg_i2c;
1305 	sc->sc_addr = aaa->reg_addr;
1306 	sc->sc_ctrl = aaa->reg_ctrl;
1307 
1308 	fdtbus_register_regulator_controller(self, phandle,
1309 	    &axpreg_funcs);
1310 
1311 	aprint_naive("\n");
1312 	name = fdtbus_get_string(phandle, "regulator-name");
1313 	if (name)
1314 		aprint_normal(": %s\n", name);
1315 	else
1316 		aprint_normal("\n");
1317 
1318 	int error = axpreg_get_voltage(self, &uvol);
1319 	if (error)
1320 		return;
1321 
1322 	if (of_getprop_uint32(phandle, "regulator-min-microvolt", &min_uvol) == 0 &&
1323 	    of_getprop_uint32(phandle, "regulator-max-microvolt", &max_uvol) == 0) {
1324 		if (uvol < min_uvol || uvol > max_uvol) {
1325 			aprint_debug_dev(self, "fix voltage %u uV -> %u/%u uV\n",
1326 			    uvol, min_uvol, max_uvol);
1327 			axpreg_set_voltage(self, min_uvol, max_uvol);
1328 		}
1329 	}
1330 
1331 	if (of_hasprop(phandle, "regulator-always-on") ||
1332 	    of_hasprop(phandle, "regulator-boot-on")) {
1333 		axpreg_enable(self, true);
1334 	}
1335 }
1336 
1337 CFATTACH_DECL_NEW(axppmic, sizeof(struct axppmic_softc),
1338     axppmic_match, axppmic_attach, NULL, NULL);
1339 
1340 CFATTACH_DECL_NEW(axpreg, sizeof(struct axpreg_softc),
1341     axpreg_match, axpreg_attach, NULL, NULL);
1342